高考重庆理科数学试题及答案(word解析版)

合集下载

普通高等学校招生全国统一考试数学理试题(重庆卷,解析版)

普通高等学校招生全国统一考试数学理试题(重庆卷,解析版)

普通高等学校招生全国统一考试数学理试题(重庆卷,解析版)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内表示复数(12)i i -的点位于( ).A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限【答案】A 【解析】..∴2)2-1(A i i i 选对应第一象限+=2.对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 239.,,D a a a 成等比数列【答案】D 【解析】.∴D 选要求角码成等差3.已知变量x 与y 正相关,且由观测数据算得样本的平均数 2.5x =, 3.5y =,则由观测的数据得线性回归方程可能为( ).0.4 2.3A y x =+ .2 2.4B y x =- .29.5C y x =-+ .0.3 4.4C y x =-+【答案】A 【解析】.∴)5.33(),(.,,0,A y x D C b a bx y 选,过中心点排除正相关则=∴>+=4.已知向量(,3),(1,4),(2,1)a k b c ===,且()23a b c -⊥,则实数k=9.2A -.0B C.3 D. 152【答案】C 【解析】.∴3),42(3)32(2,32,0)3-2(∴⊥)3-2(C k k bc ac c b a c b a 选解得即即=+=+==5.执行如题(5)图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是。

A .12s >B.1224abc ≤≤ 35s >C. 710s >D.45s >【答案】C【解析】.∴10787981091C S 选=•••=6.已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件 则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝【答案】D 【解析】.∴,,D q p 选复合命题为真为假为真7.某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.72 【答案】B 【解析】BS S S S S S 选,,,何体表的面积的上部棱锥后余下的几;截掉高为,高原三棱柱:底面三角形侧上下侧上下∴60s 2273392318152156344*3=++=+=•++===8.设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( )A.34B.35C.49D.3【答案】B 【解析】.,35,5,4,3,34∴,2-,49,3,,,22221B a c c b a b a b a c a n m ab mn b n m n m PF n PF m 选令解得则且设====∴=+====+>==9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则 类节目不相邻的排法种数是( )A.72B.120C.144D.3【答案】B【解析】解析完成时间2014-6-12qq373780592..120)A A A A A (A ∴A A A 2(2).A A (1),A 222212122333222212122333B 选共有个:歌舞中间有法:歌舞中间有一个,插空再排其它:先排歌舞有=+10.已知ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式成立的是( )A.8)(>+c b bcB.)(c a ac +C.126≤≤abcD. 1224abc ≤≤【答案】A【解析】2014-6-12qq373780592...8)(,82nC sinAsinBsi 8)(,]8,4[∈∴]2,1[∈4nC sinAsinBsi 2sin 21.1inC 8sinAsinBs ∴21inC 4sinAsinBs nA)sinBcosBsi cosAsinB 4sinAsinB(Ain 4sinBcosBs B in 4sinAcosAs cos2A)-sin2B(1cos2B)-in2A(1cos2Asin2B -sin2Acos2B -sin2B in2A 2B)sin(2A -sin2B in2A sin2C sin2B in2A ∴21-sin2C 21B)-A -sin(C sin2B sin2A C)B -sin(A sin2A 333222Δ22A c b bc R R bca c b bc A R R R C ab S s s s s ABC 所以,选别的选项可以不考虑成立对>+∴=≥==>+======+=+=+=+=++=+++=+=+=++二、填空题 本大题共6小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡相应位置上。

高考重庆理科数学试卷和答案(word完美解析版)

高考重庆理科数学试卷和答案(word完美解析版)

普通高等学校招生全国统一考试(重庆卷)数学(理科)一.填空题:本大题共10小题, 每小题5分, 共计50分。

在每小题给出的四个备选选项中, 只有一个是符合题目要求的1.在等差数列}{n a 中, 5,142==a a ,则}{n a 的前5项和5S = A.7 B.15 C.20 D.25 【答案】B 【解析】15242451,5551522a a a a a a S ++==⇒=⨯=⨯=2.不等式0121≤+-x x 的解集为 A.⎥⎦⎤ ⎝⎛-1,21 B.⎥⎦⎤⎢⎣⎡-1,21 C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121,【答案】A【解析】(21)(1)01101210212x x x x x x +-≤⎧-≤⇔⇔-<≤⎨+≠+⎩3.对任意的实数k , 直线y=kx+1与圆222=+y x 的位置关系一定是A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心 【答案】C【解析】直线1y kx =+过圆内内一定点(0,1)4.82x x 的展开式中常数项为A.1635 B.835 C.435 D.105 【答案】B,2x x取得次数为1:1(4:4), 展开式中常数项为448135()28C ⨯=5、设tan ,tan αβ是方程2320x x -+=的两个根, 则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )3 【答案】A【解析】tan tan tan tan 3,tan tan 2,tan()31tan tan αβαβαβαβαβ++==+==--6、设,x y ∈R , 向量()()()4,2,,1,1,-===c y b x a , 且c b c a //,⊥, 则_______=+b a (A )5 (B )10 (C )25 (D )10 【答案】B【解析】2402,//(3,1)10242x x a c b c a b y y -==⎧⎧⊥⇔⇔⇒+=-=⎨⎨=-=-⎩⎩r r r r r r7、已知()f x 是定义在R 上的偶函数, 且以2为周期, 则“()f x 为[0, 1]上的增函数”是“()f x 为[3, 4]上的减函数”的(A )既不充分也不必要的条件 (B )充分而不必要的条件(C )必要而不充分的条件 (D )充要条件 【答案】D【解析】由()f x 是定义在R 上的偶函数及[0,1]双抗的增函数可知在[-1,0]减函数, 又2为周期, 所以【3,4】上的减函数8、设函数()f x 在R 上可导, 其导函数为()f x ', 且函数(1)()y x f x '=-的图像如题(8)图所示, 则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f - (D )函数()f x 有极大值(2)f -和极小值(2)f 【答案】D【解析】1x >时, ()012,()02f x x f x x ''<⇔<<>⇔>1x <时, ()021,()02f x x f x x ''<⇔-<<>⇔<-得:()022,()02f x x f x x ''<⇔-<<>⇔<-或2x > 函数()f x 有极大值(2)f -和极小值(2)f9、设四面体的六条棱的长分别为1, 1, 1, 1, 2a , 且长为a 2的棱异面, 则a 的取值范围是(A )2) (B )3) (C )2) (D )(13) 【答案】A【解析】2的棱的中点与长为a 的端点,B C ;则222AB AC a BC ==⇒=<10、设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x⎧⎫=--≥=-+-≤⎨⎬⎩⎭, 则A B I 所表示的平面图形的面积为(A )34π (B )35π (C )47π (D )2π【答案】D【解析】由对称性:221,,(1)(1)1y x y x y x ≥≥-+-≤围成的面积与221,,(1)(1)1y x y x y x≤≥-+-≤围成的面积相等 得:A B I 所表示的平面图形的面积为22,(1)(1)1y x x y ≤-+-≤ 围成的面积既2122R ππ⨯=二 填空题:本大题共5小题, 每小题5分, 共25分, 把答案分别填写在答题卡相应位置上11、若()()12i i ++=a+bi , 其中,,a b R i ∈为虚数单位, 则a b += ; 【答案】4【解析】(1)(2)131,34i i i a bi a b a b ++=+=+⇔==⇒+= 12、25n n n n=+- 。

重庆市高考理科数学试卷及答案解析

重庆市高考理科数学试卷及答案解析

2021年一般高校招生全国一致考试〔重庆卷〕数学试题卷〔理工农医类〕.选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项为哪一项切合题目要求 的1. 在复平面内表示复数 i(12i)的点位于〔〕A.第一象限B.第二象限C. 第三象限D.第四象限[中心考点]考察复数的运算,复数的几何意义。

[分析]i(12i) 2i ,其在复平面上对应的点为Z(2,1),位于第一象限。

[答案]A2. 对随意等比数列a n,以下说法必定正确的选项是〔〕A.a 1、a 3、a 9成等比数列B.a 2、a 3、a 6成等比数列C.a 2、a 4、a 8成等比数列D.a 3、a 6、a 9成等比数列[中心考点]考察等比数列的性质应用。

[分析]依据等比数列的性质,a 62a 3a 9,故a 3、a 6、a 9成等比数列。

[答案]D3. 变量x 与y 正有关,且由观察数据算得样本的均匀数x3,y,那么由观察的数据得线性回归方程可能为〔〕A. $$ $ 2x$y B.y2x C.y D.y[中心考点]考察两个变量的有关关系以及两个变量间的回归直线方程等知识的应用。

