八年级上册数学 轴对称填空选择单元测试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、八年级数学全等三角形填空题(难)
1.如图,∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,AB =11,AC =5,则BE =______________.
【答案】3
【解析】如图,连接CD ,BD ,已知AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,根据角平分线的性质可得DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE ,即可得AE=AF ,又因DG 是BC 的垂直平分线,所以CD=BD ,在Rt △CDF 和Rt △BDE 中,CD =BD ,DF =DE ,利用HL 定理可判定Rt △CDF ≌Rt △BDE ,由全等三角形的性质可得BE=CF ,所以
AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,又因AB=11,AC=5,所以BE=3.
点睛:此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,正确作出辅助线,利用数形结合思想是解决问题的关键.
2.如图,在ABC ∆和ADE ∆中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,C ,D ,E 三点在同一条直线上,连接BD ,则下列结论正确的是___________.
①ABD ACE ∆≅∆
②45ACE DBC ∠+∠=︒
③BD CE ⊥
④180EAB DBC ∠+∠=︒
【答案】①②③④
【解析】
【分析】
根据全等三角形的判定和性质,以及等腰三角形的性质解答即可.
【详解】
解:∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC ,
即:∠BAD=∠CAE ,
∵AB=AC ,AE=AD ,
∴△BAD ≌△CAE (SAS ),故①正确;
∵△BAD ≌△CAE ,
∴∠ABD=∠ACE ,
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,故②正确;
∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,
则BD ⊥CE ,故③正确;
∵90BAC DAE ∠=∠=︒,
∴∠BAE+∠DAC=180°,
∵∠ADB=∠E=45°,
∴DAC DBC ∠=∠,
∴180EAB DBC ∠+∠=︒,故④正确;
故答案为:①②③④.
【点睛】
此题主要考查了全等三角形的判定及性质,以及等腰三角形的性质,注意细心分析,熟练应用全等三角形的判定以及等腰三角形的性质是解决问题的关键.
3.如图,AD ⊥BC 于 D ,且 DC =AB +BD ,若∠BAC =108°,则∠C 的度数是______度.
【答案】24
【解析】
【分析】
在DC 上取DE=DB .连接AE ,在Rt △ABD 和Rt △AED 中,BD=ED ,AD=AD .证明
△ABD ≌△AED 即可求解.
【详解】
如图,在DC 上取DE=DB ,连接AE .
在Rt △ABD 和Rt △AED 中,
BD ED ADB ADE AD AD =⎧⎪∠=∠⎨⎪=⎩
∴△ABD ≌△AED (SAS ).
∴AB=AE ,∠B=∠AED .
又∵CD=AB+BD ,CD=DE+EC
∴EC=AB
∴EC=AE ,
∴∠C=∠CAE
∴∠B=∠AED=2∠C
又∵∠B+∠C=180°-∠BAC=72°
∴∠C=24°,
故答案为:24.
【点睛】
本题考查了全等三角形的判定与性质及三角形内角和定理,属于基础图,关键是巧妙作出辅助线.
4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是
______.
【答案】(-4,2)或(-4,3)
【解析】
【分析】
【详解】
把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.
故答案为(-4,2)或(-4,3).
5
.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则BD 的长为 .
【答案】41.
【解析】
作AD′⊥AD ,AD′=AD ,连接CD′,DD′,如图:
∵∠BAC+∠CAD=∠DAD′+∠CAD ,
即∠BAD=∠CAD′,
在△BAD 与△CAD′中,
BA CA BAD CAD AD AD =⎧⎪∠=∠'⎨⎪='⎩
, ∴△BAD ≌△CAD′(SAS),
∴BD=CD′.
∠DAD′=90°
由勾股定理得22()=32=42AD AD +'
∠D′DA+∠ADC=90°
由勾股定理得22()=932=41DC DD +'+
∴41,
41.
6.如图,ABC ∆中,90ACB ∠=︒,8cm AC ,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设
运动时间为t秒,要使以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角形全等,则t的值为______.
【答案】23
5
或7或8
【解析】
【分析】
易证∠MEC=∠CFN,∠MCE=∠CNF.只需MC=NC,就可得到△MEC与△CFN全等,然后只需根据点M和点N不同位置进行分类讨论即可解决问题.
【详解】
①当0≤t<4时,点M在AC上,点N在BC上,如图①,
此时有AM=2t,BN=3t,AC=8,BC=15.
当MC=NC即8−2t=15−3t时全等,
解得t=7,不合题意舍去;
②当4≤t<5时,点M在BC上,点N也在BC上,如图②,
若MC=NC,则点M与点N重合,即2t−8=15−3t,
解得t=23
5

