小街乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小街乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)如图,在五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()
A. 150°
B. 135°
C. 120°
D. 90°
【答案】D
【考点】对顶角、邻补角,平行线的性质,三角形内角和定理
【解析】【解答】解:连接BD,
∵BC⊥CD,
∴∠C=90∘,
∴∠CBD+∠CDB=180∘−90∘=90∘
∵AB∥DE,
∴∠ABD+∠EDB=180∘,
∴∠1+∠2=180∘−∠ABC+180∘−∠EDC=360∘−(∠ABC+∠EDC)=360∘−(∠ABD+∠CBD+∠EDB+∠CDB)=360∘−(90∘+180∘)=90∘
故选D.
【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB=90°,根据平行线的性质求出∠ABD+∠EDB=180°,然后根据邻补角的定义及角的和差即可求出答案.
2、(2分)下列各式是一元一次不等式的是()
A.2x﹣4>5y+1
B.3>﹣5
C.4x+1>0
D.4y+3<
【答案】C
【考点】一元一次不等式的定义
【解析】【解答】解:根据一元一次不等式的概念,用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式,可知2x-4>5y+1含有两个未知数,故不正确;
3>-5没有未知数,故不正确;4x+1>0是一元一次不等式,故正确;根据4y+3<中分母中含有未知数,故不正确.
故答案为:C.
【分析】只含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的不等式叫一元一次不等式。
根据这个定义依次对各选项作出判断即可。
3、(2分)在,,,,,,7.010010001…(每两个“1”之间依次多一个“0”),
这7个数中,无理数共有()
A. 1个
B. 2个
C. 3个
D. 4个
【答案】C
【考点】无理数的认识
【解析】【解答】解:无理数有:,2 π,7.010010001…(每两个“1”之间依次多一个“0”)一共3个。
故答案为:C
【分析】根据无限不循环的小数是无理数或开方开不尽的数是无理数,有规律但不循环的小数是无理数,就可得出无理数的个数。
4、(2分)方程2x+3y=15的正整数解有()
A.0个
B.1个
C.2个
D.无数个
【答案】C
【考点】二元一次方程的解
【解析】【解答】解:方程2x+3y=15,
解得:x= ,
当y=3时,x=3;当y=1时,x=6,
∴方程2x+3y=15的正整数解有2个,
故答案为:C.
【分析】将方程用含y的代数式表示x,再根据原方程的正整数解,因此分别求出当y=3时;当y=1时的x的值,就可得出此方程的正整数解的个数。
5、(2分)下列图形中,∠1和∠2不是同位角的是()
A. B.
C. D.
【答案】D
【考点】同位角、内错角、同旁内角
【解析】【解答】解:选项A、B、C中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;选项D中,∠1与∠2的两条边都不在同一条直线上,不是同位角.
故答案为:D.
【分析】同位角是指位于两条直线的同旁,位于第三条直线的同侧。
根据同位角的构成即可判断。
6、(2分)已知关于x、y的方程组的解满足3x+2y=19,则m的值为()
A. 1
B.
C. 5
D. 7
【答案】A
【考点】解二元一次方程组
【解析】【解答】解:,
①+②得x=7m,
①﹣②得y=﹣m,
依题意得3×7m+2×(﹣m)=19,
∴m=1.
故答案为:A.
【分析】观察方程组,可知:x的系数相等,y的系数互为相反数,因此将两方程相加求出x、将两方程相减求出y,再将x、y代入方程3x+2y=19,建立关于m的方程求解即可。
7、(2分)不等式组的解集是()
A. 1<x≤2
B. ﹣1<x≤2
C. x>﹣1
D. ﹣1<x≤4
【答案】B
【考点】解一元一次不等式组
【解析】【解答】解:,
解①得x>﹣1,
解②得x≤2,
所以不等式组的解集为﹣1<x≤2.
故答案为:B
【分析】先分别求得两个不等式的解集,根据:大于小的,小于大的取两个解集的公共部分即可.
