苏州市九年级上学期期末数学试卷 (解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏州市九年级上学期期末数学试卷 (解析版)
一、选择题
1.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )
A .40
B .50
C .60
D .70 2.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )
A .5
B .4
C .3
D .2
3.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )
A .20°
B .25°
C .30°
D .50° 4.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )
A .5d <
B .5d >
C .5d =
D .5d ≤
5.若将二次函数2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则
所得图象对应函数的表达式为( )
A .2(2)2y x =++
B .2(2)2y x =--
C .2(2)2y x =+-
D .2(2)2y x =-+
6.已知OA ,OB 是圆O 的半径,点C ,D 在圆O 上,且//OA BC ,若
26ADC ∠=︒,则B 的度数为( )
A .30
B .42︒
C .46︒
D .52︒
7.将抛物线2
3y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )
A .23(2)3y x =++
B .23(2)3y x =-+
C .23(2)3y x =+-
D .23(2)3y x =-- 8.已知5
2x y =,则x y y
-的值是( ) A .
12 B .2
C .
32
D .
23
9.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )
A .30°
B .45°
C .60°
D .80°
10.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和
D 、
E 、
F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )
A .4.4
B .4
C .3.4
D .2.4
11.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( )
A .(4,5)
B .(﹣4,5)
C .(4,﹣5)
D .(﹣4,﹣5)
12.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( ) A .
14
B .
13
C .
12
D .
23
13.方程x 2=4的解是( )
A .x=2
B .x=﹣2
C .x 1=1,x 2=4
D .x 1=2,x 2=﹣2
14.如图,在平面直角坐标系xOy 中,二次函数2
1y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )
A .0,0a b >>
B .0,0a b <<
C .0,0a b ><
D .0,0a b <>
15.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则
∠PCA 等于( )
A .50°
B .60°
C .65°
D .75°
二、填空题
16.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.
17.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______. 18.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.
19.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.
20.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.
21.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米; 22.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是
54
π
,则O 的半径是__________.
23.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线
BC 是双曲线k
y x
=
的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.
24.若32x y =,则x y y
+的值为_____. 25.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ . 26.数据1、2、3、2、4的众数是______.
27.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.
28.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数
为y,则这m n个数据的平均数等于______.
29.如图,边长为2的正方形ABCD,以AB为直径作O,CF与O相切于点E,
的面积为__________.
与AD交于点F,则CDF
30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC中,AB=AC,若△ABC是“好玩三角形”,则tanB____________。
三、解答题
31.如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=8.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设 AE=m.
(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)
(2)写出矩形EFGH的个数及对应的m的取值范围.
32.已知二次函数y=x2-2x+m(m为常数)的图像与x轴相交于A、B两点.
(1)求m的取值范围;
(2)若点A、B位于原点的两侧,求m的取值范围.
33.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y(件)与销售单价x(元)之间存在着如图所示的一次函数关系.
(1)求y与x之间的函数关系式;
(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.
34.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x元时,日盈利为w元.据此规律,解决下列问题:
(1)降价后每件商品盈利元,超市日销售量增加件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?
35.一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次.
(1)用树状图列出所有可能出现的结果;
(2)求3次摸到的球颜色相同的概率.
四、压轴题
36.如图1:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE.继续推理就可以使问题得到解决.
(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;
(2)如图2,在Rt△ABC中,AB=AC,D为△ABC外的一点,且∠ADC=45°,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;
(3)如图3,已知AB是⊙O的直径,点C,D是⊙O上的点,且∠ADC=45°.
①若AD=6,BD=8,求弦CD的长为;
②若AD+BD=14,求
2
AD BD CD
2
⎛⎫
⋅+
⎪
⎪
⎝⎭
的最大值,并求出此时⊙O的半径.
37.如图,在矩形ABCD中,E、F分别是AB、AD的中点,连接AC、EC、EF、
⊥.
FC,且EC EF
∽;
(1)求证:AEF BCE
AC=,求AB的长;
(2)若23
△的外接圆圆心之间的距离?(3)在(2)的条件下,求出ABC的外接圆圆心与CEF
38.我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.
(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.
(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.
(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.
MN=,在劣弧MN和优弧MN上分别有39.MN是O上的一条不经过圆心的弦,4
AM BM.