当5≤t<23
3
时,点M在BC上,点N在AC上,如图③,
当MC=NC即2t−8=3t−15时全等,解得t=7;
④当23
3
≤t<
23
2
时,点N停在点A处,点M在BC上,如图④,
当MC=NC即2t−8=8,解得t=8;
综上所述:当t等于23
5
或7或8秒时,以点M,E,C为顶点的三角形与以点N,F,C为
顶点的三角形全等.
故答案为:23
5
或7或8.
【点睛】
本题主要考查了全等三角形的判定以及分类讨论的思想,可能会因考虑不全面而出错,是一道易错题.
7.如图,在△ABC中,AC=AB,∠BAC=90°,D是AC边上一点,连接BD,AF⊥BD于点F,点E在BF上,连接AE,∠EAF=45°,连接CE,AK⊥CE于点K,交DE于点H,
∠DEC=30°,HF=3
2
,则EC=______
【答案】6【解析】
【分析】
延长AF交CE于P,证得△ABH≌△APC得出AH=CP,证得△AHF≌△EPF得出AH=EP,得出EC=2AH,解30°的直角三角形AFH求得AH,即可求得EC的长.
【详解】
如图,延长AF交CE于P,
∵∠ABH+∠ADB=90°,∠PAC+∠ADB=90°,
∴∠ABH=∠PAC,
∵AK⊥CE,AF⊥BD,∠EHK=∠AHF,
∴∠HEK=∠FAH,
∵∠FAH+∠AHF=90°,∠HEK+∠EPF=90°,
∴∠AHF=∠EPF,
∴∠AHB=∠APC,
在△ABH与△APC中,
ABE PAC
AB AC
AHB APC
∠∠



⎪∠∠





∴△ABH≌△APC(ASA),
∴AH=CP,
在△AHF与△EPF中,
90
AHF EPF
AFH EFP
AF EF
∠∠


∠∠︒




==


∴△AHF≌△EPF(AAS),
∴AH=EP,∠CED=∠HAF,
∴EC=2AH,
∵∠DEC=30°,
∴∠HAF=30°,
∴AH=2FH=2×
3
2
=3,
∴EC=2AH=6.
【点睛】
本题考查了三角形全等的判定和性质,等腰直角三角形的判定和性质,作出辅助线根据全等三角形是解题的关键.
8.已知:四边形ABCD中,AB=AD=CD,∠BAD=90°,三角形ABC的面积为1,则线段AC 的长度是___________.
【答案】2
【解析】
【分析】
过B作BE⊥AC于E, 过D作DF⊥AC于F,构造得出BE=AF
利用等腰三角形三线合一的性质得出:AF=可得BE=AF=,利用三角形ABC的面积为1进行计算即可.
【详解】
过B作BE⊥AC于E, 过D作DF⊥AC于F,
∴∠BEA=∠AFD=90°
∴∠2+∠3=90°
∵∠BAD=90°
∴∠1+∠2=90°
∴∠1=∠3
∵AB=AD

