八年级数学第五章相交线与平行线单元测试卷检测题(WORD版含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学第五章相交线与平行线单元测试卷检测题(WORD 版含答案)
一、选择题
1.如图,下列能判断AB ∥CD 的条件有 ( )
①∠B +∠BCD =180° ②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1
B .2
C .3
D .4
2.如图,在三角形ABC 中,90ACB ∠=︒,4AC =,点D 是线段BC 上任意一点,连接AD ,则线段AD 的长不可能...
是( )
A .3
B .4
C .5
D .6
3.如图,直角三角形ABC 的直角边AB =6,BC =8,将直角三角形ABC 沿边BC 的方向平移到三角形DEF 的位置,DE 交AC 于点G ,BE =2,三角形CEG 的面积为13.5,下列结论:①三角形ABC 平移的距离是4;②EG =4.5;③AD ∥CF ;④四边形ADFC 的面积为6.其中正确的结论是
A .①②
B .②③
C .③④
D .②④
4.下列语句中,假命题的是( ) A .垂线段最短
B .如果直线a 、b 、c 满足a ∥b ,b ∥c ,那么a ∥c
C .同角的余角相等
D .如果∠AOB =80°,∠BOC =20°,那么∠AOC =60°
5.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )
A .∠1=∠2
B .∠3=∠4
C .∠5=∠B
D .∠B +∠BDC =180°
6.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )
A .140︒
B .130︒
C .120︒
D .110︒
7.如图,ABC 的角平分线CD 、BE 相交于F ,90A ∠=︒,//EG BC ,且CG EG ⊥于G ,下列结论:①2CEG DCB ∠=∠;②CA 平分BCG ∠;③ADC GCD ∠=∠;④1
2
DFB CGE ∠=
∠.其中正确的结论是( )
A .①③④
B .①②③
C .②④
D .①③
8.如图1n //AB CB ,则∠1+∠2+∠3+…+∠n=( )
A .540°
B .180°n
C .180°(n-1)
D .180°(n+1)
9.如图,AB ∥CD ,BF ,DF 分别平分∠ABE 和∠CDE ,BF ∥DE ,∠F 与∠ABE 互补,则∠F 的
度数为
A .30°
B .35°
C .36°
D .45°
10.下列定理中,没有逆定题的是( ) ①内错角相等,两直线平行 ②等腰三角形两底角相等 ③对顶角相等
④直角三角形的两个锐角互余. A .1个 B .2个 C .3个 D .4个
11.(2017•十堰)如图,AB ∥DE ,FG ⊥BC 于F ,∠CDE=40°,则∠FGB=( )
A .40°
B .50°
C .60°
D .70°
12.能说明命题“若a >b ,则3a >2b “为假命题的反例为( )
A .a =3,b =2
B .a =﹣2,b =﹣3
C .a =2,b =3
D .a =﹣3,b =﹣2
二、填空题
13.镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转;B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动12°,B 灯每秒转动4°.B 灯先转动12秒,A 灯才开始转动.当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是 .
14.小明将一副三角板中的两块直角三角尺的直角顶点C 按如图所示的方式叠放在一起,当∠ACE <180°且点E 在直线AC 的上方时,他发现若∠ACE =_____,则三角板BCE 有一条边与斜边AD 平行.
15.α∠与β∠的两边互相垂直,且o 50α∠=,则β∠的度数为_________.
16.如图,AC ⊥AB ,AC ⊥CD ,垂足分别是点A 、C ,如果∠CDB=130°,那么直线AB 与BD 的夹角是________度.
17.如图,AB ∥CD ,∠B =75°,∠E =27°,则∠D 的度数为_____.
18.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若
30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则
PCF ∠的度数__________.
19.如图,//AB CD ,FN AB ⊥,垂足为点O ,EF 与CD 交于点G ,若130∠=︒,则2∠=______.
20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:
112n P P ∠+∠+∠++∠=…_________度.
三、解答题
21.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,
∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
22.钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.
(1)求a、b的值;
(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?
(3)如图,两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.
23.课题学习:平行线的“等角转化”功能. 阅读理解:
如图1,已知点A 是BC 外一点,连接AB ,AC ,求BAC B C ∠+∠+∠的度数.
