指令流水线的设计共60页

合集下载

计算机系统结构第3章流水线技术

计算机系统结构第3章流水线技术
设计控制逻辑以协调不同阶段之间的操作, 确保指令顺序执行。
流水线调度
根据指令的依赖关系和资源可用性,动态调 度指令到不同的流水线阶段。
GPU设计中的流水线技术
线程级并行
通过划分线程块和线程束,实现线程级并行执行。
数据级并行
将数据划分为多个块,每个块在GPU的多个处理单元上并行处理。
指令级并行
通过指令调度和分支预测,实现指令级并行执行。
硬件资源共享
01
硬件资源共享是指流水线中的多个操作共享相同的硬件资源, 如寄存器、缓冲区等。
02
硬件资源共享能够提高资源利用率,减少硬件开销,降低成本。
需要注意的是,硬件资源。
流水线的性能指标
01
吞吐量
流水线每单位时间内完成的操作数 或任务数。
流水线调度
根据子任务的依赖关系和资源需求,动态调 度子任务到不同的计算节点。
THANKS
感谢观看
将执行结果写回寄 存器或内存。
02
流水线的工作原理
数据流驱动
1
数据流驱动是指流水线中的操作按照数据流动的 方向依次执行,每个操作在完成前需要等待前一 个操作的结果。
2
数据流驱动的优点是能够充分利用数据依赖关系, 减少等待时间,提高流水线的吞吐量。
3
需要注意的是,数据流驱动需要精确控制数据流 动的顺序,以避免出现数据相关和冒险问题。
调试和维护困难
由于流水线中各个阶段是并行处 理的,调试和维护可能会比串行 系统更加困难。
05
流水线技术的应用
CPU设计中的流水线技术
指令划分
将指令划分为多个阶段,每个阶段对应一个 功能单元,从而并行执行多个指令。
数据路径设计

流水线设计

流水线设计

流水线设计1. 概述在计算机科学中,流水线是一种用于提高计算机性能的技术。

它将复杂的任务划分为一系列简单的子任务,并且在同时执行这些子任务的同时传递数据,从而实现更高的吞吐量和更短的响应时间。

本文将介绍流水线设计的基本原理和常见的应用。

我们将讨论流水线的架构、流水线的设计要点以及流水线中可能遇到的一些问题和解决方案。

2. 流水线的架构流水线的基本架构由以下几个组成部分组成:2.1. 输入单元输入单元负责接收外部输入并将其转换为计算机可以处理的格式。

它可以是键盘、鼠标、传感器等。

输入单元还可以包括解码器、缓冲区等组件,以提高数据传输的效率和稳定性。

2.2. 控制单元控制单元负责协调整个流水线中的各个组件的操作。

它根据指令和状态信息来决定下一步的操作,并将相应的指令发送给执行单元。

2.3. 执行单元执行单元是流水线中最重要的部分之一。

它负责执行任务的实际计算部分。

执行单元可以包括算术逻辑单元(ALU)、浮点运算单元(FPU)、乘法器、除法器等。

执行单元可以根据具体的需求进行扩展和优化。

2.4. 存储单元存储单元用于存储流水线中的数据和指令。

它可以是寄存器、缓存、内存等。

存储单元要具备高速访问和大容量的特性,以满足流水线的高效率要求。

2.5. 输出单元输出单元将计算结果输出给外部设备或其他计算机系统。

它可以是显示器、打印机、网络接口等。

输出单元还可以包括编码器、缓冲区等组件,以提高数据传输的效率和稳定性。

3. 流水线的设计要点在设计流水线时,我们需要考虑以下几个要点:3.1. 指令级并行流水线可以将任务划分为一系列子任务,并且在同时执行这些子任务的同时传递数据。

这种指令级并行可以提高计算机的性能。

在设计流水线时,我们需要合理划分子任务,并确保它们之间的依赖关系正确处理。

3.2. 数据冲突在流水线中,由于子任务之间的数据传递,可能会出现数据冲突的情况。

数据冲突会导致流水线的停顿和性能损失。

为了解决数据冲突,我们需要采取一些技术手段,如使用缓存、乱序执行、数据旁路等。

基于MIPS指令集的流水线CPU设计与实现

基于MIPS指令集的流水线CPU设计与实现

基于MIPS指令集的流水线CPU设计与实现刘秋菊;张光照;王仲英【摘要】提出了一种CPU设计方案,实现指令集为MIPS指令集中选取15条指令作为本CPU的基本指令,采用基本5步流水线CPU设计.分析了流水线CPU的逻辑结构与指令的处理过程,给出了取指阶段IF、译码阶段ID、执行阶段EX、内存访问阶段MEM、寄存器写回阶段WB阶段的设计与实现.对流水线产生的相关性问题,采用Bubble法和Forwarding法相结合的方法来消除相关性,在FPGA平台上进行了测试,测试结果表明,该方案符合设计要求.%In this paper,a design method of CPU was proposed,the instruction set of the CPU contained 15 items of MIPS instruction set,and the basic method of five step pipeline CPU design was used.Analyses were conducted on the logic structure of the pipeline CPU and the processing of the instruction.This paper also gave design and realization of stage IF,stage ID,stage EX,stage MEM and stage WB.About the pipeline-related problems,the paper adopted Bubble and Forwarding technologies to eliminate it.The tests on the FPGA platform show that the scheme meets the design requirements.【期刊名称】《实验室研究与探索》【年(卷),期】2017(036)008【总页数】6页(P148-152,172)【关键词】流水线;中央处理器;设计;指令集【作者】刘秋菊;张光照;王仲英【作者单位】郑州工程技术学院信息工程学院,郑州450000;河南经贸职业学院技术科学系,郑州450018;河南经贸职业学院技术科学系,郑州450018【正文语种】中文【中图分类】TP332在工业设计和机器人研究中,微处理器作为控制部件的核心是设计的关键,其性能直接影响整个系统的性能。