∴BE=AF
∵AD=CD,DF⊥AC
∴AF=
∴BE=AF=

∴AC=2
故答案为:2
【点睛】
本题考查了利用一线三等角构造全等三角形,以及利用三角形面积公式列方程求线段,熟练掌握辅助线做法构造全等是解题的关键.
9.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:
①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是
__________.(填写序号)
【答案】①③④
【解析】
【分析】
根据三角形内角和定理、角平分线的定义、三角形外角的性质、角平分线的性质解答即可.
【详解】
解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣50°﹣60°=70°,①正确;
∵BD是∠ABC的平分线,∴∠DBC=1
2
∠ABC=25°,∴∠DOC=25°+60°=85°,②错误;
∠BDC=60°﹣25°=35°,③正确;
∵∠ABC的平分线BD与∠ACE的平分线CD相交于点D,∴AD是∠BAC的外角平分
线,∴∠DAC=55°,④正确.
故答案为①③④.
【点睛】
本题考查的是角平分线的定义和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
10.如图,在△ABC和△ADC中,下列论断:
①AB=AD;②∠ABC=∠ADC=90°;③BC=DC.把其中两个论断作为条件,另一个论断作
为结论,可以写出_个真命题.
【答案】2
【解析】
根据题意,可得三种命题,由①②⇒③,根据直角三角形全等的判定HL可证明,是真命题;由①③⇒②,能证明∠ABC=∠ADC,但是不能得出一定是90°,是假命题;由
②③⇒①,根据SAS可证明两三角形全等,再根据全等三角形的性质可证明,故是真命题.因此可知真命题有2个.
故答案为:2.
点睛:仔细审题,将其中的两个作为题设,另一个作为结论,可得到三种情况,然后根据全等三角形的判定定理和性质可判断出是否是真命题.
二、八年级数学全等三角形选择题(难)
11.如图,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H;如果∠ABC=60º,则下列结论:①∠ABP=30º;②∠APC=60º;③PB=2PH;④∠APH=∠BPC;其中正确的结论个数是()
A.1 B.2 C.3 D.4
【答案】B
【解析】
【分析】
作PM⊥BC于M,PN⊥BA于N.根据角平分线的性质定理可证得PN=PM,再根据角平分线的判定定理可得PB平分∠ABC,即可判定①;证明△PAN≌△PAH,△PCM≌△PCH,根据全等三角形的性质可得∠APN=∠APH,∠CPM=∠CPH,由此即可判定②;在Rt△PBN 中,∠PBN=30°,根据30°角直角三角形的性质即可判定③;由∠BPN=∠CPA=60°即可判定④.
【详解】
如图,作PM⊥BC于M,PN⊥BA于N.
∵∠PAH=∠PAN ,PN ⊥AD ,PH ⊥AC ,
∴PN=PH ,同理PM=PH ,
∴PN=PM ,
∴PB 平分∠ABC ,
∴∠ABP=
12
∠ABC=30°,故①正确, ∵在Rt △PAH 和Rt △PAN 中, PA PA PN PH =⎧⎨=⎩
, ∴△PAN ≌△PAH ,同理可证,△PCM ≌△PCH ,
∴∠APN=∠APH ,∠CPM=∠CPH ,
∵∠MPN=180°-∠ABC=120°,
∴∠APC=
12
∠MPN=60°,故②正确, 在Rt △PBN 中,∵∠PBN=30°, ∴PB=2PN=2PH ,故③正确,
∵∠BPN=∠CPA=60°,
∴∠CPB=∠APN=∠APH ,故④正确.
综上,正确的结论为①②③④.
故选D.
【点睛】
本题考查了角平分线的性质定理及判定定理、全等三角形的判定与性质及30°角直角三角形的性质,熟练运用相关知识是解决问题的关键.
12.如图所示,在Rt ABC ∆中,E 为斜边AB 的中点,ED AB ⊥,且
:1:7CAD BAD ∠∠=,则BAC ∠=( )
A .70
B .45
C .60
D .48
【答案】D
【解析】
根据线段的垂直平分线,可知∠B=∠BAD ,然后根据直角三角形的两锐角互余,可得∠BAC+∠B=90°,设∠CAD=x ,则∠BAD=7x ,则x+7x+7x=90°,解得x=6°,因此可
知∠BAC=∠CDA+∠BAD=6°
+42°=48°. 故选:D.
点睛:此题主要考查了线段垂直平分线的性质,利用线段垂直平分线的性质和直角三角形的性质求角的关系,根据比例关系设出未知数,然后根据角的关系列方程求解是解题关键.
13.已知OD 平分∠MON,点A 、B 、C 分别在OM 、OD 、ON 上(点A 、B 、C 都不与点O 重合),且AB=BC, 则∠OAB 与∠BCO 的数量关系为( )
A .∠OAB+∠BCO=180°
B .∠OAB=∠BCO
C .∠OAB+∠BCO=180°或∠OAB=∠BCO
D .无法确定
【答案】C
【解析】
根据题意画图,可知当C 处在C 1的位置时,两三角形全等,可知∠OAB=∠BCO ;当点C 处在C 2的位置时,根据等腰三角形的性质和三角形的外角的性质,∠OAB+∠BCO=180°.
