德阳市高中物理必修3物理 全册全单元精选试卷检测题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德阳市高中物理必修3物理 全册全单元精选试卷检测题
一、必修第3册 静电场及其应用解答题易错题培优(难)
1.如图所示,两块竖直放置的平行金属板A 、B ,两板相距d ,两板间电压为U ,一质量为m 的带电小球从两板间的M 点开始以竖直向上的初速度v 0运动,当它到达电场中的N 点时速度变为水平方向,大小变为2v 0 求(1)M 、N 两点间的电势差
(2)电场力对带电小球所做的功(不计带电小球对金属板上电荷均匀分布的影响,设重力加速度为g )
【答案】20MN Uv U dg
=;
【解析】 【详解】
竖直方向上小球受到重力作用而作匀减速直线运动,则竖直位移大小为h =20
2v g
小球在水平方向上受到电场力作用而作匀加速直线运动,则 水平位移x =0
22
v t ⋅ h =
2
v t ⋅ 联立得,x =2h =20
v g
故M 、N 间的电势差为U MN =-Ex =-20v U d g =-2
0Uv gd
从M 运动到N 的过程,由动能定理得 W 电+W G =
12m 20(2)v -2
012
mv 所以联立解得W 电=2
02mv
答:M 、N 间电势差为-2
0Uv gd
,电场力做功2
02mv .
2.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为37︒。
该区间存在与轨道平面平行的水平向左的匀强电场。
一质量为m 、带正电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求:
(1)小球所受的电场力大小;
(2)小球经过A 点时对轨道的最小压力。
【答案】(1)4
3
mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】
(1)由题意可知 :
tan 37mg
F
︒= 所以:
43
F mg =
(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小. 小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:
2sin 37B v mg
m r
︒= 小球由B 运动到A 的过程根据动能定理有:
()
22
111sin 37cos3722
B A mgr Fr mv mv ︒︒--+=-
小球在A 点时根据牛顿第二定律有:
2A
N v F mg m r
+=
联立以上各式得:
2N F mg =
由牛顿第三定律可知,小球经过A 点时对轨道的最小压力大小为2mg ,方向竖直向上.
3.如图所示,在光滑绝缘水平面上,质量为m 的均匀绝缘棒AB 长为L 、带有正电,电量为Q 且均匀分布.在水平面上O 点右侧有匀强电场,场强大小为E ,其方向为水平向左,BO 距离为x 0,若棒在水平向右的大小为QE/4的恒力作用下由静止开始运动.求:
(1)棒的B 端进入电场L /8时的加速度大小和方向; (2)棒在运动过程中的最大动能.
(3)棒的最大电势能.(设O 点处电势为零) 【答案】(1)/8qE m ,向右(2)0()48qE L
x + (3)0(2)6
qE x L + 【解析】 【分析】 【详解】
(1)根据牛顿第二定律,得
48QE L QE ma L -⋅=解得 8QE a m
=,方向向右. (2)设当棒进入电场x 时,其动能达到最大,则此时棒受力平衡,有
4QE QE x L
⋅= 解得1
4
x L = 由动能定理得:
()00
044()()4
2442448
K o QE QE
L
QE
QE L QE L E W x x x x x ==
==+
⨯∑+-+-+⨯ (3)棒减速到零时,棒可能全部进入电场,也可能不能全部进入电场,设恰能全部进入电场, 则有:()0
042
QE QE
x L L +-=, 得 x 0=L ;()42
QE QEL
L L ε+=
= 当x 0<L ,棒不能全部进入电场,设进入电场x
根据动能定理得()00 004
2
xQE
QE L x x x +
+-
-= 解之得:20
8L L Lx x ++=
则2
008 (4F L L Lx QE W x ε+++==
当x 0>L ,棒能全部进入电场,设进入电场x ()()0
042
QE QE
x x L QE x L +---=
得:023
x L
