富阳区高中2018-2019学年高三下学期第三次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
富阳区高中2018-2019学年高三下学期第三次月考试卷数学
一、选择题
1.
不等式恒成立的条件是( )
A .m >2
B .m <2
C .m <0或m >2
D .0<m <2
2.
将函数
的图象上所有的点向左平移
个单位长度,再把图象上各点的横坐标
扩大到原来的2倍,则所得的图象的解析式为( ) A
. B
. C
.
D
.
3. 某三棱锥的三视图如图所示,该三棱锥的表面积是 A
、28+ B
、30+
C
、56+ D 、
60+
4. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )
A
. B .18 C
. D
.
5. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。
问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD 的距离为
1丈,问它的体积是( ) A .4立方丈 B .5立方丈 C .6立方丈 D .8立方丈
6. 已知一个算法的程序框图如图所示,当输出的结果为
2
1
时,则输入的值为( ) 班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .2
B .1-
C .1-或2
D .1-或10 7. 已知
22(0)()|log |(0)
x x f x x x ⎧≤=⎨
>⎩,则方程[()]2f f x =的根的个数是( )
A .3个
B .4个
C .5个
D .6个
8. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是
( )
A
. B
. C
. D
.
9. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25 10.如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为( )
A .
B .
C .
D .π
11.如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是( )
A .{3}
B .{0,1}
C .{0,1,2}
D .{0,1,2,3}
12.已知圆C 方程为22
2x y +=,过点(1,1)P -与圆C 相切的直线方程为( )
A .20x y -+=
B .10x y +-=
C .10x y -+=
D .20x y ++=
二、填空题
13.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)
14.下列命题:
①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;
③2
()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1
:||
f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1
()f x x
=
在定义域上是减函数. 其中真命题的序号是 .
15.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.
16.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .
17.已知,是空间二向量,若=3,||=2,|﹣|=
,则与的夹角为 .
18.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 . 【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.
三、解答题
19.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3﹣1的等差中项.
(1)求数列{a n }的通项公式;
(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n ∈N *
),求{b n }的通项公式b n .
20.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件
(2)求z=2x+y 的最大值,使式中的x 、y 满足约束条件+=1.
21.(本题满分15分)
已知抛物线C 的方程为2
2(0)y px p =>,点(1,2)R 在抛物线C 上.
(1)求抛物线C 的方程;
(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于
M ,N 两点,求MN 最小时直线AB 的方程.
【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.
22.如图所示的几何体中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=,M是AB的中点.
(1)求证:CM⊥EM;
(2)求MC与平面EAC所成的角.
23.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.
24.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.
(Ⅰ)当0≤x ≤200时,求函数v (x )的表达式;
(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x •v (x )可以达到最大,并求出最大值.(精确到1辆/小时).
25.(本小题满分10分)选修4-4:坐标系与参数方程:
在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2
sin 2cos (0)p p ρθθ=>.
(1)设t 为参数,若22
x t =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2
||||||PQ MP MQ =⋅,求实数p 的值.
26.已知f (x )=|x ﹣1|+|x+2|. (1)解不等式f (x )≥5;
(2)若关于x 的不等式f (x )>a 2
﹣2a 对于任意的x ∈R 恒成立,求a 的取值范围.
富阳区高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:令f(x)=x2+mx+=(x+)2﹣+
则f min(x)=﹣+.
∵恒成立,
∴﹣+>0
解得0<m<2.
故选D.
【点评】本题考查了函数恒成立问题,是基础题.
2.【答案】B
【解析】解:将函数的图象上所有的点向左平移个单位长度,得到函数
,
再把图象上各点的横坐标扩大到原来的2倍,得到函数.
故选B.
【点评】本题是基础题,考查函数的图象的平移与图象的伸缩变换,注意先平移后伸缩时,初相不变化,考查计算能力.
3.【答案】B
【解析】从所给的三视图可以得到该几何体为三棱锥,
所求表面积为三棱锥四个面的面积之和。
利用垂直关系和三角形面积公式,可得:
10,10,10,
====
S S S S
后右左
底
S=+,故选B.
因此该几何体表面积30
4.【答案】D
【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:
故该几何体的表面积为:3×22
+3×(
)+=,
故选:D .
5. 【答案】 【解析】解析:
选B.如图,设E 、F 在平面ABCD 上的射影分别为P ,Q ,过P ,Q 分别作GH ∥MN ∥AD 交AB 于G ,M ,交DC 于H ,N ,连接EH 、GH 、FN 、MN ,则平面EGH 与平面FMN 将原多面体分成四棱锥E -AGHD 与四棱锥F -MBCN 与直三棱柱EGH -FMN .
由题意得GH =MN =AD =3,GM =EF =2,
EP =FQ =1,AG +MB =AB -GM =2,
所求的体积为V =13(S 矩形AGHD +S 矩形MBCN )·EP +S △EGH ·EF =13×(2×3)×1+1
2×3×1×2=5立方丈,故选B.
6. 【答案】D 【解析】
试题分析:程序是分段函数⎩⎨⎧=x y x lg 2 0
0>≤x x ,当0≤x 时,212=x
,解得1-=x ,当0>x 时,21lg =x ,
解得10=x ,所以输入的是1-或10,故选D.
考点:1.分段函数;2.程序框图.11111] 7. 【答案】C
【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=1
4
,作出f (x )的图像,由数型结合,当A=
1
4
时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。
8. 【答案】 A
【解析】解:考虑当向高为H 的水瓶中注水为高为H 一半时,注水量V 与水深h 的函数关系.
如图所示,此时注水量V 与容器容积关系是:V <水瓶的容积的一半.
对照选项知,只有A 符合此要求.
