existence and uniqueness of nonlinear fractional differential equation
参考文献[1]胡迪鹤.随机过程论(基础、理论、应用)[M],第2版.武汉武汉
![参考文献[1]胡迪鹤.随机过程论(基础、理论、应用)[M],第2版.武汉武汉](https://img.taocdn.com/s3/m/f45364e384254b35eefd348a.png)
参考文献[1] 胡迪鹤. 随机过程论(基础、理论、应用)[M],第2版. 武汉: 武汉大学出版社,2005.[2] 黄志远. 随机分析学基础[M],第2版. 北京:科学出版社,2001.[3] 闰理坦,鲁立刚,许志强. 随机积分与不等式[M]. 北京:科学出版社, 2004.[4] Sheldon M. Ross.Stochastic Processes[M],Second Edition. New York,Chichester, Brisbane, Toronto,Singapore: JOHN WILEY & SONS LNC, 1995.[5] 林元烈. 应用随机过程[M]. 北京:清华大学出版社,2002.[6] 金治明. 数学金融学基础[M]. 北京:科学出版社,2006.[7] 龚光鲁,钱敏平. 应用随机过程教程[M]. 北京:清华大学出版社,2004.[8] 赵荣侠、崔群劳. 测度与积分[M]. 西安: 西安电子科技大学出版社,2002.[9] 何声武,汪嘉冈,严加安. 半鞅与随机分析[M]. 北京:科学出版社,1995.[10] 胡适耕,黄乘明,吴付科. 随机微分方程[M]. 北京:科学出版社,2008.[11] 柳金甫,孙洪祥,王军. 应用随机过程[M]. 北京:清华大学出版社,2006.[12] 刘嘉焜. 应用随机过程[M]. 北京:科学出版社,2002.[13] A. B. 布林斯基, A. H. 施里压耶夫著,李古柄译. 随机过程论[M]. 北京:高等教育出版社,2008.[14] 奚宏生. 随机过程引论[M]. 合肥:中国科学技术大学出版社,2009.[15] 方兆本,繆柏其. 随机过程[M],第2版. 北京:科学出版社,2004.[16] 伊藤清著,刘璋温译. 随机过程[M]. 北京:人民邮电出版社,2010.[17] 刘次华. 随机过程[M], 第2版. 武汉: 华中科技大学出版社,2001.[18] 王军,王娟. 随机过程及其在金融领域中的应用[M]. 北京:清华大学出版社,北京交通大学出版社, 2007.[19] Philip E. Protter. Stochastic Integration and Differential Equations[M], (Second Edition). New York: Springer,2005.[20] Thomas Mikosch. Elementary Stochastic Calculus with Finance in View[M].Singapore:World Scientific, 1998,[21] Jiongmin Yong, Xun Yu Zhou. Stochastic Controls[M]. New York: Springer, 1999.[22] 王梓坤. 随机过程论[M]. 北京:科学出版社,1978[23] 金治明. 最优停止理论及其应用[M]. 国防科学大学出版社,1995.[24] 高飞, 赵振全. 随机控制理论与风险度量[J].数量经济技术经济研究, 2002, 19(6):72-75.[25] Nizar Touzi, Stochastic control problems: Viscosity solutions andapplication to finance[M/R].Pisa, Italy: Birkhauser Verlag AG, 2007.[26] Liptser R S, Shiryayev A N. Statistics and random processes[M], New York:Springer-Verlag, Vol. 1, 1977; Vol. 2, 1978.[27] Duncan,T.E.,Hu,Y., Pasik-Duncan,B. Stochastic calculus forfractional Brownian motion, I: Theory[J]. SlAM Journal of Controland optimization, 2000,38(2),582—612.[28] Robert J. Elliott,John Van Der Hoek. A general fractional white theoryand applications to finance[J].Mathematical Finance,2003,13(2),301—330.[29] Nualart,D.The Malliavin Calculus and Related Topics[M]. New York:Springer,1995.[30] Francesca Biagini, Bernt Øksendal, Agnès Sulem and Naomi Wallne r. Anintroduction to white noise theory and Malliavin calculus for fractionalBrownian motion[J].Proceedings: Mathematical, Physical and Engineering Sciences,Vol. 460, No. 2041, Stochastic Analysis with Applications to MathematicalFinance (Jan. 8, 2004): 347-372.[31] Y. Hu, Integral transformations and anticipative calculus for fractionalBrownian motions[P]. Memoirs of the American Mathematical Society,2005(825):127.[32] Crandall,M.G., P.L.Lions. Condition d’unicité pour les solutionsgeneralisées des equations de Hamilton-Jacobi du premier order[J],C.R.Acad.Sci, 1981, 292: 183-186.[33] Crandall,M.G.,L.C.Evans, P.L.Lions. Some properties of viscosity solutionsof Hamilton-Jacobi equations[J]. Trans.Amer.Math.Soc, 1984, 282: 487-502[34] Lions,P.L. Optimal control of diffusion processes and Hamilton- Jacobi-Bellman equations. I. The dynamic programming principle and applications[J].Comm. Partial Differential Equations, 1983(10):1101-1174.[35] Lions,P.L.Optimal Control of Diffusion Processes andHamilton-Jacobi-Bellman Equations. II. Viscosity Solutions and Uniqueness[J]. ActaApplicandae Mathematicae, 1983, 8(11):1229-1276.[36] Bernt ksendal, Frank Proske, Tusheng Zhang. Backward stochasticdifferential equations with jumps and application to optimal control of random jumpfields[J]. Stochastics An International Journal of Probability andStochastic Processes,2005,77(5): 381-399[37] Tang.S. The maximum principle for partially observed optimal control ofstochastic differential equations[J]. SIAM J. Cotrol Optimi. 1998, 36(5): 1596-1617.[38] Jensen,R., The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations[J]. Arch.Rat.Mech.Anal, 1988, 101: 1-27.[39] Jensen,R.,P.L.Lions,P.E.Souganidis. A uniqueness result for viscositysolutions of second orderfully nonlinear partial differential Equations[J]. Proc.Amer.Math.Soc, 1988, 102: 975-987[40] Karl J. Åström,Engineering, Introduction to Stochastic Control Theory[M] Material:Dover Publications, 2006.[41] RJ Elliott,ST Kuen, Stochastic Control[M]. New York: John Wiley & Sons, Ltd, 2010.[42]王力,李龙锁. 鞅与随机微分方程[M].北京:,科学出版社,2015.[43] 张波,张景肖. 应用随机过程[M]. 北京:清华大学出版社,2004.[44] 胡适耕. 实变函数[M]. 北京:高等教育出版社,1999.[45] . M. 菲赫金哥尔茨著,余家荣,吴亲仁译. 微积分学教程[M]. 北京:高等教育出版社,2006.[46]Ansgar Steland, Financial Statistics and Mathematical Finance[M]. New York:Wiley, 2012.[47] Ran Qikang, BSDEs with Coefficient of Superquadratic Growth and Application to Semilinear PDE[J]. 应用数学, 2016,29(3),600-605.[48] Ali Hirsa, Salih N. Neftci, An Introduction to the Mathematics ofFinancial Derivatives[M],TThird Edition. New York: Elsevier, 2014.[49] 王晓瑛,分数布朗运动的新表示[J],纯粹数学与应用数学,2002,18(4),367-370.[50] 王玉宝,胡迪鹤,均马式过程,马式过程,鞅及平稳过程的关系[J],武汉大学学报,2005, 51 (1), 7-10.[51] 张希林,离散鞅收敛定理的证明及应用[D],中山大学硕士学位论文,2005.[52] 阚秀,基于分数布朗运动的Wick型随机积分随机微分方程解的存在唯一性[D],东华大学学位论文,2009年.[53] Zhou Shengwu,Comparison Theorem for Multidimensional BackwardStochastic Differential Equations[J],应用概率统计,2004, 20(3):225-228.[54] Kobylanski, M., Backward stochastic differential equations and partialdifferential equations with quadratic growth[J]. Ann. Probab. 2000,28:558-602.[55] Kobylanski, M., R´e sultats d’existence et d’unicit´e pourdes ´e quations diff´e rentielles stochastiques r´e trogrades avec des g´e n´e rateurs `a croiaaancequadratique[J]. C. R. Acad. Sci. Paris S´e r. I Math., 1997, 324(1), 81-86.[56] 张骅月,分数布朗运动及其在保险金融中的应用[D],南开大学博士学位论文,2007[57] Mao Xuerong n. Adapted solutious of backward of stochastic differential equations with non-Lipschitz coefficients[J]. Stochastic Processes and Their Applications, 1995,58, 281-292.[58] Sur la the oriedu mouvement brownien[J], C.R. Acad. Sci. Paris, 1908, 146, 530-533.[59] ˆIto K. On stochastic differential equations[J], Men. Amer. Math. Soc., 1951,No.4, 1-51.[60] E. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation[J], Systems and Control Letters, 1990,Vol. 14, no. 1, : 55–61.[61]Adrien Richou, Numerical simulation of BSDEs with drivers of quadratic growth[J], The Annals of Applied Probability,2011, Vol.21(5): 1933-1964.[62]Qikang Ran, Tusheng Zhang, Existence and Uniqueness of Bounded Weak Solutions of a Semilinear Parabolic PDE[J]. J. Theor. Probab. 2010,Vol.23:951- 971.[63] Bally, V., Matoussi,A., Weak solutions for SPDEs and Backward doubly stochastic differential equations[J]. Journal of Theoretical Probability, 2001,Vol.14(1):125-164.[64] Anis Matoussi, Mingyu Xu, Sobolev solution for PDE with obstacle under monotonicity condition[J]. Journal URL,2008, Vol. 13: 1035-1067.。
一致分数阶时滞微分方程边值问题解的存在性与唯一性
![一致分数阶时滞微分方程边值问题解的存在性与唯一性](https://img.taocdn.com/s3/m/0c588449bb1aa8114431b90d6c85ec3a87c28b82.png)
第61卷 第5期吉林大学学报(理学版)V o l .61 N o .52023年9月J o u r n a l o f J i l i nU n i v e r s i t y (S c i e n c eE d i t i o n )S e p2023d o i :10.13413/j .c n k i .jd x b l x b .2023011一致分数阶时滞微分方程边值问题解的存在性与唯一性张 敏,周文学,黎文博(兰州交通大学数理学院,兰州730070)摘要:用L e r a y -S c h a u d e r 度理论和B a n a c h 压缩映射原理研究一致分数阶时滞微分方程边值问题D β0+u (t )=f (t ,u (t -τ)), t ɪ[0,1],u (t )=φ(t ), t ɪ[-τ,0],u (0)+u ᶄ(0)=0, u (1)+u ᶄ(1)=ìîíïïïï0解的存在性与唯一性.在非线性项满足增长性条件和L i p s c h i t z 条件下,分别得到了该边值问题解的存在性与唯一性结果,并举例说明所得结果的适用性.关键词:一致分数阶导数;时滞;边值问题;L e r a y -S c h a u d e r 度理论;B a n a c h 压缩映射原理中图分类号:O 175.8 文献标志码:A 文章编号:1671-5489(2023)05-1007-07E x i s t e n c e a n dU n i q u e n e s s o f S o l u t i o n s f o rB o u n d a r y Va l u eP r ob l e m s o fC o n f o r m a b l eF r ac t i o n a lD e l a y D i f f e r e n t i a l E qu a t i o n s Z H A N G M i n ,Z HO U W e n x u e ,L IW e n b o(S c h o o l o f M a t h e m a t i c s a n dP h y s i c s ,L a n z h o u J i a o t o n g U n i v e r s i t y ,L a n z h o u 730070,C h i n a )A b s t r a c t :B y u s i n g L e r a y -S c h a u d e rd e g r e et h e o r y a n d B a n a c h c o n t r a c t i o n m a p p i n g p r i n c i p l e ,w e s t u d i e dt h e e x i s t e n c e a n d u n i q u e n e s s o fs o l u t i o n sf o r b o u n d a r y va l u e p r ob l e m s o fc o n f o r m a b l e f r a c t i o n a lde l a y d if f e r e n t i a l e qu a t i o n s D β0+u (t )=f (t ,u (t -τ)), t ɪ[0,1],u (t )=φ(t ), t ɪ[-τ,0],u (0)+u ᶄ(0)=0, u (1)+u ᶄ(1)=0ìîíïïïï,w h e n t h en o n l i n e a r t e r ms a t i s f i e d t h e g r o w t hc o n d i t i o na n d t h eL i ps c h i t z c o n d i t i o n ,w eo b t a i n e d t h e r e s u l t s o f e x i s t e n c e a n du n i q u e n e s s o f s o l u t i o n f o r t h eb o u n d a r y v a l u e p r o b l e mr e s p e c t i v e l y ,a n d g a v e a ne x a m p l e t o i l l u s t r a t e t h e a p p l i c a b i l i t y of t h e o b t a i n e d r e s u l t s .K e y w o r d s :c o n f o r m a b l e f r a c t i o n a l d e r i v a t i v e ;d e l a y ;b o u n d a r y v a l u e p r o b l e m ;L e r a y -S c h a u d e r d e g r e e t h e o r y ;B a n a c hc o n t r a c t i o nm a p p i n gp r i n c i pl e 收稿日期:2023-01-04. 