x += 则()()000242 4436
QE x L x L QE QE x x ε+++⋅=
==
4.如图所示,单层光滑绝缘圆形轨道竖直放置,半径r=lm ,其圆心处有一电荷量Q =+l×l0-4
C 的点电荷,轨道左侧是一个钢制“隧道”,一直延伸至圆形轨道最低点B ;在“隧道”底部
辅设绝缘层。
“隧道”左端固定一弹簧,用细线将弹簧与一静止物块拴接,初始状态弹簧被压缩,物块可看成质点,质量m=0.1kg ,电荷量q =-
2
3
×10-6C ,与“隧道”绝缘层间的动摩擦因数μ=0.2。
剪断细线,弹簧释放弹性势能E p ,促使物块瞬间获得初速度(忽略加速过程)。
之后物块从A 点沿直线运动至B 点后沿圆形轨道运动,恰好通过最高点C 。
其中l AB =2m ,设物块运动时电荷量始终不变,且不对Q 的电场产生影响,不计空气阻力,静电力常量为k = 9.0×l09N·
m 2/C 2。
求: (1)物块在最高点C 时的速度大小;
(2)物块在圆形轨道最低点B 时对轨道的压力大小; (3)弹簧压缩时的弹性势能E p 和物块初速度v A 。
【答案】(1) 4m/s (2) 6N (3) 3.2J, 8m/s 【解析】 【详解】
(1)物块恰好通过最高点C ,轨道对物块没有作用力,由牛顿第二定律得
2
C
v mg F m
r
+=库
其中
2
Qq
F k
r =库 解得
v C =4m/s
(2)B →C 过程,由动能定理得
2211222
C B mv v mg r m -⋅=
- 解得
56m/s B v =
在B 点,由牛顿第二定律得
2B
NB v F F mg m
r
+-=库
解得
F NB =6N
根据牛顿第三定律知物块在圆形轨道最低点B 时对轨道的压力大小 F NB ′=F NB =6N 。
(3)A→B ,由动能定理得
221122
AB B A mv f v l m -=
- 又 f=μmg 解得
v A =8m/s
弹簧压缩时的弹性势能
2
12
p A E mv =
解得
E p =3.2J
5.如图所示,一条长为l 的细线,上端固定,下端拴一质量为m 的带电小球.将它置于一匀强电场中,电场强度大小为E ,方向水平向右.已知当细线离开竖直位置的偏角为α时,小球处于平衡状态.
(1)小球带何种电荷并求出小球所带电荷量;
(2)若将小球拉到水平位置后放开手,求小球从水平位置摆到悬点正下方位置的过程中,电场力对小球所做的功.
【答案】(1)正,tan /mg E α (2)tan mgl α 【解析】 【详解】
(1)小球所受电场力的方向与场强方向一致,则带正电荷; 由平衡可知:
Eq =mgtanα
得:
mgtan q E
α
=
(2)小球从水平位置摆到悬点正下方位置的过程中,电场力做负功,大小为
W =Eql = mgltanα
6.如图,绝缘细杆AB 倾角为α,在杆上B 点处固定有一电荷量为Q 的正电荷.现将带正电的小球由距B 点竖直高度为H 的A 点处无初速释放,小球下滑过程中电荷量不变.己知小球的质量为m 、电荷量为q .不计小球与细杆间的摩擦,整个装置处在真空中.静电力常量为k ,重力加速度为g .求:
(1)正电荷Q 在A 处产生的场强大小; (2)小球刚释放时的加速度大小;
(3)若A 、B 间的距离足够大,小球动能最大时球与B 点间的距离.
【答案】(1) 2
2sin A Q E k H α=(2)22
sin sin kQq a g mH
αα=- (3)sin kQq R mg α=【解析】 【详解】 (I)根据
2
Q
E k
r = 又因为
sin H
r α=
所以
2
2sin A Q E k
H
α= (2)根据牛顿第二定律
sin mg F ma α-=
根据库仑定律
Qq F k
r
= 解得
22
sin sin kQq a g mH α
α=-
(3)当小球受到的合力为零,即加速度为零时,动能最大 设此时小球与B 点间的距离为R ,则
2
sin kQq
mg R α=
解得
sin kQq
R mg α
=
答案:(1) 2
2sin A Q E k H α=(2)22
sin sin kQq a g mH
αα=- (3)sin kQq R mg α=
二、必修第3册 静电场中的能量解答题易错题培优(难)
7.在空间中取坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,如图所示.一电子从静止开始经电压U 加速后,从y 轴上的A 点以平行于x 轴的方向射入第一象限区域,A 点与原点O 的距离为h .不计电子的重力.