8、(2分)如图,A,B,C,D中的哪幅图案可以通过图案①平移得到()
A. B. C. D.
【答案】D
【考点】平移的性质
【解析】【解答】解:通过图案①平移得到必须与图案①完全相同,角度也必须相同
瘵察图形可知D可通过图案①平移得到,
故答案为:D
【分析】根据平移的性质,观察图形即可得出答案。
9、(2分)如图,直线AB,CD相交于点O,∠EOD=90°,若∠AOE=2∠AOC,则∠DOB的度数为()
A. 25°
B. 30°
C. 45°
D. 60°
【答案】B
【考点】角的运算,对顶角、邻补角
【解析】【解答】∵∠EOD=90°,∴∠COE=90°,∵∠AOE=2∠AOC,∴∠AOC=30°,∴∠AOE=2∠AOC=30°,故答案为:B.
【分析】根据图形和已知得到∠EOD、∠COE是直角,由∠AOE=2∠AOC,对顶角相等,求出∠DOB的度数.
10、(2分)若关于x的不等式组的解集是,则a=()
A.1
B.2
C.
D.-2
【答案】A
【考点】不等式的解及解集
【解析】【解答】解不等式组可得a<x<2,根据题意,可得a=2a-1,解得a=1.A符合题意。
故答案为:A
【分析】由题意得出a=2a-1,解之可得答案.
11、(2分)二元一次方程组的解为()
A.
B.
C.
D.
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:
①+②得:3x=6,
解得:x=2,
把x=2代入②得:2﹣y=3,
解得:y=﹣1,
即方程组的解是,
故答案为:B.
【分析】由题意将两个方程左右两边分别相加可求得x的值,再将求得的x的值代入其中一个方程可求得y 的值,则方程组的解可得。
12、(2分)下列说法中,不正确的个数有().
①所有的正数都是整数. ②一定是正数. ③无限小数一定是无理数.
④没有平方根. ⑤不是正数的数一定是负数. ⑥带根号的一定是无理数.
A. 3个
B. 4个
C. 5个
D. 6个
【答案】D
【考点】平方根,实数及其分类,有理数及其分类,无理数的认识
【解析】【解答】解:①如是正数,但不是整数,故①说法错误.
②当a=0时,,不是正数,故②说法错误.
③无限小数包括无限循环小数和无限不循环小数,其中无限循环小数是有理数,无限不循环小数是无理数,故③说法错误.
④的结果是正数,有平方根,故④说法错误.
⑤0既不是正数,也不是负数,故⑤说法错误.
⑥带根号且开不尽的数一定是无理数,故⑥说法错误.
故不正确的说法有6个.
故答案为:D.
【分析】本题主要考查有理数和无理数的相关定义,熟记以下几点:(1)实数包括有理数和无理数;(2)有理数包括正数(正整数和正分数)、0和负数(负整数、负分数);(3)无理数:无限不循环小数;(4)小数分为:有限小数和无限小数(无限不循环小数,无限循环小数);(5)无限循环小数是有理数,无限不循环小数是无理数.
二、填空题
13、(1分)不等式组的所有整数解的和为________
【答案】-2
【考点】解一元一次不等式组,一元一次不等式组的特殊解
【解析】【解答】解:由①得:3x≥-6,解之:x≥-2
由②得:-2x>-4,解之:x<2
不等式组的解集为:-2≤x<2
∴不等式组的整数解为:-2,-1,0,1
∴-2-1+0+1=-2
故答案为:-2
【分析】先求出不等式组的解集,再求出其整数解,然后求出整数解的和即可。
14、(1分)写出命题“两个锐角的和是钝角”是假命题的一个反例:________
【答案】两个锐角的度数分别为20°,30°
【考点】命题与定理
【解析】【解答】解:若两个锐角的度数分别为20°,30°
则这两个角的和为50°,50°的角是锐角
故答案为:两个锐角的度数分别为20°,30°(答案不唯一)
【分析】根据题意写出两个锐角的和是直角或锐角即可。
15、(1分)在一次爆破作业中,爆破员用一条1 m长的导火线来引爆炸药,已知导火线的燃烧速度为0.5 cm/s,引燃导火线后,爆破员至少要以________m/s的速度才能跑到600 m或600 m以外的安全区域.
【答案】3
【考点】一元一次不等式的应用
【解析】【解答】解:设爆破员要以xm/s的速度才能跑到600 m或600 m以外的安全区域,
0.5cm/s=0.005m/s,
依题意可得x≥600,
解得x≥3,
∴爆破员至少要以3m/s的速度才能跑到600 m或600 m以外的安全区域.