网络首发日期:2023-07-13.第一作者简介:张 敏(1998 ),女,汉族,硕士研究生,从事分数阶微分方程的研究,E -m a i l :m z h a n g 20222022@126.c o m.通信作者简介:周文学(1976 ),男,汉族,博士,教授,从事非线性分析问题的研究,E -m a i l :w x z h o u 2006@126.c o m.基金项目:国家自然科学基金(批准号:11961039;11801243)和兰州交通大学校青年科学基金(批准号:2017012).网络首发地址:h t t ps ://k n s .c n k i .n e t /k c m s 2/d e t a i l /22.1340.o .20230713.1056.001.h t m l .Copyright ©博看网. All Rights Reserved.0 引 言分数阶微分方程的边值问题是分数阶微分系统理论的重要课题.目前,对分数阶微分方程边值问题的研究已取得了丰富成果,其中最主要的是基于R i e m a n n -L i o u v i l l e 和C a p u t o 分数阶导数的定义[1-9].但这两种导数均不满足经典链式法则,并且这两种导数的某些性质使得分数阶导数的应用很困难.因此,K h a l i l 等[10]提出了一种新的分数阶导数和分数阶积分的定义,称为一致分数阶导数和积分.这种新的分数阶导数的定义可满足经典的分数阶导数不能满足的一些性质,如乘积法则㊁商法则㊁链式法则㊁罗尔定理和中值定理等,并且其在生物物理学㊁电容理论㊁控制理论和实验数据拟合等领域应用广泛[11-13].但对带有时滞的分数阶微分方程边值问题的研究目前报道较少[14-16].Y a n g 等[17]利用S c h a e f e r 不动点定理和K r a s n o s e l s k i i s 不动点定理研究了一类非线性分数阶微分方程边值问题cD α0+u (t )=f (t ,u (t ),u ᶄ(t )),u (0)+u ᶄ(0)=0, u (1)+u ᶄ(1)={正解的存在性,其中0<t <1,1<αɤ2,f :[0,1]ˑ[0,+ɕ)ˑℝң[0,+ɕ)是连续函数,c D α0+是α阶C a p u t o 分数阶导数.X u [18]利用B a n a c h 压缩映射原理㊁L e r a y -S c h a u d e r 度理论和K r a s n o s e l s k i i s 不动点定理研究了一类分数阶微分方程边值问题cD q x (t )=f (t ,x (t )), t ɪ[0,1],x (1)=μʏ1x (s )d s , x ᶄ(0)+x ᶄ(1)={解的存在唯一性,其中1<q <2,f :[0,1]ˑX ңX 是连续函数,c D q 是q 阶C a p u t o 分数阶导数.基于上述研究,本文利用L e r a y -S c h a u d e r 度理论和B a n a c h 压缩映射原理考虑如下一类一致分数阶时滞微分方程边值问题:D β0+u (t )=f (t ,u (t -τ)), t ɪ[0,1],u (t )=φ(t ), t ɪ[-τ,0],u (0)+u ᶄ(0)=0, u (1)+u ᶄ(1)=ìîíïïïï0(1)解的存在性与唯一性,其中1<βɤ2,τ>0,f :[0,1]ˑℝңℝ是连续函数,D β0+是阶数为β的一致分数阶导数.1 预备知识定义1[10] 假设函数f :[0,ɕ)ңℝ,则f 的βɪ(n ,n +1]阶一致分数阶导数定义为D βf (t )=l i m εң0f (β⌉-1)(t +εt β⌉-β)-f (β⌉-1)(t )ε, t >0,(2)其中β是大于等于β的最小整数.式(2)右端极限存在,此时称函数f 是β阶可微的.特别地,当βɪ(1,2]时,D βf (t )=l i m εң0f ᶄ(t +εt 2-β)-f ᶄ(t )ε, t >0.(3) 注1 如果函数f 在(0,b )(b >0)上是β阶可微的,并且l i m t ң0+D βf (t )存在,则D βf (0)=l i m t ң0+D βf (t).注2 由一致分数阶导数定义可知,当β=1时,一致分数阶导数定义即为传统的一阶导数定义.引理1[10] 当βɪ(n ,n +1]并且f 在t >0处n +1阶可微时,有D βf (t )=t β⌉-βf(β⌉)(t ).(4) 证明:令k =εt β⌉-β,则ε=t β-β⌉k ,因此由定义1可得D βf (t )=l i m εң0f (β⌉-1)(t +εt β⌉-β)-f (β⌉-1)(t )ε=l i m k ң0t β⌉-βf (β⌉-1)(t +k )-f (β⌉-1)(t )k=t β⌉-βf (β⌉)(t ). 定义2[19]假设函数f :[0,ɕ)ңℝ,则f 的βɪ(n ,n +1]阶一致分数阶积分定义为8001 吉林大学学报(理学版) 第61卷Copyright ©博看网. All Rights Reserved.I βf (t )=1n!ʏt 0(t -s )n s β-n -1f (s )d s .(5)特别地,当βɪ(1,2]时,I βf (t )=ʏt 0(t -s )s β-2f (s )d s .引理2[19] 假设函数f :[0,ɕ)ңℝ连续,并且βɪ(n ,n +1],则有D βI βf (t )=f (t ).(6) 引理3[19]假设f :[0,ɕ)ңℝ是β阶可微函数,并且βɪ(n ,n +1],则有I βD βf (t )=f (t )+a 0+a 1t + +a nt n ,(7)其中a i ɪℝ,i =0,1,2, ,n .引理4 设函数f :[0,1]ˑℝңℝ是连续的,u (t )是边值问题(1)的解,则u (t )=ʏ10G (t ,s )f (s ,u (s -τ))d s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0{],(8)其中格林函数G (t ,s)为G (t ,s )=(1-s )(2-t )sβ-2,0ɤs ɤt ɤ1,(1-t )(2-s )sβ-2,0ɤt ɤs ɤ1{.(9) 证明:由引理3知,有u (t )=I β0+f (t ,u (t -τ))-a 0-a 1t =ʏt 0(t -s )s β-2f (s ,u (s -τ))d s -a 0-a 1t ,(10)从而u ᶄ(t )=ʏts β-2f (s ,u (s -τ))d s -a 1.根据u (0)+u ᶄ(0)=0,有a 0+a 1=0;(11)根据u (1)+u ᶄ(1)=0,有a 0+2a 1-ʏ10(2-s )s β-2f (s ,u (s -τ))d s =0.(12)结合式(11),(12)可得a 0=-ʏ10(2-s )s β-2f (s ,u (s -τ))d s , a 1=ʏ10(2-s )s β-2f (s ,u (s -τ))d s .(13)将式(13)代入式(10)可得u (t )=ʏt 0(t -s )s β-2f (s ,u (s -τ))d s +ʏ10(2-s )s β-2f (s ,u (s -τ))d s -t ʏ1(2-s )s β-2f (s ,u (s -τ))d s =ʏt 0(1-s )(2-t )s β-2f (s ,u (s -τ))d s +ʏ1t(1-t )(2-s )sβ-2f (s ,u (s -τ))d s =ʏ10G (t ,s )f (s ,u (s -τ))d s . 引理5(A r z e l a -A s c o l i 定理)[20] 集合P ⊂C ([a ,b ])列紧的充分必要条件为:1)集合P 有界,即存在常数ψ,使得对∀u ɪP ,有u (t )ɤψ(∀t ɪ[a ,b ]);2)集合P 等度连续,即对∀ε>0,始终存在σ=σ(ε)>0,使得对于∀t 1,t 2ɪ[a ,b ],只要t 1-t 2<σ,即有u (t 1)-u (t 2)<ε(∀u ɪP ).2 主要结果设A 为C ([-τ,1],ℝ)按范数 u =m a x t ɪ[-τ,1]u (t )构成的B a n a c h 空间,在A 上定义一个算子Q ,Q u (t )=ʏ10G (t ,s )f (s ,u (s -τ))d s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0]{. 假设条件:(H 1)函数f ɪC ([0,1]ˑℝ,ℝ),并且φɪC ([-τ,0],ℝ);9001 第5期张 敏,等:一致分数阶时滞微分方程边值问题解的存在性与唯一性 Copyright ©博看网. All Rights Reserved.(H 2)存在常数α,B >0,使得∀(t ,u )ɪ[0,1]ˑℝ,有f (t ,u )ɤαu +B ;(H 3)存在函数η(t )ɪL 1/2([0,1],ℝ+),使得∀t ɪ[0,1],当任取u ,v ɪℝ时,有f (t ,u )-f (t ,v )ɤη(t )u -v ,其中 η =ʏ10η2(s )d ()s 1/2.为方便,引入记号:Λ1=β+2β(β-1),Λ2=1(β-1)(2β-1)(2β-3),Λ3=2β2-β+1(β-1)(2β-1)(2β-3),32<βɤ2.定理1 如果条件(H 1)和(H 2)成立,并且αɪ(0,Λ-11),则边值问题(1)至少存在一个解.证明:由函数G (t ,s ),f (s ,u (s -τ))的连续性可知算子Q 是连续的,并且易证Q (A )⊂A .设P 是A 中的一个有界集,则存在常数M >0,使得对任意的u ɪP ,有 u ɤM .下面利用L e r a y -S c h a u d e r 度理论证明边值问题(1)正解的存在性,分以下3个步骤.1)证明算子Q (P )是一致有界的.对任意的u ɪP ,有Q u (t)=ʏ10G (t ,s )f (s ,u (s -τ))d s ɤʏ10G (t ,s )㊃f (s ,u (s -τ))d s ɤ(αu +B )ʏ10G (t ,s )d s ɤ(αM +B )ʏ10(2-s )(1-t )s β-2d s +ʏt(t -s )s β-2d []s =(αM +B )β+1β(β-1)(1-t )+1β(β-1)㊃t éëêêùûúúβɤ(αM +B )β+1β(β-1)+1β(β-1éëêêùûúú)=(αM +B )Λ1,因此,算子Q (P )是一致有界的.2)证明算子Q (P )是等度连续的.对任意的u ɪP ,t 1,t 2ɪ[-τ,1]且t 1<t 2:①当0ɤt 1<t 2ɤ1时,有Q u (t 2)-Q u (t 1)=ʏ10G (t 2,s )f (s ,u (s -τ))d s -ʏ1G (t 1,s )f (s ,u (s -τ))d s ɤʏ10G (t 2,s )-G (t 1,s )㊃f (s ,u (s -τ))d s ɤ(αu +B )ʏ10G (t 2,s )-G (t 1,s )d s ɤ (αM +B )ʏt 10G (t 2,s )-G (t 1,s )d s +ʏt 2t 1G (t 2,s )-G (t 1,s )d s +ʏ1t 2G (t 2,s )-G (t 1,s )d []s = (αM +B )ʏt 10{[(2-s )(1-t 2)s β-2-(2-s )(1-t 1)s β-2]+[(t 2-s )s β-2-(t 1-s )s β-2]}d s + (αM +B )ʏt 2t 1{[(2-s )(1-t 2)s β-2-(2-s )(1-t 1)s β-2]+(t 2-s )s β-2}d s + (αM +B )ʏ1t 2[(2-s )(1-t 2)s β-2-(2-s )(1-t 1)s β-2]d s =(αM +B )ʏt 10(t 1-t 2)(2-s )s β-2d s +ʏt 10(t 2-t 1)s β-2d s +ʏt 2t 1(t 1-t 2)(2-s )s β-2d [s + ʏt 2t 1(t 2-s )s β-2d s +ʏ1t 2(t 1-t 2)(2-s )s β-2d ]s ɤ(αM +B )(t β2-t β1)-(β+1)(t 2-t 1)β(β-1); ②当-τɤt 1<t 2ɤ0时,有Q u (t 2)-Q u (t 1)ɤφ(t 2)-φ(t 1);③当-τɤt 1<0<t 2ɤ1时,有Q u (t 2)-Q u (t 1)ɤQ u (t 2)-Q u (0)+Q u (0)-Q u (t 1)ɤʏ10G (t 2,s )-G (0,s )㊃f (s ,u (s -τ))d s +φ(0)-φ(t 1)ɤ(αM +B )ʏ10G (t 2,s )d s +φ(0)-φ(t 1)ɤ0101 吉林大学学报(理学版) 第61卷Copyright ©博看网. All Rights Reserved.(αM +B )t β2β(β-1)+φ(0)-φ(t 1)ɤ(αM +B )t β2-t β1β(β-1)+φ(0)-φ(t 1). 在上面3种情形中,当t 1ңt 2时,总有Q u (t 2)-Q u (t 1)ң0,表明Q (P )是等度连续的.故由引理5可知,Q (P )是列紧的,从而算子Q :A ңA 是全连续的.3)利用L e r a y -S c h a u d e r 度理论证明问题(1)正解的存在性.定义范数 φ [-τ,0]=m a x t ɪ[-τ,0]φ(s ).假设当γɪ[0,1],u ɪA 时,u =γQ u ,则u (t )=γQ u (t )ɤQ u (t)ɤʏ10G (t ,s )㊃f (s ,u (s -τ))d s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0{],ɤʏ10G (t ,s )(αu +B )d s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0{],ɤ(αu +B )ʏ10(2-s )(1-t )s β-2d s +ʏt 0(t -s )s β-2d []s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0{],ɤ(α u +B )Λ1,t ɪ[0,1], φ [-τ,0],t ɪ[-τ,0{],从而 u ɤB Λ11-αΛ1 φìîíïïïɤT .令ω=T +1,B ω={u ɪA : u <ω},则u ʂγQ u ,对任意的u ɪ∂B ω,γɪ[0,1].定义一个映射:F γ(u )=u -γQ u ,则F γ(u )=u -γQ u ʂ0,对任意的u ɪ∂B ω,γɪ[0,1].因此,由L e r a y -S c h a u d e r 度的同伦不变性,有d e g (F γ,B ω,θ)=d e g (I -γQ ,B ω,θ)=d e g (F 1,B ω,θ)=d e g (F 0,B ω,θ)=d e g (I ,B ω,θ)=1ʂθ.从而根据L e r a y -S c h a u d e r 度的可解性可知,方程F 1(u )=u -Q u =0在B ω上至少存在一个解,进而边值问题(1)至少有一个正解.证毕.定理2 如果条件(H 1)和(H 3)成立,并且 η (Λ2+Λ3)<1,则边值问题(1)存在唯一解.证明:假设s u p t ɪ[0,1]f (t ,0)=ζ<ɕ.定义B δ={u ɪA : u ɤδ}为A 中的有界闭球,并选择δȡζΛ11- η (Λ2+Λ3).下面利用B a n a c h 压缩映射原理证明边值问题(1)解的存在唯一性,分以下两个步骤.1)证明Q (B δ)⊂B δ.对任意的u ɪB δ,有Q u (t)ɤʏt 0(t -s )s β-2f (s ,u (s -τ))d s +ʏ10(1-t )(2-s )s β-2f (s ,u (s -τ))d s ɤʏt 0(t -s )s β-2[f (s ,u (s -τ))-f (s ,0)+f (s ,0)]d s +ʏ10(1-t )(2-s )s β-2[f (s ,u (s -τ))-f (s ,0)+f (s ,0)]d s ɤ u ʏt(t -s )s β-2η(s )d s +ζʏt(t -s )s β-2d s +u (1-t )ʏ10(2-s )s β-2η(s )d s +ζʏ10(1-t )(2-s )s β-2d s ɤ u ʏt(t s β-2-s β-1)2d ()s 1/2ʏtη2(s )d ()s 1/2+ζβ(β-1)t β+ u (1-t )ʏ10(2s β-2-s β-1)2d []s 1/2ʏ10η2(s )d ()s 1/2+(β+1)ζβ(β-1)(1-t )ɤ1101 第5期张 敏,等:一致分数阶时滞微分方程边值问题解的存在性与唯一性 Copyright ©博看网. All Rights Reserved.1(β-1)(2β-1)(2β-3) u η t β-1/2+ζβ(β-1)t β+2β2-β+1(β-1)(2β-1)(2β-3) u η (1-t )+(β+1)ζβ(β-1)(1-t )ɤδ η (Λ2+Λ3)+ζΛ1,则 Q u ɤδ.表明算子Q 将B δ中的有界子集映为B δ中的有界子集,即Q (B δ)⊂B δ.2)证明算子Q 为压缩映射.对任意的u ,v ɪA :①当t ɪ[0,1]时,有Q u (t )-Qv (t )ɤʏt 0(t -s )s β-2f (s ,u (s -τ))-f (s ,v (s -τ))d s +ʏ10(1-t )(2-s )s β-2f (s ,u (s -τ))-f (s ,v (s -τ))d s ɤ u -v ʏt(t -s )s β-2η(s )d s + u -v (1-t )ʏ10(2-s )s β-2η(s )d s ɤu -v ʏt(t s β-2-s β-1)2d ()s 1/2ʏtη2(s )d ()s 1/2+u -v (1-t )ʏ10(2s β-2-s β-1)2d ()s 1/2ʏ10η2(s )d ()s 1/2ɤ1(β-1)(2β-1)(2β-3) u -v ㊃ ηt β-1/2+2β2-β+1(β-1)(2β-1)(2β-3) u -v ㊃ η (1-t )ɤ η (Λ2+Λ3) u -v ; ②当t ɪ[-τ,0]时,有Q u (t )-Q v (t )=φ(t )-φ(t )=0.由①,②可得Q u -Q v [-τ,1]ɤ η (Λ2+Λ3) u -v [-τ,1]. 因为 η (Λ2+Λ3)<1,所以算子Q 为压缩映射.即由B a n a c h 压缩映射原理可知算子Q 存在唯一的不动点,故边值问题(1)存在唯一解.3 应用实例考虑下列一致分数阶时滞微分方程边值问题:D 7/40+u (t )=e -3t s i n 1/2t 5(2+t )2㊃u (t -τ)1+u (t -τ), t ɪ[0,1],u (t )=φ(t ), t ɪ[-τ,0],u (0)+u ᶄ(0)=0,u (1)+u ᶄ(1)=ìîíïïïïïï0(14)解的存在性与唯一性.证明:在边值问题(14)中,β=74,函数f (t ,u (t ))=e -3t s i n 1/2t 5(2+t)2㊃u 1+u 是连续的,满足条件(H 1);对任意的u ,v ɪℝ,t ɪ[0,1],有f (t ,u (t -τ))-f (t ,v (t -τ))ɤe -3t s i n 1/2t 5(2+t )2u -v ɤe -3t s i n 1/2t ㊃u -v .所以存在η(t )=e -3t s i n 1/2t ɪL 1/2([0,1],ℝ+),满足条件(H 3),且 η =0.1667.又因为Λ2=1(β-1)(2β-1)(2β-3)ʈ1.0328, Λ3=2β2-β+1(β-1)(2β-1)(2β-3)ʈ2.3944.所以 η (Λ2+Λ3)ʈ0.5713<1.因此根据定理2可知,边值问题(14)存在唯一解.2101 吉林大学学报(理学版)第61卷Copyright ©博看网. All Rights Reserved.参考文献[1] K I Y AM E H RZ ,B A G HA N I H.E x i s t e n c eo fS o l u t i o n so fB V P sf o rF r a c t i o n a lL a n g e v i n E q u a t i o n sI n v o l v i n g C a p u t oF r a c t i o n a lD e r i v a t i v e s [J ].J o u r n a l o fA p p l i e dA n a l ys i s ,2021,27(1):47-55.