(1)若电子恰好从N 点经过x 轴,求匀强电场的电场强度大小E 0;
(2)匀强电场的电场强度E 大小不同,电子经过x 轴时的坐标也不同.试求电子经过x 轴时的x 坐标与电场强度E 的关系.
【答案】(1)024Uh E d =(2)Uh
x E
=或22d Uh x Ed =+
【解析】 【分析】
本题考查电子在电场中的受力及运动 【详解】
设电子的电荷量为e 、质量为m ,电子经过电场加速后获得速度v 0.则
2
012
eU mv =
(1)电子从A 点运动到N 点,有
00d v t =
eE a m
=
212
h at =
联立解得电场强度大小
02
4Uh
E d =
(2)讨论两种情况:
①当2
4Uh
E d ≥
时,电子从电场内经过x 轴,有 0x v t =
eE a m
= 212
h at =
联立解得x 坐标与电场强度E 的关系为
2
Uh
x E
= ②当2
4Uh
E d <
时,电子先离开电场,之后再经过x 轴在电场内运动时间为t 1,有 01d v t =
21112
y at =
1y v at =
在电场外运动时间为t 2,电子做匀速直线运动,有
02x d v t -=
12y h y v t -=
联立解得x 坐标与电场强度E 的关系为
22d Uh x Ed
=
+
8.如图所示,倾角为α=30°的绝缘斜面AB 长度为3l ,BC 长度为
3
2
l ,斜面上方BC 间有沿斜面向上的匀强电场.一质量为m 、电荷量为+q 的小物块自A 端左上方某处以初速度
03v gl =水平抛出,恰好在A 点与斜面相切滑上斜面,沿斜面向下运动,经过C 点但未
能到达B 点,在电场力作用下返回,最终恰好静止在A 点,已知物块与斜面间的动摩擦因数为3
3
μ=
,不考虑运动过程中物块电荷量的变化,重力加速度为g ,求:
(1)物块平抛过程中的位移大小; (2)物块在电场中的最大电势能
【答案】(1
)13
2
l (2)2mgl 【解析】 【详解】
(1)物块落到斜面上A 点时,速度方向与水平方向夹角为α,设此时速度为v 则
cos v v
α=
,竖直速度sin y v v α=, 平抛过程中水平位移0y v x v g
=,
竖直位移22y
B
v y =
,
平抛的位移22s x y =+,
解得13s l =
. (2)设物块沿斜面向下运动的最大位移为x ´,自物块从A 点开始向下运动到再次返回A 点根据动能定理有2
12cos 02
mg x mv μα'
-⋅=-, 解得2x l '=.
物块位于最低点时,电势能最大,物块自A 点到最低点过程中,设电场力做功为W ,根据动能定理有2
1sin cos 02
mg x mg x W mv αμα'
'
⋅-⋅-=-, 解得2W mgl =,即物块电势能大值为2mgl .
9.如图,ABD 为竖直平面内的绝缘轨道,其中AB 段是长为 1.25L m =的粗糙水平面,其动摩擦因数为0.1μ=,BD 段为半径R =0.2 m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,电场强度大小3510/E V m =⨯。
一带负电小球,以速度v 0从A 点沿水平轨道向右运动,接着进入半圆轨道后,恰能通过最高点D 点。
已知小球的质量为
22.010m kg -=⨯,所带电荷量52.010q C -=⨯,g 取10 m/s 2(水平轨道足够长,小球可视
为质点,整个运动过程无电荷转移),求:
(1)带电小球在从D 点飞出后,首次在水平轨道上的落点与B 点的距离; (2)小球的初速度v 0。
【答案】(1)0.4m ;(2)2.5m /s 【解析】 【详解】
(1)对小球,在D 点,有:
2D
v mg qE m R
-=
得:
1m/s D v =
从D 点飞出后,做平抛运动,有:
mg qE ma -=
得:
25.0m/s a =
2122
R at =
得:
0.4t s =
0.4m D x v t ==
(2)对小球,从A 点到D 点,有:
22011()2222
D mg q
E L mg R qE R mv mv μ---⋅+⋅=
- 解得:
0 2.5m/s v =
10.如图,一对平行金属板水平放置,板间距为d ,上极板始终接地.长度为
2
d
、质量均匀的绝缘杆,上端可绕上板中央的固定轴0在竖直平面内转动,下端固定一带正电的轻质小球,其电荷量为q .当两板间电压为U 1时,杆静止在与竖直方向OO '夹角30θ=的位置;若两金属板在竖直平面内同时绕O 、O ′顺时针旋转15α=至图中虚线位置时,为使杆仍在原位置静止,需改变两板间电压.假定两板间始终为匀强电场.求:
(1)绝缘杆所受的重力G ; (2)两板旋转后板间电压U 2.
