如何在数学教学中提高学生的思维能力

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
观察 , 掌 握 概 念 的 外 延 和 内涵 , 得出结论 : 这 对角无公 共顶点 ,
的地 加 强 学 生 逆 向思 维 能 力 的训 练 , 让他们 体会模 仿创造 , 自
觉地运用. 探 究 性 学 习是 新 课 程 改 革 下 的 显 著 特 征 ; 在 教 师 的 指导下 , 让学生去探索 , 寻 求 解 决 问题 的 方 法 .
题的能力.
号 中填 每步 理 由——模 仿 例 题写 出证 明 格 式 , 至 全 等 三 角
形 的判定 才 开始 从 易到 难逐 步 要求 学 生 写 出 全部 证 明. 例 题 中 由证 明 对 三 角 形 全 等 , 从 不 需 要 做 辅 助 线 到 要 求 做 辅
助线 的过 渡 . 由 直接 证 明 到 间接 证 明 , 进 而 转 入 命 题 的 证 明 的教学 , 一 步 步 引 向深 入 . 还 有 代 数 中 利 用 一 元 二 次 方 程 直 接开 平方 法 的教 学 : 教 师 可 用复 习 平 方根 定 义 计 算 中 求 得 导人 新课 , 由简人 繁 , 最后 进行 总 结 . 用 直 接 开 平 方 法
解 题关 键 : 一边 是 含未 知数 的完 全平 方 , 另一 边 是 非 负 数. 进 而 思考 解答 . 这 样 随 着 教 学 的深 入 , 学 生 的 思 维 由 较 简
人的认识不是 一次 完成 的 , 而 是 一 个 实 践 — — 认 识 — — 再 实 践— — 再 认 识 的 过 程 教 学 . 由感 性 到理 性 , 从 具 体 到 抽 象, 这 是 人 们 认 识 客 观世 界 的 思 维 心 理 规 律 , 从 学 生 认 识 的 发 展 的 角度 看 , 初 中生 身心 发展 逐 步 趋 于 成 熟 , 认 识 结 构 不 断 发 展, 基 本 上 完 成 了从 理 性 思维 的发 展转 化 , 备 学 中 要 强 化 形 象
二、 利 用 教 具 进 行 形 象 教 学
1 . 一题 多变 , 加 强 思 维 发展 , 培 养 思 维 的创 造 性 .
题 多变” 是多 向思维 的一种 基本 形式 , 在 数 学 学 习 中
中学生数理亿. 掌研版
恰 当地 适 时 地 加 以 运 用 , 能培养思维的创造性.
变式 1 : 分 别顺 次 连 接 以 下 四边 形 的 四 条 边 的 中点 , 所 得 到 的 是 什 么 四 边 形 ? 从 中 你 能 发 现 什 么 规 律 ? ① 平 行 四边 行 ; ②矩 形 ; ③ 菱形 ; ④正 方形 ; ⑤梯 形 ; ⑥ 直 角梯 形 ; ⑦ 等 腰
由较简 单 的思 维进 入 到 较 复 杂 的思 维 , 教 材 中 的 安 排
是 严格 按 照这 一规 律 的. 例 : 几何教学中, 一 开 始 证 明 是 难 点, 教材 采用 逐 步 过 渡 的 方 法 进 行 训 练 的 , 首 先 让 学 生 初 步认 识 , 证明的意义, 通 过 例 题 了 解 证 明 的 方 法 —— 在 括


各有一边落在不 同的两直线上 , 有一边落在 同一直线 上 , 所 以 这对角就是这两条 不同直线 被它 们公共 边 的直线所 截 , 即 第 三条直线所截而成 的同位角. 如此多观察 , 解 剖 几 对 角 多 练 习 几题 , 学 生 就 可 以 完 全 掌 握 本 节 课 的重 点 内容 .
单 到较 高 级 系统 地掌 握整 维 、 创 新思维的能力培养 , 提 高 学 生 素 质
感知 , 为 形 成 他 们 数 学 抽 象 理 性 知识 , 创 造 良好 的条 件 .


学 生 的 直 观 感 受是 思 维 的 最初 模 式
互 逆定理 , 互 逆命 题在教 材 中经常碰 到如 : 加减 法 , 乘 除 法, 乘方与开方 , 多 项 式 乘 法 及 因 式 分 解 应 好 好 把 握 两 种 思
成为独立感受事物 , 独 立 分 析 问题 , 独 立解 决 问题 所 表 现 出 来 的创造欲望 , 这本身是思 维 的体操 , 是一 项创 造性 劳动. 而 数 学 教 学 是 数 学 思 维 活动 的教 学 , 学生是“ 主体” . 教 师 唯 有 掌 握 学生的思维规律 , 不 断 激 发 他 们 的思 维 欲 望 , 启发 积极思 维 , 主动获取新知识 , 才 能 让 他 们 尽 可 能 多 的掌 握 基 础 知 识 , 提 高 他们的逻辑思维能力 , 空 间想 象能力 , 创 造能力 , 分 析 解 决 问
维, 引 导 学 生 善 于逆 向 思 维 . 教 学 中教 师 应 有 计 划 应 用 , 有目
例如 : 在讲 述几 何三 线八角 的教学 中 , 据 以往 的经验 , 这
是 一 节 较 难 讲 的课 . 我 从 学 生 的直 觉 人 手 , 给 出标 准 图 形 , 抽
出其 中一 对 同 位 角 ( 内错 角 或 同 旁 内 角 均 可 ) , 引 导 学 生 认 真
2 0 1 3 年第 6 期
・ 心 理 调 适
中学 生 在 成 长 过 程 中 , 能力 的发展 , 是 由简单 到 复杂 , 从
三、 由浅 入 深 , 由简 入 繁 , 循 序 渐 进
具体到抽象循 序渐进 , 从 低 级 水 平 到高 级 水 平 , 学 生 在 整 个 学
习 过 程 中所 表 现 出来 的 好 奇 心 、 想 象力 , 运用 新知 识 , 新 本 领
梯 形.
例如 : 上“ 全等三角形” 教学是学生学习“ 证 明” 的入 门 关 , 我 就 要 求 学 生 各 自制 作 了便 于应 用 的 两个 全 等 三 角 形 作 为 教 具. 利 用 模 型边 演 示 , 边讲解 概念 , 学 生跟 着边操 作 , 边观 察 ,
相关文档
最新文档