[分析]由变量x 与y 正有关可去除选项 C 、D ,由样本中心点在回归直线方程上可得回归直线方程$可能为y。

[答案]A4. 向量a(k,3),b(1,4),c (2,1),且(2a3b)c ,那么实数k开始〔〕 k 9,s19A.B. 02kk1D.15C. 32ssg k[中心考点]考察向量的坐标运算,以及向量垂直的坐标表示。

k1输出k结束题5图[分析]由题知,2a 3b (2k 3, 6),由于(2a3b)c ,因此(2a3b)gc 0,因此(2a3b)gc2(2k3) ( 6)4k 12 0,解得k3。

[答案]C5.履行如题5所示的程序框图,假设输出k 的值为6,那么判断框内可填入的条件是〔〕1B.s3A.s527D.s4C.s510[中心考点]考察程序框图的有关知识。

2024年重庆高考数学试题(含答案)

2024年重庆高考数学试题(含答案)

2024年重庆高考数学试题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知1i z =--,则z =( )A .0B .1C D .22.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( )A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题3.已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ( )A .12B C D .14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是( )A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ( )A .1-B .12C .1D .27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( )A .12B .1C .2D .38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为( )A .18B .14C .12D .1二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分.9.对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有( )A .()f x 与()g x 有相同零点B .()f x 与()g x 有相同最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴10.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( )A .l 与A 相切B .当P ,A ,B 三点共线时,||PQ =C .当||2PB =时,PA AB⊥D .满足||||PA PB =的点P 有且仅有2个11.设函数32()231f x x ax =-+,则( )A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+= .14.在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.16.已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?19.已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意的正整数n ,1n n S S +=.1.C【分析】由复数模的计算公式直接计算即可.【详解】若1i z =--=故选:C.2.B【分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解.【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.3.B【分析】由()2b a b -⊥ 得22b a b =⋅,结合1,22a a b =+= ,得22144164a b b b +⋅+=+= ,由此即可得解.【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,故选:B.4.C【分析】计算出前三段频数即可判断A ;计算出低于1100kg 的频数,再计算比例即可判断B ;根据极差计算方法即可判断C ;根据平均值计算公式即可判断D.【详解】对于 A, 根据频数分布表可知, 612183650++=<,所以亩产量的中位数不小于 1050kg , 故 A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.5.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【详解】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 6.D【分析】解法一:令()()21,cos a x F x ax G x =-=+,分析可知曲线()y F x =与()y G x =恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得2a =,并代入检验即可;解法二:令()()()(),1,1h x f x g x x =-∈-,可知()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即可得2a =,并代入检验即可.【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.7.B【分析】解法一:根据台体的体积公式可得三棱台的高h =的结构特征求得AM =111ABC A B C -补成正三棱锥-P ABC ,1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,根据比例关系可得18P ABC V -=,进而可求正三棱锥-P ABC 的高,即可得结果.【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D =可知1111166222ABC A B C S S =⨯⨯==⨯= 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -==,解得h =如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AADN AD AM MN x=--=,可得1DD==结合等腰梯形11BCC B可得22211622BB DD-⎛⎫=+⎪⎝⎭,即()221616433x x+=-++,解得x=所以1A A与平面ABC所成角的正切值为11tan1A MA ADAMÐ==;解法二:将正三棱台111ABC A B C-补成正三棱锥-P ABC,则1A A与平面ABC所成角即为PA与平面ABC所成角,因为11113PA A BPA AB==,则111127P A B CP ABCVV--=,可知1112652273ABC A B C P ABCV V--==,则18P ABCV-=,设正三棱锥-P ABC的高为d,则11661832P ABCV d-=⨯⨯⨯=,解得d=,取底面ABC的中心为O,则PO⊥底面ABC,且AO=所以PA与平面ABC所成角的正切值tan1POPAOAO∠==.故选:B.8.C【分析】解法一:由题意可知:()f x的定义域为(),b-+∞,分类讨论a-与,1b b--的大小关系,结合符号分析判断,即可得1b a =+,代入可得最值;解法二:根据对数函数的性质分析ln()x b +的符号,进而可得x a +的符号,即可得1b a =+,代入可得最值.【详解】解法一:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∈-+∞时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b +<+>,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∈-+∞时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=, 则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.【点睛】关键点点睛:分别求0x a +=、ln()0x b +=的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.9.BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点,令π()sin(2)04g x x =-=,解得ππ,28k x k =+∈Z ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC 10.ABD【分析】A 选项,抛物线准线为=1x -,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =-是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF 的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【详解】A 选项,抛物线24y x =的准线为=1x -,A 的圆心(0,4)到直线=1x -的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长PQ ===,B 选项正确;C 选项,当2PB =时,1P x =,此时244P P y x ==,故(1,2)P 或(1,2)P -,当(1,2)P 时,(0,4),(1,2)A B -,42201PA k -==--,4220(1)AB k -==--,不满足1PA AB k k =-;当(1,2)P -时,(0,4),(1,2)A B -,4(2)601PA k --==--,4(2)60(1)AB k --==--,不满足1PA AB k k =-;于是PA AB ⊥不成立,C 选项错误;D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k -=,于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y -+=,2164301360∆=-⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确.方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t -,又(0,4)A ,又PA PB =,214t =+,整理得216300t t -+=,2164301360∆=-⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确.故选:ABD11.AD【分析】A 选项,先分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减,,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-,即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a-=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由题意(1,(1))f 也是对称中心,故122aa =⇔=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心12.95【分析】利用等差数列通项公式得到方程组,解出1,a d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列n a 为等差数列,则由题意得()1111237345a d a d a d a d +++=⎧⎨+++=⎩,解得143a d =-⎧⎨=⎩,则()10110910104453952S a d ⨯=+=⨯-+⨯=.故答案为:95.13.【分析】法一:根据两角和与差的正切公式得()tan αβ+=-,再缩小αβ+的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得()tan tan tan 1tan tan αβαβαβ++===--因为π3π2π,2π,2ππ,2π22k k m m αβ⎛⎫⎛⎫∈+∈++ ⎪ ⎪⎝⎭⎝⎭,,Z k m ∈,则()()()22ππ,22π2πm k m k αβ+∈++++,,Z k m ∈,又因为()tan 0αβ+=-<,则()()3π22π,22π2π2m k m k αβ⎛⎫+∈++++ ⎪⎝⎭,,Z k m ∈,则()sin 0αβ+<,则()()sin cos αβαβ+=-+ ()()22sin cos 1αβαβ+++=,解得()sin αβ+=法二: 因为α为第一象限角,β为第三象限角,则cos 0,cos 0αβ><,cos α==,cos β=则sin()sin cos cos sin cos cos (tan tan )αβαβαβαβαβ+=+=+4cos cos αβ=====故答案为:14. 24 112【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=.故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.15.(1)π6A =(2)2+【分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 12A A =,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ∈⇒+∈,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A 得到:224cos 30(2cos 0A A A -+=⇔=,解得cos A =又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos f A A A '==,即tan A =又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅== ,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A ⋅=⇔又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21t A A t ==+整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 1t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos C A B A B A B B A =--=+=+=由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412b c==,解得b c ==故ABC 的周长为216.