八年级数学上册三角形填空选择章末训练(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册三角形填空选择章末训练(Word版含解析)
一、八年级数学三角形填空题(难)
1.如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是_____.
【答案】30
【解析】
【分析】
由于BD=2DC,那么结合三角形面积公式可得S△ABD=2S△ACD,而S△ABC=S△ABD+S△ACD,可得出S△ABC=3S△ACD,而E是AC中点,故有S△AGE=S△CGE,于是可求S△ACD,从而易求S△ABC.
【详解】
解:∵BD=2DC,∴S△ABD=2S△ACD,∴S△ABC=3S△ACD.
∵E是AC的中点,∴S△AGE=S△CGE.
又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.
故答案为30.
【点睛】
本题考查了三角形的面积公式、三角形之间的面积加减计算.注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.
2.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为_________度.
【答案】32
【解析】
【分析】
过C点作∠ACE=∠CBD,根据三角形内角和为180°,以及等量关系可得∠ECD=∠BDC,根
据角平分线的定义可得∠ABD=∠CBD,再根据三角形内角和为180°,以及等量关系可得∠BDC的度数.
【详解】
过C点作∠ACE=∠CBD,
∵∠BCD+∠DCA=180°,∠BCD+∠CBD+∠BDC=180°,
∴∠ECD=∠BDC,
∵对角线BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ABD=∠ACE,
∴∠BAC=∠CEB=64°,
∴∠BDC=1
2
∠CEB=32°.
故答案为:32.
【点睛】
此题考查了三角形内角与外角,三角形内角和为180°,三角形的一个外角等于和它不相邻的两个外角的和.
3.△ABC的两边长为4和3,则第三边上的中线长m的取值范围是_______.
【答案】17 22
m
<<
【解析】
【分析】
作出草图,延长AD到E,使DE=AD,连接CE,利用“边角边”证明△ABD和△ECD全等,然后根据全等三角形对应边相等可得CE=AB,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,便不难得出m的取值范围.
【详解】
解:如图,延长AD到E,使DE=AD,连接CE,
∵AD是△ABC的中线,
∴BD=CD,
在△ABD和△ECD中,
AD DE
ADB EDC
BD CD
=


∠=∠

⎪=

,
∴△ABD≌△ECD(SAS),
∴CE=AB,
∵AB=3,AC=4,
∴4-3<AE<4+3,即1<AE<7,

17
22
m
<<.
故答案为:
17
22
m
<<.
【点睛】
本题主要考查倍长中线法构造全等三角形和三边关系,解决本题的关键是要熟练掌握倍长中线法构造全等三角形.
4.如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度数为_____.
【答案】30°
【解析】
【分析】
延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,根据BD是∠ABC的平分线可得出△BDE≌△BDF,故DE=DF,过D点作DG⊥AC于G点,可得出
△ADE≌△ADG,△CDG≌△CDF,进而得出CD为∠ACF的平分线,得出∠DCA=53°,再根
据三角形内角和定理即可得出结论.
【详解】
解:
延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,
∵BD是∠ABC的平分线
在△BDE与△BDF中,
ABD CBD
BD BD
AED DFC
∠=∠


=

⎪∠=∠


∴△BDE≌△BDF(ASA),
∴DE=DF,
又∵∠BAD+∠CAD=180°
∠BAD+∠EAD=180°
∴∠CAD=∠EAD,
∴AD为∠EAC的平分线,
过D点作DG⊥AC于G点,
在Rt△ADE与Rt△ADG中,
AD AD
DE DG
=