(1)阅读并补充下面推理过程. 解:过点A 作ED BC ∥
B EAB ∴∠=∠,
C ∠=__________. __________180=︒
180B BAC C ∴∠+∠+∠=︒
解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.
方法运用: (2)如图2,已知AB
ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做
CF AB ∥). 深化拓展:
(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间. ①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________.
②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)
24.如图,如图1,在平面直角坐标系中,已知点A (﹣4,﹣1)、B (﹣2,1),将线段AB 平移至线段CD ,使点A 的对应点C 在x 轴的正半轴上,点D 在第一象限.
(1)若点C 的坐标(k ,0),求点D 的坐标(用含k 的式子表示); (2)连接BD 、BC ,若三角形BCD 的面积为5,求k 的值;
(3)如图2,分别作∠ABC 和∠ADC 的平分线,它们交于点P ,请写出∠A 、和∠P 和∠BCD 之间的一个等量关系,并说明理由.
25.如图,AB ∥CD .
(1)如图1,∠A 、∠E 、∠C 的数量关系为 .
(2)如图2,若∠A =50°,∠F =115°,求∠C ﹣∠E 的度数;
(3)如图3,∠E =90°,AG ,FG 分别平分∠BAE ,∠CFE ,若GD ∥FC ,试探究∠AGF 与∠GDC 的数量关系,并说明理由.
26.AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点. (1)如图1,写出∠APC 、∠A 、∠C 之间的数量关系,并证明; (2)如图2,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;
(3)如图3,点E 在射线BA 上,过点E 作EF ∥PC ,作∠PEG =∠PEF ,点G 在直线CD 上,作∠BEG 的平分线EH 交PC 于点H ,若∠APC =30°,∠PAB =140°,求∠PEH 的度数.
27.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=︒,
60B ∠=︒,45D E ∠=∠=︒.
(1)猜想BCD ∠与ACE ∠的数量关系,并说明理由; (2)若3BCD ACE ∠=∠,求BCD ∠的度数;
(3)若按住三角板ABC 不动,绕顶点C 转动三角DCE ,试探究BCD ∠等于多少度时
//CE AB ,并简要说明理由.
28.如图,已知直线//AB CD ,,M N 分别是直线,AB CD 上的点.
(1)在图1中,判断,BME MEN ∠∠和DNE ∠之间的数量关系,并证明你的结论; (2)在图2中,请你直接写出,BME MEN ∠∠和DNE ∠之间的数量关系(不需要证明);
(3)在图3中,MB 平分EMF ∠,NE 平分DNF ∠,且2180F E ∠+∠=,求FME ∠的度数.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【分析】
判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符
合. 【详解】
①∠B +∠BCD =180°,则同旁内角互补,可判断AB ∥CD ; ②∠1 = ∠2,内错角相等,可判断AD ∥BC ,不可判断AB ∥CD ; ③∠3 =∠4,内错角相等,可判断AB ∥CD ; ④∠B = ∠5,同位角相等,可判断AB ∥CD 故选:C 【点睛】
本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB 与CD 这两条直线,故是错误的.
2.A
解析:A 【分析】
根据垂线段最短即可判断. 【详解】 ∵90ACB ∠=︒
∴点A 到线段CB 最短的最短距离为AC=4 ∴AD 的长最短为4 故选A . 【点睛】
本题考查了垂线段最短,直线外一点与直线上各点连接的所有线段中,垂线段最短.
3.B
解析:B 【解析】
分析:(1)对应线段的长度即是平移的距离;(2)根据EC 的长和△CEG 的面积求EG ;(3)平移前后,对应点的连线平行且相等;(4)根据平行四边形的面积公式求.
详解:(1)因为点B ,E 是对应点,且BE =2,所以△ABC 平行的距离是2,则①错误; ②根据题意得,13.5×2=(8-2)EG ,解得EG =4.5,则②正确; ③因为A ,D 是对应点,C ,F 是对应点,所以AD ∥CF ,则③正确; ④平行四边形ADFC 的面积为AB ·CF =AB ·BE =6×2=12,则④错误. 故选B .
点睛:本题考查了平移的性质,平移的性质有:①平移只改变图形的位置,不改变图形的形状和大小;②平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等,对应角相等;对应点连线平行(或在同一条直线上)且相等.