(1)()e 110x y ---=(2)()1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a ≤和0a >两种情况,利用导数判断单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可;解法二:求导,可知()e '=-xf x a 有零点,可得0a >,进而利用导数求()f x 的单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可.【详解】(1)当1a =时,则()e 1x f x x =--,()e 1x f x '=-,可得(1)e 2f =-,(1)e 1f '=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=.(2)解法一:因为()f x 的定义域为R ,且()e '=-x f x a ,若0a ≤,则()0f x '≥对任意x ∈R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a'=+>,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞;解法二:因为()f x 的定义域为R ,且()e '=-x f x a ,若()f x 有极小值,则()e '=-x f x a 有零点,令()e 0x f x a '=-=,可得e x a =,可知e x y =与y a =有交点,则0a >,若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,符合题意,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,因为则2,ln 1y a y a ==-在()0,∞+内单调递增,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞.17.(1)证明见解析【分析】(1)由题意,根据余弦定理求得2EF =,利用勾股定理的逆定理可证得EF AD ⊥,则,EF PE EF DE ⊥⊥,结合线面垂直的判定定理与性质即可证明;(2)由(1),根据线面垂直的判定定理与性质可证明PE ED ⊥,建立如图空间直角坐标系E xyz -,利用空间向量法求解面面角即可.【详解】(1)由218,,52AB AD AE AD AF AB ====,得4AE AF ==,又30BAD ︒∠=,在AEF △中,由余弦定理得2EF ,所以222AE EF AF +=,则AE EF ⊥,即EF AD ⊥,所以,EF PE EF DE ⊥⊥,又,PE DE E PE DE =⊂ 、平面PDE ,所以EF ⊥平面PDE ,又PD ⊂平面PDE ,故EF ⊥PD ;(2)连接CE,由90,3ADC ED CD ︒∠===,则22236CE ED CD =+=,在PEC中,6PC PE EC ===,得222EC PE PC +=,所以PE EC ⊥,由(1)知PE EF ⊥,又,EC EF E EC EF =⊂ 、平面ABCD ,所以PE ⊥平面ABCD ,又ED ⊂平面ABCD ,所以PE ED ⊥,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -,由F 是AB的中点,得(4,B ,所以(4,(2,0,PC PD PB PF =-=-=-=-,设平面PCD 和平面PBF 的一个法向量分别为111222(,,),(,,)n x y z m x y z == ,则11111300n PC x n PD ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,222224020m PB x m PF x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令122,y x ==,得11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==-,所以cos ,m nm n m n ⋅===设平面PCD 和平面PBF 所成角为θ,则sin θ==,即平面PCD 和平面PBF.18.(1)0.686(2)(i )由甲参加第一阶段比赛;(i )由甲参加第一阶段比赛;【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i )首先各自计算出331(1)P p q ⎡⎤=--⎣⎦甲,331(1)Pq p ⎡⎤=--⋅⎣⎦乙,再作差因式分解即可判断;(ii)首先得到X 和Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.【详解】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,∴比赛成绩不少于5分的概率()()3310.610.50.686P =--=.(2)(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q ⎡⎤=--⎣⎦甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p ⎡⎤=--⋅⎣⎦乙,0p q << ,3333()()P P q q pq p p pq ∴-=---+-甲乙()2222()()()()()()q p q pq p p q p pq q pq p pq q pq ⎡⎤=-+++-⋅-+-+--⎣⎦()2222()333p q p q p q pq =---3()()3()[(1)(1)1]0pq p q pq p q pq p q p q =---=---->,P P ∴>甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q ⎡⎤==-+--⋅-⎣⎦,32123(5)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,3223(10)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,33(15)1(1)P X p q ⎡⎤==--⋅⎣⎦,()332()151(1)1533E X p q p p p q⎡⎤∴=--=-+⋅⎣⎦记乙先参加第一阶段比赛,数学成绩Y 的所有可能取值为0,5,10,15,同理()32()1533E Y q q q p=-+⋅()()15[()()3()]E X E Y pq p q p q pq p q ∴-=+---15()(3)p q pq p q =-+-,因为0p q <<,则0p q -<,31130p q +-<+-<,则()(3)0p q pq p q -+->,∴应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.19.(1)23x =,20y =(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出2P 的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明n S 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明n S 的取值为与n 无关的定值即可.【详解】(1)由已知有22549m =-=,故C 的方程为229x y -=.当12k =时,过()15,4P 且斜率为12的直线为32x y +=,与229x y -=联立得到22392x x +⎛⎫-= ⎪⎝⎭.解得3x =-或5x =,所以该直线与C 的不同于1P 的交点为()13,0Q -,该点显然在C 的左支上.故()23,0P ,从而23x =,20y =.(2)由于过(),n n n P x y 且斜率为k 的直线为()n n y k x x y =-+,与229x y -=联立,得到方程()()229n n x k x x y --+=.展开即得()()()2221290n n n n k x k y kx x y kx ------=,由于(),n n n P x y 已经是直线()n n y k x x y =-+和229x y -=的公共点,故方程必有一根n x x =.从而根据韦达定理,另一根()2222211n n n n nn k y kx ky x k x x x k k ---=-=--,相应的()2221n n nn n y k y kx y k x x y k +-=-+=-.所以该直线与C 的不同于n P 的交点为222222,11n n n n n nn ky x k x y k y kx Q k k ⎛⎫--+- ⎪--⎝⎭,而注意到n Q 的横坐标亦可通过韦达定理表示为()()2291n n ny kx k x----,故n Q 一定在C 的左支上.所以2212222,11n n n n n nn x k x ky y k y kx P k k +⎛⎫+-+- ⎪--⎝⎭.这就得到21221n n n n x k x ky x k ++-=-,21221n n nn y k y kx y k ++-=-.所以2211222211n n n n n nn n x k x ky y k y kx x y k k +++-+--=---()()222222*********n n n n n n n nn n x k x kx y k y ky k k kx y x y k k k k+++++++=-=-=-----.再由22119x y -=,就知道110x y -≠,所以数列{}n n x y -是公比为11k k +-的等比数列.(3)方法一:先证明一个结论:对平面上三个点,,U V W ,若(),UV a b = ,(),UW c d =,则12UVW S ad bc =- .(若,,U V W 在同一条直线上,约定0UVW S = )证明:1sin ,2UVW S UV UW UV UW =⋅=12UV UW =⋅===12ad bc ===-.证毕,回到原题.由于上一小问已经得到21221n n n n x k x ky x k ++-=-,21221n n nn y k y kx y k ++-=-,故()()22211222221211111n n n n n n n n n n n n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+.再由22119x y -=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk-+的等比数列.所以对任意的正整数m ,都有n n m n n m x y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+-----()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+-()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+⎛⎫⎛⎫=-+-+- ⎪ ⎪+-⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫-+⎛⎫⎛⎫=-- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫-+⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭.而又有()()()111,n n n n n n P P x x y y +++=---- ,()122121,n n n n n n P P x x y y ++++++=--,故利用前面已经证明的结论即得()()()()1212112112n n n n P P P n n n n n n n n S S x x y y y y x x ++++++++==---+-- ()()()()12112112n n n n n n n n x x y y y y x x ++++++=-----()()()1212112212n n n n n n n n n n n n x y y x x y y x x y y x ++++++++=-+---2219119119112211211211k k k k k k k k k k k k ⎛⎫-+-+-+⎛⎫⎛⎫⎛⎫⎛⎫=-+--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-+-+-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.这就表明n S 的取值是与n 无关的定值,所以1n n S S +=.方法二:由于上一小问已经得到21221n n n n x k x ky x k ++-=-,21221n n n n y k y kx y k ++-=-,故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+.再由22119x y -=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk-+的等比数列.所以对任意的正整数m ,都有n n m n n m x y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+-----()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+-()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+⎛⎫⎛⎫=-+-+- ⎪ ⎪+-⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫-+⎛⎫⎛⎫=-- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫-+⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭.这就得到232311911211n n n n n n n n k k x y y x x y y x k k ++++++-+⎛⎫-=-=- ⎪+-⎝⎭,以及22131322911211n n n n n n n n k k x y y x x y y x k k ++++++⎛⎫-+⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭.两式相减,即得()()()()232313131122n n n n n n n n n n n n n n n n x y y x x y y x x y y x x y y x ++++++++++++---=---.移项得到232131232131n n n n n n n n n n n n n n n n x y y x x y y x y x x y y x x y ++++++++++++--+=--+.故()()()()321213n n n n n n n n y y x x y y x x ++++++--=--.而()333,n n n n n n P P x x y y +++=-- ,()122121,n n n n n n P P x x y y ++++++=--.所以3n n P P + 和12n n P P ++ 平行,这就得到12123n n n n n n P P P P P P S S +++++= ,即1n n S S +=.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.。

