张丹数据分析课标解读

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一,数据分析的过程可以概括为:收集数据、整理数据、描述数据和分析数据。
第二,学段的要求逐步深入。从第一学段到第三学段,随着年龄的增长,学生将逐步经历更加完整的数据分析过程;在要求上第一学段、第二学段都提出了经历“简单的”过程,第三学段则去掉了这个限制。第三,从第二学段开始使用计算器来处理数据,第二学段可以使用计算器来处理数据,第三学段则要求能使用计算器。
对于先给出定义,教师往往比较习惯,而对于“逆过来”通过数据来进行推断,教师往往比较陌生。为了帮助大家理解,再阐述一下摸球的例子。同样是一个袋子里有5个球,4个白球、1个红球,如果让学生通过摸来验证出现白球的可能性是 、出现红球的可能性是 ,这不是统计。统计是这样的,告诉学生们袋子里有很多球,有白颜色的和红颜色的。让孩子们去摸,摸到一定程度的时候,学生发现摸出白球的次数比红球的次数多,由此推断袋子里白球可能比红球多。进一步的话,能推断出白球和红球的比例大概是多少。再告诉球的总数的时候,能够估计出来几个白球和几个红球,这个是统计的过程。
进一步,可以引导学生逐渐深入地进行数据分析,可以要求学生把身高分段,画出频数直方图,并引导学生讨论,通过直方图是否能得到更多的信息。
二、数据分析方法
掌握必要的收集数据、整理数据、描述数据和分析数据的方法,无疑是统计课程内容的第二条主线。
1.收集数据的方法
在收集数据方面,所涉及的数据可能是全体的数据(总体数据),也可能是通过抽样获得的数据(抽样数据)。在第一、第二学段中,学生收集的基本都是总体数据;而在第三学段中,学生将开始学习抽样,体会抽样的必要性,通过实例了解简单随机抽样。
“我听了一些课,老师们经常这样处理:比如对于掷一枚均匀的硬币,先得到出现正面或反面的概率是 ,然后让学生通过反复掷硬币去验证这个结果( )。这里有两个问题。第一,一个硬币,先假定它出现正面和反面的可能性是 ,这是数学(或者称为概率)。这个 是通过概率的定义得到的,不是依靠掷硬币验证出来的。实际上,学生做了很多次实验也得不到 ,反而更加糊涂了。第二,运用定义的方式教学随机,不能很好的培养学生的随机观念。
数据的来源有两种,一种是现成的数据,一种是需要自己收集的数据。在义务教育阶段两种来源都应该让学生有所体验,特别是自己收集的数据。常用的收集数据方法包括调查、试验、测量、查阅资料等。学生应该对收集数据的方法都有比较丰富的体验。为此,《标准》在第一学段提出“了解调查、测量等收集数据的简单方法”;在第二学段提出“会根据实际问题设计简单的调查表,能选择适当的方法(如调查、试验、测量)收集数据”“能从报纸杂志、电视等媒体中,有意识地获得一些数据信息”。
第三学段(《标准》例70):比较自己班级与别的班级同学的身高状况。
[说明]对于两个班级学生身高状况比较,通常可以通过平均值来判断,但有时候仅仅通过平均数是不够的,如果一个班同学之间身高差异很大,而另一个班同学之间身高差异很小,即使前一个班的平均高一些,也不能说这个班的整体状况很好。因此,在判断身高状况时,不仅要看平均值,还需要参考方差。
第二学段(《标准》例38):对全班同学的身高的数据进行整理和分析。
[说明]在上面的例子中,已经引导学生对全班同学的身高的数据进行初步分析。在这个学段中,要求学生结合以前积累的身高数据,进行进一步的整理,然后进行分析。整理的目的是为了便于分析,例如,条形统计图有利于直观了解不同高度段的学生数及其差异;扇形统计图有利于直观了解不同高度段的学生占全班学生的比例及其差异;折线统计图有利于直观了解几年来学生身高变化的情况,预测未来身高变化趋势。学生还可以讨论用什么数据来代表全班同学的身高,自己的身高在全班的什么位置。
不少老师有这样的一个困惑,概率也是研究随机现象的,那么为什么又提出数据的随机性呢?实际上,统计与概率都是研究随机现象的学科。“不论怎么说,机遇(或说偶然性)无所不在,机遇伴随着人的一生(当然随人的情况而有异),这是一个无法回避的现实”。统计与概率正是从不同的角度研究如何刻画随机现象,统计侧重于从数据来刻画随机,概率侧重于建立理论模型来刻画随机。鼓励学生运用数据来体会随机,更能体会随机的特点。下面是课程标准修订组组长史宁中教授的回答。