(3)在求前后两种情况中带电小球的电势能W 1与W 2时,某同学认为由于在两板旋转过程中带电小球位置未变,电场力不做功,因此带电小球的电势能不变.你若认为该同学的
结论正确,计算该电势能;你若认为该同学的结论错误,说明理由并求W 1与W 2.
【答案】(1)12qU G d =;(2)21U =;(3)11W =,2114W qU =。
【解析】 【分析】 【详解】
(1)绝缘杆长度设为L ,则重力作用点在几何中心即距离O 点
4
d
处,重力的力臂为 sin 48
d d θ= 电场力大小为
1
qU qE d
=
电场力的力臂为
sin 24
d d θ= 根据杠杆平衡有
184
qU d d G d ⨯
=⨯ 整理可得1
2qU G d
=
(2)两板旋转后,质点不变,重力不变,重力力臂不变,两个极板之间的距离变为
cos15d
电场力大小为
2
cos15
qU qE d =
力臂变为
2sin 4524
d d
=
根据杠杆平衡则有
228cos15qu d d
G d ⨯
=⨯
可得
21U =
(3)结论错误.虽然小球位置没有变化,但是在极板旋转前后电场强度发生变化,电势发生变化,所以电势能发生变化.设小球所在位置电势为ϕ,没有旋转时,电场强度
1
U E d
=
根据绝缘杆平衡判断电场力竖直向上,即电场线竖直向上,电势逐渐降低,所以
0cos 2
d E ϕθ-=⨯
整理得134
U ϕ= 电势能
113
W q qU ϕ==
金属板转动后,电场强度
2
cos15U E d =
电势差
0cos 452
d E ϕ-=⨯
解得
114
U ϕ=
电势能
211
4
W q qU ϕ==
11.如图所示,电荷量均为+q 、质量分别为m 和2m 的小球A 和B ,中间连接质量不计的细绳,在竖直方向的匀强电场中做初速度为0,加速度为a =6
g
的匀加速上升运动,当速度为v 0时细绳突然断开.(不考虑电荷间的相互作用)
求:(1)电场强度大小;
(2)自绳断开至球B 速度为零的过程中,两球组成系统的机械能增量为多少? 【答案】(1)74mg q
(2)63m 2
0v 【解析】
受力分析,由牛顿第二定律列式求解;根据运动学公式,及电场力做功导致系统的机械能
增加,即可求解.
(1)设电场强度为E ,把小球A 、B 看作一个系统,由于绳未断前两球均做匀加速运动,则有:233qE mg ma -= 解得:74mg
E q
=
(2)细绳断后,根据牛顿第二定律得:
A qE mg ma -= 得34
A g
a =
方向向上; 22B qE mg ma -= 得8
B g
a =-
(负号表示方向向下) 设自绳断开到球B 速度为零的时间为t ,则有:00B v a t =+ ,解得0
8v t g
=
在该时间内A 的位移为:22
00321 2A A v s v t a t g
=+= 由功能关系知,电场力对A 做的功等于物体A 的机械能增量,2
056A A E qEs mv ∆==
同理对球B 得:22
0041 2B B v s v t a t g =+= 207B B E qEs mv ∆==
解得2
063A B E E E mv ∆=∆+∆=
【点睛】考查牛顿第二定律及运动学公式的应用,掌握机械能守恒条件,理解除重力之外的力做功导致机械能变化.
