上海汇贤中学数学七年级上学期 压轴题 期末复习数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海汇贤中学数学七年级上学期 压轴题 期末复习数学试题
一、压轴题
1.借助一副三角板,可以得到一些平面图形
(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?
(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;
(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.
2.综合试一试
(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.
(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把
11a
-称为a 的差倒数.如:2的差倒数是
1
112=--,1-的差倒数是()
11
112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3
a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.
(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______
(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等. 3.问题:将边长为
的正三角形的三条边分别等分,连接各边对应的等分点,则
该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看:
边长为1的正三角形,第一层有1个,第二层有3个,共有个;
边长为2的正三角形一共有1个.
探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.
探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)
结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)
应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.
4.(1)探究:哪些特殊的角可以用一副三角板画出?
在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是
_________;(填序号)
(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.
①当OB 平分EOD ∠时,求旋转角度α;
②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 5.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.
(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?
6.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)
(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)
(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.
7.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;
(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;
(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.
8.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;
(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)
9.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以
3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从
点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;
(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.
10.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点
(1)若AP=2时,PM=____;
(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;
(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.
11.阅读下列材料,并解决有关问题:
我们知道,
(0)0(0)(0)x x x x x x >⎧⎪
==⎨⎪-<⎩
,现在我们可以用这一结论来化简含有绝对值的式子,例如
化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称
1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将
全体有理数不重复且不遗漏地分成如下三种情况:
(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:
(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-
综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪
=-≤<⎨⎪-≥⎩
通过以上阅读,请你类比解决以下问题:
(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.
12.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段
AM 上,D 在线段BM 上)
()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;
(直接填空)
()2当点C 、D 运动了2s ,求AC MD +的值.
()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB
的值.
13.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0. (1)求A,B 两点之间的距离;
(2)若在线段AB 上存在一点C,且AC=2BC,求C 点表示的数;
(3)若在原点O 处放一个挡板,一小球甲从点A 处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.
设运动时间为t秒.
①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)
②求甲乙两小球到原点距离相等时经历的时间.
14.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在
∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.
(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;
(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).
15.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.
(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?
(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.
【参考答案】***试卷处理标记,请不要删除
一、压轴题
1.(1)75°,150°;(2)15°;(3)15°.
【解析】
【分析】
(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;
(2)依题意设∠2=x,列等式,解方程求出即可;
(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.
【详解】
解:(1)∵∠BOC=30°,∠AOB=45°,
∴∠AOC=75°,
∴∠AOC+∠BOC+∠AOB=150°;
答:由射线OA,OB,OC组成的所有小于平角的和是150°;
故答案为:75;
(2)设∠2=x,则∠1=3x+30°,
∵∠1+∠2=90°,
∴x+3x+30°=90°,
∴x=15°,
∴∠2=15°,
答:∠2的度数是15°;
(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,
∴∠MOF=1
2
∠COM=82.5°,∠MOE=
1
2
∠MOB=67.5°,
∴∠EOF=∠MOF﹣∠MOE=15°.
【点睛】
本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.
2.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)2503
2
;(4)9.38;(5)0;(6)
24或40
【解析】
【分析】
(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答
案. 【详解】
(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3, 故答案为23+(-3)3+43,73+(-5)3+(-6)3 (2)∵2a b a ab ⊗=-,
∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32
-3×(-2)]
=(-5)⊗15 =(-5)2-(-5)×15 =100. (3)∵a 1=2, ∴a 2=1
112
=--, a 3=
11(1)--=1
2
,
41
2
112
a =
=-
a 5=-1 ……
∴从a 1开始,每3个数一循环, ∵2500÷3=833……1, ∴a 2500=a 1=2,
∴122500a a a ++⋅⋅⋅+=833×(2-1+
1
2)+2=25032
. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分, ∴平均分为中间8个分数的平均分, ∵平均分精确到十分位的为9.4, ∴平均分在9.35至9.44之间, 9.35×8=74.8,9.44×8=75.52,
∴8个裁判所给的总分在74.8至75.52之间, ∵打分都是整数, ∴总分也是整数, ∴总分为75,
∴平均分为75÷8=9.375, ∴精确到百分位是9.38. 故答案为9.38
(5)2019÷4=504……3,
∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,…… ∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0
∴所得结果可能的最小非负数是0,
故答案为0
(6)设x分钟后甲和乙、丙的距离相等,
∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,
∴120x-400-100x=90x+800-120x
解得:x=24.
