大桥镇初中2018-2019学年七年级下学期数学第一次月考试卷(13)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大桥镇初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)如图,在某张桌子上放相同的木块,R=34,S=92,则桌子的高度是()
A. 63
B. 58
C. 60
D. 55
【答案】A
【考点】三元一次方程组解法及应用
【解析】【解答】解:设木块的长为x,宽为y,桌子的高度为z,
由题意得:,
由①得:y-x=34-z,
由②得:x-y=92-z,
即34-z+92-z=0,
解得z=63;
即桌子的高度是63.
故答案为:A.
【分析】由第一个图形可知:桌子的高度+木块的宽=木块的长+R;由第二个图形可知:桌子的高度+木块的长=木块的宽+S;设未知数,列方程组,求解即可得出桌子的高度。

2.(2分)在数,,,,0中,无理数的个数是()
A.1
B.2
C.3
D.4
【答案】B
【考点】无理数的认识
【解析】【解答】在数,,,,0中,
,是无理数,
故答案为:B.
【分析】无理数是指无限不循环小数。

根据无理数的定义即可求解。

3.(2分)下列计算正确的是()
A. B. C. D.
【答案】D
【考点】算术平方根,立方根及开立方,同底数幂的乘法,同类项
【解析】【解答】解:A.∵2a与3b不是同类项,不能合并,故错误,A不符合题意;
B.∵=6,故错误,B不符合题意;
C.∵≠3,故错误,C不符合题意;
D.∵72×73=75,故正确,D符合题意;
故答案为:D.
【分析】A.同类项:所含字母相同,相同字母指数相同,由此判断是否为同类项;故可判断错误;
B.算术平方根只有正,平方根才有正负;故错误;
C.9开立方根不会等于3,故错误;
D.同底数幂相乘,底数不变,指数相加,由此计算即可.
4.(2分)如图,AB∥CD,EF⊥CD,FG平分∠EFC,则()
A.∠1<∠2
B.∠1>∠2
C.∠1=∠2
D.不能确定
【答案】C
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:∵AB∥CD,
∴∠2=∠CFG,
又∵FG平分∠EFC,
∴∠1=∠CFG,
∴∠1=∠2,
故答案为:C.
【分析】根据平行线性质可得∠2=∠CFG,由角平分线性质得∠1=∠CFG,等量代换即可得证.
5.(2分)若是方程组的解,则a、b值为()
A.
B.
C.
D.
【答案】A
【考点】二元一次方程组的解
【解析】【解答】解:把代入得,

.
故答案为:A.
【分析】方程组的解,能使组成方程组中的每一个方程的右边和左边都相等,根据定义,将代入方程
组即可得出一个关于a,b的二元一次方程组,求解即可得出a,b的值。

6.(2分)已知方程5m-2n=1,当m与n相等时,m与n的值分别是()
A.
B.
C.
D.
【答案】D
【考点】解二元一次方程组
【解析】【解答】解:根据已知,得
解得
同理,解得
故答案为:D
【分析】根据m与n相等,故用m替换方程5m-2n=1 的n即可得出一个关于m的方程,求解得出m的值,进而得出答案。

7.(2分)已知a,b满足方程组 ,则a+b的值为()
A. -3
B. 3
C. -5
D. 5
【答案】D
【考点】解二元一次方程组
【解析】【解答】解:,
①+②得:4a+4b=20,
∴a+b=5.
故答案为:D.
【分析】观察方程组中同一未知数的系数特点:a、b的系数之和均为4,因此将两方程相加的和除以4,就可得出a+b的值。

8.(2分)若关于的方程组无解,则的值为()
A.-6
B.6
C.9
D.30
【答案】A
【考点】解二元一次方程组
【解析】【解答】解:
由×3得:6x-3y=3
由得:(a+6)x=12
∵原方程组无解
∴a+6=0
解之:a=-6
故答案为:A
【分析】观察方程组中同一未知数的系数特点:y的系数存在倍数关系,因此利用加减消元法消去y求出x 的值,再根据原方程组无解,可知当a+6=0时,此方程组无解,即可求出a的值。

9.(2分)小明只带2元和5元两种面值的人民币,他买一件学习用品要支付23元,则付款的方式有()
A.1种
B.2种
C.3种
D.4种
【答案】B
【考点】二元一次方程的应用
【解析】【解答】解:设用了2元x张,5元y张,则
2x+5y=23,
2x=23-5y,
x= ,
∵x,y均为正整数,
∴或.
即付款方式有2种:(1)2元9张,5元1张;(2)2元4张,5元3张.
故答案为:B.
【分析】设用了2元x张,5元y张,根据学习用品的费用=23元,列方程,再求出方程的正整数解。