计算机体系结构——流水线技术(Pipelining)

计算机体系结构——流水线技术(Pipelining)
2.按功能分
单功能流水线:流水线只完成一种固定功能 多功能流水线:流水线可以完成多种功能,如 TI公司的ASC机,8段流水线,能够实现:定点加减 法、定点乘法、浮点加法等功能 3.按同一时间内各段之间的连接方式分 静态多功能流水线 :同一时间内,多功能结构只能按一种功能的连接方式工作。 动态多功能流水线:在同一时间内,可以有多种功能的连接方式同时工作 4.按处理的数据类型 标量流水线 向量流水线 5.按控制方式 同步流水线 异步流水线:当Si功能段要向Si+1段传送数据时,首 先发出就绪信号,Si+1功能段收到信号后,向Si回送 一个回答信号。 6.按任务从输出端的流出顺序 顺序流水方式:指令流出顺序 = 指令流入顺序 乱序流水方式:指令流出顺序 != 指令流入顺序 7. 线性流水线——不带反馈回路的流水线
三、流水线的分类(了解)
四、流水线相关及冲突(重点) 1.流水线相关 2.流水线冲突 3.流水线冲突带来问题 4.数据冲突及其解决方案 5.结构冲突及其解决方案 6.控制冲突及其解决方案
五、流水线性能分析(含例题讲解) 1.流水线的基本参数——吞吐率 2.流水线的基本参数——加速比 3.流水线的基本参数——效率 4.结果分析 5.有关流水线性能的若干问题
整体评估、反馈、再改进
3. 指令周期
单周期处理机模型:一个周期完成一个指令(每个周期是等长的),指令长度可能不一样,会造成很大的浪费 多周期处理机模型:将一个指令的完成划分成若干个周期来实现 流水线模型
二、流水线技术 1. 什么是流水线? 计算机中的流水线是把一个重复的过程分解为若干个子过程,每个子过程与其他子过程并行进行。由于这种工作方式与工厂中的生产 流水线十分相似, 因此称为流水线技术 从本质上讲,流水线技术是一种时间并行技术。