∵当乙追上丙时,甲和乙、丙的距离相等,
∴400÷(100-90)=40(分钟)
∴24分钟或40分钟时甲和乙、丙的距离相等.
故答案为24或40.
【点睛】
本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.
3.探究三:16,6;结论:n²,;应用:625,300.
【解析】
【分析】
探究三:模仿探究一、二即可解决问题;
结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;
应用:根据结论即可解决问题.
【详解】
解:探究三:
如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有
个;
边长为2的正三角形有个.
结论:
连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有
个;
边长为2的正三角形,共有个.
应用:
边长为1的正三角形有=625(个),
边长为2的正三角形有
(个). 故答案为探究三:16,6;结论:n², ;应用:625,300.
【点睛】
本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.
4.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠. 【解析】 【分析】
(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;
(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=
12∠EOD=1
2
×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论. 【详解】
解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°, ∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出; 故选④;
(2)①因为COD 60∠=,
所以EOD 180COD 18060120∠∠=-=-=. 因为OB 平分EOD ∠, 所以11
EOB EOD 1206022
∠∠=
=⨯=. 因为AOB 45∠=,
所以αEOB AOB 604515∠∠=-=-=.
②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-. 因为BOC 2AOD ∠∠=, 所以()
135α2120α-=-. 解得α105=.
当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-. 因为BOC 2AOD ∠∠=, 所以()135α2α120-=-.
解得α125=.
综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=. 【点睛】
本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.
5.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】
【分析】
(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;
(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.
(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;
【详解】
解:(1))∵点A表示的数为10,B在A点左边,AB=30,
∴数轴上点B表示的数为10-30=-20;
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为
t(t>0)秒,
∴点P表示的数为10-5t;
故答案为-20,10-5t;
(2)线段MN的长度不发生变化,都等于15.理由如下:
①当点P在点A、B两点之间运动时,
∵M为线段AP的中点,N为线段BP的中点,
∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;
②当点P运动到点B的左侧时:
∵M为线段AP的中点,N为线段BP的中点,
∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,
∴综上所述,线段MN的长度不发生变化,其值为15.
(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.
①点P、Q相遇之前,
由题意得4+5t=30+3t,解得t=13;
②点P、Q相遇之后,
由题意得5t-4=30+3t,解得t=17.
答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;
【点睛】
本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.
6.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)10
3
或4(4)线段MN的长度不
发生变化,都等于11
【解析】
【分析】
(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;
(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;
(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;
(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.
【详解】
(1)∵点A表示的数为8,B在A点左边,AB=22,
∴点B表示的数是8-22=-14,
∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
∴点P表示的数是8-4t.
故答案为-14,8-4t;
(2)设点P运动x秒时,在点C处追上点Q,
则AC=5x,BC=3x,
∵AC-BC=AB,
∴4x-2x=22,
解得:x=11,
∴点P运动11秒时追上点Q;
(3) ①点P、Q相遇之前,4t+2+2t =22,t=10
3
,
②点P、Q相遇之后,4t+2t -2=22,t=4,
故答案为10
3
或4
(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:
MN=MP+NP=1
2
AP+
1
2
BP=
1
2
(AP+BP)=1
2
AB=
1
2
×22=11
②当点P运动到点B的左侧时:
MN=MP﹣NP=1
2
AP﹣
1
2
BP=
1
2
(AP﹣BP)=1
2
AB=11
∴线段MN的长度不发生变化,其值为11.
【点睛】
本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.
7.(1)20;(2)t=15s或17s (3)4 3 s.