点A,B(不与M,N重合),且AN BN
=,连接,
(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:
290MOD DMO ︒∠+∠=;
(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求
出这个值;若不是,请说明理由.
40.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.
(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;
(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,
2AB =,6BD =CD 的长;
(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】 【分析】
根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】
解:∵ ADC=110°,即优弧ABC的度数是220°,
∴劣弧ADC的度数是140°,
∴∠AOC=140°,
∵OC=OB,
∴∠OCB=1
2
∠AOC=70°,
故选D.
【点睛】
本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
2.D
解析:D
【解析】
【分析】
满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.
【详解】
解:根据题意得,
a-1=1,2+m=2,
解得,a=2,m=0,
∴a-m=2.
故选:D.
【点睛】
本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.
3.B
解析:B
【解析】
【分析】
利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=
AC BC,然后根据圆周角定理计算∠ADC的度数.
【详解】
∵BC的度数为50°,
∴∠BOC=50°,
∵半径OC⊥AB,
∴=
AC BC,
∴∠ADC=1
2
∠BOC=25°. 故选B . 【点睛】
本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.
4.B
解析:B 【解析】 【分析】
直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可. 【详解】
解:∵直线l 与半径为5的O 相离,
∴圆心O 与直线l 的距离d 满足:5d >.
故选:B. 【点睛】
本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.
5.C
解析:C 【解析】 【分析】
根据抛物线的平移规律:上加下减,左加右减解答即可. 【详解】 解:将2y
x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函
数的表达式为:2
(2)2y x =+-. 故选:C. 【点睛】
本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.
6.D
解析:D 【解析】 【分析】
连接OC ,根据圆周角定理求出∠AOC ,再根据平行得到∠OCB ,利用圆内等腰三角形即可求解. 【详解】 连接CO ,
∵26ADC ∠=︒
∴∠AOC=252ADC ∠=︒
∵//OA BC
∴∠OCB=∠AOC=52︒
∵OC=BO ,
∴B =∠OCB=52︒
故选D.
【点睛】
此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.
7.A
解析:A
【解析】
【分析】
直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】
将抛物线2
3y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 8.C 解析:C
【解析】
【分析】
设x=5k (k ≠0),y=2k (k ≠0),代入求值即可.
【详解】
解:∵52
x y = ∴x=5k (k ≠0),y=2k (k ≠0)
∴52322
x y k k y k --== 故选:C .
【点睛】
本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.
9.C
【解析】
【分析】
设∠A 、∠C 分别为x 、2x ,然后根据圆的内接四边形的性质列出方程即可求出结论.
【详解】
解:设∠A 、∠C 分别为x 、2x ,
∵四边形ABCD 是圆内接四边形,
∴x +2x =180°,
解得,x =60°,即∠A =60°,
故选:C .
【点睛】
此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.
10.D
解析:D
【解析】
【分析】
根据平行线等分线段定理列出比例式,然后代入求解即可.
【详解】
解:∵////a b c ∴
AB DE BC EF
= 即1.5 1.82EF = 解得:EF=2.4 故答案为D .
【点睛】
本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.
11.D
解析:D
【解析】
【分析】
根据二次函数的顶点式即可直接得出顶点坐标.
【详解】
∵二次函数()2
345y x +=-
∴该函数图象的顶点坐标为(﹣4,﹣5),
故选:D .
【点睛】
本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ).
解析:C
【解析】
【分析】
画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.
【详解】
根据题意画图如下:
共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,
则2次抽出的签上的数字的和为正数的概率为
6
12
=
1
2
;
故选:C.
【点睛】
本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,
13.D
解析:D
【解析】
x2=4,
x=±2.
故选D.
点睛:本题利用方程左右两边直接开平方求解.
14.D
解析:D
【解析】
【分析】
根据二次函数y=ax2+bx+1的图象经过点A,B,画出函数图象的草图,根据开口方向和对称轴即可判断.
【详解】
解:由二次函数y=ax2+bx+1可知图象经过点(0,1),
∵二次函数y=ax2+bx+1的图象还经过点A,B,
则函数图象如图所示,
抛物线开口向下,
∴a <0,,
又对称轴在y 轴右侧,即02b a
-
> , ∴b >0,
故选D 15.C
解析:C
【解析】
【分析】
根据切线的性质,由PD 切⊙O 于点C 得到∠OCD =90°,再利互余计算出∠DOC =50°,由∠A =∠ACO ,∠COD =∠A +∠ACO ,所以1252A COD ∠=
∠=︒,然后根据三角形外角性质计算∠PCA 的度数.