4.D
解析:D 【分析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案. 【详解】
解:A、垂线段最短是真命题,故A不符合题意;
B、如果直线a、b、c满足a∥b,b∥c,那么a∥c是真命题,故B不符合题意;
C、同角的余角相等是真命题,故C不符合题意;
D、如果∠AOB=80°,∠BOC=20°,那么∠AOC=60°或100°,是假命题,故D符合题意.
故选:D.
【点睛】
主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
5.A
解析:A
【分析】
运用平行线的判定方法进行判定即可.
【详解】
解:选项A中,∠1=∠2,只可以判定AC//BD(内错角相等,两直线平行),所以A错误;
选项B中,∠3=∠4,可以判定AB//CD(内错角相等,两直线平行),所以正确;
选项C中,∠5=∠B,AB//CD(内错角相等,两直线平行),所以正确;
选项D中,∠B +∠BDC=180°,可以判定AB//CD(同旁内角互补,两直线平行),所以正确;
故答案为A.
【点睛】
本题考查平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
6.A
解析:A
【分析】
作出如下图所示的辅助线,然后再利用平行线的性质即可求解.
【详解】
解:如图所示,作直线m∥n∥l1∥l2,
此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,
又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),
且∠α=∠β,
∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,
∴∠3=180°-∠2,代入数据:
40°=180°-∠2,
∴∠2=140°,
故选:A .
【点睛】
本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.
7.A
解析:A
【分析】
根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.
【详解】
解:①∵EG ∥BC ,
∴∠CEG =∠ACB ,
又∵CD 是△ABC 的角平分线,
∴∠CEG =∠ACB =2∠DCB ,故本选项正确;
②无法证明CA 平分∠BCG ,故本选项错误;
③∵∠A =90°,
∴∠ADC +∠ACD =90°,
∵CD 平分∠ACB ,
∴∠ACD =∠BCD ,
∴∠ADC +∠BCD =90°.
∵EG ∥BC ,且CG ⊥EG ,
∴∠GCB =90°,即∠GCD +∠BCD =90°,
∴∠ADC =∠GCD ,故本选项正确;
④∵∠EBC +∠ACB =∠AEB ,∠DCB +∠ABC =∠ADC ,
∴∠AEB +∠ADC =90°+
12
(∠ABC +∠ACB )=135°, ∴∠DFE =360°﹣135°﹣90°=135°, ∴∠DFB =45°=
12
∠CGE ,故本选项正确. 故选:A .
【点睛】
本题考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键. 8.C
解析:C
【分析】
根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,由两直线平行,同旁内角互补,即
可求出答案.
【详解】
解:根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,
∵1n //AB CB ,
∴121180B B D ∠+∠=︒,2323180DB B B B E ∠+∠=︒,
3434180EB B B B F ∠+∠=︒,……
∴122323343411803B B D DB B B B E EB B B B F ∠+∠+∠+∠+∠+∠=︒⨯,…… ∴123180(1)n n ∠+∠+∠+
+∠=︒⨯-;
故选:C .
【点睛】
本题考查了平行线的性质,解题的关键是正确作出辅助线,熟练运用两直线平行同旁内角互补进行证明. 9.C
解析:C
【解析】
【分析】
延长BG 交CD 于G,然后运用平行的性质和角平分线的定义,进行解答即可.
【详解】
解:如图延长BG 交CD 于G
∵BF ∥ED
∴∠F=∠EDF
又∵DF 平分∠CDE,
∴∠CDE=2∠F,
∵BF∥ED
∴∠CGF=∠EDF=2∠F,
∵AB∥CD
∴∠ABF=∠CGF=2∠F,
∵BF平分∠ABE
∴∠ABE=2∠ABF=4∠F,
又∵∠F 与∠ABE 互补
∴∠F +∠ABE =180°即5∠F=180°,解得∠F=36°
故答案选C.
【点睛】
本题考查了平行的性质和角平分线的定义,做出辅助线是解答本题的关键. 10.A
解析:A
【解析】试题分析:根据题意可知:
①的逆命题是两直线平行,内错角相等,是真命题,是逆定理;
②的逆命题是有两个角相等的三角形是等腰三角形,是真命题,是逆定理;
③的逆命题是相等的两个角是对顶角,是假命题,不是逆定理;
④的逆命题是有两个锐角互余的三角形是直角三角形,是真命题,是逆定理.只有一个不是逆定理.