2019普通高等学校招生全国统一考试(重庆卷)-数学(理)解析版

2019普通高等学校招生全国统一考试(重庆卷)-数学(理)解析版

2019普通高等学校招生全国统一考试(重庆卷)-数学(理)解析版注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。

在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。

考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。

只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。

数学理一.填空题:本大题共10小题,每题5分,共计50分。

在每题给出的四个备选选项中,只有一个是符合题目要求的1.在等差数列}{n a 中,52=a 那么}{n a 的前5项和5S =A.7B.15C.20D.25【答案】B【解析】422514d a a d=-=-,523167a a d =+=+=,故155()5651522a a S +⨯⨯===. 【考点定位】此题考查等差数列的通项公式及前n 项和公式,解题时要认真审题,仔细解答. 2.不等式0121≤+-x x 的解集为A.⎥⎦⎤ ⎝⎛-1,21 B.⎥⎦⎤⎢⎣⎡-1,21 C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121,【答案】A【解析】(1)(21)01101212210x x x x x x -+≤⎧-⎪≤⇒⇒<≤⎨++≠⎪⎩【考点定位】此题主要考察了分式不等式的解法,解题的关键是灵活运用不等式的性质,属于基础试题3.对任意的实数k ,直线y=kx+1与圆222=+y x 的位置关系一定是 A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心 【答案】C【解析】圆心(0,0)C 到直线10kx y -+=的距离为11d r=<<=,且圆心(0,0)C 不在该直线上.法二:直线10kx y -+=恒过定点(0,1),而该点在圆C 内,且圆心不在该直线上,应选C. 【考点定位】此题考查了直线与圆的位置关系,涉及的知识有:两点间接距离公式,点与圆的位置关系,以及恒过定点的直线方程.直线与圆的位置关系利用d 与r 的大小为判断.当0d r ≤<时,直线与圆相交,当d r =时,直线与圆相切,当d r >时,直线与圆相离.4.321⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为A.1635B.835C.435D.105【答案】B【解析】841881()2r rrr r r r T C C x--+==,令404r r -=⇒=,故展开式中的常数项为4458135()28T C ==.【考点定位】此题考查利用二项展开式的通项公式求展开公的常数项. 〔5〕设tan ,tan αβ是议程2320x x -+=的两个根,那么tan()αβ+的值为 (A )-3〔B 〕-1〔C 〕1〔D 〕3 【答案】A 【解析】tan tan 3tan tan 3,tan tan 2tan()31tan tan 12αβαβαβαβαβ++==⇒+===-+- 考点定位】此题考查学生灵活运用韦达定理及两角和的正切公式化简求值. 〔6〕设,x y ∈R ,向量(,1),(1,),(2,4)a x b y c ===-且,a c b c ⊥,那么a b +=〔ABC〕D 〕10 【答案】B【解析】由02402a c a c x x ⊥⇒⋅=⇒-=⇒=,由//422b c y y ⇒-=⇒=-,故||(21)a b +=+=【考点定位】此题主要考查两个向量垂直和平行的坐标表示,模长公式.解决问题的关键在于根据a c ⊥、//b c ,得到,x y 的值,只要记住两个向量垂直,平行和向量的模的坐标形式的充要条件,就不会出错,注意数字的运算.〔7〕()f x 是定义在R 上的偶函数,且以2为周期,那么“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的〔A 〕既不充分也不必要的条件〔B 〕充分而不必要的条件 〔C 〕必要而不充分的条件〔D 〕充要条件 【答案】D【解析】由()f x 是定义在R 上的偶函数及[0,1]双抗的增函数可知在[-1,0]减函数,又2为周期,所以【3,4】上的减函数【考点定位】此题主要通过常用逻辑用语来考察函数的奇偶性,进而来考察函数的周期性,根据图像分析出函数的性质及其经过的特殊点是解答此题的关键。

高考数学理(重庆卷)WORD解析版

高考数学理(重庆卷)WORD解析版

数学试题卷(理工农医类)注:本卷由北京宏优教育考试院重庆分院高考专家独家分析一.选择题:本大题共 10 小题,每题 5 分,共 50 分.在每题给出的四个备选项中,只有一个选项是切合题目要求的.(1)已知会合 U {1,2,3,4},会合 A={1,2} , B={2,3} ,则 C U( A B)=( D )( A ) {1,3, 4}( B ) {3, 4}(C ) {3}( D ) {4}【分析】 此题考察会合的简单运算,属于简单题。

因为A B {1,2,3} ,进而C U (AB) {4},故答案选 D 。

(2)命题“对随意 x R ,都有 x 2 0 ”的否认为(D )(A )对随意 x R ,使得 x 2( B )不存在 x R ,使得 x 20 (C )存在 x 0R ,都有 x 02 0(D )存在 x 0R ,都有 x 02【分析】 此题考察含有全称量词的命题的否认,比较简单。

将全称量词改为存在量词,同时否认结论,应选择 D 选项。

(3) (3 a)(a 6) (6 a 3 )的最大值为( B )(A ) 9(B )9(C ) 3(D )3 222【分析】 此题考察二次函数求最值。

依据题干的构造,能够用均值不等式,也能够用配方(3 a)( a(3 a)(a 6) 936)22a法。

方法一:,当且仅当 2 时等号成立;(3 a)(a 6)a 2 3a 18(a 3)281 9 方法二:242。

故答案选 B 。

(4)以下茎叶图记录了甲、乙两组各5 名学生在一次英语听力测试中的成绩(单位:分).甲组乙组90 9 yx2 15 87424已知甲组数据的中位数为 15,乙组数据的均匀数为16.8 ,则 x 、 y 的值分别为(C )(A )2、5(B ) 5、5 (C )5、8(D ) 8、8【分析】此题考察茎叶图及基本统计量的简单计算。

由茎叶图可知,甲组的中位数为 10+x=15,则 x=5;由乙组的均匀数为 16.8 有: 9+15+(10+y)+18+24=16.8 ×5=84 ,解出 y=8 。

高考重庆数学理科试卷含详细解答(全word版)080625

高考重庆数学理科试卷含详细解答(全word版)080625

绝密★启用前2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题卷(理工农医类)共5页。

满分150分。

考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,将试题卷和答题卡一并交回。

参考公式:如果事件A 、B 互斥,那么 P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A ·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C p p -=- 以R 为半径的球的体积V =43πR 3.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的. (1)复数321i += (A)1+2i(B)1-2i(C)-1(D)3解:33221112i i i i i⋅+=+=+⋅ (2)设m,n 是整数,则“m,n 均为偶数”是“m+n 是偶数”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件解:,m n 均为偶数m n ⇒+是偶数 则充分;而m n +是偶数≠>,m n 均为偶数 。

(3)圆221:20O x y x +-=和圆222:40O x y y +-=的位置关系是(A)相离(B)相交(C)外切(D)内切解: 化成标准方程:221:(1)1O x y -+=,222:)2)4O x y +-=,则1(1,0)O ,2(0,2)O ,12||O O R r ==<+,两圆相交(4)已知函数y =M ,最小值为m ,则mM的值为(A)14(B)12(C)2(D)2解:定义域103130x x x -≥⎧⇒-≤≤⎨+≥⎩ ,244y =+=+所以当1x =-时,y 取最大值M =31x =-或时y 取最小值2m = 2m M ∴=(5)已知随机变量ζ服从正态分布2(3,)N σ,则(3)P ζ<=(A)15(B)14(C)13(D)12 解:ζ服从正态分布2(3,)N σ,曲线关于3x =对称,1(3)2P ζ<=,选 D(6)若定义在R 上的函数()f x 满足:对任意12,x x R ∈,有1212()()()1f x x f x f x +=++,则下列说法一定正确的是 (A) ()f x 为奇函数 (B )()f x 为偶函数 (C) ()1f x + 为奇函数(D )()1f x +为偶函数解:令0x =,得(0)2(0)1f f =+,(0)1f =-,所以()()()11f x x f x f x -=+-+=-()()110f x f x +-++=,即()1[()1]f x f x +=--+,所以()1f x + 为奇函数,选C(7)若过两点1(1,2)P -,2(5,6)P 的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的比λ的值为(A)-13(B) -15 (C)15(D)13解:设点(,0)P x ,则021603λ-==--,选 A(8)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线为(0)y kx k =>,离心率e =,则双曲线方程为 (A )22x a -224y a=1(B)222215x y a a -=(C)222214x y b b-=(D)222215x y b b-=解:c e a ==222bk a ca abc ⎧=⎪⎪⎪⇒=⎨⎪+=⎪⎪⎩, 所以224a b = (9)如图,体积为V 的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.V 1为小球相交部分(图中阴影部分)的体积,V 2为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是(A )12V V >(B) 22V V <(C )12V V >(D )12V V <解:设大球半径为R ,小球半径为2R 根据题意3312444()23324V R V R V ππ==⋅-⨯+所以 333124424()233232V R VV R R πππ-=-⋅== 于是1222V VV -=即212V V V -=所以2120V V V V -=->,12V V <∴。

