【数学】数学二模试题分类汇编——锐角三角函数综合附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、锐角三角函数真题与模拟题分类汇编(难题易错题)
1.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为
1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,
2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到
1cm )?
【答案】
【解析】
过A 作AF CD ⊥于F ,根据锐角三角函数的定义用θ1、θ2表示出DF 、EF 的值,又可证四边形ABCE 为平行四边形,故有EC=AB=25cm ,再再根据DC=DE+EC 进行解答即可.
2.在正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC 上(不含点B ),
∠BPE=
1
2
∠ACB ,PE 交BO 于点E ,过点B 作BF ⊥PE ,垂足为F ,交AC 于点G . (1)当点P 与点C 重合时(如图1).求证:△BOG ≌△POE ;
(2)通过观察、测量、猜想:
BF
PE
= ,并结合图2证明你的猜想; (3)把正方形ABCD 改为菱形,其他条件不变(如图3),若∠ACB=α,求BF
PE
的值.(用含α的式子表示)
【答案】(1)证明见解析(2)
1
2
BF
PE
=(3)
1
tan
2
BF
PE
α
=
【解析】
解:(1)证明:∵四边形ABCD是正方形,P与C重合,
∴OB="OP" ,∠BOC=∠BOG=90°.
∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).
(2)BF1
PE2
=.证明如下:
如图,过P作PM//AC交BG于M,交BO于N,
∴∠PNE=∠BOC=900,∠BPN=∠OCB.
∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.
∴NB=NP.
∵∠MBN=900—∠BMN,∠NPE=900—∠BMN,∴∠MBN=∠NPE.∴△BMN≌△PEN(ASA).∴BM=PE.
∵∠BPE=1
2
∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.
∵PF⊥BM,∴∠BFP=∠MFP=900.
又∵PF=PF,∴△BPF≌△MPF(ASA).∴BF="MF" ,即BF=1
2 BM.
∴BF=1
2PE,即
BF1
PE2
=.
(3)如图,过P作PM//AC交BG于点M,交BO于点N,
∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.
由(2)同理可得BF=1
2
BM , ∠MBN=∠EPN . ∵∠BNM=∠PNE=900,∴△BMN ∽△PEN .