故选:A
11.B
解析:B
【解析】
试题分析:由AB∥DE,∠CDE=40°,
∴∠B=∠CDE=40°,
又∵FG⊥BC,
∴∠FGB=90°﹣∠B=50°,
故选B.
考点:平行线的性质
12.B
解析:B
【分析】
本题每一项代入题干命题中,不满足题意即为反例.
【详解】
解:当a=﹣2,b=﹣3时,﹣2>﹣3,而3×(﹣2)=2×(﹣3),
即a>b时,3a=2b,
∴命题“若a>b,则3a>2b”为假命题,
故选:B.
【点睛】
本题考查的是假命题的证明,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
二、填空题
13.6秒或19.5秒
【分析】
设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),推出t≤45−12,即t≤33.利用平行线的性质,结合角度间关系,构建方程即可解答.
【详
解析:6秒或19.5秒
【分析】
设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),推出t≤45−12,即t≤33.利用平行线的性质,结合角度间关系,构建方程即可解答.
【详解】
解:设A灯旋转t秒,两灯的光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),∴t≤45﹣12,即t≤33.
由题意,满足以下条件时,两灯的光束能互相平行:
①如图,∠MAM'=∠PBP',12t=4(12+t),解得t=6;
②如图,∠NAM'+∠PBP'=180°,12t﹣180+4(12+t)=180,解得t=19.5;
综上所述,满足条件的t的值为6秒或19.5秒.
故答案为:6秒或19.5秒.
【点睛】
本题主要考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.14.或或
【分析】
分三种情形画出图形分别建立好几何模型求解,即可解决问题.
【详解】
解:有三种情形:①如图1中,当AD∥BC时.
∵AD∥BC,∴∠D=∠BCD=30°,
∵∠ACE+∠E
解析:30或120︒或165︒
【分析】
分三种情形画出图形分别建立好几何模型求解,即可解决问题.
【详解】
解:有三种情形:①如图1中,当AD∥BC时.
∵AD∥BC,∴∠D=∠BCD=30°,
∵∠ACE+∠ECD=∠ECD+∠DCB=90°,
∴∠ACE=∠DCB=30°.
②如图2中,当AD∥CE时,
∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.
③如图2中,当AD∥BE时,延长BC交AD于M.
∵AD∥BE,∴∠AMC=∠B=45°,
∴∠ACM=180°-60°-45°=75°,
∴∠ACE=75°+90=165°,
综上所述,满足条件的∠ACE的度数为30°或120°或165°.
故答案为30°或120°或165°.
【点睛】
本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.
15.130°或50°
【解析】
【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.
【详解】如图∵β的两边与α的两边分别垂直,
∴α+β=180°
故β=130°,
在上述情
解析:130°或50°
【解析】
【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.
【详解】如图∵β的两边与α的两边分别垂直,
∴α+β=180°
故β=130°,
在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=50;
综上可知:∠β=50°或130°,
故正确答案为:
【点睛】本题考核知识点:四边形内角和. 解题关键点:根据题意画出图形,分析边垂直的2种可能情况.
16.50
【分析】
先根据平行线的判定可得,再根据平行线的性质、两直线的夹角的定义即可得.
【详解】
∵,,
∴,
∵,
∴,
∴直线AB 与BD 的夹角是50度,
故答案为:50.
【点睛】
本题考查了平
解析:50
【分析】
先根据平行线的判定可得//AB CD ,再根据平行线的性质、两直线的夹角的定义即可得.
【详解】
∵AC AB ⊥,AC CD ⊥,
∴//AB CD ,
∵130CDB ∠=︒,
∴18050ABD CDB ∠=︒-∠=︒,
∴直线AB 与BD 的夹角是50度,
故答案为:50.
【点睛】
本题考查了平行线的判定与性质、两直线的夹角的定义,熟练掌握平行线的判定与性质是解题关键.
17.48°
【分析】
将BE 与CD 交点记为点F ,由两直线平行同位角相等得出∠EFC 度数,再利用三角形外角的性质可得答案.
【详解】
解:如图所示,将BE 与CD 交点记为点F ,
∵AB∥CD,∠B=75°
解析:48°
【分析】
将BE 与CD 交点记为点F ,由两直线平行同位角相等得出∠EFC 度数,再利用三角形外角的性质可得答案.