【详解】
解:∵PD 切⊙O 于点C ,
∴OC ⊥CD ,
∴∠OCD =90°,
∵∠D =40°,
∴∠DOC =90°﹣40°=50°,
∵OA =OC ,
∴∠A =∠ACO ,
∵∠COD =∠A +∠ACO ,
∴1252
A COD ∠=∠=︒, ∴∠PCA =∠A +∠D =25°+40°=65°.
故选C .
【点睛】
本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.
二、填空题
16.115°
【解析】
【分析】
根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.
【详解】
由题意可知:CA=CE,∠ACE=90°,
∴∠E=∠CAE=45°,
∵∠ACD=7
解析:115°
【解析】
【分析】
根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.
【详解】
由题意可知:CA=CE,∠ACE=90°,
∴∠E=∠CAE=45°,
∵∠ACD=70°,
∴∠DCE=20°,
∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,
故答案为115°.
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.
17.8
【解析】
【分析】
根据平均数是5,求m值,再根据方差公式计算,方差公式为:(表示样本的平均数,n表示样本数据的个数,S2表示方差.)
【详解】
解:∵4,4,,6,6的平均数是5,
∴4+4
解析:8
【解析】
【分析】
根据平均数是5,求m 值,再根据方差公式计算,方差公式为:
2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)
【详解】
解:∵4,4,m ,6,6的平均数是5,
∴4+4+m+6+6=5×5,
∴m=5,
∴这组数据为4,4,m ,6,6,
∴22222214545556565=0.85S ,
即这组数据的方差是0.8.
故答案为:0.8.
【点睛】
本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.
18.∠P=∠B (答案不唯一)
【解析】
【分析】
要使△APQ ∽△ABC ,在这两三角形中,由∠PAB=∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或.
【详解】
解:这个条件
解析:∠P =∠B (答案不唯一)
【解析】
【分析】
要使△APQ ∽△ABC ,在这两三角形中,由∠PAB =∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或
AP AQ AB AC =. 【详解】
解:这个条件为:∠B=∠P
∵∠PAB =∠QAC ,
∴∠PAQ=∠BAC
∵∠B=∠P ,
∴△APQ ∽△ABC ,
故答案为:∠B=∠P 或∠C=∠Q 或
AP AQ AB AC
=. 【点睛】
本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.19.【解析】
【分析】
用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.
【详解】
解:因为蓝色区域的圆心角的度数为120°,
所以指针落在红色区域内的概率是=,
故答案为.
【
解析:2 3
【解析】
【分析】
用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】
解:因为蓝色区域的圆心角的度数为120°,
所以指针落在红色区域内的概率是360120
360
-
=
2
3
,
故答案为2 3 .
【点睛】
本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.
20.【解析】
【分析】
根据弧长的公式列式计算即可.
【详解】
∵一个扇形的半径长为3,且圆心角为60°,
∴此扇形的弧长为=π.
故答案为:π.
【点睛】
此题考查弧长公式,熟记公式是解题关键.
解析:π
【解析】
【分析】
根据弧长的公式列式计算即可.
【详解】
∵一个扇形的半径长为3,且圆心角为60°, ∴此扇形的弧长为
603180
π⨯=π. 故答案为:π.
【点睛】
此题考查弧长公式,熟记公式是解题关键. 21.6
【解析】
【分析】
现将函数解析式配方得,即可得到答案.
【详解】
,
∴当t=1时,h 有最大值6.
故答案为:6.
【点睛】
此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6
【解析】
【分析】
现将函数解析式配方得221266(1)6h t
t t =--=+﹣,即可得到答案. 【详解】
221266(1)6h t t t =--=+﹣,
∴当t=1时,h 有最大值6.
故答案为:6.
【点睛】
此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.
22.【解析】
【分析】
连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.
【详解】
解:连接OB 、OC ,如图,
∵,
∴∠BOC=90°, ∵的长是,
∴,
解得:
解析:52
【解析】
【分析】
连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.
【详解】
解:连接OB 、OC ,如图,
∵45BAC ∠=︒,
∴∠BOC =90°,
∵BC 的长是
54π, ∴9051804
OB ππ⋅=, 解得:52OB =
. 故答案为:52
.