【分析】设爆破员要以xm/s的速度才能跑到600 m或600 m以外的安全区域,先根据时间=路程÷速度,求出
1 m长的导火线全部燃烧所需要的时间,再根据路程=速度×时间求出爆破员要以xm/s的速度用时间所跑的路程,最后根据跑到600 m或600 m以外的安全区域路程不等式,解不等式即可得出答案。
16、(1分)解不等式2-3x≤3+5x,则x________
【答案】
【考点】解一元一次不等式
【解析】【解答】解:-3x-5x≤3-2,
-8x≤1,
x .
故答案为
【分析】移项,将含有未知数的项移到不等式的左边,常数项移到不等式的右边,然后合并同类项,根据不等式的性质,不等式的两边同除以-8,不等号方向改变,系数化为1,得出不等式的解。
17、(1分)请写出一个大于-4而小于-3的无理数________.
【答案】
【考点】估算无理数的大小
【解析】【解答】大于-4而小于-3的无理数.
【分析】由题意可知,写出的这个无理数大于而小于即可。
18、(1分)当x________时,代数式1- 的值不大于代数式的值.
【答案】≥
【考点】解一元一次不等式,一元一次不等式的应用
【解析】【解答】解:根据题意得:
8-2(x-1)≤3(x+1)
8-2x+2≤3x+3
-5x≤-7
x≥
故答案为:≥
【分析】抓住题中的关键词“不大于”就是≤,列不等式,解不等式即可求解。
三、解答题
19、(5分)关于x,y的方程组的解满足x>y,求m的取值范围.
【答案】解:由解得,
∵x>y,
∴2m>1﹣m,
解得m>
【考点】解二元一次方程组,一元一次不等式的应用
【解析】【分析】本题已知说明了是关于x、y的二元一次方程组,所以解方程组时将m看做常数去解,这样解得的未知数的值中会含有m,再利用已知x>y,求得m的取值范围.
20、(5分)甲、乙两小组人数的和是28.如果甲组增加2人,乙组增加6人,那么甲组人数与乙组人数的比是2:1.求原来甲、乙两组的人数.
【答案】解:设原来甲组人数为x人,原来乙组人数为y人,依题可得:
,
变形得:
,
(1)-(2)得:
3y=18,
∴y=6,
将y=6代入(1)得:
x=22.
∴原方程组的解为:.
答:原来甲组人数为22人,原来乙组人数为6人.
【考点】二元一次方程组的其他应用
【解析】【分析】设原来甲组人数为x人,原来乙组人数为y人,根据题意列出二元一次方程组,解之即可.
21、(10分)太仓港区道路绿化工程工地有大量货物需要运输,某车队有载重量为8吨和10吨的卡车共15辆,所有车辆运输一次能运输128吨货物.
(1)求该车队载重量为8吨、10吨的卡车各有多少辆?
(2)随着工程的扩大,车队需要一次运输货物170吨以上,为了完成任务,车队准备增购这两种卡车共5辆(两种车都购买),请写出所有可能的购车方案.
【答案】(1)解:设该车队载重量为8吨的卡车有x辆,载重量为10吨的卡车有y辆,由题意得:
,
解得:,
答:8吨的有11辆,10吨的有4辆
(2)解:设增购8吨的卡车有a辆,则增购10吨的卡车有(5﹣a)辆,由题意得:
(11+a)×8+10(5﹣a+4)>170,
解得:a<4,
∵a为正整数,
∴a=1,2,3,
购车方案:8吨1辆10吨4辆或者8吨2辆10吨3辆或者8吨3辆10吨2辆.
【考点】一元一次不等式的应用,二元一次方程组的实际应用-鸡兔同笼问题
【解析】【分析】(1)等量关系为:载重量为8吨的数量+10吨的卡车的数量=15;载重量为8吨的数量×8+10
吨的卡车的数量×10=128,再设未知数,列方程组,求出方程组的解。
(2)根据两种卡车的数量=5,及两种卡车一次运输货物>170 ,设未知数,列不等式,求出不等式的正整数解,就可得出购车方案。
22、(15分)上个月常州市体育锻炼达标抽测,其中某校五年级60米短跑情况如图所示,已知该校五年
级得优秀的人数是150人.
(1)这个学校五年级参加抽测的一共多少人?
(2)其中勉强达标的多少人?
(3)针对这次抽测结果,如果你是该校校长,你会有什么想法?