【详解】
解:如图所示,将BE 与CD 交点记为点F ,
∵AB ∥CD ,∠B =75°,
∴∠EFC =∠B =75°,
又∵∠EFC =∠D +∠E ,且∠E =27°,
∴∠D =∠EFC ﹣∠E =75°﹣27°=48°,
故答案为:48°.
【点睛】
本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.
18.30° 180°-n°
【分析】
(1)根据对顶角相等,可得答案;
(2)根据角的和差,可得答案.
解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.
(2
解析:30° 180°-n°
【分析】
(1)根据对顶角相等,可得答案;
(2)根据角的和差,可得答案.
【详解】
解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.
(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°,
∴∠ACD=180°-∠BCE=180°-n°.
故答案为:30°,180°-n°.
【点睛】
本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.
19.120°
【分析】
过点F作PT//AB,则有PT//CD,根据平行线的性质可得∠GFP=30゜,∠OFP=90゜,从而可求出∠2的度数.
【详解】
过点F作PT//AB,如图,
∴∠OFP=∠N
解析:120°
【分析】
过点F作PT//AB,则有PT//CD,根据平行线的性质可得∠GFP=30゜,∠OFP=90゜,从而可求出∠2的度数.
【详解】
过点F作PT//AB,如图,
∴∠OFP=∠NOA
∴∠NOA=90゜
∴∠OFP=90゜
∵AB//CD
∴CD//PT
∴∠DGF=∠GFP
∵∠DGF=∠1=30゜
∴∠GFP=30゜
∴∠2=∠OFP+∠GFP=90゜+30゜=120゜
故答案为:120゜
【点睛】
此题主要考查了平行线的判定与性质,关键是掌握两直线平行,内错角相等,同位角相等.
20.(n﹣1)×180
【分析】
分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=18
解析:(n﹣1)×180
【分析】
分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,由平行线的性质可得出:
∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,
∠1+∠P1+∠2=2×180,∠1+∠P1+∠P2+∠2=3×180°,∠1+∠P1+∠P2+∠P3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P1+…+∠P n=(n+1)×180°.
【详解】
解:如图,分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,
∵AB∥CD,
∴AB∥P1E∥P2F∥P3G.
由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°
∴(1)∠1+∠2=180°,
(2)∠1+∠P1+∠2=2×180,
(3)∠1+∠P1+∠P2+∠2=3×180°,
(4)∠1+∠P1+∠P2+∠P3+∠2=4×180°,
∴∠1+∠2+∠P1+…+∠P n=(n+1)×180°.
故答案为:(n+1)×180.
本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.
三、解答题
∠=∠+∠,理由见解析;
21.(1)CPDαβ
∠=∠-∠;
(2)当点P在B、O两点之间时,CPDαβ
∠=∠-∠.
当点P在射线AM上时,CPDβα
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出
∠α=∠DPE,∠β=∠CPE,即可得出答案;
(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.
【详解】
解:(1)∠CPD=∠α+∠β,理由如下:
如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β.
(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE-∠DPE=∠β-∠α;
当点P在B、O两点之间时,∠CPD=∠α-∠β.
理由:如图,过P作PE∥AD交CD于E.
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE-∠CPE=∠α-∠β.
【点睛】
本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.
22.(1)a=3,b=1;(2)当t=15秒或82.5秒时,两灯的光束互相平行;(3)∠BAC 与∠BCD的数量关系不发生变化,其大小比值为∠BCD:∠BAC=2:3.
【分析】
(1)利用绝对值和完全平方式的非负性即可解决问题.
(2)分三种情况,利用平行线的性质列出方程即可解决.
(3)将∠BAC和∠BCD分别用t的代数式表示,然后在进行运算即可.
【详解】
(1)∵|a﹣3b|+(a+b﹣4)2=0.
又∵|a﹣3b|≥0,(a+b﹣4)2≥0.
∴a=3,b=1;
故答案为a=3,b=1.
(2)设A灯转动t秒,两灯的光束互相平行,
①当0<t<60时,
3t=(30+t)×1,
解得t=15;
②当60<t<120时,
3t﹣3×60+(30+t)×1=180,
解得t=82.5;
③当120<t<150时,
3t﹣360=t+30,
解得t=195>150(不合题意)
综上所述,当t=15秒或82.5秒时,两灯的光束互相平行.