计算机组成原理流水线设计基础知识全面解析

计算机组成原理流水线设计基础知识全面解析

计算机组成原理流水线设计基础知识全面解析计算机组成原理是计算机科学与技术的基础课程之一,而流水线设计则是其中的重要内容之一。

本文将全面解析计算机组成原理流水线设计的基础知识,介绍其工作原理、优势、流水线冲突及解决方法等内容。

一、工作原理计算机组成原理中,流水线设计是通过将指令的执行过程划分为多个阶段,并将这些阶段在不同的处理单元上并行执行的方式,从而提高指令的执行效率。

流水线设计主要包含以下几个阶段:1. 取指令阶段(IF):从内存中读取指令并将其送至指令译码器。

2. 指令译码阶段(ID):对指令进行解码,判断其类型,并提取相关寄存器的值。

3. 执行阶段(EX):根据指令的类型,对操作数进行计算,并将结果保存至寄存器中。

4. 访存阶段(MEM):如果指令需要访问内存,则进行内存读取或写入操作。

5. 写回阶段(WB):将计算结果写回到寄存器中。

通过将指令的执行划分为多个阶段,并使用多个处理单元并行执行,流水线设计可以大大提高指令的执行效率,加快程序的运行速度。

二、优势流水线设计具有以下几个优势:1. 并行处理:通过将指令的执行划分为多个阶段,并使用多个处理单元并行执行,可以加快指令的执行速度。

2. 提高资源利用率:由于每个处理单元都可以执行不同的指令阶段,因此可以充分利用硬件资源,提高整体的资源利用率。

3. 灵活性:不同的指令可以使用不同的处理单元进行执行,在保持高效率的同时,增加了系统的灵活性,可以执行更多的指令类型。

然而,除了以上的优势外,流水线设计也存在一些问题,即流水线冲突。

三、流水线冲突及解决方法1. 结构冲突:当多个指令需要使用同一硬件资源时,会发生结构冲突。

例如,同时对存储器进行读取和写入操作。

解决方法:通过增加硬件资源的数量或调整指令的执行顺序,可以避免结构冲突的发生。

2. 数据冲突:当后续指令需要使用前一条指令的运算结果时,会发生数据冲突。

例如,一条指令的结果被另一条指令使用。

解决方法:可以通过插入空闲周期或使用旁路机制,将结果传递给后续指令,从而解决数据冲突。

数字系统设计-流水线CPU设计

数字系统设计-流水线CPU设计

实验报告课程名称:数字系统设计实验Ⅱ学院:信电系数字系统设计实验Ⅱ流水线MIPS微处理器设计ContentsPart 1实验目的 (3)Part 2实验任务 (3)Part 3实验原理 (4)Part 4实验步骤 (12)1.IF级设计 (12)2.ID级设计 (14)3.Decode单元设计 (16)4.ALU单元设计 (22)5.EX级设计 (27)6.顶层模块设计 (29)Part 5仿真和波形分析 (37)1.IF级仿真分析 (37)2.Decode单元仿真分析 (38)3.ALU仿真分析 (40)4.顶层仿真分析 (41)Part 6心得 (42)实验报告一、实验目的(1)了解提高CPU性能的方法。

(2)理解数据冒险、控制冒险的概念以及流水线冲突的解决方法。

(3)掌握流水线MIPS微处理器的工作原理。

(4)掌握流水线MIPS微处理器的测试方法。

二、实验任务设计一个32位流水线MIPS微处理器。

设计要求:(1)至少执行下列MIPS32指令。

①算数运算指令:ADD ADDU SUB SUBU ADDI ADDU②逻辑运算指令:AND OR NOR XOR ANDI ORI XORI SLT SLTI SLTU SLTIU③移位指令:SLL SLLV SRL SRLV SRA④条件分支指令:BEQ BNE BGEZ BGTZ BLEZ BLTZ⑤无条件跳转指令:J JR⑥数据传输指令:LW SW⑦空指令:NOP(2)在用5级流水线技术,对数据冒险实现转发或阻塞功能。

(3)在XUP Vietex-II Pro开发系统中实现MIPS微处理器,要求CPU的运行速度大于25MHz.三、实验原理1.流水线MIPS CPU总体设计与构建流水线是数字系统中一种提高系统稳定性和工作速度的方法,广泛应用在高档CPU的构建中。

根据MIPS处理器指令的特点,将整体的处理过程分为取指令(IF)、指令译码、执行、存储器访问和寄存器写回五级,对应多周期CPU的五个处理阶段。

MIPS指令五级流水CPU设计剖析

MIPS指令五级流水CPU设计剖析

MIPS指令五级流水CPU设计剖析MIPS指令五级流水将指令的执行过程划分为取指(Instruction Fetch, IF)、译码(Instruction Decode, ID)、执行(Execution, EX)、访存(Memory Access, MEM)和写回(Write Back, WB)五个阶段。

每个阶段由一个独立的硬件逻辑电路实现,这样指令可以在同一时间在不同阶段同时执行,从而提高了CPU的吞吐量。

在取指阶段,CPU从指令缓存(Instruction Cache)中读取指令,并将其送入指令译码阶段。

取指阶段主要包括以下几个步骤:首先,CPU从PC寄存器中读取下一条指令的地址;然后,CPU将这个地址发送到指令缓存中,读取对应的指令;最后,CPU将读取到的指令送入译码阶段。

在译码阶段,CPU对指令进行译码,确定指令的类型和操作数,并将这些信息传递给执行阶段。

译码阶段主要包括以下几个步骤:首先,CPU从指令中解析出操作码和操作数;然后,CPU根据操作码确定指令的类型,并确定需要使用的操作数;最后,CPU将指令类型和操作数传递给执行阶段。

在执行阶段,CPU执行指令的实际操作,并计算结果。

执行阶段主要包括以下几个步骤:首先,CPU根据指令类型和操作数进行相应的运算;然后,CPU将计算结果传递给访存阶段或写回阶段,具体传递给哪个阶段取决于指令的类型;最后,CPU将执行完成的指令从流水线中清除。

在访存阶段,CPU将数据存储到内存或从内存中读取数据,并将数据传递给下一个阶段。

访存阶段主要包括以下几个步骤:首先,CPU将执行阶段产生的数据存储到内存;然后,CPU从内存中读取数据;最后,CPU将读取到的数据传递给写回阶段或下一个指令的取指阶段。

在写回阶段,CPU将执行阶段产生的结果写回到寄存器文件(Register File)中,以保存计算结果。

写回阶段主要包括以下几个步骤:首先,CPU将执行阶段产生的结果写入寄存器文件;然后,CPU更新PC寄存器的值,以指向下一条需要执行的指令;最后,CPU将流水线上所有已经执行完成的指令清除。