普通高等学校招生全国统一考试重庆卷理科数学试题及答案

普通高等学校招生全国统一考试重庆卷理科数学试题及答案

2020年一般高等学校招生重庆卷理工农医类数学试题本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分考试时间120分钟.第Ⅰ部分(选择题共60分)参照公式:假如事件A、B互斥,那幺P(A+B)=P(A)+P(B)假如事件A、B互相独立,那幺P(A·B)=P(A)·P(B)假如事件A在一次试验中发生的概率是P,那幺n次独立重复试验中恰巧发生k次的概率P n(k)C n k P k(1P)nk一、选择题:本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1 .函数y log1(3x2)的定义域是()2A.[1,)B.(2,)C.[2,1]D.(2,1]3332.设复数Z12i,则Z22Z()A–3B3C-3i D3i3.圆x2y22x4y30的圆心到直线x y1的距离为:()A2B2C1D2 224.不等式x2的解集是:()x1A B(1,0)(1,(,1)(0,1) C(1,0)(0,1)D(,1)(1,) 5.sin163sin223sin253sin313()A 1B1C3D3 22226.若向量a与b的夹角为60,|b|4,(a2b).(a3b)72,则向量a的模为:()A2B4C6D127.一元二次方程ax22x10,(a0)有一个正根和一个负根的充足不用要条件是:()Aa0Ba0Ca1D a18.设P是60的二面角l内一点,PA平面,PB平面,A,B为垂足,PA4,PB2,则AB的长为:()A 23 B25C27D 429.若数列{a n }是等差数列,首项a 10,a2003a20040,a 2003.a 20040,则使前n项和S n 0建立的最大自然数n 是:()A4005B 4006 C4007D 400810.已知双曲线x 2y 2 1,(a0,b0)的左,右焦点分别为F 1,F 2,点P 在双曲a 2b 24|PF 2|,则此双曲线的离心率e 的最大值为:()线的右支上,且|PF 1| A4 B5 C2D733311.某校高三年级举行一次演讲赛共有 10位同学参赛,此中一班有3位,二班有2位,其余班有5位,若采纳抽签的方式确立他们的演讲次序, 则一班 有3位同学恰巧被排在一同(指演讲序号相连),而二班的 2位同学没有被 排在一同的概率为:( )A1 B1 C1D110201204012.若三棱锥A-BCD 的侧面ABC 内一动点P 究竟面BCD 的面积与到棱AB 的距离相等,则动点P 的轨迹与ABC 构成图形可能是:( )AAPPB CBCAAPPBCB C第Ⅱ部分(非选择题共90分)三题号 二总分17 18 19 20 21 22 分数二、填空题:本大题共4小题,每题4分,共16分.把答案填在题中横线上.13.若在(1ax)5的睁开式中x 3的系数为80,则a_______14.曲线y21 x 2与y 1 x 3 2在交点处切线的夹角是______(用幅度数作答)2 4 1的 15 .如图1是一块半径为1的半圆形纸板,在P 1的左下端剪去一个半径为P2半圆后获得图形 P 2,而后挨次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形P 3、P 4、..P n ,记纸板P n 的面积为S n,则limS n ______xP 1P 2P 4P 316.对随意实数K ,直线:ykxb 与椭圆:x 32cos(02)恰有y 1 4sin一个公共点,则 b 取值范围是_______________三、解答题:此题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分 12分)求函数y sin 4x2 3sinxcosxcos 4x 的取小正周期和取小值; 并写出该函数在[0,]上的单一递加区间18.(本小题满分12分)设一汽车在行进途中要经过4个路口,汽车在每个路口碰到绿灯的概率为3,碰到红灯(严禁通行)的概率为1假设汽车只在碰到红灯或抵达目的44地才停止行进,表示泊车时已经经过的路口数,求:(1)的概率的散布列及希望E;(2)泊车时最多已经过3个路口的概率19.(本小题满分12分)如图,四棱锥P-ABCD的底面是正方形,PA 底面ABCD,AE PD,EF//CD,AM EF证明MF是异面直线AB与PC的公垂线;(2) 若PA 3AB,求直线AC与平面EAM所成角的正弦值PEA FDM B C20.(本小题满分12分)设函数f(x) x(x 1)(x a),(a1)求导数f/(x);并证明f(x)有两个不一样的极值点x1,x2;(2)若不等式f(x1)f(x2) 0建立,求a的取值范围21.(本小题满分12分)设p0是一常数,过点Q(2p,0)的直线与抛物线 y 22px交于相异两点A 、B ,以线段AB 为直经作圆H (H 为圆心)试证抛物线极点在圆H 的圆周上;并求圆H 的面积最小时直线AB 的方程YB yH OQ(2p,0)xA22.(本小题满分14分)设数列a n知足a 12,a n1a n 1,(n1,2,3.......)a n(1) 证明a n 2n1对全部正整数n 建立;(2) 令b na n ,(n1,2,3......),判断b n 与b n1的大小,并说明原因n2020年一般高等学校招生重庆卷理工农医类数学试题参照答案一、选择题:每题5分,共60分.1.D2.A3.D4.A5.B6.C7.C8.C9.B10.B11.B12.D11.某校高三年级举行一次演讲赛共有10位同学参赛,此中一班有3位,二班有2位,其余班有5位,若采纳抽签的方式确立他们的演讲次序,则一班有3位同学恰巧被排在一同(指演讲序号相连),而二班的2位同学没有被排在一同的概率为:()A 1B111 1020C D40120解:10位同学参赛演讲的次序共有:A1010;要获得“一班有3位同学恰巧被排在一同而二班的2位同学没有被排在一同的演讲的次序”可经过以下步骤:①将一班的3位同学“捆绑”在一同,有A33种方法;②将一班的“一梱”看作一个对象与其余班的5位同学共6个对象排成一列,有A66种方法;③在以上6个对象所排成一列的7个空隙(包含两头的地点)中选2个地点,将二班的2位同学插入,有A72种方法依据分步计数原理(乘法原理),共有A33A66A72种方法所以,一班有3位同学恰巧被排在一同(指演讲序号相连),而二班的2位同学没有被排在一同的概率为:A33A66A721P20A1010应选B二、填空题:每题4分,共16分.13.-214.15.16.[-1,3]43三、解答题:共74分.17.(本小题12分)解:y sin4x 23sinxcosx cos4x222(sinx cosx)(sinx3sin2xcos2x23sin2xcosx)2sin2(x)6故该函数的最小正周期是 ;最小值是- 2;单增区间是[0,1],[5, ]3618.(本小题12分)解:(I ) 的全部可能值为 0,1,2,3,4用A K 表示“汽车经过第 k 个路口时不断(遇绿灯)”, 则P (A K )= 3(k1,2,3,4),且A 1,A 2,A 3,A 4独立.41,故P(0) P(A 1)4P(1)P(A 1 A 2)3 1 34416P(2)P(A 1A 2 A 3)(3)219,4464P(3)P(A 1A 2 A 3A 4)(3)3127,4 4 256 P(4)P(A 1A 2 A 3A 4)(3)4814256进而 有散布列:0 1 2 3 4P1 3 9 27 81 416642562561 3 9 2781525E0 1234256 41664256256 (II )P(3)1 P(4)81 1751256256答:泊车时最多已经过3个路口的概率为175.25619.(本小题 12分)I)证明:因PA⊥底面,有PA⊥AB,又知AB⊥AD,故AB⊥面PAD,推得BA⊥AE,又AM∥CD∥EF,且AM=EF,证得AEFM是矩形,故AM⊥MF.又因AE⊥PD,AE⊥CD,故AE⊥面PCD,而MF∥AE,得MF⊥面PCD,故MF⊥PC,所以MF是AB与PC的公垂线.II)解:连接BD交AC于O,连接BE,过O作BE的垂线OH,垂足H在BE上.易知PD⊥面MAE,故DE⊥BE,又OH⊥BE,故OH//DE,所以OH⊥面MAE.连接AH,则∠HAO是所要求的线AC与面NAE所成的角设AB=a,则PA=3a,AO 1AC2a. 22因Rt△ADE~Rt△PDA,故EDAD2a2aPD a2(3a)2,10OH 1a. ED210进而在RtAHO中sinHAO OH a215.AO2102a2010 20.(本小题12分)解:(I)f(x)3x22(1 a)x a.令f(x)0得方程3x22(1 a)x a0.因4(a2a1)4a0,故方程有两个不一样实根x1,x2不如设x1由可判断的符号以下: x2,f(x)3(xx1)(xx2)f(x)当xx1时,f(x)0;当x1x x2时,f(x)0;当xx2时,f(x)0所以x1是极大值点,x2是极小值点.(II)因f(x1)f(x2)0,故得不等式x13x23(1a)(x12x22)a(x1x2)0.即(x1x2)[(x1x2)23x1x2](1a)[(x1x2)22x1x2]a(x1x2)0.又由(I)知x1x22(1a), 3x1x2a.3代入前方不等式,两边除以(1+a),并化简得2a25a20.解不等式得a 2或a1(舍去)2所以,当a2时,不等式f(x1)f(x2)0建立. 21.(本小题12分)解法一:由题意,直线AB不可以是水平线,故可设直线方程为:ky x2p.又设A(x A,y A),B(x B,y B),则其坐标知足ky x2p, y22px.消去x得y22pky4p20由此得y A y B2pk, y A y B4p2.x A x B4pk(y A y B)(42k2)p,x A x B(y A y B)24p2(2p)2所以OAOB x A x B y A y B0,即OA OB.故O必在圆H的圆周上.又由题意圆心H(x H,y H)是AB的中点,故x H x A x B(2k2)p,2y B y A y Bkp.2由前已证,OH应是圆H的半径,且|OH|x H2y H2k45k24p.进而当k=0时,圆H的半径最小,亦使圆H的面积最小.此时,直线AB的方程为:x=2p.解法二:由题意,直线 AB 不可以是水平线,故可设直线方程为: ky=x -2p又设A(x A ,y A ),B(x B ,y B ),则其坐标知足ky x2p, y22px.y 2 2pky4p 20,分别消去x ,y 得2p(k 22)x4p 2x 20.故得A 、B 所在圆的方程x 2y 2 2p(k 2 2)x2pky0.显然地,O (0,0)知足上边方程所表示的圆上,又知A 、B 中点H 的坐标为(x Ax B ,y A y B)((2k 2)p,kp),22故|OH|(2k 2)2p 2k 2p 2而前方圆的方程可表示为 [x(2k 2)p]2(ypk)2 (2k 2)2p 2k 2p 2故|OH|为上边圆的半径 R ,进而以AB 为直径的圆必过点O (0,0).又R 2|OH|2 (k 4 5k 2 4)p 2,故当k=0时,R 2最小,进而圆的面积最小,此时直线 AB 的方程为:x=2p.解法三:同解法一得 O 必在圆H 的圆周上又直径|AB|=(x A x B )2(y Ay B )2x A 2 x B 2 y A 2 y B 2x A 2 x B 2 2px A2px B2x A x B4px A x B4p.上式当x Ax B 时,等号建立,直径|AB|最小,进而圆面积最小.此时直线AB的方程为x=2p.。