故答案为:t=15秒或t=82.5秒.
(3)设A灯转动时间为t秒,
∵∠CAN=180°﹣3t,
∴∠BAC=45°﹣(180°﹣3t)=3t﹣135°,
又∵PQ∥MN,
∴∠BCA=∠CBD+∠CAN=t+180°﹣3t=180°﹣2t,
∵∠ACD=90°,
∴∠BCD=90°﹣∠BCA=90°﹣(180°﹣2t)=2t﹣90°,
∴∠BCD:∠BAC=2:3.
故答案为:∠BAC 与∠BCD 的数量关系不发生变化,其大小比值为∠BCD:∠BAC =2:3.
【点睛】
本题考查了绝对值和完全平方式的非负性、平行线的性质、解方程等知识,读懂题目的意思,掌握好平行线的性质是解题的关键.
23.(1)∠DAC;EAB BAC DAC ∠+∠+∠(2)见解析(3)①65②215°−12n 【分析】 (1)根据平行线的性质即可得到结论;
(2)过C 作CF ∥AB 根据平行线的性质得到∠D+∠FCD=180°,∠B =∠BCF ,然后根据已知条件即可得到结论;
(3)①过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数; ②∠BED 的度数改变.过点E 作EF ∥AB ,先由角平分线的定义可得:∠ABE =12∠ABC =12n°,∠CDE =12
∠ADC =35°,然后根据两直线平行内错角相等及同旁内角互补可得:∠BEF =180°−∠ABE =180°−
12n°,∠CDE =∠DEF =35°,进而可求∠BED =∠BEF +∠DEF =180°−12n°+35°=215°−12
n°. 【详解】
(1)过点A 作ED BC ∥
B EAB ∴∠=∠,
C ∠=∠DAC .
EAB BAC DAC ∠+∠+∠180=︒
180B BAC C ∴∠+∠+∠=︒
故答案为:∠DAC;EAB BAC DAC ∠+∠+∠;
(2)如图2,过C 作CF ∥AB ,
∵AB ∥DE ,
∴CF ∥DE ,
∴∠D+∠FCD=180°,
∵CF ∥AB ,
∴∠B =∠BCF ,
∵BCD ∠=∠FCD+∠BCF ,
∴D BCD B ∠+∠-∠=
180D FCD BCF B D FCD B B D FCD ∠+∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; 即180D BCD B ∠+∠-∠=︒;
(3)①如图3,过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,
∴∠ABE=1
2
∠ABC=30°,∠CDE=
1
2
∠ADC=35°,
∴∠BED=∠BEF+∠DEF=30°+35°=65°;
故答案为:65;
②如图4,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°
∴∠ABE=1
2
∠ABC=
1
2
n°,∠CDE=
1
2
∠ADC=35°
∵AB∥CD,
∴AB∥CD∥EF,
∴∠BEF=180°−∠ABE=180°−1
2
n°,∠CDE=∠DEF=35°,
∴∠BED=∠BEF+∠DEF=180°−1
2
n°+35°=215°−
1
2
n°.
故答案为:215°−1
2 n.
【点睛】
此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.
24.(1)D(k+2,2);(2)k=2;(3)∠BPD=1
2
∠BCD+
1
2
∠A,理由详见解析
【分析】
(1)由平移的性质可得出答案;
(2)过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,由四边形BEFD的面积可得出答案;
(3)过点P作PE∥AB得出∠PBA=∠EPB,由平移的性质得出AB∥CD,由平行线的性质得出PE∥CD,则∠EPD=∠PDC,得出∠BPD=∠PBA+∠PDC,由角平分线的性质得出
∠PBA=1
2
∠ABC,∠PDC=
1
2
∠ADC,即可得出结论.
【详解】
解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,∴点B向上平移一个单位,向右平移(k+4)个单位到点D,
∴D(k+2,2);
(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,
∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),
∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,
∵S四边形BEFD=S△BEC+S△DCF+S△BCD,
∴1
(12)(k4)
2
⨯+⨯+=
11
1(k2)225
22
⨯⨯++⨯⨯+,
解得:k=2.