[2] Z O U Y M ,H EGP .O n t h eU n i q u e n e s s o f S o l u t i o n s f o r aC l a s s o f F r a c t i o n a l D i f f e r e n t i a l E q u a t i o n s [J ].A p p l i e d M a t h e m a t i c sL e t t e r s ,2017,74:68-73.[3] J O N G K S ,C HO I H C ,R IY H.E x i s t e n c eo fP o s i t i v eS o l u t i o n so faC l a s so f M u l t i -p o i n tB o u n d a r y V a l u e P r o b l e m s f o r p -L a p l a c i a nF r a c t i o n a lD i f f e r e n t i a lE q u a t i o n sw i t hS i n g u l a rS o u r c eT e r m s [J ].C o mm u n i c a t i o n s i n N o n l i n e a r S c i e n c e a n dN u m e r i c a l S i m u l a t i o n ,2019,72:272-281.[4] C U IYJ ,MA WJ ,S U N Q ,e t a l .N e w U n i q u e n e s sR e s u l t s f o r B o u n d a r y V a l u e P r o b l e mo f F r a c t i o n a l D i f f e r e n t i a l E q u a t i o n [J ].N o n l i n e a rA n a l y s i s :M o d e l l i n g an dC o n t r o l ,2018,23(1):31-39.[5] L IY H ,Y A N G H J .E x i s t e n c eo fP o s i t i v eS o l u t i o n sf o r N o n l i n e a rF o u r -P o i n tC a p u t oF r a c t i o n a lD i f f e r e n t i a l E q u a t i o nw i t h p -L a p l a c i a n [J ].B o u n d a r y V a l u eP r o b l e m s ,2017,2017:75-1-75-15.[6] A HMA DB ,N T O U Y A SSK ,Z HO U Y ,e t a l .AS t u d y o fF r a c t i o n a lD i f f e r e n t i a l E qu a t i o n s a n d I n c l u s i o n sw i t h N o n l o c a l E r d él y i -K o b e rT y p eI n t e g r a lB o u n d a r y C o n d i t i o n s [J ].B u l l e t i no ft h eI r a n i a n M a t h e m a t i c a lS o c i e t y ,2018,44(5):1315-1328.[7] X U ET T ,L I U W B ,Z HA N G W.E x i s t e n c eo fS o l u t i o n sf o rS t u r m -L i o u v i l l eB o u n d a r y V a l u eP r o b l e m so f H i g h e r -O r d e rC o u p l e d F r a c t i o n a lD i f f e r e n t i a lE q u a t i o n sa tR e s o n a n c e [J ].A d v a n c e si n D i f f e r e n c e E q u a t i o n s ,2017,2017:301-1-301-18.[8] L IY H ,Q I A B .E x i s t e n c eo fP o s i t i v eS o l u t i o n sf o r M u l t i -p o i n tB o u n d a r y V a l u eP r o b l e m so fC a p u t o F r a c t i o n a l D i f f e r e n t i a l E q u a t i o n [J ].I n t e r n a t i o n a l J o u r n a l o fD y n a m i c a l S y s t e m s a n dD i f f e r e n t i a l E q u a t i o n s ,2017,7(2):169-183.[9] S E V I N I K A D I G ÜZ E LR ,A K S O Y Ü,K A R A P I N A R E ,e ta l .O nt h eS o l u t i o no faB o u n d a r y Va l u eP r ob l e m A s s oc i a t ed w i t ha F r a c t i o n a lD i f fe r e n t i a lE q u a t i o n [J /O L ].M a t h e m a t i c a l M e t h o d si nt h e A p pl i e d S c i e n c e s ,(2020-06-23)[2022-09-13].h t t p s ://d o i .o r g/10.1002/mm a .6652.[10] K HA L I LR ,A lHO R A N I M ,Y O U S E F A ,e ta l .A N e w D e f i n i t i o no fF r a c t i o n a lD e r i v a t i v e [J ].J o u r n a lo f C o m p u t a t i o n a l a n dA p pl i e d M a t h e m a t i c s ,2014,264:65-70.[11] I Y I O L A OS ,T A S B O Z A N O ,K U R T A ,e t a l .O n t h eA n a l y t i c a l S o l u t i o n s o f t h e S y s t e mo f C o n f o r m a b l eT i m e -F r a c t i o n a lR o b e r t s o nE q u a t i o n sw i t h1-DD i f f u s i o n [J ].C h a o s ,S o l i t o n s&F r a c t a l s ,2017,94:1-7.[12] Z HO U H W ,Y A N GS ,Z HA N GSQ.C o n f o r m a b l eD e r i v a t i v eA p p r o a c ht oA n o m a l o u sD i f f u s i o n [J ].P h y s i c a A :S t a t i s t i c a lM e c h a n i c s a n d I t sA p pl i c a t i o n s ,2018,491:1001-1013.[13] H ESB ,S U N K H ,M E IX Y ,e ta l .N u m e r i c a lA n a l y s i so fa F r a c t i o n a l -O r d e rC h a o t i cS y s t e m B a s e do n C o n f o r m a b l eF r a c t i o n a l -O r d e rD e r i v a t i v e [J ].T h eE u r o p e a nP h y s i c a l J o u r n a l P l u s ,2017,132:36-1-36-11.[14] L IY N ,S U N S R ,Y A N G D W ,e ta l .T h r e e -P o i n t B o u n d a r y V a l u e P r o b l e m s o f F r a c t i o n a lF u n c t i o n a l D i f f e r e n t i a l E q u a t i o n sw i t hD e l a y [J /O L ].B o u n d a r y V a l u eP r o b l e m s ,(2013-02-22)[2022-08-25].h t t ps ://d o i .o r g/10.1186/1687-2770-2013-38.[15] HA N Z L ,L I Y N ,S U I M Z .E x i s t e n c e R e s u l t sf o r B o u n d a r y V a l u e P r o b l e m so f F r a c t i o n a lF u n c t i o n a l D i f f e r e n t i a lE q u a t i o n sw i t hD e l a y [J ].J o u r n a l o fA p p l i e dM a t h e m a t i c s a n dC o m p u t i n g,2016,51(1/2):367-381.[16] L IM M ,WA N GJR.F i n i t eT i m eS t a b i l i t y o fF r a c t i o n a lD e l a y D i f f e r e n t i a l E q u a t i o n s [J ].A p pl i e d M a t h e m a t i c s L e t t e r s ,2017,64:170-176.[17] Y A N G X ,W E IZL ,D O N G W.E x i s t e n c eo fP o s i t i v eS o l u t i o n s f o r t h eB o u n d a r y Va l u eP r ob l e m o fN o n l i n e a r F r ac t i o n a lD i f f e r e n t i a lE qu a t i o n s [J ].C o mm u n i c a t i o n si n N o n l i n e a rS c i e n c ea n d N u m e r i c a lS i m u l a t i o n ,2012,17(1):85-92.[18] X U YF .F r a c t i o n a l B o u n d a r y V a l u eP r o b l e m sw i t h I n t e g r a l a n dA n t i -p e r i o d i cB o u n d a r y C o n d i t i o n s [J ].B u l l e t i n o f t h eM a l a y s i a n M a t h e m a t i c a l S c i e n c e sS o c i e t y,2016,39(2):571-587.[19] A B D E L J AWA D T.O nC o n f o r m a b l e F r a c t i o n a l C a l c u l u s [J ].J o u r n a l o f C o m p u t a t i o n a l a n dA p p l i e dM a t h e m a t i c s ,2015,279:57-66.[20] 许天周.应用泛函分析[M ].北京:科学出版社,2002:67-72.(X U T Z .A p p l i e dF u n c t i o n a lA n a l ys i s [M ].B e i j i n g :S c i e n c eP r e s s ,2002:67-72.)(责任编辑:赵立芹)3101 第5期张 敏,等:一致分数阶时滞微分方程边值问题解的存在性与唯一性 Copyright ©博看网. All Rights Reserved.。
ON THE EXISTENCE AND UNIQUENESS OF ALMOST PERIODIC SOLUTIONS TO DISCRETE TWO-SPECIES COMPETITIVE
![ON THE EXISTENCE AND UNIQUENESS OF ALMOST PERIODIC SOLUTIONS TO DISCRETE TWO-SPECIES COMPETITIVE](https://img.taocdn.com/s3/m/12981b47e518964bcf847c81.png)
(1.1)
ቤተ መጻሕፍቲ ባይዱ
and some of ge ne raliz ed sy stems of Lotka-Volterra ty pe have b e en stu die d by many sch olars (see pap ers [1,14] an d the refe ren ces the rein). Alre ady, many rese arche rs argue d that d iscrete tim e mo de ls govern ed by differe nc e e quation are more ap prop riate th an th e con tin uou s one s whe n th e p opu lation s have n on- ove rlap pin g gen erations (In tereste d read ers can refe r to p ap ers [1,2,15]). S in ce discre te tim e mod els can also provid e effi cient com pu tation al mod els of c ontinuou s mo de ls for num erical simu lations, it is re ason ab le to stud y d iscrete tim e mo de ls gove rn ed by differen ce eq uations. Based on th is c onside ration , the followin g n -sp ec ie s com p etitive d iffe re nc e mod els
混合单调算子方程组解的存在唯一性定理_栾世霞
![混合单调算子方程组解的存在唯一性定理_栾世霞](https://img.taocdn.com/s3/m/8cec147c7fd5360cba1adb5e.png)
其中 N 为锥 P 的正规常数。此外,对 ∀x0 ∈ [u0 , v0 ],令 xn+1 = Axn (n = 0, 1, 2, · · · ),则 有 x∗ = lim xn 。
n→∞
推论 3 设 A : [u0 , v0 ] → E 是减算子且存在正的有界线性算子 T1 , T2 , T3 : E → E ,使得谱 半径 r(T1 + T2 + T3 ) < 1,且满足下列条件: (H1 ) A(u) − A(v ) ≤ T1 (v − u), u0 ≤ u ≤ v ≤ v0 ; (H2 ) u0 + T2 (v0 − u0 ) ≤ A(v0 ), A(u0 ) ≤ v0 − T3 (v0 − u0 )。 则算子 A 在 [u0 , v0 ] 中有唯一不动点 x∗ ,而且迭代序列 un+1 = Avn − T2 (vn − un ), (16) v n+1 = Aun + T3 (vn − un ), n = 0, 1, 2, · · · 都收敛于 x∗ ,并有误差估计式 x∗ − un (或 vn ) ≤ N rn v0 − u0 , r(T1 + T2 + T3 ) < r < 1, (17)
第26卷 第2期 2009年04月
工
程
数
学
学
报
CHINESE JOURNAL OF ENGINEERING MATHEMATICS
Vol. 26 No. 2 Apr. 2009
文章编号:1005-3085(2009)02-0373-04
混合单调算子方程组解的存在唯一性定理∗
栾世霞, 孙钦福
(曲阜师范大学数学科学学院,曲阜 273165) 摘 要: 利用锥理论和单调迭代方法,本文在更广泛的条件下得到了一般 Banach 空间中的混合单调算子 方程组解的存在唯一性定理,进一步得到了混合单调、增、减算子新的不动点的存在唯一性定 理。本文结果一方面改进并推广了最近的一些已知结果,另一方面本文所给的条件在实际应用中 更便于检验。最后给出了一个应用,以检验本文所得结果。 中图分类号: 果
EXISTENCE AND UNIQUENESS OF SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATION WITH RANDOM COEFFICIEN
![EXISTENCE AND UNIQUENESS OF SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATION WITH RANDOM COEFFICIEN](https://img.taocdn.com/s3/m/beff0ae3856a561252d36fe6.png)
Su ppo rt ed by t he N at io na l N a t ura l S cienc e Fo unda tion of C hina ( N o.10 7 01 02 0 ). M anuscript received M ay 1 4, 2 00 9
400
No.4
G .X. Hu, etc., SD E WITH RANDO M CO EFF ICIE NTS
2
Many resu lts on th e existen ce an d un iq ue ne ss of solution s cou ld be fou nd in [2-3] an d re feren ces the rein. Motivate d by th e work of Av ne r Frie dm an [4], wh ich gave th e sim ple pro of of th e e xisten ce and u niq uen ess the ore m for SD Es with rand om coe ffic ie nts, u nd er c ond itions (2) and (3), in this p ap er, we con side r the e xiste nc e and u niqu en ess of solu tions to the followin g SD E with rand om c oeffi cien ts:
T his pa per m a inly dea ls w it h a st ocha stic different ia l equ at io n ( SDE) w it h ra ndo m co effi cient s. Suffic ient co ndit ions w hich gua ra nt ee th e exist ence a nd un iqueness of solutio ns t o the equat io n a re give n. Key wor ds sto cha st ic diff ere nt ial equat ion; ra ndo m co effi cients; exist ence a nd uniqueness 20 00 M athem atic s Sub ject C lassific ation 6 0 H1 0 ; 3 4 A1 2
b-度量空间中一类积分型压缩映射的公共不动点定理
![b-度量空间中一类积分型压缩映射的公共不动点定理](https://img.taocdn.com/s3/m/42ce4f5191c69ec3d5bbfd0a79563c1ec5dad799.png)
第41卷第6期2023年12月沈阳师范大学学报(自然科学版)J o u r n a l o f S h e n y a n g N o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n)V o l.41N o.6D e c.2023文章编号:16735862(2023)06056206b-度量空间中一类积分型压缩映射的公共不动点定理关洪岩,勾金泽(沈阳师范大学数学与系统科学学院,沈阳110034)摘要:不动点理论是非线性泛函分析的重要组成部分,在处理许多非线性问题时起着十分关键的作用㊂B a n a c h压缩映像原理是不动点理论研究中的热点问题之一,近年来经过学者们的深入研究,该定理在许多方面得到了拓展,取得了大量优秀的成果㊂在b-度量空间的框架下,首次考虑了积分型压缩映射的不动点问题㊂首先,在该类空间中提出了一类新的积分型压缩的概念,并根据映射对的包含关系构造出一个序列,再利用反证法和压缩条件证明了此序列是该空间中的一个柯西列;其次,通过该空间的完备性和映射对的弱相容性,证明了该空间中积分型压缩映射对的公共不动点的存在性及唯一性;最后,给出一个具体例子说明了该结果的有效性㊂关键词:不动点;b-度量空间;压缩映射;积分型;柯西列中图分类号:O177.91文献标志码:Ad o i:10.3969/j.i s s n.16735862.2023.06.013C o m m o n f i x e d p o i n t t h e o r e m s f o r a c l a s s o f c o n t r a c t i v em a p p i n g s o f i n t e g r a l t y p e i n b-m e t r i c s p a c e sG U A N H o n g y a n,G O UJ i n z e(C o l l e g e o fM a t h e m a t i c s a n dS y s t e m sS c i e n c e,S h e n y a n g N o r m a lU n i v e r s i t y,S h e n y a n g110034,C h i n a)A b s t r a c t:F i x e d p o i n t t h e o r y i s a n i m p o r t a n t p a r t o f n o n l i n e a r f u n c t i o n a l a n a l y s i s a n d p l a y s ak e yr o l e,w h i l eB a n a c hc o n t r a c t i o n m a p p i n gp r i n c i p l e i so n eo f t h eh o t i s s u e s i nt h er e s e a r c ho f f i x e dp o i n t t h e o r y.I nr e c e n t y e a r s,t h r o u g hc o n t i n u o u s i n-d e p t hr e s e a r c hb y s c h o l a r s,t h i sr e s u l th a sb e e ne x p a n d e d i nd i f f e r e n t a s p ec t s a n dh a s a c h i e v e dm a n y e x c e l l e n t r e s u l t s.I n t h e f r a m e w o r ko f b-m e t r i c s p a c e s,a f i x e d p o i n t p r o b l e m o f c o n t r a c t i v em a p p i n g o f i n t e g r a l t y p e i sc o n s i d e r e df o r t h ef i r s t t i m e.F i r s t,w e i n t r o d u c ean e wc l a s so fc o n t r a c t i v e m a p p i ng o f i n t e g r a l t y p e.S e c o n d,w ec o n s t r u c t a s e q u e n c e a c c o rd i n g t o t he i n c l u s i o n r e l a t i o n of t h em a p p i ng s a n d p r o v e th a t t h e s e q u e n c ei sC a u c h y b y t h e m a t h e m a t i c a li n d u c t i o n a n d t h e c o n t r a c t i o n c o n d i t i o n s.T h e e x i s t e n c e a n du n i q u e n e s s o f t h ec o mm o nf i x e d p o i n to fa p a i ro f t h ec o n t r a c t i v e m a p p i n g so f i n t e g r a l t y p ea r ep r o v e db y t h e c o m p l e t e n e s s o f t h e s p a c e a n d t h ew e a kc o m p a t i b i l i t y o f t h em a p p i n g s i n t h i s s p a c e.F i n a l l y,a c o n c r e t e e x a m p l e i s g i v e n t o p r o v e t h e v a l i d i t y o f t h e r e s u l t.K e y w o r d s:f i x e d p o i n t;b-m e t r i c s p a c e s;c o n t r a c t i v em a p p i n g;i n t e g r a l t y p e;C a u c h y s e q u e n c e 1922年,B a n a c h[1]在度量空间上提出了著名的压缩映像原理㊂随后,该结果被广泛地应用在数学中的诸多领域,很多学者通过改变空间或压缩条件得到更多的不动点结论㊂1993年,C z e r w i k[2]首次改变了度量空间的第3个条件得到了b-度量空间的概念并给出与压缩映像原理相对应的结果㊂在度量空间中,通过改变压缩条件,B r a n c i a r i[3]在2002年首次提出了积分型压缩的概念并证明了该类型压缩映射不动点的存在性及唯一性㊂2003年,R h o a d e s[4]推广了B r a n c i a r i的定理㊂基于R h o a d e s的结论,收稿日期:20230704基金项目:辽宁省教育厅基本科研项目(J Y T M S2*******)㊂作者简介:关洪岩(1980 ),男(满族),辽宁葫芦岛人,沈阳师范大学副教授,博士㊂2009年,M o r a d i 和O m i d [5]得到了一类新的积分型映射具有不动点的条件㊂受L i 等[6]的启发,本文在b -度量空间中引入一类新的积分型压缩条件,证明了积分型压缩映射对公共不动点的存在性及唯一性,并给出一个例子证明了结论的有效性㊂1 基础知识本文假设ℝ+=[0,+ɕ),ℕ代表正整数的集合,ℕ0=ℕɣ{0}㊂令ξ1=ξ|ξ:ℝ+ңℝ+勒贝格可积,在ℝ+每个紧子集上可求和,且对每个δ>0有ʏδξ(t )d t >{}0,ξ2={τ|τ:[0,+ɕ)ң[0,+ɕ)为连续函数}㊂定义1[2] 设X 是一个非空集合,称映射d :X ˑX ң[0,+ɕ)为b -度量,当且仅当对所有的x ,y ,z ɪX ,d 满足下面的条件:1)d (x ,y )=0⇔x =y ;2)d (x ,y )=d (y ,x );3)d (x ,y )ɤs [d (x ,z )+d (z ,y )],其中s ȡ1是一个常数㊂一般地称(X ,d )为带有系数s ȡ1的b -度量空间㊂定义2[7] 设(X ,d )是一个带有系数s ȡ1的b -度量空间㊂设α:X ˑX ң[0,+ɕ),Q ,T :X ңX ,p ȡ2为一个已知实数㊂如果对任意的ξ,ηɪX ,由α(T ξ,T η)ȡs p 可得到α(Q ξ,Q η)ȡs p ,那么称映射Q 是T -αs p -可容许的㊂定义3[8] 设Q 和T 是定义在非空集合X 上的2个映射㊂如果对某一ξɪX ,有v =Q ξ=T ξ,那么称v 为Q 和T 的重合值,称ξ为Q 和T 的重合点㊂一般地,令C (Q ,T )代表Q 和T 重合点的集合㊂定义4[8] 设Q 和T 是定义在非空集合X 上的2个映射㊂若Q 和T 在重合点处可交换,则称Q 和T 是弱相容映射,即对每个ξɪC (Q ,T ),有Q T ξ=T Q ξ㊂定义5[9] 设(X ,d )是一个带有系数s ȡ1的b -度量空间,那么X 中的序列{x n }被称为1)b -收敛当且仅当存在x ɪX ,当n ң+ɕ时有d (x n ,x )ң0;2)柯西列当且仅当n ,m ң+ɕ时有d (x n ,x m )ң0㊂通常,一个b -度量空间称为是完备的是指该空间中的每个柯西列都是b -收敛的㊂引理1[10] 设(X ,d )是一个带有系数s ȡ1的b -度量空间,{x n }和{y n }分别b-收敛于x ,y ,那么1s2d (x ,y )ɤl i m n ң+ɕi n f d (x n ,y n )ɤl i m n ң+ɕs u p d (x n ,y n )ɤs 2d (x ,y )特别地,如果x =y ,则有l i m n ң+ɕd (x n ,y n )=0㊂此外,对每一个z ɪX 有1sd (x ,z )ɤl i m n ң+ɕi n f d (x n ,z )ɤl i m n ң+ɕs u p d (x n ,z )ɤs d (x ,z ) 引理2[11]设ϕɪξ1,{r n }n ɪℕ是一个非负数列,a 是一个非负常数㊂如果l i m n ң+ɕr n =a ,那么l i mn ң+ɕʏr n0ϕ(t )d t =ʏa0ϕ(t )d t 引理3[11] 设ϕɪξ1,{r n }n ɪℕ是一个非负数列,那么l i mn ң+ɕʏr nϕ(t )d t =0当且仅当l i m n ң+ɕr n =0㊂2 主要成果引理4 设ϕɪξ1,{r n }n ɪℕ为一个非负数列㊂如果l i ms u p n ң+ɕr n =a ,那么ʏa0ϕ(t )d t ɤl i ms u p n ң+ɕʏr n 0ϕ(t )d t 如果l i mi n f r n =a ,那么l i mi n f n ң+ɕʏr nϕ(t )d t ɤʏa 0ϕ(t )d t 365第6期 关洪岩,等:b -度量空间中一类积分型压缩映射的公共不动点定理证明 因为l i ms u p n ң+ɕr n =a ,所以存在{r n }的子列{r n k }满足l i m n ң+ɕr n k=a ㊂根据引理2有ʏa 0ϕ(t )d t =l i m k ң+ɕʏr nkϕ(t )d t ɤl i ms u p n ң+ɕʏr nϕ(t )d t 类似地,可以证明另一个不等式㊂定理 设(췍,d )是一个带有系数s ȡ1的b -度量空间,I ,J :췍ң췍满足I (췍)⊆J (췍)㊂设α:췍ˑ췍ң[0,+ɕ),p ȡ3是一个已知常数㊂如果1)I 是J -αsp -可容许的;2)存在p 0ɪ췍满足α(J p 0,I p0)ȡs p ;3)α满足传递性,即对于ξ,η,ζɪ췍有α(ξ,η)ȡs p 且α(η,ζ)ȡs p ⇒α(ξ,ζ)ȡs p ;4)当n ң+ɕ时,如果췍中的列{p n }满足J p n ңJ p ,那么对于n ɪℕ,有α(J p n ,J p )ȡs p ;5)对于p ,q ɪC (I ,J ),有α(J p ,J q )ȡs p 和α(J q ,J p )ȡs p ;6)存在映射ϕɪξ1,满足对任意的u ,v ɪ췍,有ψʏα(J u ,J v )d (I u ,I v )ϕ(t )d ()t ɤφʏΔ1(u ,v)0ϕ(t )d ()t +L θʏΔ2(u ,v)0ϕ(t )d ()t (1)其中Δ1(u ,v )=m a x d (J u ,J v ),d (J v ,I v ),d (J u ,I v )+d (J v ,I u )2s ,d (J u ,I u )d (I u ,I v )1+d (J u ,J v {})Δ2(u ,v )=m i n {d (J u ,I u ),d (J u ,I v ),d (J v ,I u )}L ȡ0,ψ,φ,θɪξ2满足对于每个t >0有φ(t )<ψ(t ),θ(t )>0,φ(0)=ψ(0)=θ(0)=0,且ψ是递增的;7)I 和J 是弱相容的,J (췍)是闭的㊂那么,I 和J 有唯一公共不动点㊂证明 根据条件2),存在p 0ɪ췍使得α(Jp 0,I p 0)ȡs p ㊂结合条件I (췍)⊆J (췍),对任意的n ɪℕ0,定义췍中的列{p n }和{q n }如下:q n =I p n =J p n +1㊂如果对某个n ,有q n =q n +1,则q n =q n +1=I p n +1=J p n +1,即I 和J 有重合值㊂接下来假设对任意的n ɪℕ有q n ʂq n +1㊂根据式(1)得到α(J p 0,I p 0)ȡs p ⇒α(J p 0,J p 1)ȡspα(I p 0,I p 1)ȡs p ⇒α(J p 1,J p 2)ȡspα(I p 1,I p 2)ȡs p ⇒α(J p 2,J p 3)ȡsp 因此,对n ɪℕ,有α(I p n ,I p n +1)=α(q n -1,q n )ȡs p ㊂根据式(1),令u =p n ,v =p n +1,有ψʏα(J p n ,J p n +1)d (I p n ,I p n +1)0ϕ(t )d ()t ɤφʏΔ1(p n ,p n +1)0ϕ(t )d ()t +L θʏΔ2(p n ,p n +1)0ϕ(t )d ()t (2)其中Δ1(p n ,p n +1)={m a x d (J p n ,J p n +1),d (J p n +1,I p n +1),d (J p n ,I p n +1)+d (J p n +1,I p n )2s,d (J p n ,I p n )d (I p n ,I p n +1)1+d (J p n ,J p n +1})=m a x {d (q n -1,q n ),d (q n ,q n +1)}Δ2(p n ,pn +1)=m i n {d (J p n ,I p n ),d (J p n ,I p n +1),d (J p n +1,I p n )}(3) 假设对某个n ɪℕ,有d (q n +1,q n )ȡd (q n -1,q n )㊂根据式(2)和式(3),有Δ1(p n ,p n +1)=d (q n,q n +1),所以ψʏd (q n ,q n +1)0ϕ(t )d ()t <ψʏs p d (q n ,q n +1)0ϕ(t )d ()t ɤψʏα(J p n ,J p n +1)d (I p n ,I p n +1)0ϕ(t )d ()t ɤφʏΔ1(p n ,p n +1)0ϕ(t )d ()t +L θʏΔ2(p n ,p n +1)0ϕ(t )d ()t ɤφʏd (q n ,q n +1)0ϕ(t )d ()t <ψʏd (q n ,q n +1)0ϕ(t )d ()t 矛盾㊂于是d (q n -1,q n )>d (q n ,q n +1)(4) 根据式(4),{d (q n ,q n +1)}是一个递减数列,所以存在一个实数r ȡ0满足l i m n ң+ɕd (q n ,qn +1)=r ㊂465沈阳师范大学学报(自然科学版) 第41卷根据式(2)~式(4)可得ψʏd (q n ,q n +1)0ϕ(t )d ()t <ψʏs p d (q n ,q n +1)0ϕ(t )d ()t ɤψʏα(J p n ,J p n +1)d (I p n ,I p n +1)0ϕ(t )d ()t ɤφʏΔ1(p n ,p n +1)0ϕ(t )d ()t +L θʏΔ2(p n ,p n +1)0ϕ(t )d ()t ɤφʏd (q n -1,q n )0ϕ(t )d ()t (5)假设r >0,根据ψ和φ的连续性㊁式(5)和引理2,取n ң+ɕ的极限,可得ψʏr0ϕ(t )d ()t =l i m n ң+ɕψʏd (q n ,q n +1)0ϕ(t )d ()t ɤl i m n ң+ɕφʏd (q n -1,q n )0ϕ(t )d ()t =φʏr 0ϕ(t )d ()t 矛盾,因而r =0㊂这意味着l i m n ң+ɕd (q n ,qn +1)=0㊂接下来证明{q n }是一个柯西列㊂假设不是,则存在ε>0,选择{q n }的子列{q n (k )}和{q m (k )},满足n (k )>m (k )>k ,则εɤd (q m (k ),q n (k )),d (q m (k ),q n (k )-1)<ε(6)且n (k )是满足上述要求的最小指标㊂根据三角不等式和式(6),有εɤd (q m (k ),q n (k ))ɤs (d (q m (k ),q n (k )-1)+d (q n (k )-1,q n (k )))<s ε+s d (q n (k )-1,q n (k ))(7)在式(7)中令k ң+ɕ,有εɤl i mi n f k ң+ɕd (q m (k ),q n (k ))ɤl i ms u p k ң+ɕd (q m (k ),q n (k ))ɤsε(8)类似地,有εs2ɤl i mi n f k ң+ɕd (q m (k )-1,q n (k )-1)ɤl i ms u p k ң+ɕd (q m (k )-1,q n (k )-1)ɤs 3εεsɤl i mi n f k ң+ɕd (q m (k )-1,q n (k ))ɤl i ms u p k ң+ɕd (q m (k )-1,q n (k ))ɤs 2εεsɤl i mi n f k ң+ɕd (q m (k ),q n (k )-1)ɤl i ms u p k ң+ɕd (q m (k ),q n (k )-1)ɤs 2ε 根据Δ1(u ,v )和Δ2(u ,v )的定义有Δ1(p m (k ),p n (k ))={m a x d (J p n (k ),J p n (k )),d (J p n (k ),I p n (k )),d (J p m (k ),I p n (k ))+d (J p n (k ),I p m (k ))2s ,d (J p m (k ),I p m (k ))d (I p m (k ),I p n (k ))1+d (J p m (k ),J p n (k )})={m a x d (q m (k )-1,q n (k )-1),d (q n (k )-1,q n (k )),d (q m (k )-1,q n (k ))+d (q n (k )-1,q m (k ))2s ,d (q m (k )-1,q m (k ))d (q m (k ),q n (k ))1+d (q m (k )-1,q n (k )-1})Δ2(p m (k ),p n (k ))={m i n d (J p m (k ),I p m (k )),d (J p m (k ),I p n (k )),d (J p n (k ),I p m (k )})={m i n d (q m (k )-1,q m (k )),d (q m (k )-1,q n (k )),d (q n (k )-1,q m (k )})(9)在式(9)两端取k ң+ɕ的下极限,有l i mi n f k ң+ɕΔ1(p m (k ),p n (k ))ɤm a x s 3ε,0,s 2ε+s 2ε2s,{}0=s 3εl i mi n f k ң+ɕΔ2(p m (k ),pn (k ))ɤm i n {0,s 2ε,s 2ε}=0 根据α的传递性,有α(J p m (k ),J p n (k ))ȡs p ㊂在式(1)中取u =p m (k ),v =p n (k ),可得ψʏs 3ε0ϕ(t )d ()t <l i mi n f k ң+ɕψʏs p d (q m (k ),q n (k))0ϕ(t )d ()t ɤl i mi n f k ң+ɕψʏα(J p m (k ),J p n (k ))d (I p m (k ),I p n (k ))0ϕ(t )d ()t ɤl i mi n f k ң+ɕφʏΔ1(p m (k ),p n (k ))0ϕ(t )d ()t +L θʏΔ2(p m (k ),p n (k ))0ϕ(t )d ()t ɤφʏs 3ε0ϕ(t )d ()t <ψʏs 3ε0ϕ(t )d ()t 565第6期 关洪岩,等:b -度量空间中一类积分型压缩映射的公共不动点定理矛盾,因而可知{qn }是柯西列㊂因为J (췍)是闭的,所以存在e ɪJ (췍)满足l i m n ң+ɕq n =li m n ң+ɕJ p n +1=e =l i m n ң+ɕI p n 因为e ɪJ (췍),选择一点q ɪ췍满足J (q )=e ㊂接下来证明J q =I q ㊂假设J q ʂI q ,取u =p n +1,v=q ,有Δ1(p n +1,q )={m a x d (J p n +1,J q ),d (J q ,I q ),d (J p n +1,I q )+d (J q ,I p n +1)2s,d (J p n +1,I p n +1)d (I p n +1,I q )1+d (J p n +1,J q })={m a x d (q n ,e ),d (e ,I q ),d (q n ,I q )+d (e ,q n +1)2s ,d (q n ,q n +1)d (q n +1,I q )1+d (qn ,e })Δ2(p n +1,q )=m i n {d (J p n +1,I p n +1),d (J p n +1,I q ),d (J q ,I p n +1)}=m i n {d (q n ,q n +1),d (q n ,I q ),d (e ,q n +1)}(10)当n ң+ɕ时,由式(10)可得l i m n ң+ɕΔ1(p n +1,q )ɤm a x 0,s d (e ,I q ),d (e ,I q )2,{}0=s d (e ,I q )l i m n ң+ɕΔ2(p n +1,q )ɤm i n {0,s d (e ,I q ),0}=0 根据式(5)㊁式(10)㊁引理1和引理3,在式(1)中取u =p n +1,v =q 可得ψʏs d (I q ,e )0ϕ(t )d ()t <ψʏs 3㊃1s d (I q ,e )0ϕ(t )d ()t ɤl i ms u p n ң+ɕψʏs p d (I p n +1,I q )0ϕ(t )d ()t ɤl i ms u p n ң+ɕψʏα(J p n +1,J q )d (I p n +1,I q )0ϕ(t )d ()t ɤl i ms u p n ң+ɕφʏΔ1(p n +1,q )0ϕ(t )d ()t +L θʏΔ2(p n +1,q )0ϕ(t )d ()t ɤφʏs d (e ,I q )0ϕ(t )d ()t <ψʏs d (e ,I q )0ϕ(t )d ()t 矛盾,所以J q =I q ,即J q =I q =e (11)因此,q 是I 和J 的重合点㊂接下来证明I 和J 存在公共不动点㊂根据式(11)及I 和J 是弱相容的,有I e =I J q =J I q =Je 现在考虑Δ1(q ,e )=m a x d (J q ,J e ),d (J e ,I e ),d (J q ,I e )+d (J e ,I q )2s ,d (J q ,I q )d (I q ,I e )1+d (J q ,J e {})=d (e ,J e )Δ2(q ,e )=m i n {d (J q ,I q ),d (J q ,I e ),d (J e ,I q )}=0(12)在式(1)中取u =q ,v =e ,应用式(12)有ψʏd (e ,J e )ϕ(t )d ()t <ψʏα(J q ,J e )d (J q ,J e )0ϕ(t )d ()t ɤφʏΔ1(q ,e)0ϕ(t )d ()t +L θʏΔ2(q ,e)0ϕ(t )d ()t ɤφʏd (e ,J e )ϕ(t )d ()t <ψʏd (e ,J e )0ϕ(t )d ()t 这是不可能的,因而J e =I e =e ㊂这意味着e 是I 和J 的一个公共不动点㊂最后证明公共不动点的唯一性㊂假设r 和z 是I 和J 的2个公共不动点且r ʂz ,那么Δ1(r ,z )=m a x d (J r ,J z ),d (J z ,I z ),d (J r ,I z )+d (J r ,I r )2s ,d (J r ,I r )d (I r ,I z )1+d (J r ,J z {})=m a x d (r ,z ),0,d (r ,z )+d (z ,r )2s,{}0=d (r ,z )Δ2(r ,z )=m i n {d (J r ,I r ),d (J r ,I z ),d (J z ,I r )}=m i n {0,d (r ,z ),d (z ,r )}=0665沈阳师范大学学报(自然科学版) 第41卷根据式(5)有ψʏd (r ,z )0ϕ(t )d ()t <ψʏα(J r ,J z )d (I r ,I z )0ϕ(t )d ()t ɤφʏΔ1(r ,z)0ϕ(t )d ()t +L θʏΔ2(r ,z)0ϕ(t )d ()t <φʏd (r ,z )ϕ(t )d ()t <ψʏd (r ,z )ϕ(t )d ()t 矛盾,所以r =z ,即I 和J 的公共不动点是唯一的㊂例 设췍=[0,1],d (x ,y )=(x -y )2㊂容易证明(췍,d )是一个带有系数2的完备b -度量空间㊂对于任意的x ,y ɪ췍,定义映射I ,J :췍ң췍,I x =15x +45,J x =2x-1;定义α:췍ˑ췍ң[0,+ɕ),α(x ,y )=s 3;定义φ,ψ,θ:[0,+ɕ)ң[0,+ɕ),φ(t )=l n (1+t ),ψ(t )=t ,θ(t )=e t -1㊂显然,当t >0时,φ(t )<ψ(t ),θ(t )>0,且满足φ(1)=ψ(1)=θ(1)=1㊂I (1)=J (1)=1,I J (1)=J I (1)=1,ψ递增且I (췍)⊆J (췍)㊂通过计算容易证得当L ȡ0时,有ψʏα(J u ,J v )d (I u ,I v )ϕ(t )d ()t ɤφʏΔ1(u ,v)0ϕ(t )d ()t +L θʏΔ2(u ,v)0ϕ(t )d ()t 于是定理所有条件均成立,故I ,J 有唯一的公共不动点㊂显然0是I 和J 的公共不动点㊂参考文献:[1]B A N A C H S .S u r l e s o p ér a t i o n sd a n s l e se n s e m b l e sa b s t r a i t se t l e u ra p p l i c a t i o na u xéq u a t i o n s i n t ég r a l e s [J ].F u n d M a t h ,1922,3:5157.[2]C Z E RW I KS .C o n t r a c t i o nm a p p i n g s i n b -m e t r i c s p a c e s [J ].A c t aM a t h I n f o r m U n i vO s t r a v ,1993,1(1):511.[3]B R A N C I A R IA.Af i x e d p o i n t t h e o r e mf o rm a p p i n g s s a t i s f y i n g a g e n e r a l c o n t r a c t i v e c o n d i t i o no f i n t e g r a l t y p e [J ].I J MM S ,2002,29(9):531536.[4]R HO A D E SBE .T w o f i x e d -p o i n t t h e o r e m s f o rm a p p i n g s s a t i s f y i n g a g e n e r a l c o n t r a c t i v e c o n d i t i o no f i n t e g r a l t y p e [J ].I J MM S ,2003,63:40074013.[5]MO R A D I S ,OM I D M.Af i x e d -p o i n t t h e o r e mf o r i n t e g r a l t y p e i n e q u a l i t y d e p e n d i n g o na n o t h e r f u n c t i o n [J ].I n t J M a t hA n a l ,2010,4(30):14911499.[6]L I J J ,G U A N H Y.C o mm o n f i x e d p o i n t o f g e n e r a l i z e d αs -ψ-G e r a g h t y c o n t r a c t i v e b -m a p p i n g so nm e t r i c s p a c e s [J ].A m e r JA p p lM a t hS t a t ,2021,9(2):6674.[7]L I J J ,G U A N H Y.C o mm o nf i x e d p o i n t t h e o r e m so f c o n t r a c t i o n m a p p i n g sw i t ha p p l i c a t i o n [J ].I n t J M a t h A n d A p pl ,2021,9(2):231243[8]J U N G C K G.C o m p a t i b l e m a p p i n g sa n d c o mm o nf i x e d p o i n t s [J ].I n t e r n a tJ M a t h M a t h S c i ,1986,9(4):771779.[9]R O S HA NJR ,S HO B K O L A E IN ,S E D G H I S ,e t a l .C o mm o n f i x e d p o i n t o f f o u rm a p s i n b -m e t r i c s p a c e s [J ].H a c e t JM a t hS t a t ,2014,43(4):613624.[10]A G HA J A N IA ,A B B A S M ,R O S HA NJ .C o mm o n f i x e d p o i n t o f g e n e r a l i z e dw e a kc o n t r a c t i v em a p p i n g s i n p a r t i a l l y o r d e r e d b -m e t r i c s p a c e s [J ].M a t hS l o v a c a ,2014,64(4):941960.[11]关洪岩,郝妍.广义度量空间上压缩型映像的不动点理论及应用[M ].重庆:重庆大学出版社,2023:4748.765第6期 关洪岩,等:b -度量空间中一类积分型压缩映射的公共不动点定理。
EXISTENCE AND UNIQUENESS OF ANTI-PERIODIC SOLUTIONS TO AN nTH-ORDER NONLINEAR DIFFERENTIAL EQUAT
![EXISTENCE AND UNIQUENESS OF ANTI-PERIODIC SOLUTIONS TO AN nTH-ORDER NONLINEAR DIFFERENTIAL EQUAT](https://img.taocdn.com/s3/m/e71290e2172ded630b1cb6db.png)
1
Introduction
As is we ll kn own , the re have b ee n many resu lts on th e existen ce an d u niqu en ess of anti-p eriod ic solutions to d iffe rent typ es of differen tial e quation s (se e [1-6]). For ex amp le in [1], usin g Leray- Sch aud er d egre e th eory an d some an alysis skills, th e au thors stud ied the ex iste nc e an d u niqu en ess of an ti- pe riodic solu tion s to Rayle igh eq uation w ith two de viatin g argum ents of the form: x� � (t ) + f ( t, x � ( t )) + g 1 ( t, x ( t − τ 1 ( t ))) + g 2 (t, x ( t − τ2 ( t))) = e ( t) . In [3], Fan an d Wan g stud ied the follow in g n online ar differe ntial equ ation w ith d elays x ( n ) ( t ) + f ( t, x( n− 1) ( t )) + g ( t, x( t − τ ( t ))) = e( t ) . (∗)� (∗)
By Leray- Sch aud er de gre e the ory, th e auth ors obtain ed su fficien t con d itions for th e existen ce and u niqu en ess of anti-p eriod ic solu tion s to e qu ation s ( ∗ ) an d ( ∗ ) � . Howeve r, the re are fe w resu lts on the e xiste nc e and u niq uen ess of an ti- pe riodic solutions to n th -orde r n online ar differe ntial equ ations w ith mu ltip le d eviating argu me nts an d c ontinu ously d istrib uted d elays. In th is pap er, we stud y a kind of non lin ear e qu ation as follows:
聚丙烯生产工艺发展
![聚丙烯生产工艺发展](https://img.taocdn.com/s3/m/68170a8f6aec0975f46527d3240c844769eaa021.png)
聚丙烯(PP)晶体结构规整,具备易加工、抗冲击强度、抗挠曲性以及电绝缘性好等优点,它的应用十分广泛,特别是在纤维和长丝、薄膜挤压、注塑加工等方面,是合成树脂中消费增速最快、用途最广的品种。
随着催化剂技术的进步、设备制造能力的提高和市场对新产品需要的不断增加,聚丙烯生产工艺也在不断的改进和完善。
1聚丙烯生产工艺发展根据反应介质及反应器构型的不同,聚丙烯生产工艺主要有:淤浆法、本体法(包括本体-气相法组合)和气相法。
1.1浆液法世界上最早用于聚丙烯生产,直到20世纪80年代,它还占主要地位。
特点是将丙烯溶于惰性烃类稀释剂中进行聚合,主要有意大利的Montecatini 工艺、美国Hercules 工艺、日本三井东压化学工艺、美国Amoco 工艺、日本三井油化工艺以及索维尔工艺等。
该工艺流程长,成本高,操作与投资费用较高。
除生产少量高性能的塑料合金外,自20世纪80年代以后,新、改建的大型聚丙烯装置基本不再采用。
1.2本体法(本体-气相法组合)该工艺特点是反应体系中不加任何其它溶剂,将催化剂直接分散在液相丙烯中进行聚合反应。
20世纪70年代后期的装置大都基于此法。
本体法工艺有过多种工艺路线。
根据聚合反应器的不同,可分为釜式聚合工艺和管式聚合工艺,经过多年的发展和竞争,目前应用较多的主要有Basell 公司的Spheripol 工艺、日本三井化学公司的Hypol 工艺和Borealis 公司的的Borstar 工艺等。
Spheripol 工艺自1982年首次工业化以来,是迄今为止最成功、应用最为广泛的聚丙烯生产工艺。
它是一种液相预聚合同液相均聚和气相共聚相结合的聚合工艺,采用一个或者多个环管反应器和一个或多个串联的气相流化床反应器,在环管反应器中进行均聚和无规共聚,在气相流化床中生产抗冲共聚物。
虽然流程相比之下较长,但设备简单,投资不高,操作稳定可靠,产品性能好。
Hypol 工艺于20世纪80年代初期开发成功,采用HY-HS-II 催化剂(TK-II),是一种多级聚合工艺。
北京大学硕士论文
![北京大学硕士论文](https://img.taocdn.com/s3/m/230d0a462e3f5727a5e96240.png)
iii
iv
目 录
摘 要 剪切流中的一维棒状液晶随机模型的分析 i 1 3 3 4 7 7 9 9
第一部分 第一章 前言
§1.1 引言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . §1.2 问题的数学表述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第二章 解的存在唯一性
§A.0.1 小时间的不动点结果 . . . . . . . . . . . . . . . . . . . . . . 63 §A.0.2 大范围时间解的构造 . . . . . . . . . . . . . . . . . . . . . . 64 附录二 参考文献
n Θj tn (yi ) − Θi,j L2 ω
要
第一部分中, 我们考虑剪切流中的液晶聚合物的随机模型. 液晶聚合物分子的 运动通过带有分子间相互作用 Maier-Saupe 势的非线性随机微分方程来刻画. 宏观 的应力张量来自聚合物微观构象的系综平均. 我们首先通过压缩映射方法证明非线 性的随机微分方程强解的存在唯一性, 然后针对耦合的偏微分方程 – 随机微分方程 组进行先验估计,采用 Galerkin 方法证明耦合的流体 – 聚合物方程组存在小时间 范围内的唯一解. 在考虑系统的数值离散格式的时候, 由于随机微分方程的解是一 个非线性扩散过程, 经典的蒙特卡洛方法和大数定律不再适用, 我们采用弱相互作 用的随机过程来逼近, 并且在加上针对流体计算的交错网格差分格式之后, 证明了 1 2 完整的杂交耦合格式的收敛性,收敛速度为 O(h + δt + √M ). 本文的第二部分针对复杂流体的一种特殊物理现象 – spurt 现象,总结了一维 简单剪切流的情况下 spurt 现象的理论结果, 强调 spurt 现象和非单调的应变应力 关系的重要联系.回顾和发展了当前的针对全耦合模型的数值方法.数值计算了 1 维硬棒模型、 Hookean 模型、 FENE 模型和 FENE 近似模型的应变应力的单调函数 关系, 从而否定了这些模型出现 spurt 现象的可能性. 其中针对 2 维 FENE 模型的 计算采用的数值方法包括计算 Fokker Planck 方程的谱方法和求解随机微分方程的 布朗动力学随机模拟,两种方法都得出了相同的数值结果.针对 3 维 FENE 模型 的布朗动力学随机模拟表明 1 维简单剪切流中 2 维 FENE 模型和 3 维 FENE 模 型的应变应力的函数关系基本没有区别.