xx重庆高考理科数学试题及答案解析「word精校版」

xx重庆高考理科数学试题及答案解析「word精校版」

xx重庆高考理科数学试题及答案解析「word精校版」xx年普通高等学校招生全国统一重庆理科数学考前须知:1.本试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷1至3页,第二卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试完毕后,将本试题和答题卡一并交回.第一卷选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.(A){1}(B){1,2}(C){0,1,2,3}(D){-1,0,1,2,3}(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,那么小明到老年公寓可以选择的最短路径条数为(A)24(B)18(C)12(D)9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,那么该几何体的外表积为(A)20π(B)24π(C)28π(D)32π(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,假设输入的x=2,n=2,依次输入的a 为2,2,5,那么输出的s=(A)7(B)12(C)17(D)34第II卷本卷包括必考题和选考题两局部.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答..gaosan.con二、填空题:本大题共3小题,每题5分其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,那么甲的卡片上的数字是(16)假设直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+2)的切线,那么b=三.解答题:解容许写出文字说明,证明过程或演算步骤.17.(此题总分值12分)18.(此题总分值12分)某险种的根本保费为a(单位:元),继续购置该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(I)求一续保人本年度的保费高于根本保费的概率;(II)假设一续保人本年度的保费高于根本保费,求其保费比根本保费高出60%的概率;(III)求续保人本年度的平均保费与根本保费的比值.19.(本小题总分值12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=5/4,20.(本小题总分值12分)请考生在22、23、24题中任选一题作答,如果多做,那么按所做的第一题计分,做答时请写清题号(22)(本小题总分值10分)选修4-1:集合证明选讲gaosan.如图,在正方形ABCD,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(I)证明:B,C,E,F四点共圆;(II)假设AB=1,E为DA的中点,求四边形BCGF的面积.(23)(本小题总分值10分)选修4—4:坐标系与参数方程在直线坐标系xoy中,圆C的方程为(x+6)2+y2=25.(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C 的极坐标方程;xx年普通高等学校招生全国统一考试理科数学考前须知:1.本试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷1至3页,第二卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试完毕后,将本试题和答题卡一并交回.第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.(1)z=(m+3+(m-1)i在复平面内对应的点在第四象限,那么实数m的取值范围是(A){1}(B){1,2}(C){0,1,2,3,}(D){-1,0,1,2,3}【解析】C解得m=8应选D应选A(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,那么小明到老年公寓可以选择的最短路径条数为(A)24(B)18(C)12(D)9【解析】BE---F有6种走法,F---G有3种走法,由乘法原理知,共6*3=18种走法应选B.(6)右图是由圆柱与圆锥组合而成的几何体的三视图,那么该几何体的外表积为(A)20π (B)24π (C)28π (D)32π【解析】C几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r,周长为c,圆锥母线长为l,圆柱高为h.应选C.应选B.(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,假设输入的x=2,n=2,依次输入的a 为2,2,5,那么输出的s=(A)7(B)12(C)17(D)34【解析】C第一次运算:s=0*2+2=2,第二次运算:s=2*2+2=6,第三次运算:s=6*2+5=17,应选C.【解析】C由题意得:(xi,yi)(i=1,2,…,n)在如下图方格中,而平方和小于1的点均在如下图的阴影中应选A.第二卷本卷包括必考题和选考题两局部.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答..gaosan.【解析】②③④(15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,那么甲的卡片上的数字是【解析】由题意得:丙不拿(2,3),假设丙(1,2),那么乙(2,3),甲(1,3)满足,假设丙(1,3),那么乙(2,3),甲(1,2)不满足,故甲(1,3),三、解答题:解容许写出文字说明、证明过程或演算步骤.(17)(本小题总分值12分)gaosan.con(18)(本小题总分值12分)某险种的根本保费为a(单位:元),继续购置该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于根本保费的概率;(Ⅱ)假设一续保人本年度的保费高于根本保费,求其保费比根本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与根本保费的比值.【解析】⑴设续保人本年度的保费高于根本保费为事件A,⑶解:设本年度所交保费为随机变量X.平均保费∴平均保费与根本保费比值为1.23.(19)(本小题总分值12分)B(5,0,0),C(1,3,,0),D1(0,0,3),A(1,-3,0)(20)(本小题总分值12分)请考生在22、23、24题中任选一题作答,如果多做,那么按所做的第一题计分,做答时请写清题号(22)(本小题总分值10分)选修4-1:几何证明选讲如图,在正方形ABCD,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(I) 证明:B,C,G,F四点共圆;(II)假设AB=1,E为DA的中点,求四边形BCGF的面积.。

2021年重庆市高考数学试卷(理科)及详解

2021年重庆市高考数学试卷(理科)及详解

2021年重庆市高考数学试卷(理科)及详解2021年重庆市高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个备选选项中,只有一个是符合题目要求的 1.(5分)(2021?重庆)在等差数列{an}中,a2=1,a4=5,则{an}的前5项和S5=() A7 B15 C20 D25 .... 2.(5分)(2021?重庆)不等式 A. B.的解集为() C. D. 223.(5分)(2021?重庆)对任意的实数k,直线y=kx+1与圆x+y=1 的位置关系一定是()A相离 B相切.. C相交但直线D相交且直线.不过圆心.过圆心 4.(5分)(2021?重庆) A. B.的展开式中常数项为() C. 2D105 . 5.(5分)(2021?重庆)设tanα,tanβ是方程x��3x+2=0的两个根,则tan(α+β)的值为()A��3 B��1 C1 D3 .... 6.(5分)(2021?重庆)设x,y∈R,向量=(x,1),=(1,y),=(2,��4)且⊥,∥,则|+|=()ABCD10 .... 7.(5分)(2021?重庆)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的() A既不充分也B充分而不必.不必要的条.要的条件件 C必要而不充D充要条件.分的条件. 8.(5分)(2021?重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1��x)f′(x)的图象如图所示,则下列结论中一定成立的是()1A函数f(x)有B.极大值f(2).和极小值f(1) C函数f(x)有D.极大值f(2).和极小值f(��2) 9.(5分)(2021?重庆)设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为则a的取值范围是() A(0,) B (0,) C(1,) D(1,).... 10.(5分)(2021?重庆)设平面点集函数f(x)有极大值f(��2)和极小值f(1)函数f(x)有极大值f(��2)和极小值f(2)的棱异面,,则A∩B所表示的平面图形的面积为() ABCD ....二、填空题(共5小题,每小题5分,满分25分) 11.(5分)(2021?重庆)若(1+i)(2+i)=a+bi,其中a,b∈R,i 为虚数单位,则a+b= _________ .12.(5分)(2021?重庆)13.(5分)(2021?重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且_________ .14.(5分)(2021?重庆)过抛物线y=2x的焦点F作直线交抛物线于A,B两点,若2= _________ .,则c= ,则|AF|= _________ . 15.(5分)(2021?重庆)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间最多间隔1节艺术课的概率为 _________ (用数字作答).三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.216.(13分)(2021?重庆)设,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值. 17.(13分)(2021?重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.18.(13分)(2021?重庆)设f(x)=4cos(ωx��(Ⅰ)求函数y=f(x)的值域(Ⅱ)若f(x)在区间19.(12分)(2021?重庆)如图,在直三棱柱ABC��A1B1C1中,AB=4,AC=BC=3,D为AB的中点(Ⅰ)求点C到平面A1ABB1的距离;(Ⅱ)若AB1⊥A1C,求二面角A1��CD��C1的平面角的余弦值.上为增函数,求ω的最大值.)sinωx��cos(2ωx+π),其中ω>0.20.(12分)(2021?重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.21.(12分)(2021?重庆)设数列|an|的前n项和Sn满足Sn+1=a2Sn+a1,其中a2≠0.(I)求证:|an|是首项为1的等比数列;(II)若a2>��1,求证:3,并给出等号成立的充要条件.2021年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个备选选项中,只有一个是符合题目要求的 1.(5分)(2021?重庆)在等差数列{an}中,a2=1,a4=5,则{an}的前5项和S5=() A7 B15 C20 D25 ....考点:等差数列的性质。