12.如图所示,在竖直直角坐标系xOy 内,x 轴下方区域I 存在场强大小为E 、方向沿y 轴正方向的匀强电场,x 轴上方区域Ⅱ存在方向沿x 轴正方向的匀强电场。
已知图中点D 的坐标为(27
,2
L L -
-),虚线GD x ⊥轴。
两固定平行绝缘挡板AB 、DC 间距为3L ,OC 在x 轴上,AB 、OC 板平面垂直纸面,点B 在y 轴上。
一质量为m 、电荷量为q 的带电粒子(不计重力)从D 点由静止开始向上运动,通过x 轴后不与AB 碰撞,恰好到达B 点,已知
AB =14L ,OC =13L 。
(1)求区域Ⅱ的场强大小E '以及粒子从D 点运动到B 点所用的时间0t ;
(2)改变该粒子的初位置,粒子从GD 上某点M 由静止开始向上运动,通过x 轴后第一次与AB 相碰前瞬间动能恰好最大。
①求此最大动能km E 以及M 点与x 轴间的距离1y ;
②若粒子与AB 、OC 碰撞前后均无动能损失(碰后水平方向速度不变,竖直方向速度大小不变,方向相反),求粒子通过y 轴时的位置与O 点的距离y 2。
【答案】(1)6E ; (2)①18qEL ,9L ;②3L 【解析】 【详解】
(1)该粒子带正电,从D 点运动到x 轴所用的时间设为1t ,则
21112
L a t =
11a t υ=
根据牛顿第二定律有
1qE ma =
粒子在区域II 中做类平抛运动,所用的时间设为2t ,则
2
2227122L a t = 23L t υ=
根据牛顿第二定律有
2qE ma '=
粒子从D 点运动到B 点所用的时间
012t t t =+
解得
6E E '=,0t =(2)①设粒子通过x 轴时的速度大小为0υ,碰到AB 前做类平抛运动的时间为t ,则
03L t
υ=
粒子第一次碰到AB 前瞬间的x 轴分速度大小
2x a t υ=
碰前瞬间动能
()22012
k x E m υυ=
+ 即
2222292k m L E a t t ⎛⎫=+ ⎪⎝⎭
由于22222
22299L a t L a t
⋅=为定值,当222229L a t t =即t =k E 有最大值 由(1)得
26qE a m
=
最大动能
18km E qEL =
对应的
0υ=
粒子在区域I 中做初速度为零的匀加速直线运动,则
20112a y υ=
解得
19y L =
②粒子在区域II 中的运动可等效为粒子以大小为0υ的初速度在场强大小为6E 的匀强电场中做类平抛运动直接到达y 轴的K 点,如图所示,则时间仍然为2t
02OK t υ=
得
9OK L =
由于933OK L
OB L
==,粒子与AB 碰撞一次后,再与CD 碰撞一次,最后到达B 处 则
23y L =
三、必修第3册 电路及其应用实验题易错题培优(难)
13.某同学通过实验制作一个简易的温控装置,实验原理电路图如图11–1图所示,继电器与热敏电阻R t 、滑动变阻器R 串联接在电源E 两端,当继电器的电流超过15 mA 时,衔铁被吸合,加热器停止加热,实现温控.继电器的电阻约为20 Ω,热敏电阻的阻值R t 与温度t 的关系如下表所示
(1)提供的实验器材有:电源E1(3 V,内阻不计)、电源E2(6 V,内阻不计)、滑动变阻器R1(0~200 Ω)、滑动变阻器R2(0~500 Ω)、热敏电阻R t,继电器、电阻箱
(0~999.9 Ω)、开关S、导线若干.
为使该装置实现对30~80 ℃之间任一温度的控制,电源E应选用______(选填“E1”或“E2”),滑动变阻器R应选用______(选填“R1”或“R2”).
(2)实验发现电路不工作.某同学为排查电路故障,用多用电表测量各接点间的电压,则应将如图11–2图所示的选择开关旋至______(选填“A”、“B”、“C”或“D”).(3)合上开关S,用调节好的多用电表进行排查,在题11–1图中,若只有b、c间断路,则应发现表笔接入a、b时指针______(选填“偏转”或“不偏转”),接入a、c时指针______(选填“偏转”或“不偏转”).