流水线指令及RISC

流水线指令及RISC

一.流水线1. 概念:处理器按照一系列步骤来执行每一条指令.典型的步骤如下:1) 从存储器读取指令(fetch).2) 译码以鉴别它是那一类指令(dec).3) 从寄存器堆取得所需的操作数(reg).4) 将操作数进行组合以得到结果或存储器地址(ALU).5) 如果需要,则访问存储器以存取数据(mem).6) 将结果写回到寄存器堆(res).并不是所有的指令都需要每一个步骤,但是,多数指令需要其中的多数步骤.这些步骤往往使用不同的硬件功能,例如,ALU 可能只在第四步中用到.因此,如果一条指令不是在前一条结束之前就开始,那么在每一个步骤内处理器只有少部分的硬体被使用. 有一个明显的方法可以改善硬件资源的使用率和处理器的吞吐量,这就是在当前指令结束之前就开始执行下一条指令.该技术被称为流水线,是在通用处理器中采用并行算法且非常有效的途径.采用上述操作顺序,处理器可以这样来组织:当一条指令刚刚执行完步骤1并转向步骤2时,下一条指令就开始执行步骤1.图1.13说明了这个过程.从原理上来说,这样的流水线应该比没有重叠的指令执行快6倍,但实际上事情并没有这么好,下面我们将会看到原因.123 指令时间图1.13 流水线的指令执行2. 流水线中的冒险要点:后一条指令要用到前一条指令。

在典型的计算机程序中经常会遇到这样的情形,即一条指令的结果被用做下一条指令的操作数.当这种情形发生时,图1.13所示的流水线操作就中断了,因为第一条指令的结果在第二条指令取操作数时还没有产生.第二条指令必须停止,直到结果产生为止.这是流水线的行为如图1.14所示.这是流水线的”写后读”冒险(hazard).1.2.图 1.14 先写后读的流水线冒险转移指令更会破坏流水线的行为,因为后续指令的取指步骤受到转移目标计算的影响,因而必须推迟.不幸的是,当转移指令正在被译码时,在它被确认为是转移指令之前,后续的取指操作就发生了.这样一来,读取到的指令就不得不丢弃.如果转移目标计算是在图1.13中流水线的ALU阶段完成的,那么,在得到转移目标之前已经有3条指令按照原有的指令流读取(见图 1.15).如果有可能,最好早一些计算转移目标,尽管这可能需要专门的硬件.如果转移指令具有固定的格式,那么可以(也就是说在确认该指令是转移指令之前)在dec阶段预测计算转移目标,从而将转移的执行时间减少到单个周期.但是要注意,由于条件转移与前一条指令的条件码结果有关,在这个流水线中还会有条件转移的冒险.一些RISC体系结构(尽管不是ARM)规定,不管是否进行了转移,转移之后的指令都要执行.这个技术称为延迟转移.1 (转移)2345(转移目标)指令时间图1.15 流水线的转移行为3.流水线效率尽管有些技术可以减少这些流水线问题的影响,但是,不能完全消除这些困难.流水线越深(就是流水线的级数越多),问题就说严重.对于相对简单的处理器,使用3~5即流水线效果会更好.但是,超过了这个级数,收益递减的法则开始生效,增加的成本和复杂度将超过收益.例:ARM7 3级流水线ARM9 是5级ARM10是6-7级StrongArm是5级显然,只有当所有指令都依相似的步骤执行时,流水线才能带来好处.如果处理器的指令非常复杂,每一条指令的行为都与下一条指令不同,那么就很难用流水线实现.1980年,因为有限的硅资源,有限的设计资源,以及设计一个复杂指令集的流水线的高度复杂性,当时的复杂指令集微处理器没有采用流水线.二.精简指令计算机1.RISC体系结构1)固定的(32位)指令长度,指令类型很少.而CISC处理器指令集的长度一般可变,指令类型也很多.2)Load-Store结构,数据处理指令访问寄存器,与访问存储器的指令是分开的.而CISC处理器一般允许将存储器中的数据作为数据处理指令的操作数.3)由32个32位寄存器构成大的寄存器堆(register bank),其中所有的寄存器都可以用于任何用途,以使Load-Store结构有效的工作.虽然CISC寄存器集也加大了,但是没有那么大,而且大都是不同的寄存器用于不同的用途(例如,Motorola公司MC68000的数据寄存器和地址寄存器).这些差别极大的简化了处理器的设计,使设计者在实现体系结构时可以采用以下这些对提高原型机性能由很大作用的,组织方面的特点.2、RISC的组织@流水线执行.而CISC处理器即使有,也只允许在连续指令间有极少的重叠(尽管它们现在允许).@单周期执行.而CISC处理执行1条指令一般需要多个时钟周期.3、R ISC的优点.4)管芯面积小.简单的处理器需要的晶体管少,需要的硅片面积也小.因此,整个CPU在工艺技术发展的较早阶段即可在一个芯片内.一旦技术发展超过这一阶段,RISC CPU就能剩下更多的面积用于实现可以提高性能的功能部件,例如高速缓存,存储器管理和浮点硬件等等.5)开发时间短简单的处理器会占用较少的设计力量,因而设计费用低.它还会更好地投放市场时的工艺技术相适应(因为开发周期越短,越容易在开发时预测工艺技术的发展).6)性能高.这个优点比较微妙.前面两条优点容易接受,但看看我们周围,高性能总要通过不断增加复杂度来实现,说RISC有高性能的优点有些使人难以接受.可以来这样看这个问题:较小的东西具有较高的自然频率(昆虫煽动翅膀的频率高于小鸟,小鸟山东翅膀的频率高于大鸟等等),所以,简单的处理器应该容许较高的时钟频率.让我们来设计一个复杂的处理器,但开始时先设计一个简单的,然后每次增加一条复杂的指令,都会使某些高级的功能更有效率,但是,它也会降低所有指令所用的时钟频率.我们可以度量对于典型程序总的得失.当我们这样做的时候,会发现所有复杂的指令都使程序执行变慢了.因此,我们坚持最初的简单处理器.使用 3 阶段流水线的例子。

