新苏科版八年级数学下册第二学期5月月考试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新苏科版八年级数学下册第二学期5月月考试卷及答案
一、解答题
1.如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.
2.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.
(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.
3.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
4.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组.学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据给出的信息解答下列问题:
(1)求参加这次问卷调查的学生人数;
(2)补全条形统计图;
(3)若该校共有1200名学生,请你过计算估计选择“围棋”课外兴趣小组的学生有多少人.
5.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.
(1)证明:四边形CDEF是平行四边形;
(2)若四边形CDEF的周长是16cm,AC的长为8cm,求线段AB的长度.
6.如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线
MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
7.已知关于x的方程x2﹣(k+3)x+3k=0.
(1)若该方程的一个根为1,求k的值;
(2)求证:不论k取何实数,该方程总有两个实数根.
8.在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB形外作正方形ABCD,若正方形ABCD的对角线交于点O(如图1).
(1)求证:EO平分∠AEB;
(2)猜想线段OE与EB、EA之间的数量关系为(直接写出结果,不要写出证明过程);
(3)过点C作CF⊥EB于F,过点D作DH⊥EA于H,CF和DH的反向延长线交于点G(如图2),求证:四边形EFGH为正方形.
9.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(-6,0),D(-7,3),点B、C在第二象限内.
(1)点B的坐标;
(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;
(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P、Q的坐标;若不存在,请说明理由.
10.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.
(1)求证:BG=DE;
(2)若E 为AD 中点,FH =2,求菱形ABCD 的周长.
11.如图,在矩形ABCD 中,AB =1,BC =3.
(1)在图①中,P 是BC 上一点,EF 垂直平分AP ,分别交AD 、BC 边于点E 、F ,求证:四边形AFPE 是菱形;
(2)在图②中利用直尺和圆规作出面积最大的菱形,使得菱形的四个顶点都在矩形ABCD 的边上,并直接..
标出菱形的边长.(保留作图痕迹,不写作法)
12.解方程:x 21x 1x
-=-. 13.如图,在四边形ABCD 中,AB ∥CD ,AB =AD ,对角线AC 、BD 交于点O ,AC 平分∠BAD .求证:四边形ABCD 为菱形.
14.(发现)
(1)如图1,在▱ABCD 中,点O 是对角线的交点,过点O 的直线分别交AD ,BC 于点E ,F .求证:△AOE ≌△COF ;
(探究)
(2)如图2,在菱形ABCD 中,点O 是对角线的交点,过点O 的直线分别交AD ,BC 于点E ,F ,若AC =4,BD =8,求四边形ABFE 的面积.
(应用)
(3)如图3,边长都为1的5个正方形如图摆放,试利用无刻度的直尺,画一条直线平分这5个正方形组成的图形的面积.(要求:保留画图痕迹)
15.发现:如图1,点A 为线段BC 外一动点,且(),,BC a AB c a c ==>.
(1)填空:当点A 位于 上时,线段AC 的长取得最小值,且最小值为 (用含,a c 的式子表示)
(2)应用:如图2,点A 为线段BC 外一动点,且3,1BC AB ==,分别以,AB AC 为边,作等腰直角ABD ∆和等腰直角ACE ∆,连接,CD BE .
①请找出图中与BE 相等的线段,并说明理由;
②直接写出BE 长的最小值.
(3)拓展:如图3,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()10,0,点P 为线段AB 外一动点,且2,,PA PM PB ==60BPM ︒∠=,请直接写出AM 长的最小值及此时点P 的坐标.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.详见解析.
【解析】
试题分析:根据已知易证∠DAC=∠ACB ,根据平行线的判定可得AD ∥BC ,AB ∥CD ,由两组对边分别平行的四边形是平行四边形即可判定四边形ABCD 是平行四边形.
试题解析:证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D ,∠1=∠2, ∴∠DAC=∠ACB ,
∴AD ∥BC ,
∵∠1=∠2,
∴AB ∥CD ,
∴四边形ABCD 是平行四边形.
考点:平行四边形的判定.
2.解:(1)如图所示:点A 1的坐标(2,﹣4).
(2)如图所示,点A 2的坐标(﹣2,4).
【解析】
试题分析:(1)分别找出A 、B 、C 三点关于x 轴的对称点,再顺次连接,然后根据图形写出A 点坐标.