BM BN
PE PN
=. 在Rt △BNP 中,BN tan =PN α, ∴
BM =tan PE α,即2BF
=tan PE
α. ∴
BF 1
=tan PE 2
α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .
(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出
BF 1
PE 2
=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=1
2
BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BN
tan =PN
α即可求得
BF 1
=tan PE 2
α.
3.如图,PB 为☉O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交☉O 于点A ,连接PA ,AO.并延长AO 交☉O 于点E ,与PB 的延长线交于点D .
(1)求证:PA 是☉O 的切线; (2)若
=,且OC=4,求PA 的长和tan D 的值.
【答案】(1)证明见解析;(2)PA =3,tan D=
.
【解析】
试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;
(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.
试题解析:(1)连接OB,则OA=OB,
∵OP⊥AB,∴AC=BC,
∴OP是AB的垂直平分线,∴PA=PB,
在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)
∴∠PBO=∠PAO,PB=PA,
∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,
∴PA是⊙O的切线;
(2)连接BE,
∵,且OC=4,∴AC=6,∴AB=12,
在Rt△ACO中,由勾股定理得:AO=,
∴AE=2OA=4,OB=OA=2,
在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,
在Rt△APO中,由勾股定理得:AP==3.
易证,所以,解得,
则,在中,.
考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.
4.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.
(1)AE的长为 cm;
(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;
(3)求点D′到BC的距离.
【答案】(1);(2)12cm;(3)cm.
【解析】
试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:
∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.
∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).
∵点E为CD边上的中点,∴AE=DC=cm.
(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.
(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则
∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.
试题解析:解:(1).
(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,
∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.
∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.
∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.
∴点E,D′关于直线AC对称.
如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.
∵△ADE是等边三角形,AD=AE=,
∴,即DP+EP最小值为12cm.
(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,
∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,
∵AE=EC,∴AD′=CD′=.
在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′
(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.
设D′G长为xcm,则CG长为cm,
在Rt△GD′C中,由勾股定理得,
解得:(不合题意舍去).
∴点D′到BC边的距离为cm.
考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.
5.许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得∠ACF=45°,再向前走300米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)
【答案】215.6米. 【解析】 【分析】
过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,
根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离. 【详解】
解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点
在Rt △ACM 中,∵45ACF ∠=︒, ∴AM=CM=200米,
又∵CD=300米,所以100MD CD CM =-=米, 在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60
BN
DN =
≈米,
∴215.6MN MD DN AB =+=≈米 即A ,B 两点之间的距离约为215.6米. 【点睛】
本题主要考查三角函数,正确做辅助线是解题的关键.
6.水库大坝截面的迎水坡坡比(DE 与AE 的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.
【答案】故大坝的截面的周长是(345)米,面积是1470平方米. 【解析】
试题分析:先根据两个坡比求出AE 和BF 的长,然后利用勾股定理求出AD 和BC ,再由大坝的截面的周长=DC+AD+AE+EF+BF+BC ,梯形的面积公式可得出答案. 试题解析:∵迎水坡坡比(DE 与AE 的长度之比)为1:0.6,DE=30m , ∴AE=18米,
在RT △ADE 中,22DE AE +34 ∵背水坡坡比为1:2, ∴BF=60米,
在RT △BCF 中,22CF BF +5
∴周长=DC+AD+AE+EF+BF+BC=634+10+305+88=(634+305+98)米, 面积=(10+18+10+60)×30÷2=1470(平方米).
故大坝的截面的周长是(634+305+98)米,面积是1470平方米.
7.如图,已知,在
O 中,弦AB 与弦CD 相交于点E ,且AC BD =.
(1)求证:AB CD =;
(2)如图,若直径FG 经过点E ,求证:EO 平分AED ∠;
(3)如图,在(2)的条件下,点P 在CG 上,连接FP 交AB 于点M ,连接MG ,若
AB CD ⊥,MG 平分PMB ∠,2MG =,FMG ∆的面积为2,求O 的半径的长.
【答案】(1)见解析;(2)见解析;(3)O 10.
【解析】 【分析】
(1) 利用相等的弧所对的弦相等进行证明;
(2)连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,证明
AOJ DOQ ∆≅∆得出OJ OQ =,根据角平分线的判定定理可得结论;
(3)如图,延长GM 交
O 于点H ,连接HF ,求出2FH =,在HG 上取点L ,使
HL FH =,延长FL 交O 于点K ,连接KG ,求出22FL =HM n =,则有2LK KG ==
,222FK FL LK =+=,再证明
KFG EMG HMF ∠=∠=∠,从而得到tan tan KFG HMF ∠=∠,
KG HF
FK HM
=,再代入LK 和FK 的值可得n=4,再求得FG 的长,最后得到圆的半径为10. 【详解】
解:(1)证明:∵AC BD =,∴AC CB BD CB +=+, ∴AB CD =, ∴AB CD =.
(2)证明:如图,连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,
∴90AJO DQO ∠=∠=︒,11
22
AJ AB CD DQ ===, 又∵AO DO =, ∴AOJ DOQ ∆≅∆, ∴OJ OQ =,
又∵OJ AB ⊥,OQ CD ⊥, ∴EO 平分AED ∠.
(3)解:∵CD AB ⊥,∴90AED ∠=︒,
由(2)知,1
452
AEF AED ∠=
∠=︒, 如图,延长GM 交O 于点H ,连接HF ,
∵FG 为直径,∴90H ∠=︒,1
22
MFG S MG FH ∆=⨯⋅=, ∵2MG =,∴2FH =,
在HG 上取点L ,使HL FH =,延长FL 交O 于点K ,连接KG ,
∴45HFL HLF ∠=∠=︒,45KLG HLF ∠=∠=︒, ∵FG 为直径,∴90K ∠=︒,
∴9045KGL KLG KLG ∠=︒-∠=︒=∠,∴LK KG =, 在Rt FHL ∆中,222FL FH HL =+
,FL = 设HM n =,2HL MG ==,
∴GL LM MG HL LM HM n =+=+==, 在Rt LGK ∆中,222LG LK KG =+
,2
LK KG ==
,FK FL LK =+=, ∵GMP GMB ∠=∠,∵PMG HMF ∠=∠,∴HMF GMB ∠=∠, ∵1
452
AEF AED ∠=
∠=︒, ∴45MGF EMG MEF ∠+∠=∠=︒,45MGF KFG HLF ∠+∠=∠=︒, ∴KFG EMG HMF ∠=∠=∠, ∴tan tan KFG HMF ∠=∠,

KG HF
FK HM
=,
∴2
n
=
,4n =, ∴6HG HM MG =+=,
在Rt HFG ∆中,222FG FH HG =+
,FG =
FO = 即
O
【点睛】
考查了圆的综合题,本题是垂径定理、圆周角定理以及三角函数等的综合应用,适当的添加辅助线是解题的关键.
8.如图,在平面直角坐标系中,直线DE 交x 轴于点E (30,0),交y 轴于点D (0,
40),直线AB :y =
1
3
x +5交x 轴于点A ,交y 轴于点B ,交直线DE 于点P ,过点E 作EF ⊥x 轴交直线AB 于点F ,以EF 为一边向右作正方形EFGH . (1)求边EF 的长;
(2)将正方形EFGH 沿射线FB
个单位的速度匀速平移,得到正方形E 1F 1G 1H 1,在平移过程中边F 1G 1始终与y 轴垂直,设平移的时间为t 秒(t >0).
①当点F1移动到点B时,求t的值;
②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE 重叠部分的面积.
【答案】(1)EF=15;(2)①10;②120;
【解析】
【分析】
(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-4
3
x+40,可
求出P点坐标,进而求出F点坐标即可;
(2)①易求B(0,5),当点F1移动到点B时,1010=10;
②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE
上时,在Rt△F'NF中,NF
NF'
=
1
3
,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,
4
3
MH
EM
'
=,
t=4,S=1
2
×(12+
45
4
)×11=
1023
8
;当点G运动到直线DE上时,在Rt△F'PK中,
PK
F K'
=
1
3