故选C.
14.如图,点P 、Q 分别是边长为6cm 的等边ABC △边AB 、BC 上的动点,点P 从顶点 A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s ,下面四个结论:
①BQ AM =②ABQ △≌CAP △③CMQ ∠的度数不变,始终等于60︒④当第 2秒或第4秒时,PBQ △为直角三角形,正确的有( )个.
A .1
B .2
C .3
D .4
【答案】C
【解析】
∵点P 、Q 速度相同,
∴AP BQ =.
在ACP △和ABQ △中,
60AP BQ CAP ABQ AC BA =⎧⎪∠==︒⎨⎪=⎩
, ∴ACP △≌BAQ △,故②正确.
则AQC CPB ∠=∠.
即B BAQ BAQ AMP ∠+∠=∠+∠.
∴60AMP B ∠=∠=︒.
则60CMQ AMP ∠=∠=︒,故③正确.
∵APM ∠不一定等于60︒.
∴AP AM ≠.
∴BQ AM ≠.故①错误.
设时间为t ,则AP=BQ=t ,PB=4-t
①当∠PQB =90°时,
∵∠B =60°,
∴PB =2BQ ,得6-t =2t ,t =2 ;
②当∠BPQ =90°时,
∵∠B =60°,
∴BQ =2BP ,得t =2(6-t ),t =4;
∴当第2秒或第4秒时,△PBQ 为直角三角形.
∴④正确.
故选C.
点睛:本题考查了等边三角形的性质、全等三角形的判定与性质、直角三角形的性质等知识点,综合性强,难度较大.
15.如图在ABC △中,P ,Q 分别是BC 、AC 上的点,作PR AB ⊥,PS AC ⊥,垂足分别是R ,S ,
AQ PQ =,PR PS =,下面三个结论:
①AS AR =;②PQ AB ∥;③BRP △≌CSP △.其中正确的是( ).
A .①②
B .②③
C .①③
D .①②③
【答案】A
【解析】
连接AP ,
由题意得,90ARP ASP ∠=∠=︒, 在Rt APR 和Rt APS 中,
AP AP PR PS =⎧⎨=⎩
, ∴△APR ≌()APS HL ,
∴AS AR =,故①正确.
BAP SAP ∠=∠,∴2SAB BAP SAP SAP ∠=∠+∠=∠,
在AQP △中,∴AQ PQ =,∴QAP APQ ∠=∠,
∴22CQP QAP APQ QAP SAP ∠=∠+∠=∠=∠,
∴PQ AB ∥,故②正确; 在Rt BRP 和Rt CSP 中,只有PR PS =,
不满足三角形全等的条件,故③错误.
故选A .
点睛:本题主要考查三角形全等的判定方法以及角平分线的判定和平行线的判定,准确作出辅助线是解决本题的关键.
16.如图,将一个等腰Rt △ABC 对折,使∠A 与∠B 重合,展开后得折痕CD ,再将∠A 折叠,使C 落在AB 上的点F 处,展开后,折痕AE 交CD 于点P ,连接PF 、EF ,下列结论:①tan ∠2﹣1;②图中共有4对全等三角形;③若将△PEF 沿PF 翻折,则点E 一定落在AB 上;④PC=EC ;⑤S 四边形DFEP =S △APF .正确的个数是( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
【详解】 ①正确.作EM ∥AB 交AC 于M .
∵CA=CB ,∠ACB=90°,
∴∠CAB=∠CBA=45°,
∵∠CAE=∠BAE=
12
∠CAB=22.5°, ∴∠MEA=∠EAB=22.5°, ∴∠CME=45°=∠CEM ,设CM=CE=a ,则ME=AM=2a ,
∴tan ∠CAE=212CE AC a a
==-+,故①正确, ②正确.△CDA ≌△CDB ,△AEC ≌△AEF ,△APC ≌△APF ,△PEC ≌△PEF ,故②正确, ③正确.∵△PEC ≌△PEF ,
∴∠PCE=∠PFE=45°,
∵∠EFA=∠ACE=90°,
∴∠PFA=∠PFE=45°,
∴若将△PEF 沿PF 翻折,则点E 一定落在AB 上,故③正确.
④正确.∵∠CPE=∠CAE+∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°,
∴∠CPE=∠CEP ,
∴CP=CE ,故④正确,
⑤错误.∵△APC ≌△APF ,
∴S △APC =S △APF ,
假设S △APF =S 四边形DFPE ,则S △APC =S 四边形DFPE ,
∴S △ACD =S △AEF ,
∵S △ACD =12S △ABC ,S △AEF =S △AEC ≠12
S △ABC , ∴矛盾,假设不成立.
故⑤错误.
.
故选D.
17.如图,AD是△ABC的外角平分线,下列一定结论正确的是()
A.AD+BC=AB+CD,B.AB+AC=DB+DC,
C.AD+BC<AB+CD,D.AB+AC<DB+DC
【答案】D
【解析】
【分析】
在BA的延长线上取点E,使AE=AC,连接ED,证△ACD≌△AED,推出DE=DC,根据三角形中任意两边之和大于第三边即可得到
AB+AC<DB+DC.
【详解】
解: 在BA的延长线上取点E, 使AE=AC,连接ED,
∵AD是△ABC的外角平分线,
∴∠EAD=∠CAD,
在△ACD和△AED中,
AD AD
EAD CAD
AC AE
=