(2)将△A 1B 1C 1中的各点A 1、B 1、C 1绕原点O 旋转180°后,得到相应的对应点A 2、B 2、C 2,连接各对应点即得△A 2B 2C 2.
3.(1)见解析(2)成立
【解析】
试题分析:(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF . (2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可
得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.
试题解析:(1)在正方形ABCD 中,
{BC CD
B CDF BE DF
∠∠===
∴△CBE ≌△CDF (SAS ).
∴CE=CF .
(2)GE=BE+GD 成立.
理由是:∵由(1)得:△CBE ≌△CDF ,
∴∠BCE=∠DCF ,
∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF
∵∠GCE =∠GCF , GC =GC
∴△ECG ≌△FCG (SAS ).
∴GE=GF .
∴GE=DF+GD=BE+GD .
考点:1.正方形的性质;2.全等三角形的判定与性质.
4.(1)150人;(2)见解析;(3)192人
【分析】
(1)根据书法小组的人数及其对应百分比可得总人数;
(2)根据各小组人数之和等于总人数求得航模人数,从而补全图形;(3)总人数乘以样本中围棋的人数所占百分比即可.
【详解】
(1)参加这次问卷调查的学生人数为:30÷20%=150(人);
(2)航模的人数为150﹣(30+54+24)=42(人),补全条形统计图如下:
(3)该校选择“围棋”课外兴趣小组的学生有:1200×
24
150
×100%=192(人).
【点睛】
本题考查了条形统计图和扇形统计图,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
5.(1)详见解析;(2)10cm
【分析】
(1)由三角形中位线定理推知BD∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;
(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=16﹣AB,然后根据勾股定理即可求得.
【详解】
(1)证明:∵D、E分别是AB、AC的中点,
∴ED是Rt△ABC的中位线,
∴ED∥BC.BC=2DE,
又EF∥DC,
∴四边形CDEF是平行四边形;
(2)解:∵四边形CDEF是平行四边形;
∴DC=EF,
∵DC是Rt△ABC斜边AB上的中线,
∴AB=2DC,
∴四边形DCFE的周长=AB+BC,
∵四边形DCFE的周长为16cm,AC的长8cm,
∴BC=16﹣AB,
∵在Rt△ABC中,∠ACB=90°,
∴AB2=BC2+AC2,
即AB2=(16﹣AB)2+82,
解得:AB=10cm,
【点睛】
本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.
6.当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明见解析.
【分析】
当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于
OE=OC,同理OC=OF,于是OE=OF,而OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.
【详解】
当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.
证明:如图,
∵CE平分∠BCA,
∴∠1=∠2,
又∵MN∥BC,
∴∠1=∠3,
∴∠3=∠2,
∴EO=CO,
同理,FO=CO,
∴EO=FO,
又∵OA=OC,
∴四边形AECF是平行四边形,
∵CF是∠BCA的外角平分线,
∴∠4=∠5,
又∵∠1=∠2,
∴∠1+∠5=∠2+∠4,
又∵∠1+∠5+∠2+∠4=180°,
∴∠2+∠4=90°,
∴平行四边形AECF是矩形.
【点睛】
本题考查了角平分线的性质、平行线的性质、平行四边形的判定、矩形的判定.解题的关键是利用对角线互相平分的四边形是平行四边形开证明四边形AECF是平行四边形,并证明∠ECF是90°.
7.(1)k=1;(2)证明见解析.
【分析】
(1)把x=1代入方程,即可求得k的值;
(2)求出根的判别式是非负数即可.
【详解】
(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,
1﹣k﹣3+3k=0
解得k=1;
(2)证明:
==-+=
a b k c k
1,(3),3
24
∆=-
b ac
∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,
所以不论k取何实数,该方程总有两个实数根.
【点睛】
本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键. 8.(1)求证见解析;(2)2OE=EB+EA;(3)见解析.
【分析】
(1)延长EA至点F,使AF=BE,连接OF,由SAS证得△OBE≌△OAF,得出OE=OF,∠BEO=∠AFO,由等腰三角形的性质与等量代换即可得出结论;
(2)判断出△EOF是等腰直角三角形,根据勾股定理即可得出结论;
(3)先根据ASA证得△ABE≌△ADH,△ABE≌△BCF,△ADH≌△DCG,△DCG≌△CBF,得出FG=EF=EH=HG,再由∠F=∠H=∠AEB=90°,由此可得出结论.
【详解】
(1)证明:延长EA至点F,使AF=BE,连接OF,如图所示:
∵四边形ABCD是正方形,
∴∠BOA=90°,OB=OA,
∵∠AEB=90°,
∴∠OBE+∠OAE=360°﹣90°﹣90°=180°,
∵∠OAE +∠OAF =180°,
∴∠OBE =∠OAE ,在△OBE 与△OAF 中,
0OB A OBE OAF BE AF =⎧⎪∠=∠⎨⎪=⎩