(3)∠BPD=1
2
∠BCD+
1
2
∠A;理由如下:
过点P作PE∥AB,如图2所示:
∴∠PBA=∠EPB,
∵线段AB平移至线段CD,
∴AB∥CD,
∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,
∴∠BPD=∠PBA+∠PDC,
∵BP平分∠ABC,DP平分∠ADC,
∴∠PBA=1
2
∠ABC,∠PDC=
1
2
∠ADC,
∴∠BPD=1
2
∠ABC+
1
2
∠ADC=
1
2
∠BCD+
1
2
∠A.
【点睛】
本题考查了平移的综合问题,掌握平移的性质、平行线的性质、角平分线的性质是解题的关键.
25.(1)∠AEC=∠C+∠A;(2)∠C﹣∠E=15°;(3)2∠AGF+∠GDC=90°.理由见解析.
【分析】
(1)过点E作EF∥AB,知AB∥CD∥EF,据此得∠A=∠AEF,∠C=∠CEF,根据
∠AEC=∠AEF+∠CEF可得答案;
(2)分别过点E、F作FM∥AB,EN∥AB,设∠NEF=x=∠EFM,知∠AEF=x+50°,
∠MFC=115°-x,据此得∠C=180°-(115°-x)=x+65°,进一步计算可得答案;
(3)分别过点E、F、G作FM∥AB,EN∥AB,GH∥AB,设∠GAE=x=∠GAB,∠GFM=y,∠MPC=z,知∠GPE=y+z,从而得2x+2y+z=90°,∠C=180°-z,根据GD∥FC得∠D=z,由GH∥AB,AB∥CD知∠AGF=x+y,继而代入可得答案.
【详解】
(1)∠AEC=∠C+∠A,
如图1,过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠A=∠AEF,∠C=∠CEF,
则∠AEC=∠AEF+∠CEF=∠A+∠C,
故答案为:∠AEC=∠C+∠A;
(2)如图2,分别过点E、F作FM∥AB,EN∥AB,
设∠NEF=x=∠EFM,则∠AEF=x+50°,∠MFC=115°﹣x,
∴∠C=180°﹣(115°﹣x)=x+65°,
∴∠C﹣∠E=x+65°﹣(x+50°)=15°;
(3)如图3,分别过点E、F、G作FM∥AB,EN∥AB,GH∥AB,
设∠GAE=x=∠GAB,∠GFM=y,∠MPC=z,
则∠GPE=y+z,
∴2x+2y+z=90°,∠C=180°﹣z,
∵GD∥FC,
∴∠D=z,
∵GH∥AB,AB∥CD,
∴∠AGF=x+y,
∴2∠AGF+∠GDC=90°.
【点睛】
本题主要考查平行线的性质,解题的关键是掌握两直线平行内错角相等的性质.26.(1)∠A+∠C+∠APC=360°,证明详见解析;(2)∠APC=∠A−∠C,证明详见解析;(3)55°.
【分析】
(1)首先过点P作PQ∥AB,结合题意得出AB∥PQ∥CD,然后由“两直线平行,同旁内角互补”进一步分析即可证得∠A+∠C+∠APC=360°;
(2)作PQ∥AB,结合题意得出AB∥PQ∥CD,根据“两直线平行,内错角相等”进一步分析即可证得∠APC=∠A−∠C;
(3)由(2)知,∠APC=∠PAB−∠PCD,先利用平行线性质得出∠BEF=∠PQB=110°,
然后进一步得出∠PEG=1
2
∠FEG,∠GEH=
1
2
∠BEG,最后根据∠PEH=∠PEG−∠GEH即
可得出答案.
【详解】
(1)∠A+∠C+∠APC=360°,证明如下:如图1所示,过点P作PQ∥AB,
∴∠A+∠APQ=180°,
又∵AB∥CD,
∴PQ∥CD,
∴∠C+∠CPQ=180°,
∴∠A+∠APQ+∠C+∠CPQ=360°,
即∠A+∠C+∠APC=360°;
(2)∠APC=∠A−∠C,证明如下:
如图2所示,过点P作PQ∥AB,
∴∠A=∠APQ,
∵AB∥CD,
∴PQ∥CD,
∴∠C=∠CPQ,
∵∠APC=∠APQ−∠CPQ,
∴∠APC=∠A−∠C;
(3)由(2)知,∠APC=∠PAB−∠PCD,∵∠APC=30°,∠PAB=140°,
∴∠PCD=110°,
∵AB∥CD,
∴∠PQB=∠PCD=110°,
∵EF∥PC,
∴∠BEF=∠PQB=110°,
∵∠PEG=∠PEF,
∴∠PEG =12
∠FEG , ∵EH 平分∠BEG , ∴∠GEH =
12∠BEG , ∴∠PEH =∠PEG −∠GEH =
12∠FEG −12∠BEG =12
∠BEF =55°.