∠=∠

⎪=

∴△ACD≌△AED(SAS)
∴DE=DC,
在△EBD中,BE<BD+DE,
∴AB+AC<DB+DC
故选:D.
【点睛】
本题主要考查三角形全等的证明,全等三角形的性质,三角形的三边关系,作辅助线构造以AB、AC、DB、DC的长度为边的三角形是解题的关键,也是解本题的难点.
18.如图,等腰直角△ABC中,∠BAC=90 ,AD⊥BC于D,∠ABC的平分线分别交AC、AD 于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:
①AE=AF;②AM⊥EF;③AF=DF;④DF=DN,其中正确的结论有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
试题解析:∵∠BAC=90°,AC=AB,AD⊥BC,
∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD,
∵BE平分∠ABC,
∴∠ABE=∠CBE=1
2
∠ABC=22.5°,
∴∠BFD=∠AEB=90°-22.5°=67.5°,∴∠AFE=∠BFD=∠AEB=67.5°,
∴AF=AE,故①正确;
∵M为EF的中点,
∴AM⊥EF,故②正确;
过点F作FH⊥AB于点H,
∵BE平分∠ABC,且AD⊥BC,
∴FD=FH<FA,故③错误;
∵AM⊥EF,
∴∠AMF=∠AME=90°,
∴∠DAN=90°-67.5°=22.5°=∠MBN,在△FBD和△NAD中
{
FBD DAN
BD AD
BDF ADN
∠∠
∠∠