一类具比例时滞细胞神经网络概周期解的全局吸引性
![一类具比例时滞细胞神经网络概周期解的全局吸引性](https://img.taocdn.com/s3/m/a42b311877c66137ee06eff9aef8941ea76e4bbe.png)
一类具比例时滞细胞神经网络概周期解的全局吸引性周立群;赵山崎【摘要】研究一类具比例时滞的二维分流抑制细胞神经网络的概周期解.应用Banach不动点定理,研究该网络的概周期解的存在性.通过一个非线性变换,将具比例时滞细胞神经网络等价地变换成具变系数与常时滞的细胞神经网络,通过构造合适的Lyapunov泛函并与Barbalat引理相结合,得到该网络概周期解存在唯一和全局吸引的充分条件.数值算例验证所得结论的正确性.【期刊名称】《黑龙江大学自然科学学报》【年(卷),期】2014(031)005【总页数】8页(P566-573)【关键词】细胞神经网络;概周期解;比例时滞;全局吸引性;Barbalat引理【作者】周立群;赵山崎【作者单位】天津师范大学数学科学学院,天津300387;天津师范大学数学科学学院,天津300387【正文语种】中文【中图分类】O175.13;TP1830 引言细胞神经网络(CNNs)与时滞细胞神经网络(DCNNs)在图像处理、模式识别、联想记忆等方面有重要的作用,因而在国内外得到了广泛的研究,其中大多数研究都集中在平衡点的各种稳定性上。
同时,关于细胞神经网络的其它动力学性质,如概周期性的研究,也取得了很多有意义的结果[1-4]。
文献[1]研究时延细胞神经网络的概周期解存在性和全局指数稳定性问题,巧妙的引入可调实参数,获得了该神经网络存在唯一和指数稳定的充分条件;文献[2]通过拓扑度理论与广义的Halanay不等式,对一类时变时滞的细胞神经网络进行研究,得到一个周期解存在与全局指数稳定的充分条件;文献[3]应用压缩原理,研究了一类具混合时滞的细胞神经网络的周期解的存在性与全局指数稳定性;文献[4]对具有分布时滞的细胞神经网络的概周期解进行了讨论,去掉了神经元输出函数全局Lipschitz条件的限制,利用不动点定理与微分不等式技巧,得到了此类神经网络概周期解的存在性、唯一性与指数稳定性的充分条件,文献[5-6]通过构造合适的Lyapunov泛函等,研究了其它类型的神经网络概周期解的相关性质。
二阶微分方程周期解的存在性和唯一性
![二阶微分方程周期解的存在性和唯一性](https://img.taocdn.com/s3/m/7532a01bff00bed5b9f31def.png)
0 ) dθ x + f( t, 0, 0) . θ x, ∫ f ( t,
0 x 2 2
1
mail: yuanhong. wei@ 126. com. 作者简介: 魏元鸿( 1981 —) ,男,汉族,博士研究生,从事应用数学的研究,E基金项目: 国家自然科学基金( 批准号: J0630104 ) .
[15] . 本文考虑二阶微分方程: 目前,关于微分方程周期解的研究已取得许多成果 x″ = f( t, x, x′) , 1
(1)
x′是 C 的. 其中 f: R × R × R→R 是连续的,并对 t 以 T 为周期,对 x, v 都是 T引理 1 对于微分方程 x″ = u ( t ) x′ + v ( t ) x,其中 u, 周期的,如果 0 v ( t ) ( 本文中, 0 v( t) 表示 0 ≤v( t) 且 v( t) 不恒为 0 ) ,则方程只有唯一的平凡 T周期解 x( t) = 0 . 定理 1 b( t) ,以及非负常数 M,使得 若存在两个连续函数 a( t) , 0 a( t) ≤ f x ≤ b( t) , f x′ ≤ M (2)
第 48 卷 第 2 期 2010 年 3 月
吉林大学学报( 理学版) Journal of Jilin University ( Science Edition)
Vol. 48 No. 2 Mar 2010
研究快报
二阶微分方程周期解的存在性和唯一性
1 魏元鸿 ,刘
冬
2
( 1. 吉林大学 数学研究所,长春 130012 ; 2. 吉林大学 数学学院,长春 130012 )
x ∈C1 则根据 Schauder 不动点定理知,P : D→D 有不动点. 证毕. T}, 此外,对右端函数仅为连续的情况,可建立 T周期解的存在性定理. 考虑 x″ = f( t, x, x′) x + g( t, x, x′) , x∈R,f, g 是连续的,且关于 t 以 T 为周期. 与定理 1 类似,可得: 其中 t, 定理 2 如果存在两个连续函数 a( t) 和 b( t) ,以及一个非负常数 M,满足: 0 a( t) ≤ f( t, x, x′) ≤ b( t) ; 则方程( 5 ) 至少存在一个 T周期解. 衷心感谢吉林大学数学学院李勇教授的悉心指导 . 参 考 文 献 g( t, x, x′) ≤ M,
分数阶非线性迭代方程的周期解
![分数阶非线性迭代方程的周期解](https://img.taocdn.com/s3/m/12c91f2891c69ec3d5bbfd0a79563c1ec5dad7f3.png)
第59卷 第3期吉林大学学报(理学版)V o l .59 N o .32021年5月J o u r n a l o f J i l i nU n i v e r s i t y (S c i e n c eE d i t i o n )M a y2021研究简报d o i :10.13413/j .c n k i .jd x b l x b .2020423分数阶非线性迭代方程的周期解李翠英1,吴 睿2,程 毅1(1.渤海大学数学科学学院,辽宁锦州121013;2.长春财经学院数学教研部,长春130122)摘要:考虑一类C a p u t o 型分数阶导数意义下非线性迭代微分方程的周期问题,在非线性项满足单边L i p s c h t i z 条件下,应用L e r a y -S c h a u d e r 不动点定理和拓扑度理论,证明该类非线性分数阶迭代微分方程解的存在性和唯一性.关键词:存在性;唯一性;分数阶;迭代方程中图分类号:O 175.14 文献标志码:A 文章编号:1671-5489(2021)03-0555-04P e r i o d i c S o l u t i o n s f o r aF r a c t i o n a lN o n l i n e a r I t e r a t i v eE qu a t i o n s L IC u i y i n g 1,WU Ru i 2,C H E N G Y i 1(1.C o l l e g e o f M a t h e m a t i c a lS c i e n c e s ,B o h a i U n i v e r s i t y ,J i n z h o u 121013,L i a o n i n g Pr o v i n c e ,C h i n a ;2.D e p a r t m e n t o f M a t h e m a t i c s ,C h a n g c h u nU n i v e r s i t y o f F i n a n c e a n dE c o n o m i c s ,C h a n gc h u n 130122,C h i n a )A b s t r a c t :W e c o n s ide r e d t h e p e r i o d i c p r o b l e m of ac l a s so fn o n l i n e a r i t e r a t i v ed i f f e r e n t i a l e qu a t i o n i n t h es e n s eo fC a p u t ot y p ef r a c t i o n a ld e r i v a t i v e .U n d e ro n es i d e d -L i p s c h t i zc o n d i t i o n so n n o n l i n e a r t e r m ,t h ee x i s t e n c ea n d u n i qu e n e s s o fs o l u t i o nf o rt h e n o n l i n e a rf r a c t i o n a li t e r a t i v e d i f f e r e n t i a l e q u a t i o n s i s p r o v e d b y a p p l y i n g t h eL e r a y -S c h a u d e r f i x e d p o i n t t h e o r e ma n d t o p o l o g i c a l d e g r e e t h e o r y .K e y w o r d s :e x i s t e n c e ;u n i q u e n e s s ;f r a c t i o n a l o r d e r ;i t e r a t i v e e q u a t i o n 收稿日期:2020-12-18. 网络首发日期:2021-04-06.第一作者简介:李翠英(1983 ),女,汉族,硕士,讲师,从事分数阶微分动力系统的研究,E -m a i l :l n c y999@126.c o m.通信作者简介:吴 睿(1978 ),女,汉族,博士,教授,从事微分方程理论的研究,E -m a i l :w u r u i 0221@s i n a .c o m.基金项目:吉林省自然科学基金(批准号:20200201274J C ).网络首发地址:h t t ps ://k n s .c n k i .n e t /k c m s /d e t a i l /22.1340.O.20210406.0958.001.h t m l .0 引 言目前,关于迭代微分方程的边值㊁周期问题研究已得到广泛关注.P e t u k h o v [1]研究了如下二阶迭代微分方程周期边值问题:x ᵡ=λx (x (t)),x (0)=x (T )=α,得到了参数λ,α在不同范围内方程解的存在唯一性;K a u f m a n n [2]考虑一类二阶迭代微分方程的边值问题,用S c h a u d e r 不动点定理证明了该问题解的存在性;文献[3-6]用不同的不动点理论(K r a s n o s e l s k i i 不动点定理㊁S c h a u d e r 不动点定理等)证明了若干类迭代微分方程周期解或拟周期解的存在唯一性.分数阶微分方程在数学㊁化学㊁物理和工程等许多领域应用广泛,但关于分数阶迭代微分方程边值㊁周期问题的研究成果目前报道较少.当非线性函数满足L i ps c h i t z 条件时,I b r a h i m 等[7]将整数阶的一些结果推广到分数阶迭代微分方程中.但目前已有结果均为处理一维的迭代微分系统,对于向量迭代方程的研究尚未见文献报道.本文在非线性函数满足单边L i p s c h i t z 条件时,证明一类非线性C a pu t o 型分数阶迭代向量微分系统周期解的存在唯一性.本文令Tʒ=[0,b],ℝn为n维E u c l i d空间,<㊃,㊃>表示ℝn中的内积, ㊃ 表示ℝn空间的范数.设C(T,ℝn)表示从T到ℝn全体连续函数组成的空间,其范数定义为 x C=m a x tɪT x(t) .关于分数阶微积分的基础知识可参见文献[8-9].1主要结果考虑如下分数阶迭代向量微分方程:C Dαx(t)+A x(t)=f(t,x(t),x[2]+(t)), x(0)=x(b),(1)其中:x[2]+(t)=(x1( x ),x2( x ), ,x n( x ));C Dαx(t)=1Γ(1-α)ʏt0(t-s)-αxᶄ(s)d s, ∀αɪ(0,1);A:ℝnңℝn是一个线性算子;f:Tˑℝnˑℝnңℝn是一个连续函数.下面给出假设条件:(H1)设A:ℝnңℝn是一个有界㊁线性的正定算子,即对任意的zɪℝn,存在常数cɪℝ+,使得<A z,z>ȡc z 2;(H2)设f:Tˑℝnˑℝnңℝn是一个连续函数,且:(i)对任意的u,vɪℝn,存在一个非负函数λɪLɕ+[0,b],使得∀tɪ[0,b], f(t,u,v) ɤλ(t);(i i)对任意的tɪ[0,b],u1,u2,v1,v2ɪℝn存在函数μɪLɕ+[0,b],使得<f(t,u1,v1)-f(t,u2,v2),u1-u2>ɤμ(t) u1-u2 2,其中 μ ɕ<c,c是H1中的常数.定理1假设条件(H1),(H2)成立,且b大于某常数M1/(1-α),则分数阶迭代微分系统(1)存在唯一解.证明:由文献[10]中推论7.1知,问题(1)等价于如下积分迭代方程:x(t)=Eα(A tα)x(0)+ʏt0(t-τ)α-1Eα,α(A(t-τ)α)f(τ,x(τ),x[2]+(τ))dτ.(2)定义算子T1:C(T,ℝn)ңC(T,ℝn),且T1(x(t))ʒ=Eα(A tα)x(0)+ʏt0(t-τ)α-1Eα,α(A(t-τ)α)f(τ,x,x[2]+)dτ.首先,证明解的先验有界性.根据算子T1的定义和假设条件(H2)中(i),可推出T1(x(t)) ɤ x(0) Eα(A Tα) +m a x tɪT Eα,α(A tα)Γ(α)ʏt0(t-s)α-1f(s,x(s),x[2](s))d sɤx(0) Mα+ λ ɕ^MαΓ(α)ʏt0(t-s)α-1d sɤx(0) Mα+ λ ɕ^MααΓ(α)bα,(3)其中Mα= Eα(A Tα) ,^Mα=m a x tɪT Eα,α(A tα) .下面估计初值 x(0) .在式(2)中令t=b,可得x(b)=Eα(A bα)x(0)+ʏb0(b-τ)α-1Eα,α(A(b-τ)α)f(τ,x(τ),x[2]+(τ))dτ.由x(0)=x(b)和假设条件(H1)易知,行列式E-Eα(A bα)ʂ0,其中E表示单位矩阵.故x(0)=(E-Eα(A bα))-1b0(b-τ)α-1Eα,α(A(b-τ)α)f(τ,x(τ),x[2]+(τ))dτ.655吉林大学学报(理学版)第59卷根据假设条件(H 2)中(i ),类似式(3),可得 x (0) ɤM E ^M α λ ɕb ααΓ(α),(4)其中M E = (E -E α(A b α))-1 .将式(4)代入式(3),可得 T 1(x (t )) ɤ(M E M α+1)^M α λ ɕαΓ(α)b α, ∀t ɪT .记M =(M E M α+1)^M α λ ɕαΓ(α),由于b >M 1/(1-α),因此 T 1(x (t )) ɤM b α<b .其次,证明非线性算子T 1是全连续算子,从而得到解的存在性.先证明∀x ɪC (T ,ℝn ),T 1(x (t ))ɪC (T ,ℝn ).对任意的t ,t +δɪ[0,b ],且δ>0,满足T 1(x (t +δ))-T 1(x (t ))=1Γ(α)ʏt +δ0(t +δ-s )α-1E α,α(A (t +δ-τ)α)f (s ,x (s ),x [2](s ))d s -1Γ(α)ʏt(t -s )α-1E α,α(A (t -τ)α)f (s ,x (s ),x [2](s ))d s +[E α(A (t +δ)α)-E α(A t α)]x (0)ɤ λ ɕ^M αΓ(α)ʏt +δ0(t +δ-s )α-1d s +ʏt 0(t +δ-s )α-1-(t -s )α-1d s +[E α(A (t +δ)α)-E α(A t α)]x (0)ɤ2 λ ɕ^M ααΓ(α)δα+2 λ ɕ^M ααΓ(α)(t +δ-a )α-(t -a )α+[E α(A (t +δ)α)-E α(A t α)]x (0).当δң0时,有T 1(x (t +δ))-T 1(x (t ))ң0,故T 1(x (t ))ɪC (T ,ℝn ).取x n ңx ɪC (T ,ℝn ),则易推出T 1(x n )-T 1(x )ң0,从而T 1:C (T ,ℝn )ңC (T ,ℝn )是连续的.根据1)中先验估计,应用A r z e l a -A s c o l i 定理易知,算子T 1:ΩңΩ是全连续的,其中Ωʒ={u ɪC (T ,ℝn ): u C ɤb +1}.从而可将微分迭代系统(1)解的存在性转化为T 1的不动点问题.定义映射h ε(x )=x -εT 1(x ),其中εɪ[0,1].取p ∉h (∂Ω),则对任意的εɪ[0,1],可得d e g (h ε,Ω,p )=d e g (h 1,Ω,p )=d e g (I -T 1,Ω,p )=d e g (h 0,Ω,p )=d e g (I ,Ω,p )=1ʂ0,其中I 是恒等映射.因此T 1在Ω上存在不动点,即x =T 1(x ).从而微分迭代系统(1)至少存在一个解.最后,证明微分迭代系统(1)解的唯一性.假设x 1,x 2ɪC (T ,ℝn )是问题(1)的两个解,对这两个解做差再与x 1-x 2做内积,可得<x 1(t )-x 2(t ),D α(x 1(t )-x 2(t ))>+<x 1(t )-x 2(t ),A (x 1(t )-x 2(t ))>=<x 1(t )-x 2(t ),f (t ,x 1(t ),x [2]1+(t ))-f (t ,x 2(t ),x [2]2+(t))>.根据假设条件(H 1)和(H 2)中(i i),利用分数阶微分不等式[10],可推出D α x 1(t )-x 2(t ) 2ɤ2<x 1(t )-x 2(t ),D α(x 1(t )-x 2(t ))>ɤ2μ(t ) x 1-x 2 2-2c x 1-x 2 2.(5)为方便,令S (t )= x 1(t )-x 2(t ) 2,式(5)可简化为D αS (t )ɤ2(μ(t )-c )S (t ),755 第3期 李翠英,等:分数阶非线性迭代方程的周期解855吉林大学学报(理学版)第59卷从而S(t)ɤS(0)Eα(2( μ ɕ-c)tα), ∀tɪT.再令t=b,得S(b)ɤS(0)Eα(2( μ ɕ-c)bα).(6)由S(t)= x1-x2 2及边界条件x(b)=x(0)可知,S(b)=S(0),整理可得S(0){1-Eα[2( μ ɕ-c)bα]}ɤ0.由M i t t a g-L e f f l e r函数Eα(t)(tȡ0)的单调性和 μ ɕ<c知,Eα[2( μ ɕ-c)bα]<1.又由S(0)= x1(0)-x2(0) 2ȡ0,可推出S(0)=0.由式(6)知,S(t)ɤ0,从而S(t)恒为0,即x1=x2,故迭代微分方程(1)有唯一解.参考文献[1] P E T U K HO V V R.O n a B o u n d a r y V a l u e P r o b l e m[J].T r u d y S e m T e o r D i f f e r e n c i a l U r a v n e n iǐO t k l o nA r g u m e n t o m U n i vD r užb y N a r o d o vP a t r i s aL u m u m b y,1965,3:252-255.[2] K A U F MA N N ER.E x i s t e n c e a n dU n i q u e n e s s o f S o l u t i o n s f o r aS e c o n d-O r d e r I t e r a t i v eB o u n d a r y-V a l u eP r o b l e m[J].E l e c t r o n i c JD i f f e r e n t i a l E q u a t i o n s,2018,2018(150):1-6.[3] Z HA O H Y,L I UJ.P e r i o d i cS o l u t i o n s o f a n I t e r a t i v eF u n c t i o n a lD i f f e r e n t i a l E q u a t i o nw i t hV a r i a b l eC o e f f i c i e n t s[J].M a t h M e t hA p p l S c i,2016,40(1):286-292.[4] B O U A K K A Z A,A R D J O U N I A,D J O U D I A.P e r i o d i c S o l u t i o n sf o ra S e c o n d O r d e r N o n l i n e a r F u n c t i o n a lD i f f e r e n t i a lE q u a t i o nw i t h I t e r a t i v eT e r m sb y S c h a u d e r sF i x e dP o i n tT h e o r e m[J].A c t a M a t hU n i vC o m e n i a n,2018,87(2):223-235.[5] L I UB W,T U NÇC.P s e u d oA l m o s tP e r i o d i cS o l u t i o n s f o r aC l a s s o fF i r s tO r d e rD i f f e r e n t i a l I t e r a t i v eE q u a t i o n s[J].A p p lM a t hL e t t,2015,40:29-34.[6] F E㊅C K A N M,WA N GJR,Z HA O H Y.M a x i m a l a n d M i n i m a lN o n d e c r e a s i n g B o u n d e dS o l u t i o n so f I t e r a t i v eF u n c t i o n a lD i f f e r e n t i a l E q u a t i o n s[J].A p p lM a t hL e t t,2021,113:106886-1-106886-7.[7]I B R A H I M R W,K I L IÇMA N A,D AMA G F H.E x i s t e n c ea n d U n i q u e n e s sf o raC l a s so f I t e r a t i v eF r a c t i o n a lD i f f e r e n t i a lE q u a t i o n s[J/O L].A d vD i f f e rE q u,2015-03-05[2017-11-10].h t t p s://d o i.o r g/10.1186/s13662-015-0421-y.[8] M I L L E R KS,R O S SB.A nI n t r o d u c t i o nt ot h eF r a c t i o n a lC a l c u l u sa n dF r a c t i o n a lD i f f e r e n t i a lE q u a t i o n s[M].N e w Y o r k:W i l e y,1993:80-121.[9] P O D L U B N Y I.F r a c t i o n a l D i f f e r e n t i a l E q u a t i o n s:A n I n t r o d u c t i o n t o F r a c t i o n a l D e r i v a t i v e s,F r a c t i o n a lD i f f e r e n t i a lE q u a t i o n s,t o M e t h o d s o fT h e i r S o l u t i o na n dS o m e o fT h e i rA p p l i c a t i o n s[M].S a nD i e g o:A c a d e m i cP r e s s,1998:41-119.[10] C H E NJJ,Z E N G Z G,J I A N G P.G l o b a l M i t t a g-L e f f l e rS t a b i l i t y a n d S y n c h r o n i z a t i o n o f M e m r i s t o r-B a s e dF r a c t i o n a l-O r d e rN e u r a lN e t w o r k s[J].N e u r a lN e t w,2014,51:1-8.(责任编辑:李琦)。
非线性分数阶微分方程耦合系统三点边值问题解的存在性
![非线性分数阶微分方程耦合系统三点边值问题解的存在性](https://img.taocdn.com/s3/m/cfd41eb8dc3383c4bb4cf7ec4afe04a1b071b09c.png)