=


∴△ADE≌△ADG(HL),
∴DE=DG,
∴DG=DF.
在Rt△CDG与Rt△CDF中,
CD CD
DG DF
=


=


∴Rt△CDG≌Rt△CDF(HL),
∴CD为∠ACF的平分线,
∠ACB=74°,
∴∠DCA=53°,
∴∠BDC=180°﹣∠CBD﹣∠DCA﹣∠ACB=180°﹣23°﹣53°﹣74°=30°.
故答案为:30°
【点睛】
本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.
5.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.
【答案】360 °
【解析】
如图所示,根据三角形外角的性质可得,∠1+∠5=∠8,∠4+∠6=∠7,根据四边形的内角和为360°,可得∠2+∠3+∠7+∠8=360°,即可得∠1+∠2+∠3+∠4+∠5+∠6=360°.
点睛:本题考查的知识点:
(1)三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和;(2)四边形内角和定理:四边形内角和为360°.
6.若(a﹣4)2+|b﹣9|=0,则以a、b为边长的等腰三角形的周长为_______.
【答案】22
【解析】
【分析】
先根据非负数的性质列式求出a、b再根据等腰三角形和三角形三边关系分情况讨论求解即可.
【详解】
解:根据题意得,a-4=0,b-9=0,
解得a=4,b=9,
①若a=4是腰长,则底边为9,三角形的三边分别为4、4、9,不能组成三角形,
②若b=9是腰长,则底边为4,三角形的三边分别为9、9、4,能组成三角形,周长
=9+9+4=22.
【点睛】
本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系.
7.如图,A 、B 、C 三点在同一条直线上,∠A =50°,BD 垂直平分AE ,垂足为D ,则∠EBC 的度数为_____.
【答案】100°
【解析】
【分析】
根据线段垂直平分线的性质,得BE BA =,
根据等腰三角形的性质,得50E A ∠=∠=︒,再根据三角形外角的性质即可求解.
【详解】
∵BD 垂直平分AE ,
∴BE BA =,
∴50E A ∠=∠=︒,
∴100EBC E A ∠=∠+∠=︒,
故答案为100°.
【点睛】
考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.
8.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BOC=______°.
【答案】110
【解析】
已知∠A =50°,∠ABO =28°,∠ACO =32°,根据三角形外角的性质可得
∠BDC =∠A +∠ABO =78°,∠BOC =∠BDC +∠ACO =110°.
9.如图,AB ∥CD ,∠ABE =66°,∠D =54°,则∠E =____度.
【答案】12
【解析】
【分析】
利用三角形的外角与内角的关系及平行线的性质可直接解答.
【详解】
∵AB∥CD,∴∠BFC=∠ABE=66°.
在△EFD中,利用三角形的外角等于与它不相邻的两个内角的和,得到∠BFC=∠E+∠D,
∴∠E=∠BFC-∠D=12°.
故答案是:12.
【点睛】
本题考查了三角形外角与内角的关系及平行线的性质,比较简单.
10.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果
∠ABP=20°,∠ACP=50°,则∠P=______°.
【答案】30
【解析】
【分析】
根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.
【详解】
∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,
∴∠PBC=20°,∠PCM=50°,
∵∠PBC+∠P=∠PCM,
∴∠P=∠PCM-∠PBC=50°-20°=30°,
故答案为:30
【点睛】
本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.
二、八年级数学三角形选择题(难)
11.如图,小明从A点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地A点时,一共走了()
A.80米B.160米
C.300米D.640米
【答案】A
【解析】
【分析】
利用多边形的外角和得出小明回到出发地A点时左转的次数,即可求出多边形的边数,即可解决问题.
【详解】
解:由题意可知,小明第一次回到出发地A点时,他一共转了360︒,由题意得10°+20° +30°+40°+50°+60°+70°+80°=360°,所以共转了8次,每次沿直线前进10米,所以一共走了80米.
故选:A.
【点睛】
本题考查根据多边形的外角和解决实际问题,注意多边形的外角和是360︒,要注意第一次转了10°,第二次转了20°,第三次转了30°……,利用好规律解题.
12.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG的大小关系为()
A.∠AHE>∠CHG B.∠AHE<∠CHG C.∠AHE=∠CHG D.不一定
【答案】C
【解析】
【分析】
先根据AD、BE、CF为△ABC的角平分线可设
∠BAD=∠CAD=x,∠ABE=∠CBE=y,∠BCF=∠ACF=z,由三角形内角和定理可知,
2x+2y+2z=180°即x+y+z=90°在△AHB中由三角形外角的性质可知∠AHE=x+y=90°﹣z,在
△CHG中,∠CHG=90°﹣z,故可得出结论.
【详解】
∵AD、BE、CF为△ABC的角平分线
∴可设∠BAD=∠CAD=x ,∠ABE=∠CBE=y ,∠BCF=∠ACF=z ,
∴2x+2y+2z=180° 即x+y+z=90°,
∵在△AHB 中,∠AHE=x+y=90°﹣z ,
在△CHG 中,∠CHG=90°﹣z ,
∴∠AHE=∠CHG ,
故选C .
【点睛】