需要指出的是,教学中应鼓励学生运用所学习的方法,尽可能多地从数据中提取有用的数据,并且能够根据问题的背景选择合适的方法,而不是单纯地名词、计算方法等的掌握。这里不妨看一下《标准》中对于案例38的说明:“条形统计图有利于直观了解不同高度段的学生数及其差异;扇形统计图有利于直观了解不同高度段的学生占全班学生的比例及其差异;折线统计图有利于直观了解几年来学生身高变化的情况,预测未来身高变化趋势”,因此需要我们根据问题的背景选择合适的统计图。总之,“统计学对结果的判断标准是‘好坏’”,而不是“对错”。
四、随机现象及简单随机事件发生的概率
在这次课程标准修订中,学生在第一学段中将不再学习概率,主要理由是在基础教育阶段统计的重要性是大于概率的,发展学生的数据分析观念是这部分内容的核心。即使对于随机的学习,如前所述,《标准》中也提出运用数据分析来体会随机性。从第二学段开始,《标准》安排了概率的学习,并且根据学生年龄特点,第二学段称为“随机现象发生的可能性”,第三学段称为“事件的概率”。
我并不是反对前一种教法本身,而是说如果这么教,蕴含的随机思想并不强,学生也不感兴趣,都知道了概率为什么还要做实验。而后来的这种教法,学生体会到每一次摸的结果事先都不知道,但是摸多了能够帮助我们做一些判断。这样一来,学生既体会了随机,又感受到了数据中蕴含着信息,我想这种类似于“猜谜”的活动学生也会很有兴趣”。
在第二学段,学生将学习条形统计图、扇形统计图、折线统计图等常见的统计图,并且能用它们直观、有效地表示数据。第二学段还将学习一个重要的刻画数据集中趋势的统计量——平均数。
在第三学段,学生将了解频数和频数分布的意义,能画频数直方图。继续学习刻画数据集中趋势的统计量——中位数和众数,以及刻画数据离散程度的统计量——极差、方差。并且体会样本与总体关系,知道可以通过样本平均数、样本方差推断总体平均数推断性数据分析的目的是要通过数据来推测产生这些数据的背景,称这个背景为总体。我们假定总体是未知的,我们的目的是通过样本来推断总体。而在调查或者实验之前,我们不可能知道数据的具体取值。也就是说,数据可以取不同的值,并且取不同值的概率可以是不一样的,这就是数据随机性的由来。
在《标准》中将数据随机作为了数据分析观念的内涵之一。数据的随机主要有两层涵义:一方面对于同样的事情每次收集到的数据可能会是不同的;另一方面只要有足够的数据就可能从中发现规律。举一个《标准》中的例子(例40):袋中装有若干个红球和白球,一方面,每次摸出的球的颜色可能是不一样的,事先无法确定;另一方面,有放回重复摸多次(摸完后将球放回袋中,摇晃均匀后再摸),从摸到的球的颜色的数据中就能发现一些规律,比如红球多还是白球多、红球和白球的比例等。再举一个案例(例22),学生记录自己在一个星期内每天上学途中所需要的时间,如果把记录时间精确到分,可能学生每天上学途中需要的时间是不一样的,可以让学生感悟数据的随机性;更进一步,让学生感悟虽然数据是随机的,但数据较多时具有某种稳定性,可以从中得到很多信息,比如,通过一个星期的调查可以知道“大概”需要多少时间。
实际上这种“猜谜”绝不是“瞎猜”,在《标准》案例40的说明中给出了这种推断背后的科学依据,也就是虽然不能保证估计得完全一致,但能保证在一定实验次数下,估计值与实际情况相差不大的可能性是很大的。