非线性分数阶微分方程耦合系统三点边值问题解的存在性姜小霞;欧阳自根;彭湘凌【摘要】讨论了非线性分数阶微分方程耦合系统的三点边值问题,利用Green函数的性质,将其转化为等价的积分方程耦合系统,应用Schauder不动点定理得到解的存在的充分条件。
%In this paper,we study the three-point boundary value problem to a coupled system of nonlinear fractional differential equations. By the means of the Green’s function,the system can be reduced to the equivalent integral equation. Then we obtain some sufficient conditions for the existence of the solutions for the system by using the Schauder fixed-point theorem.【期刊名称】《南华大学学报(自然科学版)》【年(卷),期】2015(000)001【总页数】6页(P94-99)【关键词】耦合系统;边值问题;Riemann-Liouville分数阶导数;Schauder不动点定理【作者】姜小霞;欧阳自根;彭湘凌【作者单位】南华大学数理学院,湖南衡阳421001;南华大学数理学院,湖南衡阳421001;南华大学数理学院,湖南衡阳421001【正文语种】中文【中图分类】O175key words:coupled system;boundary value problem;Riemann-Liouville fractional derivative;Schauder fixed-point theorem近几十年来,分数阶微分方程在物理、机械、化学、工程等学科的应用越来越广泛,许多学者对分数阶微分方程进行了研究[1-6],还有些学者对分数阶微分方程耦合系统进行了研究[7-11].例如Su[9]研究了以下分数阶微分方程耦合系统两点边值问题其中是Caputo型分数阶导数,f,g:[0,1]×R→R是连续函数,作者应用Schauder不动点定理证明了其解的存在性.在本文中,将对下面一类非线性分数阶微分方程耦合系统三点边值问题解的存在性进行研究其中1<αi<2,i=1,2,p,q,γ>0,0<η<1,α1-q≥1,α2-p≥1,γηαi-1<1,D是标准的Riemann-Liouville分数阶导数,且f,g:[0,1]×R×R→R是连续函数.利用Green函数的性质和Schauder不动点定理,得到分数阶微分方程耦合系统(1)~(2)解存在的充分条件.令I=[0,1],C(I)表示为定义在I上的所有连续函数所构成的集合,并令,则X为Banach空间,其中范数定义为为Banach空间,其范数为,这里0<p,q<1,那么(X×Y,‖·‖X×Y)也是Banach空间,且范数为‖(x,y)‖X×Y=max{‖x‖X,‖y‖Y}.由此容易得到对于任意αi>1,若x(t)∈X,则tα1-1x(t)∈X,若y(t)∈Y,则tα2-1y(t)∈Y.定义1[1,10] 函数f:(0,)→R的α>0阶Riemann-Liouville分数阶积分为其中Γ(α)为Gamma函数,右端在R+上逐点有定义.定义2[1,10] 连续函数f:(0,)→R的α阶Riemann-Liouville分数阶导数为其中α>0,n=[α]+1,Γ(α)为Gamma函数,右端在R+上逐点有定义.由定义2,有引理3[1,5] 令α>0,如果u∈C(0,1)∩L(0,1),那么分数阶微分方程有一个解为u(t)=c1tα-1+c2tα-2+…+cNtα-N,ci∈R,i=1,2,…,N,N为大于或等于α的最小整数引理4[1,5] 假设u∈C(0,1)∩L(0,1),且分数阶导数α>0,那么IαDαu(t)=u(t)+c1tα-1+c2tα-2+…+cNtα-N,ci∈R,i=1,2,…,N,N为大于或等于α的最小整数定理5(Schauder不动点定理)[12] 设P是E中有界凸闭集,T:P→P全连续,则T在P中必具有不动点.在本文中,假设f(t,x,y),g(t,x,y)满足下列条件:(H1)f(t,x,y),g(t,x,y)∈C(I×R×R,R),f(t,x,y),g(t,x,y)都是关于x和y的连续函数,且f(t,x,y),g(t,x,y)对t∈I是可测的.(H2)f(t,x,y),g(t,x,y)都是关于x和y的单调不减函数,存在非负函数a(t),b(t),c(t),d(t)∈L(0,1),使得其中p1,p2,q1,q2≥0,p1+p2<1,q1+q2<1.为方便起见,引入以下记号:,,,,,s.此外给出一些本文需要用到的引理.引理6[10] 问题(1)~(2)等价于以下列积分方程其中令那么问题(1)~(2)等价于下列积分方程记那么因此,只需研究积分方程(12)解的存在性.引理7 对任意是连续函数,且.证明下面只证明(t,s)>0,其他证明是相类似的,这里就不重复证明.很容易得到当max{t,η}<s≤1时,;当t<s≤η时,;当;当0≤s≤min{t,η}<1时,有于是.由式(8)~式(9),容易得到引理对变量t∈(0,1)是单调不增的函数,当s≤t≤1时,;当0≤t≤s时,.即对任意的t∈(0,1),有.由引理8,有下面令其中那么‖u(t)‖X≤r,‖v(t)‖Y≤r,也就意味着定义K上的算子T:Tw(t)=(T1v(t),T2u(t)),其中下面给出本文的主要结论和证明.定理9 若条件(H1),(H2)成立,则问题(1)~(2)有一个解.证明证明算子T:K→K是一个完全连续算子. 第一步,证明算子T:K→K.ds于是同理,容易得到‖T2u(t)‖Y≤ν+Λ2rq1+q2≤r,因此‖Tw(t)‖X×Y≤r.第二步,证明算子T是连续算子.令wn(t)=(un(t),vn(t))是K中的序列,且满足,对t∈[0,1],有tα1-1un(t),tα1-1u(t)∈X,tα2-1vn(t),tα2-1v(t)∈Y,因为f(t,x,y),g(t,x,y)对于x和y都是连续函数,Gi(t,s)对于s∈[0,1]是一致连续的且满足因此,对任意的ε>0,t∈I,存在正整数N1,当n>N1时,有由式(16)~式(17),有又因为T1vn(t),T1v(t)∈X,于是对于上述ε,存在N2>0,当n>N2时,有由式(20)~式(22)有取N=max{N1,N2},结合式(19)和式(23),对于上述ε,当n>N,有即用同样的方式可得到结合上述两式,有所以T是K上的连续算子.最后,证明T是等度连续的.只需证明对于任意w(t)∈K,和任意的0<t1<t2<1,当t1→t2时,有Tw(t1)→Tw(t2)即可.接下来分以下三种情况来考虑:1)0<t1<t2<η;2)0<t1<η<t2;3)0<η<t1<t2.下面只对1)进行证明,2)和3)证明与1)完全类似,不再重复. 令,则相类似的可以得到于是算子T是完全连续算子.由Schaudar不动点定理可知,方程(1)~(2)存在一个解.[1] Kilbas A A,Srivastava H M,Trujillo J J.Theory and applications of fraction al differential equations[M].Amsterdam:Elsevier Science B V,2006.[2] Lakshmikantham V.Theory of fractional functional differential equations [J].Nonlinear Anal,2008,69(10):3337-3343.[3] Agarwal R P,Lakshmikantham V,Nieto Juan J.On the concept of solution for fractional differential equations with uncertainty[J].Nonlinear Anal,201 0,72(6):2859-2862.[4] Podlubny I.Fractional differential equations[M].San Diego:Academic Pre ss,1999.[5] Miller K S,Ross B.An introduction the fractional Calculus and fractional e quations[M].New York:Wiley,1993.[6] Agrawal R P,Zhou Y,He Y.Existence of fractional neutral differential equa tions[J].Compul.And Math.with appl,2010,59(3):1095-1110.[7] Bai C Z,Fang J X.The existence of a positive solution for a singular coupl ed system of nonlinear fractional differential equations[J]p ut,2004,150(3):611-621.[8] Chen Y,An H L.Numerical solutions of coupled Burgers equations with ti me-and space-fractional derivatives[J]put,2008,200(1):215-225.[9] Su X W.Boundary value problem for a coupled system of nonlinear fract ional differential eququations[J].Appl.Math.Lett,2009,22(1):64-69.[10] Ahmad B,Nieto J J.Existence results for a coupled system of nonlinear f ractional differential equations with three-point boundary conditions[J].Comput.Math.Appl,2009,58(9):1838-1843. [11] Zhou Y.Existence and uniqueness of solutions for a system of fractiona l differential equations[J].J.Frac.Calc.Appl.Anal,2009,12(2):195-204. [12] 郭大钧.非线性泛函分析[M].2版.济南:山东科学技术出版社,2001.。
非线性-阅读资料
![非线性-阅读资料](https://img.taocdn.com/s3/m/956992c50c22590102029d6a.png)
is continuously differentiable on R2 . Hence, it is locally Lipschitz on R2 . It is not globally Lipschitz since ∂f /∂x is not uniformly bounded on R2 . On any compact subset R2 , f is Lipschitz. Suppose that we are interested in calculating a Lipschitz constant over the convex set W = {x ∈ R2 | |x1 ≤ a1 |, |x2 | ≤ a2 }. The Jacobian matrix is given by [ ] [ ] ∂f −1 + x 2 x1 = −x2 1 − x1 ∂x Using || · ||∞ for vectors in R2 and the induced matrix norm for matrices, we have ∂f ∂x All points in W satisfy | − 1 + x2 | + |x1 | ≤ 1 + a2 + a1 and |x2 | + |1 − x1 | ≤ a2 + 1 + a1 Hence, ∂f ∂x
∞
∞
= max{| − 1 + x2 | + |x1 |, |x2 | + |1 − x1 |}
≤ 1 + a1 + a2
and a Lipschitz constant can be taken as L = 1 + a1 + a2 . Example 3.2 The function f (x) = [ x2 −sat(x1 + x + 2) ]
EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS TO A HIGHER DIMENSIONAL PERIODIC SYSTEM WITH DELA
![EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS TO A HIGHER DIMENSIONAL PERIODIC SYSTEM WITH DELA](https://img.taocdn.com/s3/m/7f4db81bf18583d049645981.png)
1
Introduction
We con side r a h igh er dime nsional sy ste m with d elay of th e form x ( t ) = A( t, x ( t − r( t ))) x( t ) + g ( t, x( t − r 1 ( t )) , x( t − r 2 ( t )) , · · · , x ( t − rm ( t))) ,
( Sch oo l o f M ath . a nd In fo rm atio n S cience, Sh a nd ong I nst itute o f B usine ss a nd Tech no log y, Ya nta i 2 64 0 0 5, S ha nd o ng)
A bs tra ct
In this p ap er, using fixed p oint t heo rem , we discuss a hig her dim ensiona l n ona uto no mo us p erio dic system with delay an d g ive so m e suffi cient crit eria fo r th e exist ence a nd uniqueness of period ic solut io n. O ur result s extend a nd im pro ve so me resu lt s in previo us re sea rche s. Key wo rds pe rio dic so lut ion; syst em w ith d ela y; fixed p oint 20 00 M athem atic s Sub jec t C lassific ation 3 4 C2 5 ; 3 4K 15 ; 3 4 A 12
一类分数阶微分方程初值问题的奇摄动
![一类分数阶微分方程初值问题的奇摄动](https://img.taocdn.com/s3/m/0582e19570fe910ef12d2af90242a8956aecaa53.png)
一类分数阶微分方程初值问题的奇摄动吴钦宽【期刊名称】《《高校应用数学学报A辑》》【年(卷),期】2011(026)001【总页数】5页(P41-45)【关键词】奇异摄动; 非线性; 分数阶微分方程【作者】吴钦宽【作者单位】南京工程学院数学研究所江苏南京 211167【正文语种】中文【中图分类】O175.14近年来,有关非线性分数阶微分方程的研究已经在国内外引起人们极大的兴趣[1-5].之所以这样,一是基于分数算子自身理论的发展,二是分数算子在各个领域中的应用,如物理、机械、化学、工程等.非线性奇异摄动问题在国际学术界是一个十分关注的研究对象[6],近年来许多学者做了大量的工作[7-16].莫嘉琪[17]首先用奇异摄动理论研究了一类自治的稳态奇摄动α阶微分方程Cauchy问题,得到了相应自治分数阶微分方程Cauchy问题一致有效的渐近解.本文考虑更一般形式的奇异摄动分数阶微分方程的加权初值问题,运用奇摄动理论和方法构造了分数阶微分方程的渐近解,并用微分不等式理论对它的渐近性态作了一致有效的估计.函数u(t)的α阶Riemann-Liouville的分数阶导数Dαu(t)的定义[18]为其中Γ为Gamma函数,0<α<1.本文考虑一般形式的奇异摄动分数阶微分方程的加权初值问题假设:[H1]退化方程f(u,0)=0存在一个根u=u0;[H2]f(u,ε),A(ε)是关于其变量在其变化区域内为足够光滑的函数;[H3]f(u,ε)≤0,fu≤−c<0,其中c为正常数.现构造原问题的外解U,设将(3)代人(1),按ε的幂展开f(u,ε),合并ε的同次幂项,并分别令其系数为零,可得将上述依次得到的ui(t)代人(3),便得到了原问题的外部解.显然由(3)得到的外部解未必满足初始条件(2),为此,我们还需要构造初始层校正项V.设问题(1),(2)的解将(4),(5)代人(1),(2),按ε的幂展开f(U+V,ε)和A(ε),合并ε的同次幂项,并分别令其系数为零,可得由(6)-(9)可依次地得到V0,V1,…,且由假设[H3]知,Vi,i=0,1,…,具有性质[19]其中ki+1≤ki,i=0,1,…,为某正常数.由(3),(4),上面确定的Ui,Vi,i=0,1,…,代人(4),便得到了原问题(1),(2)解的形式渐近估计式下面来证明上述关系式为关于ε的一致有效的渐近展开式.定理在假设[H1]–[H3]下,分数阶奇摄动方程初值问题(1),(2)有一个解u(t,ε),具有如下关于ε的一致有效的渐近展开式:故选取γ≥δ1,就可得到选取γ≥,(16)成立.同理可证(15)成立.故α和β分别为问题(1),(2)的下解和上解.由定理1知,问题(1),(2)有一解u(t,ε),满足α(t,ε)≤u(t,ε)≤β(t,ε).再由(13),(14),关系式(12)成立.定理证毕.例考虑奇摄动分数阶Logistic方程的初值问题[20]容易验证(17),(18)满足[H1]–[H3],因此初值问题(17),(18)的解u(t)有如下近似:【相关文献】[1]Benchohra M,Henderson J,Ntouyas S K,et al.Existence results for fractional order functional differential equations with infinite delay[J].J Math Anal Appl,2008,338(2):1340-1350.[2]Bai Zhanbing,Qiu Tingting.Existence of positive solution for singular fractional differential equation[J].Appl Math Comput,2009,215(7):2761-2767.[3]Li Chengfu,Luo Xiaonan,Zhou Yong.Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J].Comput MathAppl,2010,59(3): 1363-1375.[4]张淑琴.分数阶奇异微分方程初值问题正解的存在性[J].数学学报,2007,54(4):813-822.[5]贾九红.分数微分粘弹性流体振荡管道流的求解与分析[J].上海交通大学学报,2008,42(6):1013-1016.[6]de Jager E M,Jiang Furu.The Theory of Singular Perturbation[M].Amsterdam:North-Holland Publishing Co,1996.[7]Chakravarthy P P,Phaneendra K,Reddy Y N.A seventh order numerical method for singular perturbation problems[J].Appl Math Comput,2007,186(1):860-871.[8]Branco J R,Ferreira J A.A singular perturbation of the heat equation with memory[J].J Comput Appl Math,2008,218(2):376-394.[9]Lubuma J M,Patidar K C.Towards the implementation of the singular function method for singular perturbation problems[J].Appl Math Comput,2009,209(1):68-74.[10]Mo Jiaqi.Singularly perturbed differential-difference reaction diffusion equations with time delay[J].J Shanghai Jiaotong Univ(Sci),2009,14(5):629-631.[11]吴钦宽,林平健,孙福树,等.奇摄动Volterra型积分微分方程非线性边值问题[J].自然科学进展,2005,15(3):375-379.[12]吴钦宽.一类非线性方程激波解的Sinc-Galerkin方法[J].物理学报,2006,55(4):1561-1564.[13]吴钦宽.奇摄动积分微分方程非线性边值问题[J].兰州大学学报,2007,43(4):127-130.[14]吴钦宽.伴有边界摄动的Volterra型积分微分方程组的奇摄动[J].高校应用数学学报,2007,22(2):210-216.[15]吴钦宽.一类燃烧模型的同伦分析解法[J].物理学报,2008,57(5):2654-2657.[16]吴钦宽.伴有边界摄动非线性积分微分方程系统的奇摄动[J].吉林大学学报,2009,47(5): 881-886.[17]莫嘉琪.非线性分数阶微分方程的奇摄动[J].应用数学学报,2006,29(6):1085-1090.[18]Podlubny I.Fractional Differential Equations[M].San Diego:Academic Press,1999.[19]Delbosco D,Rodin L.Existence and uniqueness for nonlinear fractional differential equation [J].J Math Anal Appl,1996,204(2):609-625.[20]林学渊,谢峰.一类非线性分数阶微分方程的奇异摄动[J].东华大学学报,2009,35(2):238-240.。
一类椭圆问题的解的存在性以及唯一性
![一类椭圆问题的解的存在性以及唯一性](https://img.taocdn.com/s3/m/5ba9a1413d1ec5da50e2524de518964bcf84d2ea.png)
一类椭圆问题的解的存在性以及唯一性何其涵;李彦哲;阮雯钐【摘要】为了得到一类椭圆型方程组在不同条件下的正解的存在性以及唯一性,利用变分方法建立了其正解与某个特定的单个椭圆方程的正解之间的一个关系.此关系表明:当方程系统的非线性项满足一定的条件时,方程系统存在非平凡(正)解;当其耦合系数大于某个确定的常数时,其正解是唯一的.%In order to obtain the existence and uniqueness of positive solutions for a class of elliptic systems under different conditions, a relation between the positive solutions of the system and the positive solutions of a particular single elliptic equation is established by using the variational method.This relation shows that when the nonlinear terms of the system satisfy certain conditions, the system has a nontrivial(positive)solution, and when its coupling coefficient is greater than a certain constant,its positive solution is unique.【期刊名称】《广西大学学报(自然科学版)》【年(卷),期】2018(043)002【总页数】5页(P855-859)【关键词】方程组;存在性;唯一性【作者】何其涵;李彦哲;阮雯钐【作者单位】广西大学数学与信息科学学院,广西南宁530004;广西大学数学与信息科学学院,广西南宁530004;广西大学数学与信息科学学院,广西南宁530004【正文语种】中文【中图分类】O290 引言本文将研究下述椭圆型方程组:(1)其中, Ω⊂RN是一个边界光滑的区域,且f,g满足如下条件:① 存在k0>0,使得f(1,k0)k0-g(1,k0)=0以及下述方程:(2)存在至少一个非零解u0;② 对于任意的t∈R, k∈R,有f(t,tk)k-g(t,tk)=tp(f(1,k)k-g(1,k));③ 存在唯一的k0>0,使得f(1,k0)k0-g(1,k0)=0,当k∈(0,k0)时, f(1,k)k-g(1,k)<0以及当k∈(k0,+∞), f(1,k)k-g(1,k)>0。