计算机体系结构之流水线技术(ppt 125页)

计算机体系结构之流水线技术(ppt 125页)
3 流水线技术
张伟 计算机学院
大纲
1 概念定义 2 流水线分类 3 MIPS五级流水线 4 性能分析 5 流水线相关 6 高级流水线技术
1 概念定义
洗衣店的例子
A, B, C, D 均有一些衣物要 清洗,甩干,折叠
清洗要花30 分钟 甩干要用40 分钟 叠衣物也需要20 分钟
流水线输出端任务流出的顺序与输入端任务流 入的顺序相同。
异步流动流水线(乱序流水线):
流水线输出端任务流出的顺序与输入端任务流 入的顺序不同。
3 MIPS五级流水线
DLX(Dancing Links)
DLX 是一种简单的指令集(教学、简单芯片) 在不流水的情况下,如何实现DLX。
实现DLX指令的一种简单数据通路
4. 存储器访问周期MEM(Memory Access) 5. 写回周期WB(Write Back)
MIPS的简单实现
Instruction Fetch
Instr. Decode Reg. Fetch
Next PC
Next SEQ PC
4
RS1
RS2
Execute Addr. Calc
Zero?
RD
增加了向后传递IR和从MEM/WB.IR回送到通用寄存 器组的连接。
将对PC的修改移到了IF段,以便PC能及时地加 4,为取下一条指令做好准备。
2. 每一个流水段进行的操 作
IR[rs]=IR6..10 IR[rt]=IR11..15 IR[rd]=IR16..20
流水线的每个流水段的操作
将有效地址计算周期和执行周期合并为一个时钟周期,这
是因为MIPS指令集采用load/store结构,没有任何指令
需要同时进行数据有效地址的计算、转移目标地址的计算

第7章流水线结构RISC CPU设计

第7章流水线结构RISC CPU设计

(7-4)
7.3流水线的性能评价
7.3.1 流水线的性能指标
2.CPU性能公式
总时钟周期数 CPU时间 时钟频率
(7-5)
总时钟周期数 CPI (7-6) IC
CPU时间
(CPI
i 1
n
CPI IC (7-7) 总CPU时间 时钟频率
(7-8)
i
ICi )
时钟频率
CPI
7.1.2流水线CPU的时空图
空间S
I 1 I 2I 3I 4I 5 I 6 I 7 I 8I 9 I 10
空间S
WB EX ID IF
I3 I4 I5 I1 I2 I3 I4 I5 I1 I2 I3 I4 I5 I1 I2 I3 I4 I5 I1 I2 I3 I4 I5 1 2 3 4 5 6 7 8 时间T
Reg
图7-10 例7-4的流水线状态图
ALU
7.2 流水线中的主要问题及处理 CC1 CC2 CC3 CC4 CC5
时钟周期
CC6
ALU
程 序 Reg 执 LW R1,0(R2) IM 7.2.3 数据竞争的处理技术 行 序 列 SUB R4,R1,R5 IM
ALU
DM
Reg
Reg
气泡
DM
AND R6,R1,R7
Reg
ALU
程 序 Reg 执 ADD R1,R2,R3 IM 行 序 列 7.2.3 数据竞争的处理技术 SUB R4,R1,R5 IM
ALU
7.2 流水线中的主要问题及处理
DM Reg DM
时钟周期
CC1
CC2
CC3
CC4
CC5
CC6

YHFT-DX高性能DSP指令控制流水线设计与优化

YHFT-DX高性能DSP指令控制流水线设计与优化

国防科技大学 计算机学院微 电子所 , 长沙 4 07 10 3
S h o f C mp tr S in e a d T c n lg , t n l Unv r i f n e T c n l g , a g h 1 0 3 Chn c o l o o ue ce c n e h oo y Na i a i est o Dee s e h oo Ch n s a 4 0 7 , i a o yf y E- i: u y n @n d .d .n mal g o a g u t u c e
GUO n ZHE Ti z i LI Yo g De i n a d o t z t n t c n q e o n t u t n c n r l p p l e o Ya g, N - h , n . sg n p mi a o e h i u s f r i sr c i o t o i ei f YHF DX i h i i o n T— hg
C m u rE  ̄ne n n p l a os o p t n en g a dA pi t n 计算机工程 与应用 e ci
2 1 ,6 7 0 04 ( )
6 9
Y TD HF — X高性 能 D P指令控制流水线设计 与优化 S
郭 阳, 甄体 智 , 李 勇
GU Y n , HE i z i L n O a g Z N T — h , I Yo g
:P 6 T33
1 引言
2 世纪 9 0 0年代 中期 , S ( it in rcso) 系 D P Dg a Sga Poesr体 i l l 结构在应用需求推动下发生了巨大变革 。 I 司于 19 年推 T公 97 出了第一款超长指令字 ( L 结构的 D P 随后 ,n o D — V1 w) S, A a g e l v e、 trl L cn 等公 司纷 纷 推 出各 自的 v i sMo o a和 u et c o uw 结 构