【点睛】
本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键. 23.24
【解析】
【详解】
点B 是抛物线y=﹣x2+4x+2的顶点,
∴点B 的坐标为(2,6),
2018÷6=336…2,故点P 离x 轴的距离与点B 离x 轴的距离相同,
∴点P 的坐标为(2018,6),
解析:24
【解析】
【详解】
点B是抛物线y=﹣x2+4x+2的顶点,
∴点B的坐标为(2,6),
2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),
∴m=6;
点B(2,6)在
k
y
x
=的图象上,
∴k=6;
即
12
y
x
=,
2025÷6=337…3,故点Q离x轴的距离与当x=3时,函数
12
y
x
=的函数值相等,
又x=3时,
12
4
3
y==,
∴点Q的坐标为(2025,4),
即n=4,
∴mn=6424.
⨯=
故答案为24.
【点睛】
本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P、Q在A﹣B﹣C段上的对应点是解题的关键.
24..
【解析】
【分析】
根据比例的合比性质变形得:
【详解】
∵,
∴
故答案为:.
【点睛】
本题主要考查了合比性质,对比例的性质的记忆是解题的关键.
解析:5
2
.
【解析】【分析】
根据比例的合比性质变形得:
325
.
22 x y
y
++
==
【详解】
∵
3
2
x
y
=,
∴
325
.
22 x y
y
++
==
故答案为:5 2 .
【点睛】
本题主要考查了合比性质,对比例的性质的记忆是解题的关键.25.4
【解析】
【分析】
先列举出所有上升数,再根据概率公式解答即可.
【详解】
解:两位数一共有99-10+1=90个,
上升数为:
共8+7+6+5+4+3+2+1=36个.
概率为36÷90=
解析:4
【解析】
【分析】
先列举出所有上升数,再根据概率公式解答即可.
【详解】
解:两位数一共有99-10+1=90个,
上升数为:
共8+7+6+5+4+3+2+1=36个.
概率为36÷90=0.4.
故答案为:0.4.
26.2
【解析】
【分析】
根据众数的定义直接解答即可.
【详解】
解:数据1、2、3、2、4中,
∵数字2出现了两次,出现次数最多,
∴2是众数,
故答案为:2.
【点睛】
此题考查了众数,掌握众数的
解析:2
【解析】
【分析】
根据众数的定义直接解答即可.
【详解】
解:数据1、2、3、2、4中,
∵数字2出现了两次,出现次数最多,
∴2是众数,
故答案为:2.
【点睛】
此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.27.2+2
【解析】
【分析】
作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.
【详解】
如图所示,过点A作AD⊥O
解析:
2
【解析】
【分析】
作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.
【详解】
如图所示,过点A作AD⊥OB于点D,
由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,
∴∠DAB=45°,
在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×1
2
=2(km),
OD=OAcos∠AOD=4×cos30°=4×
3
2
=3km),
在Rt△ABD中,BD=AD=2km,
∴OB=OD+BD=32(km),
故答案为:32.
【点睛】
本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.
28..
【解析】
【分析】
根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.
【详解】
平均数等于总和除以个数,所以平均数.
【点睛】
本题考查求加权平均数,解题的关键是掌握加权平均数的
解析:mx ny m n
+
+
.
【解析】
【分析】
根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】
平均数等于总和除以个数,所以平均数
mx ny
m n
+
=
+
.
【点睛】
本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法. 29.【解析】
【分析】
运用切线长定理和勾股定理求出DF ,进而完成解答.
【详解】
解:∵与相切于点,与交于点
∴EF=AF,EC=BC=2
设EF=AF=x,则CF=2+x,DF=2-x
在Rt △C 解析:32
【解析】
【分析】
运用切线长定理和勾股定理求出DF ,进而完成解答.
【详解】
解:∵CF 与O 相切于点E ,与AD 交于点F
∴EF=AF,EC=BC=2
设EF=AF=x,则CF=2+x,DF=2-x
在Rt △CDF 中,由勾股定理得:
DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22
解得:x=12,则DF=32
∴CDF ∆的面积为
13222⨯⨯=32 故答案为
32
. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.
30.2或
【解析】
【分析】
分两种情形分别求解即可解决问题.
【详解】
①如图1中,取BC 的中点H ,连接AH .