∴△FBD≌△NAD,
∴DF=DN,故④正确;
故选C.
19.在△ABC中,∠C=90°,D为AB的中点,ED⊥AB,∠DAE=∠CAE,则∠CAB=()
A.30°B.60°C.80 °D.50°
【答案】B
【解析】
试题解析:∵D为AB的中点,ED⊥AB,
∴DE为线段AB的垂直平分线,
∴AE=BE,
∴∠DAE=∠DBE,
∴∠DAE=∠DBE=∠CAE,
在Rt△ABC中,
∵∠CAB+∠DBE=90°,
∴∠CAE+∠DAE+∠DBE=90°,
∴3∠DBE=90°,
∴∠DBE=30°,
∴∠CAB=90°-∠DBE=90°-30°=60°.
故选B.
20.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、 AB′,下列说法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C;正确的个数是()
A.1 B.2 C.3 D.4【答案】B
【解析】
【分析】
依据点D是等腰直角△ABC腰BC上的中点,可得tan∠BAD=1
2
,即可得到∠BAD≠30°;连
接B'D,即可得到∠BB'C=∠BB'D+∠DB'C=90°,进而得出△ABF≌△BCB',判定△FCB'是等腰直角三角形,即可得到∠CFB'=45°,即∠BFC=135°;由△ABF≌△BCB',可得
AF=BB'=2BF=2B'C;依据△AEF与△CEB'不全等,即可得到S△AFE≠S△FCE.
【详解】
∵点D是等腰直角△ABC腰BC上的中点,
∴BD=1
2
BC=
1
2
AB,
∴tan∠BAD=1
2,
∴∠BAD≠30°,故①错误;
如图,连接B'D,
∵B、B′关于AD对称,
∴AD垂直平分BB',
∴∠AFB=90°,BD=B'D=CD,
∴∠DBB'=∠BB'D,∠DCB'=∠DB'C,∴∠BB'C=∠BB'D+∠DB'C=90°,
∴∠AFB=∠BB'C,
又∵∠BAF+∠ABF=90°=∠CBB'+∠ABF,
∴∠BAF=∠CBB',
∴△ABF≌△BCB',
∴BF=CB'=B'F,
∴△FCB'是等腰直角三角形,
∴∠CFB'=45°,即∠BFC=135°,故②正确;
由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;
∵AF>BF=B'C,
∴△AEF与△CEB'不全等,
∴AE≠CE,
∴S△AFE≠S△FCE,故④错误;
故选B.
【点睛】
本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
21.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()
A.0个B.1个C.2个D.3个
【答案】D
【解析】
分析:由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.
详解:①∵四边形ABCD和EFGC都为正方形,
∴CB=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.
在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,
∴△BCE≌△DCG,
∴BE=DG,
故结论①正确.
②如图所示,设BE交DC于点M,交DG于点O.
由①可知,△BCE≌△DCG,
∴∠CBE=∠CDG,即∠CBM=∠MDO.
又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,
∴∠DOM=∠MCB=90°,
∴BE⊥DG.
故②结论正确.
③如图所示,连接BD、EG,
由②知,BE⊥DG,
则在Rt△ODE中,DE2=OD2+OE2,
在Rt△BOG中,BG2=OG2+OB2,
在Rt△OBD中,BD2=OD2+OB2,
在Rt△OEG中,EG2=OE2+OG2,
∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.
在Rt△BCD中,BD2=BC2+CD2=2a2,
在Rt△CEG中,EG2=CG2+CE2=2b2,
∴BG2+DE2=2a2+2b2.
故③结论正确.
故选:D.
点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.
22.如图,与都是等边三角形,,下列结论中,正确的个数是( )①;②;③;④若,且,则.
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
利用全等三角形的判定和性质一一判断即可.
【详解】
解:∵与都是等边三角形
∴AD=AB,AC=AE,∠DAB=∠EAC=60°
∴∠DAB+∠BAC=∠EAC +∠BAC
即∠DAC=∠EAB

∴,①正确;