MIPS指令五级流水CPU设计资料

MIPS指令五级流水CPU设计资料

MIPS指令五级流水CPU设计资料1.指令和指令流水线MIPS指令集包含大约50条指令,包括算术/逻辑操作、存储器操作、分支和跳转等。

五级流水线是一种用于加速指令处理的技术,将指令执行过程划分为五个阶段:取指(Instruction Fetch, IF)、译码(Instruction Decode, ID)、执行(Execution, EX)、访存(Memory Access, MEM)和写回(Write Back, WB)。

2.数据通路和控制信号3.流水线冲突在流水线处理器中,常见的冲突有结构冲突、数据冲突和控制冲突。

结构冲突是由于多个指令需要同时访问同一个硬件资源而引起的,例如两个指令同时需要访问寄存器堆。

数据冲突是由于指令之间存在依赖关系而引起的,例如一条指令需要使用前一条指令的结果作为操作数。

控制冲突是由于分支指令的执行导致流水线中的指令不按顺序执行。

4.冲突解决技术为了解决流水线冲突,可以采用以下技术:延迟槽、旁路、分支预测和动态调度。

延迟槽是将分支指令后面的一条指令当作分支指令的一部分,使得分支指令的下一条指令能够在分支决策前执行。

旁路技术用于解决数据冲突,将计算结果旁路给后续指令使用。

分支预测技术用于解决控制冲突,根据过去的分支历史进行预测。

动态调度技术则根据指令的真实执行情况来进行调度,以最大程度地减少冲突。

5.性能优化为了提高CPU的性能,可以采取一些优化技术,例如流水线分段、超标量和超流水线。

流水线分段将指令流水线划分为多个段,使得每个段可以并行工作,提高指令的吞吐量。

超标量技术引入多个功能单元来同时执行多条指令,提高指令的并行度。

超流水线技术则进一步增加流水线的级数,以提高指令的处理速度。

总结:MIPS指令五级流水线CPU是一种高效的处理器设计,它采用五级流水线来加速指令处理,并通过解决流水线冲突来提高指令执行的效率。

该CPU的设计需要考虑数据通路和控制信号,以及解决冲突的技术和性能优化的方法。

第3章流水线技术

第3章流水线技术

第2章流水线技术流水线是计算机体系结构设计中普遍应用的技术。

本章介绍流水线的基本概念、表示方法、和分类,讨论流水线实现的基本结构、线性流水线的性能与非线性流水线的调度策略,分析流水线的相关及其处理方法。

2.1 流水线的基本概念2.1.1 多条指令的执行方式一条指令的执行过程可以分为多个阶段,通常分为三个阶段,执行过程如图2-1所示。

第一阶段是取指令,按照程序计数器的内容访问主存储器,取出是一条指令送到指令寄存器。

第二阶段是分析指令,对指令寄存器中的指令进行译码分析,即对指令操作码进行译码,分析指令的功能,依据给定的寻址方式和地址码字段的内容形成操作数地址,并读取操作数(立即数寻址除外);同时,程序计数器自动产生一个增量,指到下一条指令。

第三阶段是执行指令,根据操作码的要求,对操作数进行运算和处理,完成指令规定的功能,并把运算结果送到指定的地址中。

指令执行过程中的第一阶段,一定要访问主存(指令一定在主存中),而在后两个阶段,也可能要访问主存(当操作数在主存中时)。

当有多条指令要在一个处理机中完成时,可以有多种执行方式。

现假设3个阶段所需要的时间均为△t 。

2.1.1.1 顺序执行方式顺序执行方式是指在任何时刻,处理机中只有一条指令在执行,指令之间是顺序串行执行的,即第k条指令执行完成后,再执行完成第k+1条指令,依次类推。