控制收敛定理英文
![控制收敛定理英文](https://img.taocdn.com/s3/m/c33ce656cd1755270722192e453610661fd95a47.png)
控制收敛定理英文The Contraction Mapping Theorem is a fundamental result in the field of fixed point theory and has numerous applications in various areas of mathematics and computer science. This powerful theorem provides a sufficient condition for the existence and uniqueness of a fixed point of a given mapping and has been extensively used in the analysis and solution of a wide range of problems.At the heart of the Contraction Mapping Theorem is the concept of a contraction mapping. A mapping T from a metric space (X, d) into itself is called a contraction mapping if there exists a constant k, where 0 ≤ k < 1, such that for all x, y in X, the following inequality holds:d(T(x), T(y)) ≤ k * d(x, y)In other words, a contraction mapping is a function that strictly decreases the distance between any two points in the metric space by a factor of at most k. This property of contractive behavior is the key to the theorem's powerful implications.The Contraction Mapping Theorem states that if T is a contraction mapping on a complete metric space (X, d), then T has a unique fixed point x* in X, and for any x0 in X, the sequence {x_n} defined byx_n+1 = T(x_n) converges to x*.Formally, the Contraction Mapping Theorem can be stated as follows:Theorem (Contraction Mapping Theorem): Let (X, d) be a complete metric space, and let T: X → X be a contraction mapping with contraction constant k, where 0 ≤ k < 1. Then1. T has a unique fixed point x* in X, i.e., T(x*) = x*.2. For any x0 in X, the sequence {x_n} defined by x_n+1 = T(x_n) converges to the unique fixed point x*.3. The rate of convergence is geometric, i.e., there exists a constantC > 0 such that d(x_n, x*) ≤ C * k^n for all n ≥ 0.The proof of the Contraction Mapping Theorem relies on the Banach Fixed Point Theorem, which is a more general result that guarantees the existence and uniqueness of a fixed point for a broader class of mappings. The key steps in the proof are as follows:1. Establish that the sequence {x_n} defined by x_n+1 = T(x_n) is a Cauchy sequence, using the contraction property of T.2. Prove that the complete metric space (X, d) ensures the convergence of the Cauchy sequence {x_n} to some point x* in X.3. Show that the limit point x* is indeed a fixed point of T, i.e., T(x*) = x*.4. Prove the uniqueness of the fixed point by assuming the existence of another fixed point and deriving a contradiction using the contraction property of T.The Contraction Mapping Theorem has numerous applications in various fields of mathematics and computer science. Some of the key applications include:1. Solving nonlinear equations: The theorem can be used to prove the existence and uniqueness of solutions to nonlinear equations, such as those arising in the study of ordinary differential equations, partial differential equations, and integral equations.2. Iterative methods for finding fixed points: The theorem provides a theoretical foundation for iterative methods, such as the Banach contraction principle, which are widely used in numerical analysis and optimization to find fixed points of functions.3. Proving convergence of iterative algorithms: The theorem can be used to establish the convergence of various iterative algorithms, such as those used in image processing, signal processing, andmachine learning.4. Existence and uniqueness of solutions to differential and integral equations: The Contraction Mapping Theorem can be applied to prove the existence and uniqueness of solutions to boundary value problems, initial value problems, and integral equations.5. Functional analysis and operator theory: The theorem has important applications in functional analysis, where it is used to study the properties of linear and nonlinear operators on function spaces.6. Game theory and economics: The Contraction Mapping Theorem has been applied in game theory and economics to prove the existence of equilibria in various game-theoretic models and economic models.The Contraction Mapping Theorem is a powerful result that has had a profound impact on many areas of mathematics and computer science. Its elegant simplicity, combined with its wide-ranging applications, make it a fundamental tool in the arsenal of mathematical and computational problem-solving.。
海军航空大学学员获2019“国科杯”全国大学生军事数学建模竞赛佳绩
![海军航空大学学员获2019“国科杯”全国大学生军事数学建模竞赛佳绩](https://img.taocdn.com/s3/m/43beeb80192e45361166f539.png)
•400*海军航空工程学院学报第34卷ic solutions for a class of neutral integro-differential equations with distributed and discrete delays[J]. Journal of Naval Aeronautical and Astronautical University, 2016,31 (4):495-500. (in Chinese)[18]张强,盖明久,周刚.一类Cohen-Grossberg型B A M脉冲神经网络周期解的存在性和全局指数稳定性[J].海军 航空工程学院学报,2011,26 (5):589-595.Z H A N G Q I A N G,G A I M I N G J I U,Z H O U G A N G. Globalexponential stability of periodic solutions for a class of Cohen-Grossberg-type B A M neural networks[J]. Journal of Naval Aeronautical and Astronautical University, 2011,26(5):589-595. (inChinese)[19] Y A N G S H U J I E, S H I B A O,Z H A N G Q I A N G. Completecontrollability of nonlinear stochastic impulsive functional systems[J]. Applied Mathematics and Computation, 2012,218:5543-5551.Existence and Uniqueness of Periodic Solutionsfor BAM Neural Networks with DelaysYANG Shujie1,MAO Kai1,ZHAO Wenfei1,SONG Weiwei2(l. Naval Aviation University, Yantai Shandong 264001, China;2. Wenjing College, Yantai University, Yantai Shandong 264000, China)Abstract: The existence and uniqueness of periodic solutions for a class of BAM neural networks with variable coefficients and state dependent or distributed delays were studied. The existence and uniqueness conditions of periodic solutions were obtained by using the fixed point theorem. Several examples were given to illustrate the validity of the conclusions.K e y words: bidirectional associative memory networks; state dependent delay; periodic solution; fixed point简讯:海军航空大学学员获2019“国科杯”全国大学生军事数学建模竞赛佳绩2019年4月30日至5月4日,第三届全国大学生军事数学建模竞赛成功举行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c i ti ,
ci ∈ R, i
0, 1, 2, . . . , r − 1, r
α
1,
2.6
where α denotes the integer part of the real number α. In view of Lemma 2.1 it follows that Iα Dα x t x t c0 c1 t c 2 t2 ··· c r − 1 tr − 1 for some ci ∈ R, i 0, 1, . . . , r − 1. 2.7 But in the opposite way we have Dα Iβ t Dα−β x t . 2.8
2
Abstract and Applied Analysis
organized as follows: In Section 2 we introduce some necessary definitions and mathematical preliminaries of fractional calculus. In Section 3 sufficient conditions are established for the existence and uniqueness of solutions for a class fractional order differential equations satisfying the boundary conditions or satisfying the initial conditions. In order to illustrate our results several examples are presented in Section 3.
Abstract and Applied Analysis
3
Lemma 2.1 see 33, 34 . For α > 0, the general solution of the fractional differential equation 0 is given by Dα x t
r −1
x t
1. Introduction
Fractional calculus deals with generalization of differentiation and integration to the fractional order 1, 2 . In the last few decades the fractional calculus and fractional differential equations have found applications in various disciplines 2–6 . Owing to the increasing applications, a considerable attention has been given to exact and numerical solutions of fractional differential equations 2, 6–11 . Many papers were dedicated to the existence and the uniqueness of the fractional differential equations, to the analytic methods for solving fractional differential equations, e.g., Greens function method, the Mellin transform method, and the power series see for example references 2, 6–26 and the references therein . On this line of taught in this manuscript we proved the existence and uniqueness of a specific nonlinear fractional order ordinary differential equations within Caputo derivatives. Very recently in 27–31 , the authors and other researchers studied the existence and uniqueness of solutions of some classes of fractional differential equations with delay. The paper is
The integer order derivative operator Dm commutes with fractional order Dα , that is: Dm Dα x t Dm α x t Dα Dm x t . 2.5
The fractional operator and fractional derivative operator do not commute in general. Then the following result can be found in 33, 34 .
,
2.1
where Iα x t 1 Γα
t 0
t−s
α−1
x s ds,
2.2
is the Riemann-Liouville fractional integral operator of order α and Γ is the gamma function. The fractional integral of x t t − a β , a ≥ 0, β > −1 is given as Γ β Γ β α 1 1
2. Fractional Integral and Derivatives
In this section, we present some notations, definitions, and preliminary facts that will be used further in this work. The Caputo fractional derivative allows the utilization of initial and boundary conditions involving integer order derivatives, which have clear physical interpretations. Therefore, in this work we will use the Caputo fractional derivative D proposed by Caputo in his work on the theory of viscoelasticity 32 . Let α ∈ R, n − 1 < α ≤ n ∈ N and x ∈ C 0, ∞ , R ; then the Caputo fractional derivative of order α defined by Dα x t In−α dn x t dtn
Azizollah Babakhani1 and Dumitru Baleanu2, 3
1
Department of Mathematics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167, Iran 2 Department of Mathematics and Computer Science, Cankaya University, Turkey 3 Institute of Space Science, 077125 Bucharest-Magurele, Romania Correspondence should be addressed to Azizollah Babakhani, babakhani@nit.ac.ir Received 19 February 2012; Accepted 12 April 2012 Academic Editor: Juan J. Trujillo Copyright q 2012 A. Babakhani and D. Baleanu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We discuss the existence and uniqueness of solution to nonlinear fractional order ordinary f t, x t , Dγ x t , t ∈ 0, 1 with boundary conditions differential equations Dα − ρtDβ x t x 0 x0 , x 1 x1 or satisfying the initial conditions x 0 0, x 0 1, where Dα denotes Caputo fractional derivative, ρ is constant, 1 < α < 2, and 0 < β γ ≤ α. Schauder’s fixed-point theorem was used to establish the existence of the solution. Banach contraction principle was used to show the uniqueness of the solution under certain conditions on f .