普通高等学校招生全国统一考试数学卷重庆.理含答案

普通高等学校招生全国统一考试数学卷重庆.理含答案

2019年一般高等学校招生全国一致考试数学(重庆理卷)一、选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.(1)若等差数列{a n}的前三项和S39且a11,则a2等于()A.3 C.5 D.6(2)命题“若x21,则1x1”的逆否命题是()A.若x21,则x1或x1B.若1x1,则x21C.若x1或x1,则x21D.若x1或x1,则x21(3)若三个平面两两订交,且三条交线相互平行,则这三个平面把空间分红()A.5部分部分部分部分(4)若(x1)n睁开式的二项式系数之和为64,则睁开式的常数项为()xA10(5)在ABC中,AB3,A450,C750,则BC=()A.33B.2 D.33(6)从5张100元,3张200元,2张300元的奥运初赛门票中任取3张,则所取3张中至罕有2张价钱同样的概率为()A.179C.323 4B.4D.12024(7)若a是1+2b与1-2b的等比中项,则2ab的最大值为()|a|2|b|252C.52A. B. D.15452(8)设正数a,b知足limx22a n1ab n1(x ax b)4则lim n a n12b n()A.0B.11D.1 4C.2(9)已知定义域为R的函数f(x)在(8,)上为减函数,且y=f(x+8)函数为偶函数,则()A.f(6)>f(7)B.f(6)>f(9) C.f(7)>f(9) D.f(7)>f(10)第1页共11页(10)如图,在四边形ABCD中,|AB||BD||DC|4,ABBD BDDC=0,|AB||BD||BD||DC|4则(ABDC)AC的值为(C )DB.22 D.42二、填空题:本大题共6小题,共24分,把答案填写在答题卡相应地点上B 2i A(11)复数2i3的虚部为________.x y1(12)已知x,y知足2x y4,则函数z=x+3y的最大值是________.x 1(13)若函数f(x)=2x22axa1的定义域为R,则a的取值范围为_______.(14)设{a n}为公比q>1的等比数列,若a2004和a2005是方程4x28x30的两根,则a2006a2007__________.(15)某校要求每位学生从7门课程中选修4门,此中甲乙两门课程不可以都选,则不一样的选课方案有___________种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(重庆卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年重庆,理1,5分】在复平面内表示复数i(12i)-的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】A【解析】2i(12i)2i i 2i -=-+=+,对应点的坐标为(2,1),在第一象限,故选A . 【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数z 化为i a b +(),a b R ∈的形式,是解答本题的关键. (2)【2014年重庆,理2,5分】对任意等比数列{}n a ,下列说法一定正确的是( )(A )139,,a a a 成等比数列 (B )236,,a a a 成等比数列 (C )248,,a a a 成等比数列 (D )369,,a a a 成等比数列 【答案】D【解析】设{}n a 公比为q ,因为336936,a aq q a a ==,所以369,,a a a 成等比数列,故选D .【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.(3)【2014年重庆,理3,5分】已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由观测的数据得线性回归方程可能为( ) (A )0.4 2.3y x =+ (B )2 2.4y x =- (C )29.5y x =-+ (D )0.3 4.4y x =-+【答案】A【解析】根据正相关知回归直线的斜率为正,排除,C D ,回归直线经过点(),x y ,故选A . 【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.(4)【2014年重庆,理4,5分】已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数0k =( )(A )92- (B )0 (C )3 (D )152【答案】C【解析】由已知(23)0230a b c a c b c -⋅=⇒⋅-⋅=,即2(23)3(2141)03k k +-⨯+⨯=⇒=,故选C .【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.(5)【2014年重庆,理5,5分】执行如题图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )(A )12s > (B )35s > (C )710s > (D )45s >【答案】C【解析】由程序框图知:程序运行的981091k S k =⨯⨯⨯+,∵输出的6k =,∴9877109810S =⨯⨯=,∴判断框的条件是710S >,故选C .【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S 值是解题的关键. (6)【2014年重庆,理6,5分】已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( )(A )p q ∧ (B )p q ⌝∧⌝ (C )p q ⌝∧ (D )p q ∧⌝ 【答案】D【解析】根据指数函数的性质可知,对任意x ∈R ,总有20x >成立,即p 为真命题,“1x >”是“2x >”的必要不充分条件,即q 为假命题,则p q ∧⌝,为真命题,故选D .【点评】本题主要考查复合命题的真假关系的应用,先判定p ,q 的真假是解决本题的关键,比较基础.(7)【2014年重庆,理7,5分】某几何体的三视图如下图所示,则该几何体的表面积为( )(A )54 (B )60 (C )66 (D )72 【答案】B【解析】在长方体中构造几何体'''ABC A B C -,如右图所示,4,'5,'2AB A A B B ===, 3AC =,经检验该几何体的三视图满足题设条件.其表面积'''''''''ABC ACC A ABB A BCC B A B C S S S S S S ∆∆=++++3515615146022=++++=,故选B .【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.(8)【2014年重庆,理8,5分】设12F F ,分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得12129||||3,||||4PF PF b PF PF ab +=⋅=,则该双曲线的离心率为( )(A )43 (B )53(C )94 (D )3【答案】B【解析】由于22121212(||||)(||||)4||||PF PF PF PF PF PF +--=⋅,所以22949b a ab -=,分解因式得(34)(3)0433,4,5b a b a a b a b c λλλ-+=⇒=⇒===,所以离心率53c e a ==,故选B .【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题. (9)【2014年重庆,理9,5分】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )(A )72 (B )120 (C )144 (D )3 【答案】B【解析】用,,a b c 表示歌舞类节目,小品类节目,相声类节目,则可以枚举出下列10种排法:,,,,,,,,,abcaba ababac ababca abacab abacba acabab acbaba babaca bacaba cababa每一种排法中的三个a ,两个b 可以交换位置,故总的排法为323210120A A =种,故选B . 【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.(10)【2014年重庆,理10,5分】已知ABC ∆的内角1,sin 2sin()sin()2A B C A A B C C A B +-+=--+,满足,面积S 满足12,,,,S a b c A B C ≤≤,记分别为所对的边,则下列不等式成立的是( ) (A )()8bc b c +> (B)()ac a b +> (C )612abc ≤≤ (D )1224abc ≤≤ 【答案】A【解析】已知变形为1sin 2sin[()]sin[()]2A CB AC B A +-+=--+,展开整理得11sin 22cos()sin 2sin [cos cos()]22A C B A A A C B +-=⇒+-=,即112sin [cos()cos()]sin sin sin 28A CBC B A B C -++-=⇒=,而22111sin 2sin 2sin sin 2sin sin sin 224S ab C R A R B C R A B C R ==⋅⋅⋅=⋅⋅=,故21224R R ≤≤⇒≤≤338sin sin sin abc R A B C R =⋅=∈,排除,C D ,因为b c a +>,所以()8bc b c abc +>≥,故选A .【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题. 二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)【2014年重庆,理11,5分】设全集{|110},{1,2,3,5,8},{1,3,5,7,9}U n N n A B =∈≤≤==,则()U C A B = .C'B'A'CA【答案】{}7,9【解析】∵全集{}110U n N n =∈≤≤,{}1,2,3,5,8A =,{}1,3,5,7,9B =,∴{}4,6,7,9U C A =,∴{}()7,9U C A B =.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.(12)【2014年重庆,理12,5分】函数2()log )f x x =的最小值为 .【答案】14-【解析】因为222221log log )log 422log 2x x x x ===+,设2log t x =,则:原式221111(22)()2244t t t t t =+=+=+-≥-,故最小值为14-.【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题. (13)【2014年重庆,理13,5分】已知直线02=-+y ax 与圆心为C 的圆()()2214x y a -+-=相交于A B ,两点,且ABC ∆为等边三角形,则实数a = .