PK=t-3,F'K=3t-9,在Rt△PKG'中,PK
KG'

3
1539
t
t
-
-+

4
3
,t=7,S=15×(15-7)=120.
【详解】
(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),

300
40
k b
b
+=


=



4
3
40
k
b

=-


⎪=


∴y=﹣4
3
x+40,
直线AB与直线DE的交点P(21,12),由题意知F(30,15),
∴EF=15;
(2)①易求B(0,5),
∴BF =1010, ∴当点F 1移动到点B 时,t =101010÷=10;
②当点H 运动到直线DE 上时,
F 点移动到F'的距离是10t , 在Rt △F'NF 中,
NF NF '=13
, ∴FN =t ,F'N =3t ,
∵MH'=FN =t , EM =NG'=15﹣F'N =15﹣3t ,
在Rt △DMH'中,
43
MH EM '=, ∴
41533
t t =-, ∴t =4, ∴EM =3,MH'=4,
∴S =
1451023(12)11248
⨯+⨯=; 当点G 运动到直线DE 上时,
F 点移动到F'10,
∵PF =10
∴PF'10t ﹣10,
在Rt △F'PK 中,
13PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9,
在Rt △PKG'中,
PK KG '=31539t t --+=43
, ∴t =7,
∴S =15×(15﹣7)=120.
【点睛】
本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.
9.如图以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点F.
(1)求证:DF ⊥AC ;
(2)若∠ABC=30°,求tan ∠BCO 的值.
【答案】(1)证明见解析; (2) tan ∠3 【解析】
试题分析:(1)连接OD ,根据三角形的中位线定理可求出OD ∥AC ,根据切线的性质可证明DE ⊥OD ,进而得证.
(2)过O 作OF ⊥BD ,根据等腰三角形的性质及三角函数的定义用OB 表示出OF 、CF 的长,根据三角函数的定义求解.
试题解析:证明:连接OD
∵DE 为⊙O 的切线, ∴OD ⊥DE
∵O 为AB 中点, D 为BC 的中点
∴OD‖AC
∴DE ⊥AC
(2)过O 作OF ⊥BD,则BF=FD
在Rt △BFO 中,∠ABC=30° ∴OF=
12OB 3 ∵BD=DC, BF=FD ,
∴FC=3BF=332OB 在Rt △OFC
中,tan ∠BCO=13233OB OF FC OB ==. 点睛:此题主要考查了三角形中位线定理及切线的性质与判定、三角函数的定义等知识点,有一定的综合性,根据已知得出OF=
12OB ,BF=3OB ,FC=3BF=33OB 是解题关键.
10.已知Rt △ABC,∠A=90°,BC=10,以BC 为边向下作矩形BCDE,连AE 交BC 于F.
(1)如图1,当AB=AC,且sin ∠BEF=
35时,求BF CF 的值; (2)如图2,当tan ∠ABC=12
时,过D 作DH ⊥AE 于H,求EH EA ⋅的值; (3)如图3,连AD 交BC 于G,当2FG BF CG =⋅时,求矩形BCDE 的面积
【答案】(1)
17
;(2)80;(3)100. 【解析】
【分析】 (1)过A 作AK ⊥BC 于K ,根据sin ∠BEF=35得出35
FK AK =,设FK =3a ,AK =5a ,可求得BF =a ,故17
BF CF =;(2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,得△EGA ∽△EHD ,利用相似三角形的性质即可求出;(3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,根据相似三角形的性质可求出BE =ED ,故可求出矩形的面积.
【详解】
解:(1)过A 作AK ⊥BC 于K ,
∵sin ∠BEF =35,sin ∠FAK =35
,
∴35
FK AK =, 设FK =3a ,AK =5a ,
∴AK =4a ,
∵AB =AC ,∠BAC =90°,
∴BK =CK =4a ,
∴BF =a ,
又∵CF =7a , ∴17
BF CF = (2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,
∵∠AGE =∠DHE =90°,
∴△EGA ∽△EHD , ∴EH ED EG EA
=, ∴·EH EA EG ED ⋅=,其中EG =BK , ∵BC =10,tan ∠ABC =
12, cos ∠ABC
∴BA =BC · cos ∠ABC
BK= BA·cos ∠ABC 8
= ∴EG =8,
另一方面:ED =BC =10,
∴EH ·EA =80 (3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,
∵BC ∥KT ,
BF AF FG KE AE ED ==, ∴BF KE FG DE =,同理:FG ED CG DT
= ∵FG 2= BF ·CG ∴BF FG FG CG
=, ∴ED 2= KE ·DT ∴
KE ED DE DT = , 又∵△KEB ∽△CDT ,∴
KE CD BE DT
=, ∴KE ·DT =BE 2, ∴BE 2=ED 2
∴ BE =ED
∴1010100BCDE S =⨯=矩形
【点睛】
此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.。

相关文档
最新文档