在第三学段,学生开始学习抽样,体会样本和总体的关系,这实际上也是帮助学生体会数据的随机性的重要内容。同时,《标准》还利用案例阐述了在第二学段、第三学段的不同要求。在上面提到的摸球游戏中,在第二学段“通过摸球,学生发现每次摸出的球的颜色不确定,初步感受数据的随机性。进一步通过统计摸出红球和白球的数量,可以估计袋中是白球多还是红球多。在不确定的基础上,体会规律性”。在第三学段“在第二学段的基础上,学生可以估计袋中白球数量和红球数量的比,进一步体会规律性。教师可以进一步鼓励学生思考:给出了袋中两种颜色球的总数,如何估计白球和红球各自的数量”。另外,在第三学段,《标准》还提出了“通过表格、折线图、趋势图等,感受随机现象的变化趋势”,并给出了案例71。案例71刻画的是变量之间的随机关系,即年份与GDP是有关系的,但这种关系是不确定的。因为描点呈现线性增长趋势,可以进一步引导学生利用直线来表示这种趋势。教学中,可以鼓励学生尝试大致画出这条直线,比如有的学生会根据直线两侧的点要基本相同来描出此直线,并由此预测未来经济发展,感悟一些随机现象的规律性。对于直线方程如何求得,则不做要求。
2.整理、描述、分析数据的方法
当人们收集了一堆数据以后,这些数据往往看起来比较杂乱,这就需要来整理数据,在不损失信息的前提下,对看起来杂乱无章的数据进行必要的归纳和整理,然后把整理后的数据运用统计图表等直观地表示出来,并加以适当的分析,为人们作出决策和推断提供依据。
在第一学段,学生将学习分类的方法,分类是整理数据和描述数据的开始。在此基础上,能用自己的方式(文字、图画、表格等)呈现整理数据的结果,而不学习正式的统计图表或统计量。这一点与以往不同,也是非常重要的。有研究表明,早期经验的多样化,有助于儿童建立进一步学习的经验和兴趣。在此基础上“通过对数据的简单分析,体会运用数据进行表达与交流的作用,感受数据蕴涵信息”。
第十章统计与概率内容分析
统计与概率的内容在新课程中得到了较大重视,成为了和数与代数、图形与几何、综合与实践并列的四部分内容,而统计则成为这一部分内容的重点。统计的核心是数据分析,“数据是信息的载体,这个载体包括数,也包括言语、信号、图像,凡是能够承载事物信息的东西都构成数据,而统计学就是通过这些载体来提取信息进行分析的科学和艺术”。
第一节统计与概率课程的内容主线
如前所述,核心概念是理解数学课程的基本线索,《标准》中将数据分析观念作为了核心概念,为理解这部分内容的主线提供了重要指导。在《标准》中,将数据分析观念解释为:“了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。数据分析是统计的核心。”基于这些阐述,可以将统计与概率课程的内容主线确定为如下几个方面。
一、数据分析过程
使学生树立数据分析的观念,最有效地方法是使他们投入到数据分析的全过程中去。在此过程中,学生将不仅仅学习一些必要的知识和方法,同时将体会数据中蕴涵着信息,提高自己运用数据分析问题、解决问题的能力。
为此,《标准》在三个阶段都提出了相应的要求,这也成为了统计内容的首要主线。在第一学段中,提出“经历简单的数据收集和整理过程”;在第二学段中,提出“经历简单的收集、整理、描述和分析数据的过程(可使用计算器)”;在第三阶段中提出“经历收集、整理、描述和分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据”。从这些要求中不难看出:
需要指出的是,我们赞成做实验,赞成运用统计的思想来做实验。统计是通过数据来获取一些信息,来帮助人们做出一些判断。同样是掷硬币的问题,在统计上就会这样设计实验:先让学生多次掷硬币,计算出现正面的比例(频率),然后用频率来估计一下出现正面的可能性是多大。如果这个可能性接近 的话,就推断这个硬币大概是均匀的,这是统计的思想。
第一学段(《标准》例19):对全班同学的身高进行调查分析。
[说明]学校一般每年都要测量学生的身高,这为学习统计提供了很好的数据资源,因此这个问题可以贯穿第一学段和第二学段,根据不同学段的学生特点,要求可以有所不同。希望学生把每年测量身高的数据都保留下来,养成保存资料的习惯。在第一学段,主要让学生感悟可以从数据中得到一些信息。
下面,我们以《标准》的例子来进一步体会这条主线的内涵及要求。在三个学段,《标准》都举了对全班同学的身高进行分析的例子,并且鼓励学生把每年测量身高的数据都保留下来,根据不同学段的特点对于数据进行整理、描述和分析,提取信息,从而经历数据分析的过程。具体阐述和要求如下。
[案例1]三个学段中对于数据分析过程的例子
相关文档
最新文档