(4)排除故障后,欲使衔铁在热敏电阻为50 ℃时被吸合,下列操作步骤正确顺序是
_____.(填写各步骤前的序号)
①将热敏电阻接入电路
②观察到继电器的衔铁被吸合
③断开开关,将电阻箱从电路中移除
④合上开关,调节滑动变阻器的阻值
⑤断开开关,用电阻箱替换热敏电阻,将阻值调至108.1 Ω
【答案】E2R2C不偏转偏转⑤④②③①
【解析】
(1)由表格数据知,当温度为30 ℃时,热敏电阻阻值为199.5 Ω,继电器的阻值R0=20 Ω,当电流为15 mA时,E=I(R t+R0)=3.3 V,所以电源选E2,80 ℃时,热敏电阻阻值
R t=49.1 Ω,则
E2=I(R t+R0+R),此时变阻器阻值R=330.9 Ω,所以变阻器选择R2;(2)多用电表做电压表测量电压,旋钮旋至直流电压挡C处;(3)若只有b、c间断路,表笔接入a、b时,整个
回路断路,电表指针不偏转,接入a、c时电流流经电表,故指针偏转;(4)50 ℃时,热敏电阻阻值为108.1 Ω,所以应将电阻箱阻值调至108.1 Ω,调节变阻器,使衔铁吸合,再将电阻箱换成热敏电阻,故顺序为⑤④②③①.
【名师点睛】结合表格中数据,利用欧姆定律估算电动势和电阻的数值,选择电源和滑动变阻器.明确实验的目的是实现对30~80 ℃之间任一温度的控制,其中30~80 ℃就是提示的信息,结合表格数据,可知电阻值的取值.
14.(1)某同学利用“双缝干涉实验装置”测定红光的波长.已知双缝间距为d,双缝到屏的距离为L,将测量头的分划板中心刻线与某一亮条纹的中心对齐,并将该条纹记为第1亮条纹,其示数如图所示,此时的示数为________mm.然后转动测量头,使分划板中心刻线与第5亮条纹的中心对齐,读出示数,并计算第5亮条纹与第1亮条纹的中心线间距离为Δx.由此可得该红光的波长表达式为_______(用字母表达);某同学用黄色滤光片时得到一个干涉图样,为了使干涉条纹的间距变宽,可以采取的方法是
_____________、______________________.
(2)要描绘一个标有“3V 0.8W”小灯泡的伏安特性曲线,要求灯泡两端的电压由零逐渐增加,且尽量减小实验误差.已选用的器材除导线、开关外,还有
电池组(电动势为4.5V,内阻约1Ω)
电流表(量程为0~300mA,内阻约为1Ω)
电压表(量程为0~3V,内阻约为3kΩ)
滑动变阻器(最大阻值20Ω,额定电流1A)
①实验电路应选用图中的________________(填字母代号)
②请按照①中选择的电路图,补充完成图中实物间的连线,并使闭合开关的瞬间,电压表或电流表不至于被烧坏___________.
③以电压表的读数U为横轴,以电流表的读数Ⅰ为纵轴,根据实验得到的多组数据描绘出
小灯泡的伏安特性曲线,如图所示.由图可知:随着电压的增大,小灯泡的电阻_______(选填“增大”或“减小”),其发生变化的原因是________________________________.
④从图线可知,当灯泡两端电流为0.26A 时,小灯泡的功率等于_________W (保留两位有效数字).⑤某同学看到实验室有最大阻值为17kΩ的滑动变阻器R 1和最大阻值为100Ω的滑动变阻器R 2,用R 1和R 2分别替换本实验中的滑动变阻器,滑片从左向右滑动过程中,电压表示数随滑片移动距离x 的关系曲线如图所示,正确的是_________________.