∴△OBE ≌△OAF (SAS ),
∴OE =OF ,∠BEO =∠AFO ,
∴∠AEO =∠AFO ,
∴∠BEO =∠AEO ,
∴EO 平分∠AEB ;
(2
OE =EB +EA ,理由如下:
由(1)得:△OBE ≌△OAF ,
∴OE =OF ,∠BOE =∠AOF ,
∵∠BOE +∠AOE =90°,
∴∠AOF +∠AOE =90°,
∴∠EOF =90°,
∴△EOF 是等腰直角三角形,
∴2OE 2=EF 2,
∵EF =EA +AF =EA +EB ,
∴2OE 2=(EB +EA )2,
OE =EB +EA ,
OE =EB +EA ;
(3)证明:∵CF ⊥EB ,DH ⊥EA ,
∴∠F =∠H =∠AEB =90°,
∵四边形ABCD 是正方形,
∴AB =AD ,∠BAD =90°,
∴∠EAB +∠DAH =90°,∠EAB +∠ABE =90°,∠ADH +∠DAH =90°, ∴∠EAB =∠HDA ,∠ABE =∠DAH .
在△ABE 与△ADH 中,
EAB HDA AB AD
ABE DAH ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△ABE ≌△ADH (ASA ),
∴BE =AH ,AE =DH ,
同理可得:△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF , ∴BE =CF ,AE =BF ,AH =DG ,DH =CG ,DG =CF ,CG =BF , ∴CG +FC =BF +BE =AE +AH =DH +DG ,
∴FG =EF =EH =HG ,
∵∠F =∠H =∠AEB =90°,
∴四边形EFGH 为正方形.
【点睛】
本题是四边形综合题,主要考查了正方形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、角平分线定义等知识;熟练掌握正方形的判定和性质,作辅助线构建全等三角形是解题的关键.
9.(1)(31-,
);(2)t=9,6y x =
;(3)点P 、Q 的坐标为:P (132,0)、Q (32
,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2). 【分析】
(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,由正方形的性质结合同角的余角相等即可证出△ADE ≌△BAF ,从而得出DE=AF ,AE=BF ,再结合点A 、D 的坐标即可求出点B 的坐标;
(2)设反比例函数为k y x
=
,根据平行的性质找出点B ′、D ′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k 、t 的二元一次方程组,解方程组解得出结论;
(3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n ).分B ′D ′为对角线或为边考虑,根据平行四边形的性质找出关于m 、n 的方程组,解方程组即可得出结论.
【详解】
解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,如图1所示.
∵四边形ABCD 为正方形,
∴AD=AB ,∠BAD=90°,
∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,
∴∠ADE=∠BAF .
在△ADE 和△BAF 中,有
90AED BFA ADE BAF AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩

∴△ADE≌△BAF(AAS),
∴DE=AF,AE=BF.
∵点A(-6,0),D(-7,3),
∴DE=3,AE=1,
∴点B的坐标为(-6+3,0+1),即(-3,1).故答案为:(-3,1).
(2)设反比例函数为
k y
x
=,
由题意得:点B′坐标为(-3+t,1),点D′坐标为(-7+t,3),
∵点B′和D′在该比例函数图象上,

3
3(7)
k t
k t
=-+


=⨯-+


解得:t=9,k=6,
∴反比例函数解析式为
6
y
x
=.
(3)假设存在,设点P的坐标为(m,0),点Q的坐标为(n,
6
n
).以P、Q、B′、D′四个点为顶点的四边形是平行四边形分两种情况:
①B′D′为对角线时,
∵四边形B′PD′Q为平行四边形,

6
31
62
n
m n

-=


⎪-=-

,解得:
13
2
3
2
m
n

=
⎪⎪

⎪=
⎪⎩

∴P(
13
2
,0),Q(
3
2
,4);
②当B′D′为边时.
∵四边形PQB′D′为平行四边形,
∴626031m n n
-=-⎧⎪⎨-=-⎪⎩,解得:73m n =⎧⎨=⎩, ∴P (7,0),Q (3,2);
∵四边形B ′QPD ′为平行四边形, ∴626031n m n -=-⎧⎪⎨-=-⎪⎩
,解得:73m n =-⎧⎨=-⎩. 综上可知:存在x 轴上的点P 和反比例函数图象上的点Q ,使得以P 、Q 、B ′、D ′四个点为顶点的四边形是平行四边形,符合题意的点P 、Q 的坐标为:P (
132
,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2).
【点睛】
本题考查了反比例函数图象上点的坐标特征、正方形的性质、全等三角形的判定及性质、平行四边形的性质以及解方程组,解题的关键是:(1)证出△ADE ≌△BAF ;(2)找出关于k 、t 的二元一次方程组;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,找出点的坐标,利用反比例函数图形上点的坐标表示出来反比例函数系数k 是关键.
10.(1)详见解析;(2)8
【分析】
(1)先根据矩形的性质、平行线的性质得出,FG HE GFH EHF =∠=∠,再根据邻补角的定义可得BFG DHE ∠=∠,又根据菱形的性质、平行线的性质可得GBF EDH ∠=∠,最后根据三角形全等的判定定理与性质即可得证;
(2)如图,连接EG ,先根据矩形的性质可得EG 的长,再根据中点的性质、菱形的性质、题(1)的结论可得四边形ABGE 是平行四边形,从而可得AB 的长,然后根据菱形的周长公式即可得.
【详解】
(1)∵四边形EFGH 是矩形
,//FG HE EH FG ∴=
GFH EHF ∴∠=∠
180,180BFG GFH DHE EHF ∠=︒-∠∠=︒-∠
BFG DHE ∴∠=∠
∵四边形ABCD 是菱形
//AD BC ∴
GBF EDH ∴∠=∠
在BGF ∆和DEH ∆中,BFG DHE GBF EDH FG HE ∠=∠⎧⎪∠=∠⎨⎪=⎩
()
∴∆≅∆
BGF DEH AAS
∴=;
BG DE
(2)如图,连接EG
FH=
∵四边形EFGH是矩形,2
∴==
2
EG FH
∵四边形ABCD是菱形
∴=
AD BC AD BC
,//
∵E为AD中点
∴=
AE DE
=
BG DE
∴=
,//
AE BG AE BG
∴四边形ABGE是平行四边形
2
∴==
AB EG
⨯=
∴菱形ABCD的周长为248
故菱形ABCD的周长为8.
【点睛】
本题考查了菱形的性质、矩形的性质、全等三角形的判定和性质,正确的识别作图是解题的关键.
11.(1)见解析;(2)见解析
【分析】
(1)根据矩形的性质和EF垂直平分AP推出AF=PF=AE=PE即可判断;
(2)以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,此时的菱形即为矩形ABCD内面积最大的菱形.
【详解】
(1)证明:如图①
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠1=∠2,
∵EF垂直平分AP,
∴AF=PF,AE=PE,
∴∠2=∠3,
∴∠1=∠3,
∴AE=AF,
∴AF=PF=AE=PE,
∴四边形AFPE是菱形;
(2)如图②,以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,连接各个点,所得的菱形即为矩形ABCD内面积最大的菱形;
此时设菱形边长为x,
则可得12+(3-x)2=x2,
解得x=5
3

