杭锦后旗初中2018-2019学年七年级下学期数学第一次月考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杭锦后旗初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________一、选择题
1.(2分)学校买来一批书籍,如图所示,故事书所对应的扇形的圆心角为()
A. 45°
B. 60°
C. 54°
D. 30°【答案】C
【考点】扇形统计图
【解析】【解答】解:15÷(30+23+15+32)×360°=54°.
故答案为:C
【分析】计算故事书所占的百分比,然后乘以360°可得对应的圆心角的度数.
2.(2分)解为的方程组是()
A.
B.
C.
D.
【答案】D
【考点】二元一次方程组的解
【解析】【解答】解:将分别代入A、B、C、D四个选项进行检验,
能使每个方程的左右两边相等的x、y的值即是方程的解.
A、B、C均不符合,
只有D满足.
故答案为:D.
【分析】由题意把x=1和y=2代入方程组计算即可判断求解。

3.(2分)已知是二元一次方程组的解,则的值为()
A.
B.
C.
D.
【答案】B
【考点】二元一次方程的解,解二元一次方程组
【解析】【解答】解:∵是二元一次方程组的解,
∴,

∴a-b=
故答案为:B
【分析】将已知x、y的值分别代入方程组,建立关于a、b的方程组,解方程组求出a、b的值,然后将a、b的值代入代数式计算即可。

4.(2分)是二元一次方程的一个解,则a的值为()
A.1
B.
C.3
D.-1
【答案】B
【考点】二元一次方程的解
【解析】【解答】解:将x=1,y=3代入2x+ay=3得:2+3a=3,
解得:a= .
故答案为:B.
【分析】方程的解就是能使方程的左边和右边相等的未知数的值,根据定义将将x=1,y=3代入2x+ay=3即可得出关于字母a的方程,求解即可得出a的值。

5.(2分)如图,已知A1B∥A n C,则∠A1+∠A2+…+∠A n等于()
A.180°n
B.(n+1)·180°
C.(n-1)·180°
D.(n-2)·180°
【答案】C
【考点】平行线的性质
【解析】【解答】解:如图,过点A2向右作A2D∥A1B,过点A3向右作A3E∥A1B,……
∵A1B∥A n C,
∴A3E∥A2D∥…∥A1B∥A n C,
∴∠A1+∠A1A2D=180°,∠DA2A3+∠A2A3E=180°,….
∴∠A1+∠A1A2A3+…+∠A n-1A n C=(n-1)·180°.
故答案为:C.
【分析】过点A2向右作A2D∥A1B,过点A3向右作A3E∥A1B,……根据平行的传递性得A3E∥A2D∥…∥A1B∥A n C,再由平行线的性质得∠A1+∠A1A2D=180°,∠DA2A3+∠A2A3E=180°,….将所有式子相加即可得证.
6.(2分)下列说法:①5是25的算术平方根, ②是的一个平方根;③(-4)2的平方根是±2;④立方根和算术平方根都等于自身的数只有1.其中正确的是()
A. ①②
B. ①③
C. ①②④
D. ③④
【答案】A
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:①5是25的算术平方根,正确;
②是的一个平方根,正确;
③(-4)2=16的平方根是±4,故③错误;
④立方根和算术平方根都等于自身的数有1和0,错误;
正确的有:①②
故答案为:A
【分析】根据算术平方根的定义,可对①作出判断;根据平方根的性质:正数的平方根有两个。

它们互为相反数,可对②③作出判断;立方根和算术平方根都等于自身的数有1和0,,可对④作出判断。

即可得出正确说法的序号。

7.(2分)下面是两个学校男生和女生的统计图。

甲校和乙校的女生人数相比,下面选项正确的是
()。

A. 甲校多
B. 乙校多
C. 无法比较
D. 一样多
【答案】C
【考点】扇形统计图
【解析】【解答】解:当甲校学生=乙校学生时,甲校和乙校的女生人数比=50%40%= ;当甲校学生≠乙校学生时,无法比较。

故答案为:C。

【分析】因为甲、乙两校的学生数不明确,也就是单位“1”不统一,分率标准不一致,所以无法进行比较。

8.(2分)在,π,,1.5(。

)1(。

),中无理数的个数有()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】A
【考点】无理数的认识
【解析】【解答】解:∵无理数有:,
故答案为:A.
【分析】无理数:无限不循环小数,由此即可得出答案.
9.(2分)如图是“百姓热线电话”一周内接到的热线电话情况统计图,其中关于环境保护问题的电话70个,本周“百姓热线电话”共接热线电话()个.
A. 180
B. 190
C. 200
【答案】C
【考点】扇形统计图
【解析】【解答】解:70÷35%=200(个),
故答案为:C.
【分析】由统计图知,环境保护问题的电话占本周内接到的热线电话量的35%,根据求一个数的百分之几是多少,把本周内接到的热线电话量看作单位“1”,求单位“1”用除法计算.
10.(2分)小明只带2元和5元两种面值的人民币,他买一件学习用品要支付23元,则付款的方式有()
A.1种
B.2种
C.3种
D.4种
【答案】B
【考点】二元一次方程的应用
【解析】【解答】解:设用了2元x张,5元y张,则
2x+5y=23,
2x=23-5y,
x= ,
∵x,y均为正整数,
∴或.
即付款方式有2种:(1)2元9张,5元1张;(2)2元4张,5元3张.
故答案为:B.
【分析】设用了2元x张,5元y张,根据学习用品的费用=23元,列方程,再求出方程的正整数解。