【答案】2.430(2.428mm~2.432mm ) 4d
x L
λ=
∆ 换用红色的滤光片 使光屏离双缝距离远一些 B 增大 温度变高,电阻率变大,电阻变大
0.62 B 【解析】 【分析】 【详解】
(1) 螺旋测微器的读数为2.0mm+0.01×43.0mm=2.430mm ; 干涉条纹的间距51x l d λ∆=-,所以波长为4d
x l
λ=∆; 由公式l
x d
λ∆=
可知,换波长更长的光或增大光屏离双缝的距离即可; (2) 实验要求灯泡两端的电压需要由零逐渐增加到3V ,则滑动变阻器应采用分压接法,灯
泡正常发光时的电阻为232
11.250.8
U R P ==Ω=Ω,电流表内阻为1Ω,电压表内阻为
3kΩ,相对来说,电压表内阻远大于灯泡电阻,电流表应采用外接法,因此应选择图B 所示电路;
(3) 滑动变阻器采用分压接法,为保护电路安全,闭合开关前,滑片应处于滑动变阻器最左端;根据实验电路图连接实物电路图,实物电路图如图所示
(4) 由图象可知,随电压增大,通过灯泡的电流增大,由欧姆定律可知,电压与电流的比值增大,即灯泡电阻变大,这是因为灯泡电阻随灯丝温度升高而增大造成的; (5)由灯泡的伏安特性曲线可知,当电流为0.26A 时的电压为2.4V ,所以功率为P=UI=0.26 2.40.62W W ⨯=
(6) 由图象可知,随电压增大,通过灯泡的电流增大,由欧姆定律可知,电压与电流的比值增大,即灯泡电阻变大,因此选B
点晴:解决本题的关键掌握螺旋测微器的读数方法,测量光波波长的原理,注意掌握干涉条纹间距公式的内容,对电学实验要明确以下情况滑动变阻器必须用分压式接法:①要求电压或电流从零调;②变阻器的全电阻远小于待测电阻;③用限流接法时通过电流表的电流大于电流表的量程.
15.某同学想要测量实验室中某金属丝的电阻率。
实验室中除米尺、学生电源、滑动变阻器、螺旋测微器、开关和导线外,还有一个阻值为3.0Ω的定值电阻R 0和一只电压表。
利用这些器材,该同学设计如下实验进行测量,实验原理如图 1 所示,实验步骤如下:
(1)把粗细均匀的平直金属丝接在接线柱a 、b 之间,用米尺测量ab 之间的长度 l =0.90m 。
用螺旋测微器测量该金属丝的直径,示数如图2所示,读得其直径D =______mm 。
(2)根据实验原理图 1,请你用笔划线代替导线将图 3 所示的实物图连接完整。
(________)
(3)闭合开关,将滑动变阻器的滑片置于合适位置,然后调节线夹c 的位置,经过多次实验发现:ac 段金属丝的长度为0.30m 时电压表达到最大值。
由此可得金属丝的总电阻R = _____Ω。
(4)根据以上所测数据,可计算出金属丝的电阻率ρ=_____Ω·m 。
(保留两位有效数字)
【答案】0.648
9 3.3×10-6
【解析】 【详解】
(1)[1].直径D =0.5mm+0.01mm×14.8=0.648mm ; (2)[2].电路连线如图:
(3)[3].设金属丝总电阻为R ,则当ac 段金属丝的长度为0.30m 时电压表达到最大值,可知此时ac 部分与R 0串联后的总电阻等于bc 部分的电阻,即
01233
R R R += 则
R =3R 0=9Ω
(4)[4].根据
2
4L L
R S D ρρ
π== 解得
23263.14(0.64810)9
Ωm 3.310Ωm 440.9
D R
L πρ--⨯⨯⨯==⋅=⨯⋅⨯
16.在“描绘小灯泡的伏安特性曲线”实验中,小灯泡的额定电压为2.5 V ,额定功率为0.5 W ,此外还有以下器材可供选择: A .直流电源3 V(内阻不计)
B .直流电流表0~300 mA(内阻约为5 Ω)
C .直流电流表0~3 A(内阻约为0.1 Ω)
D .直流电压表0~3 V(内阻约为3 kΩ)
E .滑动变阻器100 Ω,0.5 A
F .滑动变阻器10 Ω,2 A
G .导线和开关
实验要求小灯泡两端的电压从零开始变化并能进行多次测量.