【答案】(1)解:150÷=600(人),答:这个学校五年级参加抽测的一共600人
(2)解:600×(1﹣65%﹣)=600×0.1
=60(人),
答:其中勉强达标的60人
(3)解:如果我是该校校长,增加学生体育锻炼的时间,适当增加锻炼的强度
【考点】扇形统计图
【解析】【分析】(1)把五年级参加抽测的总人数看作单位“1”,该校五年级得优秀的人数除以得优秀人数占的比率,即可得五年级参加抽测的一共多少人.(2)把五年级参加抽测的总人数看作单位“1”,用单位“1”减
优秀的人数和良好的人数占的比率,得到达标的占的比率,再乘以五年级参加抽测的总人数即可得勉强达标的多少人.(3)如果我是该校校长,增加学生体育锻炼的时间,适当增加锻炼的强度.
23、(5分)已知关于x、y的方程组
问a为何值时,方程组有无数多组解?a为何值时,只有一组解?
【答案】解:②-①×2得
(a-4)x=0
所以,当a-4=0,即a=4时,x可取一切数.与之相对应的y 的值也是无数多个,即a=4时,原方程组有无数多组解.
当a-4≠0,即a≠4时,,即x只能取0,与之相对应的y的值为2,即当a≠4时,方程组只
有一组解
【考点】解二元一次方程组
【解析】【分析】该方程组中除未知数x、y外,还含有其他字母a,这类字母通常称为参数.可将参数作为已知的数,同样用代入消元法或加减消元法将方程组化为一个含参数的一元一次方程,再根据一次项系数≠0;一次项系数=0两种情况讨论.
24、(10分)如图,已知直线AB与CD相交于点0,OE⊥AB,OF⊥CD,OM是∠BOF的角平分线
(1)若∠AOC=25°,求∠BOD和∠COE的度数.
(2)若∠AOC=a,求∠EOM的度数(用含a的代数式表示)【答案】(1)解:∵OE⊥AB,
∴∠AOE=90°,
又∵∠AOC=25°,
∴∠COE=∠AOE-∠AOC=90°-25°=65°,∠BOD=∠AOC=25°,
(2)解:∵∠AOC=α,
∴∠BOD=∠AOC=α,
∵OF⊥CD,
∴∠DOF=90°,
∴∠BOF=∠DOF-∠DOB=90°-α,
又∵OM平分∠BOF,
∴∠BOM=∠BOF=(90°-α)=45°-α,
∵OE⊥AB,
∴∠BOE=90°,
∴∠EOM=∠BOE-∠BOM,
=90°-(45°-α),
=45°+α.
【考点】角的平分线,角的运算,垂线
【解析】【分析】(1)根据垂直的定义可知∠AOE=90°,根据对顶角相等可得∠BOD度数,由∠COE=∠AOE-∠AOC计算即可得出答案.
(2)根据对顶角相等可得∠BOD=∠AOC=α,由垂直的定义和角的运算可得∠BOF=90°-α,根据角平分线的定义得∠BOM=45°-α,再由垂直定义即可求得答案.
25、(5分)已知x﹣1的平方根为±2,3x+y﹣1的平方根为±4,求3x+5y的算术平方根.
【答案】解:由x﹣1的平方根是±2,3x+y﹣1的平方根是±4,得:
,
解得:,
∴3x+5y=15+10=25,
∵25的算术平方根为5,
∴3x+5y的算术平方根为5.
【考点】平方根
【解析】【分析】平方根是指如果一个数的平方等于a,则这个数叫作a的平方根。
根据平方根的定义和已知条件可得关于x、y的方程组:x−1=4,3x+y−1=16 ,解方程组即可求得x、y的值,再将其代入3x+5y即可求得3x+5y的算术平方根。
26、(5分)如图,在四边形ABCD中,AB∥CD,点P为BC上一点(点P与B,C不重合),设∠CDP =∠α,∠CPD=∠β,你能不能说明,不论点P在BC上怎样运动,总有∠α+∠β=∠B.
【答案】解:过点P作PE∥CD交AD于E,则∠DPE=∠α.
∵AB∥CD,∴PE∥AB.
∴∠CPE=∠B,即∠DPE+∠β=∠α+∠β=∠B.故不论点P在BC上怎样运动,总有∠α+∠β=∠B
【考点】平行公理及推论,平行线的性质
【解析】【分析】过点P作PE∥CD交AD于E,根据平行线性质得∠DPE=∠α,由平行的传递性得PE∥AB,根据平行线性质得∠CPE=∠B,从而即可得证.。