多条指令执行过程如图2-2(a)所示,执行n条指令所需要的时间为T = 3n△t。

顺序执行方式的优点是控制简单,节省设备。

主要缺点有两个,一是处理机执行指令的速度慢。

只有当上一条指令执行完毕后,下一条指令才能开始执行。

二是功能部件的利用率低。

如取指令时主存是忙碌的,而指令执行部件是空闲的。

2.1.1.2 一次重叠执行方式一次重叠执行方式是指在任何时刻,处理机中至多只有两条指令在同时执行,即使第k 条指令的执行阶段与第k+1条指令的取指令同时进行。

多条指令执行过程如图2-2(b)所示,执行n条指令所需要的时间为T = (2n+1)△t。

MIPS指令五级流水CPU设计

MIPS指令五级流水CPU设计
4.5 MIPS指令五级流水CPU设计
4.5.1 多周期CPU回顾 4.5.2 指令流水基本概念 4.5.3 MIPS指令流水的实现
4.5.1 多周期CPU回顾
多周期CPU特点 – 指令的执行划分为多个步骤 – 每个步骤占用一个CPU周期 – 不同指令的指令周期不同 – 指令串行执行
– 提高了整体性能
确定分支指令 是否转移的 条件信号Z
2 1
op func target
左移2位 PC[31..28]
0
0
指 令 内 容 IR
rs rt
rd
0 1
N1 寄 Q1 存 N2 器 堆 ND DI Q2
A 寄 存 器
1
A A L U
Z
PC
Hale Waihona Puke 0 1存 A 储 D 器
B 寄 存 器
4
1 0 2 3
B
R
结 果 寄 存 器
各步骤占用的资源
多周期CPU适合指令流水实现吗? – 已分解为多个步骤,但步骤间的资源冲突比较频繁
写入PC的指令地址
WritePC IODR WriteMEM WriteIR
节拍 信号产生
ALUsrcB
PCsrc
控制部件
MEMtoREG SE REGds WriteREG ALUsrcA
ALUop
各阶段寄存器保存的值
IF/ID
– PC+4 – IR
ID/EXE
– A、B、imm、PC+4、func – rt/rd
EXE/MEM
– 运算结果:PC、ALU、结果状态 – 中间结果:B、目的寄存器
MEM/WB
– 目的寄存器、ALU结果、存储器读出的结果

项目四PLC功能指令应用任务二装配流水线控制

项目四PLC功能指令应用任务二装配流水线控制
输入设备
包括传感器、开关、按钮等,用于检测流水 线各工位的运行状态和操作指令。
PLC控制器
作为核心控制单元,负责接收输入信号、处 理逻辑运算和发出控制指令。
输出设备
如电机、气缸、电磁阀等,用于控制流水线 的动作和执行相关操作。
通讯模块
实现PLC与上位机或其他设备之间的数据交 换和通信。
软件设计
控制算法 I/O配置 控制程序编写 人机界面设计
,便于后期维护和升级。
05
PLC功能指令应用在装配 流水线控制中的案例分 析
案例一
总结词
顺序控制指令在装配流水线控制中起到关键作用,能够实现按照预设顺序自动控制设备的启停,提高 生产效率。
详细描述
通过使用顺序控制指令,PLC能够按照预设的逻辑顺序,自动控制装配流水线上的设备启停,实现自 动化生产。这种控制方式能够大大提高生产效率,减少人工干预,降低生产成本。
计数器指令的应用
计数器指令用于对装配流水线上的工件进行计数,并控制流 水线的运行速度和节奏。通过设置计数器的初始值和触发条 件,PLC能够精确地控制流水线的运行次数和间隔。
计数器指令的应用可以与顺序控制指令结合使用,实现更复 杂的动作序列和逻辑控制。
移位指令的应用
移位指令用于控制装配流水线上的工 件在生产线上的位置移动。通过将工 件从一个位置移到另一个位置,实现 工件的组装、检测和包装等操作。
THANKS FOR WATCHING
感谢您的观看
提高企业竞争力
装配流水线控制能够提高 企业的生产效率和产品质 量,增强企业的市场竞争 力。
装配流水线控制的历史与发展
历史
装配流水线控制起源于20世纪初的 美国汽车工业,后来逐渐推广到其他 制造业领域。

“LongtiumC2”微处理器流水线设计

“LongtiumC2”微处理器流水线设计
摘 要 : 绍 一款 3 介 2位 CS IC结构 微处 理器 “ ogim 2 的流 水 线设 计 。针对 CS Lnt C ” u IC结构 微处
理器 流水 线设 计 的难 点 , 用微 指令 流 水级 流水 线结构 , u 以
CA e—f i , HAN h n O Xu e Z G S e g—b n ig
(. n i en o eeo hn i nv ̄t,a u n0 0 1 ,hn ; 1E gn r g C lg ei l fS a x U i i T i a 30 3 C i e y y a
Ab t a t h s a e r s n s h d s n f t e i ei e o 3 一 b t I C s r c :T i p p r p e e t t e e i o h p p l f r 2 g n i C S mir p o e s r co r c so “ o g i mC ” A mi g a e d f c l n t ep p l e d sg i g frC S c o r c s o . l n t mC ’ Lnt u 2 . i n t i i ut i i ei e i nn I C mir p o e s r “ _ gi h t y h n o o u 2’
整数 处理 单 元 (E 完 成 8位 、6位 、2位数 IU) l 3
据的算术和逻辑运算。主要由寄存器堆 、L 、 A U 桶式 移位器 、 乘法器和保护测试单元组成。
高性能微处理器具有重要意义。西北工业大学航空
微 电子 中心 在 微 处 理 器 设 计 方 面 开 展 了大 量 的工 作 ,Lnt m 2 即为 中心 自主设计 的一 款 3 “ ogu C ” i 2位嵌 入式 微处理 器 。该处 理 器 为 CS IC体 系结 构 , Itl 与 ne 46 X 8 D 4指令 集 兼 容 , 计 主 频 13 设 3 MHz采 用 自顶 , 向下 的正 向设 计 方 法 。最 终 设 计 目标 是 : 到 包 括 达