【答案】4±【解析】易知ABC ∆的边长为2,圆心到直线的距离为等边三角形的高h =4a = 【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键. 考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. (14)【2014年重庆,理14,5分】过圆外一点P 作圆的切线PA (A 为切点),再作割线PB ,PC 分别交圆于B ,C ,若6PA =,8AC =,9BC =,则AB = . 【答案】4【解析】设,AB x PB y ==,由PAB PCA ∆∆知:64,3986PA AB PB x yx y PC AC PA y ==⇒==⇒==+,所以4AB =.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.(15)【2014年重庆,理15,5分】已知直线l 的参数方程为23x ty t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 正半轴为极轴建立极坐标,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=(0,02)ρθπ≥≤<则直线l 与曲线C 的公共点的极径ρ= .【解析】直线的极坐标方程为sin cos 1ρθρθ=+与2sin 4cos 0ρθθ-=联立得:24cos tan 2,5cos sin θθρθθ==== 【点评】本题考查直线l 的参数方程、曲线C 的极坐标方程,考查学生的计算能力,属于中档题.(16)【2014年重庆,理16,5分】若不等式2121222x x a a -++≥++对任意实数x 恒成立,则实数a 的取值范围是 __.【答案】112a -≤≤【解析】转化为左边的最小值2122a a ≥++,左边1111155(2)22222222x x x x x x x =-+-++≥-+---=-+≥,当12x =时取等号,故251121222a a a ≥++⇒-≤≤.【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题. 三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(17)【2014年重庆,理17,13分】已知函数()()022f x x ππωφωφ⎛⎫=+>-≤< ⎪⎝⎭,的图像关于直线3x π=对称,且图像上相邻两个最高点的距离为π. (1)求ω和ϕ的值;(2)若2263f αππα⎛⎫⎫=<< ⎪⎪⎝⎭⎝⎭,求3cos 2πα⎛⎫+ ⎪⎝⎭的值. 解:(1)由已知()3f π=2ππω=,解出2,,6k k Z πωϕπ==-∈,因为[,)2ππϕ∈-,故只有πϕ=-.(2)1)sin()2664f αππαα⎛⎫=-=-= ⎪⎝⎭,由062ππα<-<,故cos()6πα-=, 3cos sin sin[()]sin()cos cos()sin 2666666πππππππααααα⎛⎫+==-+=-+- ⎪⎝⎭1142= 【点评】本题主要考查由函数()sin y A x ωϕ=+的部分图象求函数的解析式,两角和差的三角公式的应用,属于中档题.(18)【2014年重庆,理18,13分】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望(注:若三个数,,a b c 满足 a b c ≤≤,则称b 为这三个数的中位数).解:(1)由古典概型的概率计算公式得所求概率为:334339584C C p C +==. (2)3214453417(1)848242C C C p x +====;111212134323234343(2)C C C C C C C C p x +++===;1771(3)848412C p x ====.所以X 的分布列为:所以174314712342841228E =⨯+⨯+⨯=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题. (19)【2014年重庆,理19,13分】如下图,四棱锥P ABCD -,底 面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且1,2BM MP AP =⊥.(1)求PO 的长;(2)求二面角A PM C --的正弦值. 解:解法一:(1)设PO x =,则PA ==PM , 在ABM ∆中由余弦定理212AM =,因为MP AP ⊥,所以APM ∆为 直角三角形,由勾股定理:2222(2PA PM AM +=⇒=,解出x ,PO ∴=. (2)设点A 到平面PMC 的距离为d ,由体积法知:A PBC P ABC V V --=,即11113333PBC ABC S d S PO d d ∆∆⋅⋅=⋅⋅⇒==, 点A 到棱PM 的距离为h PA ==,设所求二面角为θ,则sin d h θ===解法二:(1)连接AC ,BD ,∵底面是以O 为中心的菱形,PO ⊥底面ABCD ,故AC BD O =,且AC BD ⊥,以O 为坐标原点,OA ,OB ,OP 方向为x ,y ,z 轴正方向建立空间坐标系O xyz -,OMD CBAP∵2AB =,3BAD π∠=,∴1cos 2OA AB BAD ⎛⎫=⋅∠ ⎪⎝⎭,1sin 12OB AB BAD ⎛⎫=⋅∠= ⎪⎝⎭, ∴()0,0,0O,)A ,()0,1,0B,()C ,()0,1,0OB =,()1,0BC =-, 又∵12BM =,∴11,044BM BC ⎛⎫==-- ⎪ ⎪⎝⎭,则3,04OM OB BM ⎛⎫=+= ⎪ ⎪⎝⎭, 设()0,0,P a,则()AP a =,33,4MP a ⎛⎫=- ⎪⎪⎝⎭,∵MP AP ⊥,∴2304APMP a ⋅=-=, 解得a =,即PO .(2)由(1)知AP ⎛= ⎝⎭,34MP =-⎝⎭,3,0,CP ⎛=⎭,设平面APM 的法向量(),,n x y z =, 平面PMC 的法向量为(),,n a b c =,由00m A P m M P ⎧⋅=⎪⎨⋅=⎪⎩,得0304z x y⎧=⎪⎪-=,令1x =,则51,m ⎛⎫= ⎪ ⎪⎝⎭,由00n CP n MP ⎧⋅=⎪⎨⋅=⎪⎩,得0304b +=-+=,令1a =,则()1,3,2n =--,∵平面APM 的法向量m 和平 面PMC 的法向量n 夹角θ满足:cos 40m nm n⋅===⋅,故sin θ=. 【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.(20)【2014年重庆,理20,12分】已知函数22()(,,)x x f x ae be cx a b c R -=--∈的导函数'()f x 为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -. (1)确定,a b 的值;(2)若3c =,判断()f x 的单调性; (3)若()f x 有极值,求c 的取值范围.解:(1)22'()22x x f x ae be c -=+-,由'()'()f x f x -=恒成立知:222242222(22)(22)0x x x x x ae be c ae be c a b e b a --+-=+-⇒-+-≡,故a b =另外'(0)2242f a b c c a b =+-=-⇒+=,联立解出1a b==.(2)当3c =时,222'()2232()10x x x x f x e e e e --=+-=-+>,故()f x 在定义域R 上为单调递增. (3)由(1)得()2222x x f x e e c -'=+-,而22224x x e e -+≥=,当且仅当0x =时取等号,当4c ≤时,()0f x '≥恒成立,故()f x 无极值;当4c >时,令2x t e =,方程220t c t+-=的两根均为 正,即()0f x '=有两个根1x ,2x ,当()12,x x x ∈时,()0f x '<,当()()12,,x x x ∈-∞+∞时,()0f x '>,故当1x x =,或2x x =时,()f x 有极值,综上,若()f x 有极值,c 的取值范围为()4,+∞.【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.(21)【2014年重庆,理21,12分】如下图,设椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F , 点D 在椭圆上,112DF F F ⊥,121||||F F DF =12DF F ∆.(1)求椭圆的标准方程;(2)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.解:(1)设(,)D c y-,代入椭圆方程中求出2b y=-,故21bDFa=,而122F F c=,由已知:1211211,22F F F F DF=⋅=,联立解出1212,2F F DF==,即222222,bc a b ca===+,联立解出1a b c===,所以椭圆的标准方程为2212xy+=.(2)由于所求圆的圆心C在y轴上,故圆和椭圆的两个交点,A B关于y轴对称,从而经过点,A B所作的切线也关于y轴对称,如下图所示.当切线互相垂直时,设两条切线交于点P,则CAPB恰好形成一个边长为r正方形.其中r表示圆的半径,由几何关系22BF BP PF r=-=-,1BF=122BF BF a+==,所以3r r==,故所求圆的半径为3.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.(22)【2014年重庆,理22,12分】设111,(*)na ab n N+==∈.(1)若1b=,求23,a a及数列{}na的通项公式;(2)若1b=-,问:是否存在实数c使得221n na c a+<<对所有*n N∈成立?证明你的结论.解:(1)∵11a=,1na b+,1b=,22a∴=,31a=;又()()221111n na a+-=-+,∴(){}21n a-是首项为0,公差为1的等差数列;∴()211na n-=-,∴1na=(*n N∈).(2)设()1f x=,则()1n na f a+=,令()c f c=,即1c,解得14c=.下面用数学归纳法证明加强命题2211n na c a+<<<.1n=时,()210a f==,()301a f==,∴231a c a<<<,成立;设n k=时结论成立,即2211k ka c a+<<<,∵()f x在(],1-∞上为减函数,∴()()()2121kc f c f a f a+=>>=,∴2221kc a a+>>>,∴()()()22231kc f c f a f a a+=<<=<,∴231kc a+<<,∴()()212111k ka c a+++<<<,即1n k=+时结论成立,综上,14c=使得221n na c a+<<对所有的*n N∈成立..【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.。

相关文档
最新文档