本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和180°,三角形的外角等于和它不相邻的两个内角的和是解答此题的关键.
13.适合下列条件的△ABC 中, 直角三角形的个数为 ①111345
a b c ,,;==
=②6a =,∠A =45°;③∠A =32°, ∠B =58°; ④72425a b c ===,,;⑤22 4.a b c ===,,⑥::3:4:5a b c =
⑦::12:13:15A B C ∠∠∠=⑹5a b c =
== A .2个
B .3个
C .4个
D .5个
【答案】C
【解析】 根据勾股定理的逆定理,可分别求出各边的平方,然后计算判断:
222
111+345≠()()(),故①不能构成直角三角形;
当a=6,∠A=45°时,②不足以判定该三角形是直角三角形;
根据直角三角形的两锐角互余,可由∠A+∠B=90°,可知③是直角三角形;
根据72=49,242=576,252=625,可知72+242=252,故④能够成直角三角形;
由三角形的三边关系,2+2=4可知⑤不能构成三角形;
令a=3x ,b=4x ,c=5x ,可知a 2+b 2=c 2,故⑥能够成直角三角形;
根据三角形的内角和可知⑦不等构成直角三角形;
由a 2=5,b 2=20,c 2=25,可知a 2+b 2=c 2,故⑧能够成直角三角形.
故选:C.
点睛:此题主要考查了直角三角形的判定,解题关键是根据角的关系,两锐角互余,和边的关系,即勾股定理的逆定理,可直接求解判断即可,比较简单.
14.如图P 为ABC ∆内一点,070,BAC ∠=0
120,BPC ∠=BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,BD 与CE 交于F ,则BFC ∠=( )
A .085
B .090
C .095
D .0100
【答案】C
【解析】 ∵070,BAC ∠= 0120,BPC ∠=
∴∠ABC+∠ACB=110°,∠PBC+∠PCB=60°,
∴∠ABP+∠ACP=(∠ABC+∠ACB)-(∠PBC+∠PCB)=110°-60°=50°,
∵BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,
∴∠FBP+∠FCP=12 (∠ABP+∠ACP)=00150252
⨯=; ∴∠FBC+∠FCB=∠FBP+∠FCP+∠PBC+∠PCB=25°+60°=85°,
∴BFC ∠=180°-(∠FBC+∠FCB )=180°-85°=95°.
故选C.
点睛:本题主要考查了三角形的内角和定理和角平分线的定义,根据图形正确找出角与角之间的数量关系是解题的关键.
15.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )
A .三角形
B .四边形
C .六边形
D .八边形
【答案】D
【解析】
【分析】
一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.
【详解】
解:多边形的内角和是:360°×3=1080°.
设多边形的边数是n ,
则(n-2)•180=1080,
解得:n=8.
即这个多边形是正八边形.
故选D .
【点睛】
本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.
16.若正多边形的内角和是540︒,则该正多边形的一个外角为()
A.45︒B.60︒C.72︒D.90︒
【答案】C
【解析】
【分析】
n-•︒求出多边形的边数,再根据多边形的外角和是固定根据多边形的内角和公式()2180
的360︒,依此可以求出多边形的一个外角.
【详解】
正多边形的内角和是540︒,
∴多边形的边数为54018025
︒÷︒+=,
多边形的外角和都是360︒,
∴多边形的每个外角360572
==.
÷︒
故选C.
【点睛】
本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.
17.如图,把一副三角板的两个直角三角形叠放在一起,则α的度数()
A.75°B.135°C.120°D.105°
【答案】D
【解析】
如图,
根据三角板的特点,可知∠3=45°,∠1=60°,因此可知∠2=45°,再根据三角形的外角的性质,可求得∠α=105°.
故选
18.下列长度的三根小木棒能构成三角形的是( )
A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D
【解析】
【详解】
A .因为2+3=5,所以不能构成三角形,故A 错误;
B .因为2+4<6,所以不能构成三角形,故B 错误;
C .因为3+4<8,所以不能构成三角形,故C 错误;
D .因为3+3>4,所以能构成三角形,故D 正确.
故选D .
19.若(a ﹣3)2+|b ﹣6|=0,则以a 、b 为边长的等腰三角形的周长为( ) A .12
B .15
C .12或15
D .18 【答案】B
【解析】
【分析】
根据非负数的和为零,可得每个非负数同时为零,可得a 、b 的值,根据等腰三角形的判定,可得三角形的腰,根据三角形的周长公式,可得答案.
【详解】
由(a ﹣3)2+|b ﹣6|=0,得a ﹣3=0,b ﹣6=0.
则以a 、b 为边长的等腰三角形的腰长为6,底边长为3,
周长为6+6+3=15,
故选B .
【点睛】
本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键.
20.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )
A .40º
B .50º
C .60º
D .70º
【答案】D
【解析】
【分析】 依据平行线的性质,即可得到∠1=∠DFG =40°,再根据三角形外角性质,即可得到∠2的度数.
【详解】
∵DF ∥EG ,
∴∠1=∠DFG =40°,
又∵∠A =30°,
∴∠2=∠A+∠DFG=30°+40°=70°,
故选D.
【点睛】
本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.。

相关文档
最新文档