【解析】
【分析】
(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q 的速度,由此即可得到结论.
(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.
(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.
【详解】
(1)设P、Q速度分别为3m、2m,根据题意得:12×3m=36,解得:m=1,∴P、Q速度分别为3、2,∴BC=12×2=24,∴OC=OB-BC=44-24=20.
(2)当A、B在相遇前且相距5个单位长度时:3t+2t+5=44+36,5t=75,∴t=15(s);
当A、B在相遇后且相距5个单位长度时:3t+2t-5=44+36,5t=85,∴t=17(s).
综上所述:t=15s或17s.
(3)P运动到原点时,t=364444
3
++
=
124
3
s,此时QB=2×
124
3
=
248
3
>44+38=80,∴Q
点已到达A点,∴Q点已到达A点的时间为:364480
40
22
+
==(s),故提前的时间
为:124
3
-40=
4
3
(s).
【点睛】
本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.
8.(1)是;(2)5cm或7.5cm或10cm;(3)10或60
7
.
【解析】
【分析】
(1)根据“2倍点”的定义即可求解;
(2)分点C在中点的左边,点C在中点,点C在中点的右边三种情况,进行讨论求解即可;
(3)根据题意画出图形,P应在Q的右边,分别表示出AQ、QP、PB,求出t的范围.然后根据(2)分三种情况讨论即可.
【详解】
(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;
(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =151
2
⨯=7.5cm 或AC =152
3
⨯
=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:
由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t . ∵PB =20-2t ≥0,∴t ≤10. ∵QP =3t -20≥0,∴t ≥203,∴203
≤t ≤10. 分三种情况讨论: ①当AQ =13AP 时,20-t =1
3×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =1
2
×2t ,解得:t =10; ③当AQ =
23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或60
7
时,点 Q 是线段AP 的“2倍点”. 【点睛】
本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键. 9.(1)AC=4cm, BC=8cm ;(2)当4
5
t =
时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)3519
1cm.224
t PQ =当为,,时, 【解析】 【分析】
(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;
(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可; (3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可. 【详解】
(1)AC=4cm, BC=8cm.
(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+, 即3t 43t t =-+,解得4t 5
=. 所以当4
t 5
=
时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.
所以当t 2=时,P 与Q 第一次相遇.
(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,
35
t t 22
解得或==,
P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,
19
3t 4t 1122,t 4
+++=⨯=
则解得, 3519
t PQ 1cm.224
所以当为,,时,=
【点睛】
此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.
10.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)12
7
t =或6t =. 【解析】 【分析】
(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;
(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;
(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可. 【详解】 (1)5 ;
(2)∵点A 表示的数是5- ∴点B 表示的数是7
∵点P 运动3秒是9个单位长度,M 为PB 的中点
∴PM=
1
2PB=4.5,即点M 表示的数是2.5 ∵FM=2PM ∴FM=9
∴点F 表示的数是11.5或者-6.5 (3)设Q 运动的时间为t 秒,
当
04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,
则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM= 12BP ,则可得12=2.5t+1
2
⨯3t+3t=7t ,解得t=
12
7
; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,
则PB=2QB ,
则可得,()()123422.512t t --=-,整理得8t=48,解得6t =. 【点睛】
本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.
11.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪
+-≤<⎨⎪+≥⎩
【解析】 【分析】
(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,
(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可. 【详解】
解:(1)2x =-和4x =,
(2)由30x -=得3,x =由40x +=得4x =-,
①当4x <-时,原式()()32435x x x =---+=--, ②当4-≤3x <时,原式()()32411x x x =--++=+, ③当x ≥3时,原式()()32435x x x =-++=+,
综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪
=+-≤<⎨⎪+≥⎩
,
【点睛】
本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法. 12.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)
1
3
MN AB =或1.
【解析】
【详解】
(1)根据题意知,CM=2cm,BD=4cm.
∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm.
故答案为2,4;
(2)当点C、D运动了2 s时,CM=2 cm,BD=4 cm.