10.(2分)下列方程中,是二元一次方程的是()
A.3x﹣2y=4z
B.6xy+9=0
C.
D.
【答案】D
【考点】二元一次方程的定义
【解析】【解答】解:根据二元一次方程的定义,方程有两个未知数,方程两边都是整式,故D符合题意,故答案为:D
【分析】根据二元一次方程的定义:方程有两个未知数,含未知数项的最高次数都是1次,方程两边都是整式,即可得出答案。

11.(2分)下列方程组中,属于二元一次方程组的是()
A.
B.
C.
D.
【答案】C
【考点】二元一次方程组的定义
【解析】【解答】解:A. 未知项xy的次数为2,故不是二元一次方程组;
B. 第一个方程不是整式方程,故不是二元一次方程组;
C. 符合二元一次方程组的定义,是二元一次方程组;
D.含有三个未知数,故不是二元一次方程组。

故答案为:C
【分析】组成方程组的两个方程满足:①一共含有两个未知数,②未知数项的最高次数是1,③整式方程,同
时满足这些条件的方程组就是二元一次方程组,根据定义即可一一判断。

12.(2分)方程2x+3y=15的正整数解有()
A.0个
B.1个
C.2个
D.无数个
【答案】C
【考点】二元一次方程的解
【解析】【解答】解:方程2x+3y=15,
解得:x= ,
当y=3时,x=3;当y=1时,x=6,
∴方程2x+3y=15的正整数解有2个,
故答案为:C.
【分析】将方程用含y的代数式表示x,再根据原方程的正整数解,因此分别求出当y=3时;当y=1时的x的值,就可得出此方程的正整数解的个数。

二、填空题
13.(1分)如图,在铁路旁边有一村庄,现要建一火车站,为了使该村人乘火车方便(即距离最短),请你在铁路旁选一点来建火车站(位置已选好),说明理由:________.
【答案】垂线段最短
【考点】垂线段最短
【解析】【解答】解:依题可得:
垂线段最短.
故答案为:垂线段最短.
【分析】根据垂线的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短.
14.(1分)二元一次方程的非负整数解为________
【答案】,,,,
【考点】二元一次方程的解
【解析】【解答】解:将方程变形为:y=8-2x
∴二元一次方程的非负整数解为:
当x=0时,y=8;
当x=1时,y=8-2=6;
当x=2时,y=8-4=4;
当x=3时,y=8-6=2;
当x=4时,y=8-8=0;
一共有5组
故答案为:,,,,
【分析】用含x的代数式表示出y,由题意可知x的取值范围为0≤x≤4的整数,即可求出对应的y的值,即可得出答案。

15.(1分)为了奖励数学社团的同学,张老师恰好用100元在网上购买《数学史话》、《趣味数学》两种书(两种书都购买了若干本),已知《数学史话》每本10元,《趣味数学》每本6元,则张老师最多购买了________《数学史话》.
【答案】7本
【考点】二元一次方程的应用
【解析】【解答】解:设张老师购买了x本《数学史话》,购买了y本《趣味数学》,
根据题意,得:10x+6y=100,
当x=7时,y=5;当x=4时,y=10;
∴张老师最多可购买7本《数学史话》,
故答案为:7本。

【分析】等量关系为:《数学史话》的数量×单价+《趣味数学》的数量×单价=100,设未知数列方程,再求出这个不定方程的正整数解,就可得出张老师最多可购买《数学史话》的数量。

16.(1分)写出一个比-1小的无理数________.
【答案】
【考点】实数大小的比较
【解析】【解答】解:比-1小的无理数为:
【分析】根据无理数的大小比较,写出一个比-1小的无理数即可。

此题答案不唯一。

17.(1分)小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这个数=________.
【答案】-2
【考点】解二元一次方程组
【解析】【解答】解:把x=5代入2x-y=12得2×5-y=12,解得y=-2.
∴★为-2.
故答案为-2.
【分析】将x=5代入两方程,就可求出结果。

18.(1分)已知二元一次方程组则________
【答案】11
【考点】解二元一次方程组
【解析】【解答】解:
由得:2x+9y=11
故答案为:11
【分析】观察此二元一次方程的特点,将两方程相减,就可得出2x+9y的值。