∵AB=AC,BH=CH ,
∴AH⊥BC,设BC=AH=2a ,则BH=CH=a ,
∴t
解析:2或
15 【解析】
【分析】 分两种情形分别求解即可解决问题.
【详解】 ①如图1中,取BC 的中点H ,连接AH .
∵AB=AC ,BH=CH ,
∴AH ⊥BC ,设BC=AH=2a ,则BH=CH=a ,
∴tanB=2AH a BH a
==2. ②取AB 的中点M ,连接CM ,作CN ⊥AM 于N ,如图2.
设CM=AB=AC=4a ,则BM=AM=2a ,
∵CN ⊥AM ,CM=CA ,
∴AN=NM=a ,
在Rt △CNM 中,()22=154a a a -, ∴tanB=151533
a a =, 故答案为2或
153. 【点睛】
本题考查解直角三角形、等腰三角形的性质、“好玩三角形”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题. 三、解答题
31.(1)见解析;(2)①当m =0时,存在1个矩形EFGH ;②当0<m <
95时,存在2个矩形EFGH ;③当m =
95时,存在1个矩形EFGH ;④当95<m ≤185时,存在2个矩形EFGH ;⑤当
185
<m <5时,存在1个矩形EFGH ;⑥当m =5时,不存在矩形EFGH . 【解析】
【分析】
(1)以O点为圆心,OE长为半径画圆,与菱形产生交点,顺次连接圆O与菱形每条边的同侧交点即可;
(2)分别考虑以O为圆心,OE为半径的圆与每条边的线段有几个交点时的情形,共分五种情况.
【详解】
(1)如图①,如图②(也可以用图①的方法,取⊙O与边BC、CD、AD的另一个交点即可)
(2)∵O到菱形边的距离为12
5
,当⊙O与AB相切时AE=
9
5
,当过点A,C时,⊙O与AB交
于A,E两点,此时AE=9
5
×2=
18
5
,根据图像可得如下六种情形:
①当m=0时,如图,存在1个矩形EFGH;
②当0<m<9
5
时,如图,存在2个矩形EFGH;
③当m=9
5
时,如图,存在1个矩形EFGH;
④当9
5
<m≤
18
5
时,如图,存在2个矩形EFGH;
⑤当18
5
<m<5时,如图,存在1个矩形EFGH;
⑥当m=5时,不存在矩形EFGH.
【点睛】
本题考查了尺规作图,菱形的性质,以及圆与直线的关系,将能作出的矩形个数转化为圆O与菱形的边的交点个数,综合性较强.
32.(1)m<1;(2)m<0
【解析】
【分析】
(1)根据题意可知一元二次方程有两个不相等的实数根,即b2-4ac>0然后利用根的判别
式确定取值范围;(2)由题意得:x 1x 2<0,即m <0,即可求解;
【详解】
解:(1)∵二次函数y =x 2-2x +m 的图象与x 轴相交于A 、B 两点
则方程x 2-2x +m=0有两个不相等的实数根
∴b 2-4ac >0,
∴4-4m >0,
解得:m <1;
(2)∵点A 、B 位于原点的两侧
则方程x 2-2x +m=0的两根异号,即x 1x 2<0 ∵12c x x m a
=
= ∴m <0
【点睛】
本题考查的是二次函数图象与系数的关系,要求学生对函数基本性质、函数与坐标轴的交点等的求解熟悉,这是一个综合性很好的题目.
33.(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x ≤56
【解析】
【分析】
(1)直接利用待定系数法求出一次函数解析式即可;
(2)利用w=销量乘以每件利润进而得出关系式求出答案;
(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.
【详解】
解:(1)y 与x 之间的函数关系式为:y kx b =+
把(35,350),(55,150)代入得: 由题意得:3503515055k b k b =+⎧⎨=+⎩
解得:10700k b =-⎧⎨=⎩
∴y 与x 之间的函数关系式为:10700y x =-+.
(2)设销售利润为W 元
则W=(x ﹣30)•y =(x ﹣30)(﹣10x +700),
W =﹣10x 2+1000x ﹣21000
W =﹣10(x ﹣50)2+4000
∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.
(3)令W =3640
∴﹣10(x ﹣50)2+4000=3640
∴x 1=44,x 2=56
如图所示,由图象得:
当44≤x≤56时,每天利润不低于3640元.