(1)实验中电流表应选用________,滑动变阻器应选用________;(均填写仪器前的字母) (2)在图甲所示的虚线框中画出符合要求的实验电路图_______________(虚线框中已将所需的滑动变阻器画出,请补齐电路的其他部分,要求滑片P 向b 端滑动时,灯泡变亮);
(3)根据实验数据,画出的小灯泡的I -U 图线如图乙所示.由此可知,当电压为0.5 V 时,小灯泡的灯丝电阻是________Ω. 【答案】BF 分压式 如图所示:
5
【解析】
试题分析:(1)灯泡的额定电流0.5
200mA 2.5
I =
=;故电流表选择B ;因本实验只能接用分压接法,故滑动变阻器选择小电阻F ;
(2)根据实验要求可知,滑动变阻器采用分压接法,并且测量电路应与滑动变阻器的左半部分并联;电流表采用外接法;原理图如下;
(3)由画出的伏安特性曲线可知,0.5V U =时,电流0.10A I =,则对应的电阻
0.5
50.1
R =
=Ω; 考点:“描绘小灯泡的伏安特性曲线”实验
17.热敏电阻是传感电路中常用的电子元件,某实验小组欲研究该电阻在常温下的伏安特性曲线,实验仪器如下:
A .待测热敏电阻x R ,(常温电阻值约为5Ω)
B .电流表A 1(满偏电流10mA ,内阻1100r =Ω)
C .电流表A 2(量程0~0.6A ,内阻20.5r =Ω)
D .滑动变阻器R 1(0~20Ω,额定电流2A )
E .滑动变阻器R 2(0~100Ω,额定电流0.5A )
F .定值电阻R 3(阻值等于5Ω)
G .定值电阻电阻R 4(阻值等于200Ω)
H .盛有水的保温杯(含温度计)
I .电源(3V ,内阻可忽略) G .开关,导线若干
(1)要使测量数据尽量精确,绘制曲线完整,需要将以上仪器进行适当的改装,定值电阻选____,滑动变阻器选__________。
(填仪器前的字母序号)
(2)请在方框内画出实验电路图,并将各元件字母代码标在该元件的符号旁,根据电路图在实物图上连线 (_____)
(3)热敏电阻包括正温度系数电阻器(PTC )和负温度系数电阻器(NTC ),正温度系数电阻器的电阻随温度的升高而增大,负温度系数电阻器的电阻随温度的升高而减小,测得该热敏电阻的21I I -图像如图所示,请分析说明该曲线对应的热敏电阻是______(选填“PTC”或“NTC”)热敏电阻。
(4)若将该热敏电阻直接接到一电动势为3V ,内阻为6Ω的电源两端,则热敏电阻消耗的电功率为________W.(结果保留2位小数)。
【答案】4R 1R
PTC 0.34
【解析】 【详解】
(1
)[1][2].根据电源电动势,电路中的电流大概为0.6A
E
I
R
==,故电流表选用
2
A,把电流表1
A,串联定值电阻改装成电压表,200
x
x
E
R r
I
=-=Ω,故定值电阻选
4
R,描绘伏安特性曲线需要从零开始读书,因此采用滑动变阻器分压接法,所以选用阻值较小的1
R.
(2)[3].待测电阻同电压表(电流表1
A和定值电阻
4
R)即电流表
2
A相比,与电流表2
A相差倍数比较小,属于小电阻,因此电流表采用外接法,滑动变阻器分压式连接。
原理图,实物图如下:
(3)[4].由图线可知,随电流增大,电阻阻值增大,即随温度升高,电阻阻值增大,该电阻是正温度系数(PTC)热敏电阻;
(4)[5].在21
I I
-图中作出电源对应U-I图线,即
U=E-Ir
1412
()
A
I R R E I r
+=-
当
2
I=时,
1
10
I mA
=,
1
I=时,
2
0.5
E
I A
r
==,两图像交点处等效电压为
3
3.5 1.05
10
V
⨯=,电流为0.32A,则热敏电阻的功率为
P=UI=1.05×0.32W=0.34W.
18.在研究金属电阻阻值与温度的关系时,为了能够较准确地测出金属电阻的阻值,设计了如图所示的电路。
除了金属电阻x R外,还提供的实验器材有:学生电源E,灵敏电流计G。
滑动变阻器R、R S,,定值电阻R1、R2,电阻箱R0,开关S,控温装置,导线若干。
①按照电路图连接好电路后,将R0调至适当数值,R的滑片调至最右端。
R S的滑片调至最下端,闭合开关S;
②把R的滑片调至适当位置,调节R0,并逐步减小R S的阻值,直到R S为零时,电流计G 指针不发生偏转,记录R0的阻值和R x的温度;。