∵AB=12 cm,CM=2 cm,BD=4 cm,∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm;
(3)根据C、D的运动速度知:BD=2MC.
∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM.
∵AM+BM=AB,∴AM+2AM=AB,∴AM=1
3
AB=4.
故答案为4;
(4)①当点N在线段AB上时,如图1.
∵AN﹣BN=MN.
又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,
∴MN
AB
=
4
12
=
1
3
;
②当点N在线段AB的延长线上时,如图2.
∵AN﹣BN=MN.
又∵AN﹣BN=AB,∴MN=AB=12,
∴MN
AB
=
12
12
=1.
综上所述:MN
AB
=
1
3
或1.
【点睛】
本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.
13.2+t6-2t或2t-6
【解析】
分析:(1)、先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B 两点之间的距离;(2)、设BC的长为x,则AC=2x,根据AB的长度得出x的值,从而得出点C所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时
OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.
详解:(1)、由题意知a=-2,b=6,故AB=8.
(2)、设BC的长为x,则AC=2x, ∵BC+AC=AB,∴x+2x=8,解得x=8
3
,∴C点表示的数为6-
8 3=
10
3
.
(3)①2+t;6-2t或2t-6.
②当2+t=6-2t时,解得t=4
3
,当2+t=2t-6时,解得t=8.∴t=
4
3
或8.
点睛:本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.
14.(1)见解析;(2)∠OQP=180°+1
2
x°﹣
1
2
y°或∠OQP=
1
2
x°﹣
1
2
y°.
【解析】
【试题分析】(1)分下面两种情况进行说明;
①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,
②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,(2)分两种情况讨论,如图3和图4.
【试题解析】
(1)分两种情况:
①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP的内角和为(4﹣2)×180°=360°,
∴∠APB=360°﹣∠MON﹣∠PAO﹣∠PBO;
②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,
证明:延长AP交ON于点D,
∵∠ADB是△AOD的外角,
∴∠ADB=∠PAO+∠AOD,
∵∠AP B是△PDB的外角,
∴∠APB=∠PDB+∠PBO,
∴∠APB=∠MON+∠PAO+∠PBO;
(2)设∠MON=2m°,∠APB=2n°,
∵OC平分∠MON,
∴∠AOC=∠MON=m°,
∵PQ平分∠APB,
∴∠APQ=∠APB=n°,
分两种情况:
第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ,即∠OQP=m°+x°+n°①
∵∠OQP+∠CON+∠OBP+∠BPQ=360°,
∴∠OQP=360°﹣∠CON﹣∠OBP﹣∠BPQ,即∠OQP=360°﹣m°﹣y°﹣n°②,
①+②得2∠OQP=360°+x°﹣y°,
∴∠OQP=180°+x°﹣y°;
第二种情况:如图4,∵∠OQP+∠APQ=∠MOC+∠PAO,
即∠OQP+n°=m°+x°,
∴2∠OQP+2n°=2m°+2x°①,
∵∠APB=∠MON+∠PAO+∠PBO,
∴2n°=2m°+x°+y°②,
①﹣②得2∠OQP=x°﹣y°,
∴∠OQP=x°﹣y°,
综上所述,∠OQP=180°+x°﹣y°或∠OQP=x°﹣y°.
15.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.
【解析】
试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;
(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;
(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.
试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,
∴AB=10,
∵PA=PB,
∴点P表示的数是1,
(2)设点P运动x秒时,在点C处追上点R(如图)
则:AC=6x BC=4x AB=10
∵AC-BC=AB
∴ 6x-4x=10
解得,x=5
∴点P运动5秒时,追上点R.
(3)线段MN的长度不发生变化,理由如下:
分两种情况:
点P在A、B之间运动时:
MN=MP+NP=AP+BP=(AP+BP)=AB=5
点P运动到点B左侧时:
MN=MP-NP=AP-BP=(AP-BP)=AB=5
综上所述,线段MN的长度不发生变化,其长度为5.
点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。