第六章 指令流水线

第六章 指令流水线
1 0
Exec ALUOp=? ExtOp=?
Mem Branch
PC+4 Imm Rs Ra Rb Rt RFile Rt Rw Di Rd ID/Ex Register
Ex/Mem: Load’s Address
PC+4 Imm busA busB Exec Unit
0 1
IF/ID:
PC+4
PC
ID/Ex Register
Store指令呢?
RegDes=x, ALUSrc=1 ALUop=addu, Extop=1
0 Mux
Branch指令呢?
RegDes=x, ALUSrc=0 ALUop=subu, Extop=1
Extender
imm 16
32 ExtOp=?
1
Ori指令呢?
RegDes=0, ALUSrc=1 ALUop=or, Extop=0
加入新项并填入指令地址和转移目标地址初始化预测位最初bht为空back动态预测基本方法1表示最近一次发生过转移taken0表示未发生nottaken预测时若为1则预测下次taken若为0则预测下次nottaken例如循环迭代分支时第一次和最后一次会发生预测错误因为循环的第一次和最后一次都会改变分支情况而在循环中间的各次总是会发生分支按上次的实际情况预测时都不会错
°Exec:16位立即数符号扩展后与寄存器值相加,计算主存地址 °Mem:将寄存器读出的数据写到主存 • Wr: 加一个空的写阶段,使流水线更规整!
Beq的四个阶段
Cycle 1 Cycle 2 Cycle 3 Cycle 4
NOOP! Wr
Beq
Ifetch
Reg/Dec

2-流水线处理机及其设计精讲

2-流水线处理机及其设计精讲

6.3.3 流水线各级信号的产生至此,我们已经描述过了所有3种指令类型的流水线操作。

下面我们来总结控制信号的产生方法。

控制信号分布在流水线处理机的各级,我们当然可以在它们要被使用的流水线级产生,例如SIMM可在EXE级产生。

但这样,除了译码将会造成本级一些延迟之外,还要使用流水线寄存器来传递必要的信息,例如指令操作码等。

我们采用的方法是,控制信号集中在ID级由译码电路产生,并使用流水线寄存器把每一个控制信号传递到它被使用的流水线级。

我们把所有的控制信号归纳在表6.4中。

表6.5列出了除了ALUOP的各控制信号的产生表达式。

表6.6列出了ALUOP控制信号的产生表达式。

由以上表达式,我们可以有如图6.29所示的控制电路。

图中使用了流水线寄存器来把控制信号传递到合适的流水线级。

我们可以看出,流水线控制部件的设计方法与非流水线单周期处理机的控制部件的设计方法非常类似,而有限状态机和微程序的设计方法显得不太适合。

表6.4 流水线各级控制信号的定义表6.5 控制信号的产生表达式表6.6 ALU控制信号的产生表达式ALUOPl=add+addi+sub+subi+load+storeALUOPO=or+ori+sub+subi图6.29 流水线处理机的数据路径和控制部件6.4 结构相关及解决方法流水线处理机的设计存在3个非常著名的问题(hazard)。

它们是(1)结构相关问题(structural hazard);(2)数据相关问题(data hazard);(3)转移相关问题(branch hazard)。

我们将在本节简要介绍第一个问题,下面两节分别介绍第二和第三个问题。

结构相关(structural dependence)问题指的是,由于硬件资源不充足而导致流水线不畅通。

我们将举3个例子来说明结构相关问题及其相应的解决方案。

,第一个例子,也是最典型的例子,就是设想只为流水线处理机配备一个外部公共存储器模块。

复杂指令集流水线系统设计

复杂指令集流水线系统设计

复杂指令集流水线系统设计
靳文兵;左琦
【期刊名称】《微电子学与计算机》
【年(卷),期】2012(29)4
【摘要】摒弃传统流水线设计必须先将复杂指令集指令转化为精简指令集指令,然后再按照精简指令集实现流水线的方法.采用拓展的哈佛结构,设计新型指令流水线前端多指令缓冲和双指令指针,以及流水线中、后端双总线寄存器组和多端口数据存储器,优化指令流水线结构,实现高效率的复杂指令集指令流水线系统.设计从理论上解决了复杂指令集流水线实现的两个难点:寄存器和存储器读写冲突问题,以及流水线各阶段功能和任务划分.VHDL语言建模,用ModelSim和Xilinx仿真、测试,证明复杂指令集流水线系统设计可行.
【总页数】4页(P19-22)
【关键词】微处理器;复杂指令集;流水线;多端口存储器;读写冲突
【作者】靳文兵;左琦
【作者单位】北京理工大学计算机学院;北方自动控制技术研究所
【正文语种】中文
【中图分类】TP32
【相关文献】
1.电能表用外置断路器检测流水线输送系统设计 [J], 纪伊琳;黄友朋;路韬
2.流水线自动抓送料机械手控制系统设计 [J], 杨云鹏
3.新一代智能电能表自动化检定流水线系统设计 [J], 倪胡旋;丁隽洁;王媛;刘岑岑;李艳
4.蔬菜育苗播种流水线压穴滚筒装置改进与控制系统设计 [J], 孙晗;郭广川;唐帅;薛金林;林相泽;李群
5.气振盘式精密播种三段式流水线控制系统设计与试验 [J], 韦运余;陈进;杨铭;练毅;乔祥山
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档