所以菱形的边长为5
3

【点睛】
本题考查了矩形的性质,菱形的性质和判定,掌握知识点是解题关键.
12.2
x .
【解析】
【分析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
去分母得:x2-2x+2=x2-x,
解得:x=2,
检验:当x=2时,方程左右两边相等,
所以x=2是原方程的解.
【点睛】
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
13.详见解析.
【分析】
先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,证出四边形ABCD是平行四边形,再由AD=AB,即可得出结论.
【详解】
证明:∵AB∥CD,
∴∠OAB =∠DCA ,
∵AC 平分∠BAD .
∴∠OAB =∠DAC ,
∴∠DCA =∠DAC ,
∴CD =AD =AB ,
∵AB ∥CD ,
∴四边形ABCD 是平行四边形,
∵AD =AB ,
∴四边形ABCD 是菱形.
【点睛】
本题考查了菱形的判定,能够了解菱形的几种判定方法是解答本题的关键,难度不大.
14.(1)见解析 (2)8 (3)见解析
【分析】
(1)根据ASA 证明三角形全等即可.
(2)证明S 四边形ABFE =S △ABC 可得结论.
(3)利用中心对称图形的性质以及数形结合的思想解决问题即可(答案不唯一).
【详解】
(1)【发现】证明:如图1中,∵四边形ABCD 是平行四边形,
∴AO =OC ,AD ∥BC ,
∴∠EAO =∠FCO ,
在△AOE 和△COF 中,
EAO FCO AO CO
AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△AOE ≌△COF (ASA ).
(2)【探究】解:如图2中,由(1)可知△AOE ≌△COF ,
∴S △AOE =S △COF ,
∴S 四边形ABFE =S △ABC ,
∵四边形ABCD 是菱形,
∴S △ABC =12
S 菱形ABCD , ∵S 菱形ABCD =
12•AC •BD =12×4×8=16, ∴S 四边形ABFE =12
×16=8. (3)【应用】
①找出上面小正方形的对角线交点,以及下面四个小正方形组成的矩形的对角线交点,连接即可;
②连接下面左边数第二个小正方形右上角和左下角的顶点;
③分别找出第二列两个小正方形的对角线交点,并连接,与最上面的小正方形最上面的边交于一点,把这个点与图形底边中点连接即可.
如图3中,直线l 即为所求(答案不唯一).
【点睛】
本题考查全等三角形的判定、菱形的性质以及中心对称图形的性质,掌握数形结合的思想是解决本题的关键.
15.(1);BC a c -;(2)①BE DC =,证明见解析,②32;(3)AM 最小为(6,3P 或(33.
【分析】
(1)根据点A 位于CB 上时,线段AC 的长取得最小值,即可得到结论;
(2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=90°,推出
△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;
②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果; (3)以AP 为边向右边作等边三角形APC ,连接BE 后,易证APM CPB ≅,此时AM=BC ,然后根据(1)的结论求值即可,点P 坐标可根据等边三角形性质求.
【详解】
解:()1AC BC AB a c ≥-=-
当A 位于BC 线段上AO ,取到最小值a c -
故答案为:;BC a c - ()2①ABO ∆和AEC ∆均为等腰直角三角形,
1,AB AD AE AC ∴===
,2BAD EAC BD ∠=∠=BAE BAD EAD EAC EAD DAC ∴∠=∠-∠=∠-∠=∠
∴在ABE ∆和ADC ∆中
AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩
()BAE DAC SAS ∴∆≅∆
BE DC ∴=
②而32DC
BC BD ≥-=-
BE 最小值为32-,当且仅当D 在线段BC 上取到
()3以AP 为边向右边作等边三角形APC ,连接BC
APC ∆为正三角形,
2,60AC AP PC APC ︒∴===∠=
又60MPB ︒∠=
APM APC MPC ∴∠=∠-∠
60MPC ︒=-∠
MPB MPC =∠-∠
CPB =∠
∴在APM ∆和CPB ∆中
AP CP APM CPB PM PB =⎧⎪∠=∠⎨⎪=⎩
()APM CPB SAS ∴∆≅∆
()10226AM BC AB AC ∴=≥-=--=
AM ∴最小为6,此时C 在线段AB 上,
P 的横坐标为1232
AP +⨯= 纵坐标为222222322AP AP ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭
((33,3P ∴-或.
【点睛】
本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题.。

相关文档
最新文档