【点睛】
此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.
34.(1)(30-x);10x;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元.【解析】
【分析】
(1)降价后的盈利等于原来每件的盈利减去降低的钱数;件降价1元,超市平均每天可多售出10件,则降价x元,超市平均每天可多售出10x件;
(2)等量关系为:每件商品的盈利×可卖出商品的件数=利润w,化为一般式后,再配方可得出结论.
【详解】
解:(1)降价后每件商品盈利(30-x)元;,超市日销售量增加10x件;
(2)设每件商品降价x元时,利润为w元
根据题意得:w=(30-x)(100+10x)= -10x2+200x+3000=-10(x-10)2+4000
∵-10<0,∴w有最大值,
当x=10时,商场日盈利最大,最大值是4000元;
答:每件商品降价10元时,商场日盈利最大,最大值是4000元.
【点睛】
本题考查的知识点是二次函数的实际应用,根据题意找出等量关系式列出利润w关于x的二次函数解析式是解题的关键.
35.(1)见解析;(2)1 4
【解析】
【分析】
(1)根据题意画树状图,求得所有等可能的结果;
(2)由(1)可求得3次摸到的球颜色相同的结果数,再根据概率公式即可解答.【详解】
(1)画树状图为:
共有8种等可能的结果数;
(2)3次摸到的球颜色相同的结果数为2,
3次摸到的球颜色相同的概率=2
8
=
1
4
.
【点睛】
本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.
四、压轴题
36.(1)CD2+BD2=2AD2,见解析;(2)BD2=CD2+2AD2,见解析;(3)①2,②最
大值为441
4
,半径为
710
4
【解析】
【分析】
(1)先判断出∠BAD=CAE,进而得出△ABD≌△ACE,得出BD=CE,∠B=∠ACE,再根据勾股定理得出DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,即可得出结论;
(2)同(1)的方法得,ABD≌△ACE(SAS),得出BD=CE,再用勾股定理的出DE2=
2AD2,CE2=CD2+DE2=CD2+2AD2,即可得出结论;
(3)先根据勾股定理的出DE2=CD2+CE2=2CD2,再判断出△ACE≌△BCD(SAS),得出AE =BD,
①将AD=6,BD=8代入DE2=2CD2中,即可得出结论;
②先求出CD=2,再将AD+BD=14,CD=2代入
2
AD BD
⎛⎫
⋅ ⎪
⎪
⎝⎭
,化简得出﹣
(AD﹣21
2
)2+
441
4
,进而求出AD,最后用勾股定理求出AB即可得出结论.
【详解】
解:(1)CD2+BD2=2AD2,
理由:由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,
∴△ABD≌△ACE(SAS),
∴BD=CE,∠B=∠ACE,
在Rt△ABC中,AB=AC,
∴∠B=∠ACB=45°,
∴∠ACE=45°,
∴∠DCE=∠ACB+∠ACE=90°,
根据勾股定理得,DE2=CD2+CE2=CD2+BD2,
在Rt△ADE中,DE2=AD2+AE2=2AD2,
∴CD2+BD2=2AD2;
(2)BD2=CD2+2AD2,
理由:如图2,
将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE,同(1)的方法得,ABD≌△ACE(SAS),
∴BD=CE,在Rt△ADE中,AD=AE,
∴∠ADE=45°,
∴DE2=2AD2,
∵∠ADC=45°,
∴∠CDE=∠ADC+∠ADE=90°,
根据勾股定理得,CE2=CD2+DE2=CD2+2AD2,
即:BD2=CD2+2AD2;
(3)如图3,过点C作CE⊥CD交DA的延长线于E,
∴∠DCE=90°,
∵∠ADC=45°,
∴∠E=90°﹣∠ADC=45°=∠ADC,
∴CD=CE,
根据勾股定理得,DE2=CD2+CE2=2CD2,
连接AC,BC,
∵AB是⊙O的直径,
∴∠ACB=∠ADB=90°,
∵∠ADC=45°,
∴∠BDC=45°=∠ADC,
∴AC=BC,
∵∠DCE=∠ACB=90°,
∴∠ACE=∠BCD,
∴△ACE≌△BCD(SAS),
∴AE=BD,
①AD=6,BD=8,
∴DE=AD+AE=AD+BD=14,。