11.(2分)三元一次方程组的解为()
A. B. C. D.
【答案】C
【考点】三元一次方程组解法及应用
【解析】【解答】解:
②×4−①得2x−y=5④
②×3+③得5x−2y=11⑤
④⑤组成二元一次方程组得,
解得,
代入②得z=−2.
故原方程组的解为.
故答案为:C.
【分析】观察方程组中同一个未知数的系数特点:z的系数分别为:4,1、-3,存在倍数关系,因此由②×4−①;②×3+③分别消去z,就可得到关于x、y的二元一次方程组,利用加减消元法求出二元一次方程组的解,然后将x、y的值代入方程②求出z的值,就可得出方程组的解。

12.(2分)如图是根据淘气家上个月各项支出分配情况绘制的统计图.如果他家的生活费支出是750元,那么教育支出是()
A. 2000元
B. 900元
C. 3000元
D. 600元
【答案】D
【考点】扇形统计图
【解析】【解答】解:750÷25%×20%=3000×20%=600(元),
所以教育支出是600元.
故答案为:D.
【分析】把总支出看成单位“1”,它的25%对应的数量是750元,由此用除法求出总支出,然后用总支出乘上20%就是教育支出的钱数.
二、填空题
13.(3分)已知a、b、c满足,则a=________,b=________,c=________.
【答案】2;2;-4
【考点】三元一次方程组解法及应用
【解析】【解答】解:①﹣②,得:3a﹣3b=0④
①﹣③,得:﹣4b=﹣8,解得:b=2,
把b=2代入④,得:3a﹣3×2=0,解得:a=2,
把a=2,b=2代入②,得2+2+c=0,解得:c=﹣4,
∴原方程组的解是.
故答案为:2,2,﹣4.
【分析】观察方程组中同一未知数的系数特点:三个方程中c的系数都是1,因此①﹣②和①﹣③,就可求出b 的值,再代入计算求出a、c的值。

14.(1分)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________.
【答案】
【考点】解二元一次方程组
【解析】【解答】解:方程整理得:,
根据方程组解是,得到,
解得:,
故答案为:
【分析】将方程组转化为,再根据题意可得出,然后求出x、y的值。

15.(1分)若x+y+z≠0且,则k=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:∵,
∴,
∴,即.
又∵,
∴.
【分析】将已知方程组转化为2y+z=kx;2x+y=kz;2z+x=ky,再将这三个方程相加,由x+y+z≠0,就可求出k 的值。

16.(1分)小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这个数=________.
【答案】-2
【考点】解二元一次方程组
【解析】【解答】解:把x=5代入2x-y=12得2×5-y=12,解得y=-2.
∴★为-2.
故答案为-2.
【分析】将x=5代入两方程,就可求出结果。

17.(1分)二元一次方程的非负整数解为________
【答案】,,,,
【考点】二元一次方程的解
【解析】【解答】解:将方程变形为:y=8-2x
∴二元一次方程的非负整数解为:
当x=0时,y=8;
当x=1时,y=8-2=6;
当x=2时,y=8-4=4;
当x=3时,y=8-6=2;
当x=4时,y=8-8=0;
一共有5组
故答案为:,,,,
【分析】用含x的代数式表示出y,由题意可知x的取值范围为0≤x≤4的整数,即可求出对应的y的值,即可得出答案。

18.(4分)如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:
解:∵AD∥BC(已知),
∴∠1=∠3(________).
∵∠1=∠2(已知),
∴∠2=∠3.
∴BE∥________(________).
∴∠3+∠4=180°(________).
【答案】两直线平行,内错角相等;DF;同位角相等,两直线平行;两直线平行,同旁内角互补
【考点】平行线的判定与性质
【解析】【分析】根据平行线性质:两直线平行,内错角相等;
根据平行线判定:同位角相等,两直线平行;
根据平行线性质:两直线平行,同旁内角互补.
三、解答题
19.(15分)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表
节水量/立方米1 1.52.53
户数/户5080a70
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?
【答案】(1)解:由题意可得,a=300﹣50﹣80﹣70=100,
扇形统计图中2.5立方米对应扇形的圆心角度数是:=120°
(2)解:补全的条形统计图如图所示:
(3)解:由题意可得,5月份平均每户节约用水量为:=2.1(立方米),
2.1×12×4=100.8(元),
即求该小区300户居民5月份平均每户节约用水量2.1立方米,若用每立方米水需4元水费,每户居民1年可节约100.8元钱的水费
【考点】扇形统计图,条形统计图
【解析】【分析】(1)根据总数减去节水量对应的数据和可得a的值,利用节水量是2.5立方米的百分比乘以360°可得对应的圆心角的度数;
(2)根据(1)中a的值即可补全统计图;
(3)利用加权平均数计算平均每户节约的用水量,然后乘以需要的水费乘以12个月可得结论.
20.(5分)如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角,若已知∠BOE= ∠AOC,∠EOD=36°,
求∠AOC的度数.
【答案】解:∵∠AOC=∠BOD是对顶角,
∴∠BOD=∠AOC,
∵∠BOE=∠AOC,∠EOD=36º,
∴∠EOD=2∠BOE=36º,
∴∠EOD=18º,
∴∠AOC=∠BOE=18º+36º=54º.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等可知∠BOD=∠AOC,再由∠BOE= ∠AOC知∠EOD=∠BOD,代入数据求得∠BOD,再求得∠AOC。