故选A .
【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
9.【答案】
【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,
4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P=3
10. 10.【答案】A
【解析】(本题满分为12分)
解:由题意可得:|AA'|=sinα、|BB'|=sinβ、|CC'|=sin(α+β),
设边长为sin(α+β)的所对的三角形内角为θ,
则由余弦定理可得,cosθ=
=﹣cosαcosβ
=﹣cosαcosβ
=sinαsinβ﹣cosαcosβ
=﹣cos(α+β),
∵α,β∈(0,)
∴α+β∈(0,π)
∴sinθ==sin(α+β)
设外接圆的半径为R,则由正弦定理可得2R==1,
∴R=,
∴外接圆的面积S=πR2=.
故选:A.
【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.
11.【答案】C
【解析】解:由图可知图中阴影部分所表示的集合∁M ∩N , ∵全集U=R ,M={x|x >2},N={0,1,2,3}, ∴∁M ={x|x ≤2}, ∴∁M ∩N={0,1,2}, 故选:C
【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.
12.【答案】A 【解析】
试题分析:圆心(0,0),C r =
,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=
,由
,1d r k =∴=,所以切线方程为20x y -+=,故选A.
考点:直线与圆的位置关系.
二、填空题
13.【答案】 15
【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),
∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,
根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种 故答案为:15.
【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.
14.【答案】①② 【解析】
试题分析:子集的个数是2n ,故①正确.根据奇函数的定义知②正确.对于③()241f x x =-为偶函数,故错误.对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.
【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n 个;对于奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个
元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1 15.【答案】
【解析】解:∵点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),
∴向量=(1+1,2﹣1)=(2,1),
=(3+2,4+1)=(5,5);
∴向量
在方向上的投影是
=
=
.
16.【答案】 3 .
【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,
∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),
故三角形的面积S=×2×3=3,
故答案为:3.
【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.
17.【答案】 60° .
【解析】解:∵|﹣|=,
∴
∴
=3,
∴cos <>=
=
∵
∴与的夹角为60°. 故答案为:60° 【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的
表示式.
18..
【解析】
三、解答题
19.【答案】
【解析】解:(1)设等比数列{a n}的公比为q,由a2是a1和a3﹣1的等差中项得:
2a2=a1+a3﹣1,∴,
∴2q=q2,∵q≠0,∴q=2,
∴;
(2)n=1时,由b1+2b2+3b3+…+nb n=a n,得b1=a1=1.
n≥2时,由b1+2b2+3b3+…+nb n=a n ①
b1+2b2+3b3+…+(n﹣1)b n﹣1=a n﹣1②
①﹣②得:.
,
∴.
【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.
20.【答案】
【解析】解:(1)由题意作出可行域如下,
,
结合图象可知,当过点A(2,﹣1)时有最大值,
故Z max=2×2﹣1=3;
(2)由题意作图象如下,
,
根据距离公式,原点O到直线2x+y﹣z=0的距离d=,
故当d有最大值时,|z|有最大值,即z有最值;
结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,
联立方程
化简可得,
116x 2﹣100zx+25z 2﹣400=0,
故△=10000z 2﹣4×116×(25z 2
﹣400)=0, 故z 2
=116,
故z=2x+y 的最大值为.
【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.
21.【答案】(1)2
4y x =;(2)20x y +-=.
【解析】(1)∵点(1,2)R 在抛物线C 上,2
2212p p =⨯⇒=,…………2分 即抛物线C 的方程为2
4y x =;…………5分
22.【答案】
【解析】(1)证明:∵AC=BC=AB,
∴△ABC为等腰直角三角形,
∵M为AB的中点,
∴AM=BM=CM,CM⊥AB,
∵EA⊥平面ABC,
∴EA⊥AC,
设AM=BM=CM=1,则有AC=,AE=AC=,
在Rt△AEC中,根据勾股定理得:EC==,
在Rt△AEM中,根据勾股定理得:EM==,
∴EM2+MC2=EC2,
∴CM⊥EM;
(2)解:过M作MN⊥AC,可得∠MCA为MC与平面EAC所成的角,则MC与平面EAC所成的角为45°.
23.【答案】
【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.
又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
∴AC2+AB2=BC2,∴AB⊥AC.
建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),
∴,,.
设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).
则,令y1=4,解得x1=0,z1=3,∴.
,令x2=3,解得y2=4,z2=0,∴.
===.
∴二面角A1﹣BC1﹣B1的余弦值为.
(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,
∴=,=(0,3,﹣4),
∵,∴,
∴,解得t=.
∴.
【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.
24.【答案】
【解析】解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b
再由已知得,解得
故函数v(x)的表达式为.
(Ⅱ)依题并由(Ⅰ)可得
当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200
当20≤x≤200时,
当且仅当x=200﹣x,即x=100时,等号成立.
所以,当x=100时,f(x)在区间(20,200]上取得最大值.
综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,
即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.
答:(Ⅰ)函数v(x)的表达式
(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.
25.【答案】
【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.
26.【答案】
【解析】解:(1)不等式即|x﹣1|+|x+2|≥5,由于|x﹣1|+|x+2|表示数轴上的x对应点到﹣2和1对应点的距离之和,
而﹣3和2对应点到﹣2和1对应点的距离之和正好等于5,故不等式的解集为(﹣∞,﹣3]∪[2,+∞).(2)若关于x的不等式f(x)>a2﹣2a对于任意的x∈R恒成立,故f(x)的最小值大于a2﹣2a.
而由绝对值的意义可得f(x)的最小值为3,
∴3>a2﹣2a,解得﹣1<a<3,
故所求的a的取值范围为(﹣1,3).。