∴∠ADO=∠ABO
∴∠BOD=∠DAB=60°,②正确
∵∠BDA=∠CEA=60°,∠ADC≠∠AEB
∴∠BDA-∠ADC≠∠CEA-∠AEB
∴,③错误

∴∠DAC+∠BCA=180°
∵∠DAB=60°,
∴∠BCA=180°-∠DAB-∠BAC=30°
∵∠ACE=60°
∴∠BCE=∠ACE+∠BCA=60°+30°=90°
∴④正确
故由①②④三个正确,
故选:C
【点睛】
本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
23.如图,已知 AD 为△ABC 的高线,AD=BC,以 AB 为底边作等腰 Rt△ABE,连接 ED,EC,延长CE 交AD 于F 点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;
④S△BDE=S△ACE,其中正确的有()
A.①③B.①②④C.①②③④D.②③④
【答案】C
【解析】
【分析】
①易证∠CBE=∠DAE,即可求证:△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求
得∠AED=∠BEG ,即可解题;③证明△AEF ≌△BED 即可;④易证△FDC 是等腰直角三角形,则CE=EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .
【详解】
∵AD 为△ABC 的高线,
∴∠CBE+∠ABE+∠BAD=90°,
∵Rt △ABE 是等腰直角三角形,
∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE ,
∴∠CBE+∠BAD=45°,
∴∠DAE=∠CBE ,
在△DAE 和△CBE 中,
AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩
∴△ADE ≌△BCE (SAS );
故①正确;
②∵△ADE ≌△BCE ,
∴∠EDA=∠ECB ,
∵∠ADE+∠EDC=90°,
∴∠EDC+∠ECB=90°,
∴∠DEC=90°,
∴CE ⊥DE ;
故②正确;
③∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,
∴∠BDE=∠AFE ,
∵∠BED+∠BEF=∠AEF+∠BEF=90°,
∴∠BED=∠AEF ,
在△AEF 和△BED 中,
BDE AFE BED AEF AE BE ∠∠⎧⎪∠∠⎨⎪⎩
===
∴△AEF ≌△BED (AAS ),
∴BD=AF ;
故③正确;
④∵AD=BC ,BD=AF ,
∴CD=DF ,
∵AD ⊥BC ,
∴△FDC 是等腰直角三角形,
∵DE ⊥CE ,
∴EF=CE,
∴S△AEF=S△ACE,
∵△AEF≌△BED,
∴S△AEF=S△BED,
∴S△BDE=S△ACE.
故④正确;
综上①②③④都正确,故选:C.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证
△BFE≌△CDE是解题的关键.
24.下列命题中的假命题是()
A.等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等
B.等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等
C.等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等
D.直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等
【答案】D
【解析】
【分析】
根据等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定进行判定即可.
【详解】
解:A、等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等,正确,是真命题;
B、等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等,正确,是真命题;
C、等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等,正确,是真命题;
D、直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等,错误,是假命题,
故答案为D.
【点睛】
本题考查了等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定,其中灵活应用所学知识是解答本题的关键.
25.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作
PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;
③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()
A.①②③B.①②④C.①③④D.①②③④
【答案】D
【解析】
分析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.
详解:在△ABC中,∵∠ACB=90°,
∴∠BAC+∠ABC=90°,
又∵AD、BE分别平分∠BAC、∠ABC,
∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,
∴∠APB=135°,故①正确.
∴∠BPD=45°,
又∵PF⊥AD,
∴∠FPB=90°+45°=135°,
∴∠APB=∠FPB,
又∵∠ABP=∠FBP,BP=BP,
∴△ABP≌△FBP,
∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.
在△APH和△FPD中,
∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,
∴△APH≌△FPD,
∴PH=PD,故③正确.
∵△ABC的角平分线AD、BE相交于点P,
∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,
∴点P到BC、AC的距离相等,
∴点P在∠ACB的平分线上,
∴CP平分∠ACB,故④正确.
故选D.
点睛:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.
26.如图(1),已知AB AC =,D 为BAC ∠的角平分线上一点,连接BD ,CD ;如图(2),已知AB AC =,D ,E 为BAC ∠的角平分线上两点,连接BD ,CD ,BE ,CE ;如图(3),已知AB AC =,D ,E ,F 为BAC ∠的角平分线上三点,连接BD ,CD ,BE ,CE ,BF ,CF ;……,依此规律,第6个图形中有全等三角形的对数是(

A .21
B .11
C .6
D .42
【答案】A
【解析】
【分析】
根据条件可得图1中△ABD ≌△ACD 有1对三角形全等;图2中可证出△ABD ≌△ACD ,△BDE ≌△CDE ,△ABE ≌△ACE 有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第6个图形中全等三角形的对数.
【详解】
解:∵AD 是∠BAC 的平分线,
∴∠BAD=∠CAD .
在△ABD 与△ACD 中,
AB AC
BAD CAD AD AD
=⎧⎪∠=∠⎨⎪=⎩,
∴△ABD ≌△ACD .
∴图1中有1对三角形全等;
同理图2中,△ABE ≌△ACE ,
∴BE=EC ,
∵△ABD≌△ACD.
∴BD=CD,
又DE=DE,
∴△BDE≌△CDE,
∴图2中有3对三角形全等,3=1+2;
同理:图3中有6对三角形全等,6=1+2+3;
∴第6个图形中有全等三角形的对数是1+2+3+4+5+6=21.
故选:A.
【点睛】
此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.
27.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是()
A.AH=2DF B.HE=BE C.AF=2CE D.DH=DF
【答案】A
【解析】
【分析】
通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解.
【详解】
解:∵∠BAC=45°,BD⊥AC,
∴∠CAB=∠ABD=45°,
∴AD=BD,
∵AB=AC,AE平分∠BAC,
∴CE=BE=1
2
BC,∠CAE=∠BAE=22.5°,AE⊥BC,
∴∠C+∠CAE=90°,且∠C+∠DBC=90°,
∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°,
∴△ADF≌△BDC(AAS)
∴AF=BC=2CE,故选项C不符合题意,
∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°,
∴AG=BG,DG⊥AB,∠AFD=67.5°
∴∠AHG=67.5°,
∴∠DFA=∠AHG=∠DHF,
∴DH=DF,故选项D不符合题意,
连接BH,
∵AG=BG,DG⊥AB,
∴AH=BH,
∴∠HAB=∠HBA=22.5°,
∴∠EHB=45°,且AE⊥BC,
∴∠EHB=∠EBH=45°,
∴HE=BE,
故选项B不符合题意,
故选:A.
【点睛】
本题考查三角形全等的性质与判定,等腰直角三角形的性质,关键在于熟练掌握基本知识点,灵活运用知识点.
28.如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为()
A.80°B.70°C.60°D.45°
【答案】B
【解析】
【分析】
连接AE.根据ASA可证△ADE≌△CBA,根据全等三角形的性质可得AE=AC,
∠AED=∠BAC=20°,根据等边三角形的判定可得△ACE是等边三角形,根据等腰三角形的判定可得△DCE是等腰三角形,再根据三角形内角和定理和角的和差关系即可求解.
【详解】
如图所示,连接AE.
∵AB=DE ,AD=BC
∵DE ∥BC ,
∴∠ADE=∠B ,可得AE=DE
∵AB=AC ,∠BAC=20°,
∴∠DAE=∠ADE=∠B=∠ACB=80°,
在△ADE 与△CBA 中,
DAE ACB AD BC
ADE B ∠∠⎧⎪⎨⎪∠∠⎩
===, ∴△ADE ≌△CBA (ASA ),
∴AE=AC ,∠AED=∠BAC=20°,
∵∠CAE=∠DAE-∠BAC=80°-20°=60°,
∴△ACE 是等边三角形,
∴CE=AC=AE=DE ,∠AEC=∠ACE=60°,
∴△DCE 是等腰三角形,
∴∠CDE=∠DCE ,
∴∠DEC=∠AEC-∠AED=40°,
∴∠DCE=∠CDE=(180-40°)÷2=70°.
故选B .
【点睛】
考查了等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,三角形内角和定理,平行线的性质,综合性较强,有一定的难度.
29.如图,在△ABC 中,AB=AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形(