【点睛】
本题主要考查了利用平行线性质与角平分线性质求角度的综合运用,熟练掌握相关概念是解题关键.
27.(1)180BCD ACE ∠+∠=︒,理由详见解析;(2)135°;(3)BCD ∠等于150︒或30时,//CE AB .
【分析】
(1)依据∠BCD=∠ACB+∠ACD=90°+∠ACD ,即可得到∠BCD+∠ACE 的度数;
(2)设∠ACE=α,则∠BCD=3α,依据∠BCD+∠ACE=180°,即可得到∠BCD 的度数; (3)分两种情况讨论,依据平行线的性质,即可得到当∠BCD 等于150°或30°时,CE//4B.
【详解】
解:(1)180BCD ACE ∠+∠=︒,理由如下:
90BCD ACB ACD ACD ∠=∠+∠=︒+∠,
∴90BCD ACE ACD ACE ∠+∠=︒+∠+∠9090180=︒+︒=︒;
(2)如图①,设ACE α∠=,则3BCD α∠=,
由(1)可得180BCD ACE ∠+∠=︒,
∴3180αα+=︒,
∴45α=,
∴3135BCD α∠==︒;
(3)分两种情况:
①如图1所示,当//AB CE 时,180120BCE B ∠=︒-∠=︒, 又90DCE ∠=︒,
∴36012090150BCD ∠=︒-︒-︒=︒;
②如图2所示,当//AB CE 时,60BCE B ∠=∠=︒, 又
90DCE ∠=︒,
∴906030BCD ∠=︒-︒=︒.
综上所述,BCD ∠等于150︒或30时,//CE AB .
【点睛】
本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.
28.(1)BME DNE MEN ∠+∠=∠,证明见析;(2)MEN BME DNE ∠=∠-∠;(3)120FME ∠=
【解析】
【分析】
(1)如图,过点E 作直线//EF AB ,由平行线的性质得到BME MEF ∠=∠,
FEN DNE ∠=∠,即可求得MEN BME DNE ∠=∠+∠;
(2)如图,记AB 与NE 的交点为G ,由平行线的性质得∠EGM=∠DNE ,由三角形外角性质得∠BME=∠MEN+∠EGM ,由此即可得到结论;
(3)由角平分线的定义设BMF BME β∠=∠=∠,设22DNF DNE α∠=∠=∠,由(1),得E αβ∠=∠+∠,由(2),得2F βα∠=∠-∠,再根据2180F E ∠+∠=,可求得60β∠=,继而可求得2120FME β∠=∠=.
【详解】
(1)BME DNE MEN ∠+∠=∠,证明如下:
如图,过点E 作直线//EF AB ,
∵//EF AB ,
∴BME MEF ∠=∠,
又∵//AB CD ,
∴//EF CD ,
∴FEN DNE ∠=∠,
∴MEN MEF FEN BME DNE ∠=∠+∠=∠+∠;
(2)MEN BME DNE ∠=∠-∠,理由如下:
如图,记AB 与NE 的交点为G ,
又∵AB//CD ,
∴∠EGM=∠DNE ,
∵∠BME 是△EMG 的外角,
∴∠BME=∠MEN+∠EGM ,
∴∠MEN=∠BME-∠DNE ;
(3)∵MB 平分EMF ∠,
∴设BMF BME β∠=∠=∠,
∵NE 平分DNF ∠,
∴设22DNF DNE α∠=∠=∠,
由(1),得E BME DNE αβ∠=∠+∠=∠+∠,
由(2),得2F BMF DNF βα∠=∠-∠=∠-∠,
又∵2180F E ∠+∠=,
∴22()180βααβ∠-∠+∠+∠=,
∴3180β∠=,
即60β∠=,
∴2120FME β∠=∠=.
【点睛】
本题考查了平行线的判定与性质,三角形外角的性质,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.。