21.(5分)如图,已知AB∥CD,CD∥EF,∠A=105°,∠ACE=51°.求∠E.
【答案】解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=105°,
∴∠ACD=75°,
又∵∠ACE=51°,
∴∠DCE=∠ACD-∠ACE=75°-51°=24°,
∵CD∥EF,
∠E=∠DCE=24°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得∠A+∠ACD=180°,结合已知条件求得∠DCE=24°,再由平行线的性质
即可求得∠E的度数.
22.(5分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.试说明:AD∥BC.
【答案】解:∵AE平分∠BAD,
∴∠1=∠2.
∵AB∥CD,∠CFE=∠E,
∴∠1=∠CFE=∠E.
∴∠2=∠E.
∴AD∥BC
【考点】平行线的判定与性质
【解析】【分析】根据角平分线的定义得∠1=∠2,由平行线的性质和等量代换可得∠2=∠E,根据平行线的判定即可得证.
23.(5分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于O.过点O作EF∥BC分别交AB、AC 于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
【答案】解:∵∠ABC:∠ACB=3:2,
∴设∠ABC=3x,∠ACB=2x,
∵BO、CO分别平分∠ ABC、∠ ACB,
∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,
又∵∠BOC=130°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∴130°+x+x=180°,
解得:x=20°,
∴∠ABC=3x=60°,∠ACB=2x=40°,
∵EF∥BC,
∴∠AEF=∠ABC=60°,
∠EFC+∠ACB=180°,
∴∠EFC=140°.
【考点】平行线的性质
【解析】【分析】根据已知条件设∠ABC=3x,∠ACB=2x,由角平分线性质得∠ABO=∠CBO=x,∠ACO=∠BCO=x,在△BOC中,根据三角形内角和定理列出方程,解之求得x值,从而得∠ABC=60°,∠ACB=40°,再由平行线性质同位角相等得∠AEF=60°,同旁内角互补得∠EFC=140°.
24.(5分)如图,已知直线AB、CD交于O点,OA平分∠COE,∠COE:∠EOD=4:5,求∠BOD的度数.
【答案】解:∵∠COE:∠EOD=4:5,∠COE+∠EOD=180°
∴∠COE=80°,
∵OA平分∠COE
∴∠AOC=∠COE=40°
∴∠BOD=∠AOC=40°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义得出∠COE+∠EOD=180°,又∠COE:∠EOD=4:5,故∠COE=80°,根据角平分线的定义得出∠AOC=∠COE=40°,根据对顶角相等即可得出∠BOD的度数。

25.(5分)如图,∠ABC+∠BCD+∠EDC=360°.求证:AB∥ED.
【答案】证明:过C作AB∥CF,
∴∠ABC+∠BCF=180°,
∵∠ABC+ ∠BCD+ ∠EDC=360°,
∴∠DCF+ ∠EDC=180°,
∴CF∥DE,
∴ABF∥DE.
【考点】平行公理及推论,平行线的判定与性质
【解析】【分析】过C作AB∥CF,根据两直线平行,同旁内角互补,得∠ABC+∠BCF=180°,再结合已知条件得∠DCF+ ∠EDC=180°,由平行线的判定得CF∥DE,结合平行公理及推论即可得证.
26.(5分)如图,直线BE、CF相交于O,∠AOB=90°,∠COD=90°,∠EOF=30°,求∠AOD的度数.
【答案】解:∵∠EOF=30°
∴∠COB=∠EOF=30°
∵∠AOB=90°,∠AOB=∠AOC+∠COB
∴∠AOC=90°-30°=60°
∴∠AOD=∠COD+∠AOC=150°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等得出∠COB=∠EOF=30°,根据角的和差得出∠AOC=90°-30°=60°,∠AOD=∠COD+∠AOC=150°。

27.(5分)把下列各数填在相应的大括号里:
,,-0.101001,,―,0.202002…, ,0,
负整数集合:( …);
负分数集合:( …);
无理数集合:( …);
【答案】解:= -4,= -2,= ,所以,负整数集合:(,
,…);负分数集合:(-0.101001,―,,…);无理数集合:(0.202002…,
,…);
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据实数的分类填写。

实数包括有理数和无理数。

有理数包括整数(正整数,0,负整数)和分数(正分数,负分数),无理数是指无限不循环小数。

相关文档
最新文档