A .8对
B .7对
C .6对
D .5对
【答案】B
【解析】
【分析】
易证△ABC 是关于AF 对称的图形,其中的小三角形也关于AF 对称,共可找出7对三角形.
【详解】
全等的三角形有:①△AFB≌△AFC;②△CEB≌△BDC;③△AEO≌△ADO;
④△EOB≌△DOC;⑤△OBF≌△OFC;⑥△AOB≌△AOC;⑦△AEC≌△ADB
证明①△AFB≌△AFC
∵AB=AC,CE⊥AB,BD⊥AC 又∵1122
ABC S AB CE AC BD == ∴CE=BD
∴在Rt△BCE 和Rt△CBD 中
BC BC CE BD =⎧⎨=⎩
∴△BCE≌△CBD
∴BE=CD,∴AE=AD
在Rt△AEO 和Rt△ADO 中
AE AD AO AO
=⎧⎨=⎩ ∴△AEO≌△ADO
∴∠EOD=∠DOA
在△BAF 和△CAF 中
AB AC BAF CAF AF AF =⎧⎪∠=∠⎨⎪=⎩
∴△BAF≌△CAF,得证
其余全等证明过程类似
故选:B
【点睛】
本题考查全等的证明,解题关键是利用等腰三角形的性质,推导出图形中边的关系,为证全等作准备
30.如图,在△ABC 中,P 是BC 上的点,作PQ ∥AC 交AB 于点Q ,分别作PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若PR=PS ,则下面三个结论:①AS=AR ;②AQ=PQ ;③△PQR ≌△CPS ;④AC ﹣AQ=2SC ,其中正确的是( )
A.②③④B.①②C.①④D.①②③④【答案】B
【解析】
【分析】
连接AP,由已知条件利用角平行线的判定可得∠1 = ∠2,由三角形全等的判定得
△APR≌△APS,得AS=AR,由已知可得∠2 = ∠3,得QP=AQ,答案可得.
【详解】
解:如图
连接AP,PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,
AP是∠BAC的平分线,∠1=∠2,
△APR ≌△APS.
AS=AR,
又QP/AR,
∠2 = ∠3又∠1 = ∠2,
∠1=∠3,
AQ=PQ,
没有办法证明△PQR≌△CPS,③不成立,
没有办法证明AC-AQ=2SC,④不成立.
所以B选项是正确的.
【点睛】
本题主要考查三角形全等及三角形全等的性质.。

相关文档
最新文档