三、解答题
19.(5分)如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度
数.
【答案】解:∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵OF平分∠DOB,∴∠DOF= ∠DOB=40°,∵OE⊥AB,∴∠AOE=90°,∵∠AOC=80°,∴∠EOD=180°-90°-80°=10°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【分析】根据图形和已知求出∠EOD的度数,再由角平分线性质、对顶角相等和角的和差,求出∠EOF=∠EOD+∠DOF的度数.
20.(5分)一个三位数的各位数字的和等于18,百位数字与个位数字,的和比十位数字大14,如果把百位数字与个位数字对调,所得新数比原数大198,求原数!
【答案】解:设原数的个位数字为x,十位数字为y,百位数字为z根据题意得:
解这个方程组得:
所以原来的三位数是729
【考点】三元一次方程组解法及应用
【解析】【分析】此题的等量关系为:个位数字+十位数字+百位数字=18;百位数字+个位数字-十位数字=14;新的三位数-原三位数=198,设未知数,列方程组,解方程组求解,就可得出原来的三位数。

21.(10分)为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:
(1)估计李明家六月份的总用电量是多少度;
(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?
【答案】(1)解:平均每天的用电量= =4度∴估计李明家六月份的总用电量为4×30=120度(2)解:总电费=总度数×每度电的费用=60答:李明家六月份的总用电量为120度;李明家六月份共付电费
60元
【考点】统计表
【解析】【分析】(1)根据8号的电表显示和1号的电表显示,两数相减除以7可得平均每天的用电量,然后乘以6月份的天数即可确定总电量;
(2)根据总电费=总度数×每度电的费用代入对应的数据计算即可解答.
22.(5分)已知数a、b、c在数轴上的位置如图所示,化简:|a+b|-|a-b|+|a+c|.
【答案】解:由数轴可知:c<a<0<b,|c|>|b|>|a|,
∴a+b>0,a-b<0,a+c<0,∴|a+b|-|a-b|+|a+c|=a+b-[-(a-b)]+[-(a+c)],
=a+b+a-b-a-c,
=a-c.
【考点】实数在数轴上的表示,实数的绝对值
【解析】【分析】根据数轴可知c<a<0<b,从而可得a+b>0,a-b<0,a+c<0,再由绝对值的性质化简、计算即可.
23.(5分)如图,在四边形ABCD中,AB∥CD,点P为BC上一点(点P与B,C不重合),设∠CDP =∠α,∠CPD=∠β,你能不能说明,不论点P在BC上怎样运动,总有∠α+∠β=∠B.
【答案】解:过点P作PE∥CD交AD于E,则∠DPE=∠α.
∵AB∥CD,∴PE∥AB.
∴∠CPE=∠B,即∠DPE+∠β=∠α+∠β=∠B.故不论点P在BC上怎样运动,总有∠α+∠β=∠B
【考点】平行公理及推论,平行线的性质
【解析】【分析】过点P作PE∥CD交AD于E,根据平行线性质得∠DPE=∠α,由平行的传递性得PE∥AB,根据平行线性质得∠CPE=∠B,从而即可得证.
24.(5分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
【答案】解:∵∠AFE=90°,
∴∠AEF=90°﹣∠A=90°﹣35°=55°,
∴∠CED=∠AEF=55°,
∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.
答:∠ACD的度数为83°
【考点】余角、补角及其性质,对顶角、邻补角,三角形内角和定理
【解析】【分析】先根据两角互余得出∠AEF =55°,再根据对顶角相等得出∠CED=∠AEF=55°,最后根据三角形内角和定理得出答案。

25.(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值.
【答案】解:由题意可知:
把代入,得,


把代入,得,

∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。

26.(5分)小明在甲公司打工.几个月后同时又在乙公司打工.甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终小明从这两家公司共获得薪金7620元.问他在甲、乙两公司分别打工几个月? 【答案】解:设他在甲公司打工x个月,在乙公司打工y个月,依题可得:
470x+350y=7620,
化简为:47x+35y=762,
∴x==16-y+,
∵x是整数,
∴47|10+12y,
∴y=7,x=11,
∴x=11,y=7是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
k=0,
∴原方程正整数解为:.
答:他在甲公司打工11个月,在乙公司打工7个月.
【考点】二元一次方程的解
【解析】【分析】设他在甲公司打工x个月,在乙公司打工y个月,根据等量关系式:甲公司乙公司+乙公司乙公司=总工资,列出方程,此题转换成求方程47x+35y=762的整数解,求二元一次不定方程的正整数解时,可先求出它的通解。

然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.。

相关文档
最新文档