山东省烟台市物理 静电场及其应用专题试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、第九章静电场及其应用选择题易错题培优(难)
1.如图所示,y轴上固定有两个电荷量相等的带正电的点电荷,且关于坐标原点O对称。

某同学利用电场的叠加原理分析在两电荷连线的中垂线(x轴)上必定有两个场强最强的点A、'A,该同学在得到老师的肯定后又在此基础上作了下面的推论,你认为其中正确的是()
A.若两个点电荷的位置不变,但电荷量加倍,则x轴上场强最大的点仍然在A、'A两位置
B.如图(1),若保持两个点电荷的距离不变、并绕原点O旋转90°后对称的固定在z轴上,则x轴上场强最大的点仍然在A、'A两位置
C.如图(2),若在yoz平面内固定一个均匀带正电圆环,圆环的圆心在原点O。

直径与(1)图两点电荷距离相等,则x轴上场强最大的点仍然在A、'A两位置
D.如图(3),若在yoz平面内固定一个均匀带正电薄圆板,圆板的圆心在原点O,直径与(1)图两点电荷距离相等,则x轴上场强最大的点仍然在A、'A两位置
【答案】ABC
【解析】
【分析】
【详解】
A.可以将每个点电荷(2q)看作放在同一位置的两个相同的点电荷(q),既然上下两个点电荷(q)的电场在x轴上场强最大的点仍然在A、A'两位置,两组点电荷叠加起来的合电场在x轴上场强最大的点当然还是在A、A'两位置,选项A正确;
B.由对称性可知,保持两个点电荷的距离不变、并绕原点O旋转90°后对称的固定在z轴上,则x轴上场强最大的点仍然在A、'A两位置,选项B正确;
C.由AB可知,在yOz平面内将两点电荷绕O点旋转到任意位置,或者将两点电荷电荷量任意增加同等倍数,在x轴上场强最大的点都在A、A'两位置,那么把带电圆环等分成一些小段,则关于O点对称的任意两小段的合电场在x轴上场强最大的点仍然还在A、A'两位置,所有这些小段对称叠加的结果,合电场在x轴上场强最大的点当然还在A、A'两位置,选项C正确;
D.如同C选项,将薄圆板相对O点对称的分割成一些小块,除了最外一圈上关于O点对称的小段间距还是和原来一样外,靠内的对称小块间距都小于原来的值,这些对称小块的合电场在x轴上场强最大的点就不再在A、A'两位置,则整个圆板的合电场在x轴上场强最大的点当然也就不再在A、A'两位置,选项D错误。

故选ABC。

2.如图所示,带电量为Q 的正点电荷固定在倾角为30°的光滑绝缘斜面底端C 点,斜面上有A 、B 、D 三点,A 和C 相距为L ,B 为AC 中点,D 为A 、B 的中点。

现将一带电小球从A 点由静止释放,当带电小球运动到B 点时速度恰好为零。

已知重力加速度为g ,带电小球在A 点处的加速度大小为
4
g
,静电力常量为k 。

则( )
A .小球从A 到
B 的过程中,速度最大的位置在D 点 B .小球运动到B 点时的加速度大小为
2
g C .BD 之间的电势差U BD 大于DA 之间的电势差U DA D .AB 之间的电势差U AB =kQ L
【答案】BC 【解析】 【分析】 【详解】
A .带电小球在A 点时,有
2sin A Qq
mg k
ma L θ-= 当小球速度最大时,加速度为零,有
'2sin 0Qq
mg θk
L
-= 联立上式解得
'2L L =
所以速度最大的位置不在中点D 位置,A 错误; B .带电小球在A 点时,有
2sin A Qq
mg k
ma L
θ-= 带电小球在B 点时,有
2sin 2
B
Qq k mg θma L -=() 联立上式解得
2
B g a =
B 正确;
C .根据正电荷的电场分布可知,B 点更靠近点电荷,所以B
D 段的平均场强大小大于AD 段的平均场强,根据U Ed =可知,BD 之间的电势差U BD 大于DA 之间的电势差U DA ,C 正确;
D .由A 点到B 点,根据动能定理得
sin 02
AB L
mg θqU ⋅
+= 由2
sin A Qq
mg k
ma L θ-=可得 214Qq mg k L
= 联立上式解得
AB kQ
U L
=-
D 错误。

故选BC 。

3.如图所示,竖直平面内固定一倾斜的光滑绝缘杆,轻质绝缘弹簧上端固定,下端系带正电的小球A ,球A 套在杆上,杆下端固定带正电的小球B 。

现将球A 从弹簧原长位置由静止释放,运动距离x 0到达最低点,此时未与球B 相碰。

在球A 向下运动过程中,关于球A 的速度v 、加速度a 、球A 和弹簧系统的机械能E 、两球的电势能E p 随运动距离x 的变化图像,可能正确的有( )
A .
B .
C .
D .
【答案】CD 【解析】 【分析】 【详解】
令A 、B 小球分别带电量为1q 、2q ,释放A 球时A 、B 间距为r ,弹簧的劲度系数为K 。

则 A .在小球A 运动到最低点的过程中,受力分析如图所示
加速阶段有
12
2
sin ()kq q ma mg θKx r x =-
--
减速阶段有
12
2
sin ()kq q ma Kx mg θr x =
+--
所以小球先做加速度减小的加速运动,再做加速度增大的减速运动,越向下运动,弹力和电场力越大,所以减速阶段速度减小的更快,速度减为零的时间更短,和加速阶段不对称,A 错误;
B .小球做加速度减小的加速运动时,
122
sin ()kq q K
a g θx m r x m
=-
-- 对a 求导则
1232d d ()kq q a K x m r x m
=-- 则加速阶段,加速度随着运动距离x 的增加而减小,且加速减小得越来越快(即a -x 曲线越来越陡峭)。

同理,减速阶段
122sin ()kq q K
a x g θm r x m =
+--
123
2d d ()kq q a K
x m m r x =-- 在减速阶段加速度运动距离x 的增加而减加而增大,且加速度增加得越来越慢(即a -x 曲线越来越平缓),故B 错误;
C .小球向下运动过程中,由于要克服电场力做功,所以球A 和弹簧系统的机械能E 逐渐减小,越靠近B 小球,电场力越大,机械能减小的越快,所以图像的斜率的绝对值越来越大,C 正确;
D .小球向下运动过程中,电场力做负功,所以电势能逐渐增大,越靠近B 小球,电场力
越大,电势能增大的越快,所以图像的斜率越来越大,D 正确。

故选CD 。

4.如图所示,带电小球a 由绝缘细线PM 和PN 悬挂而处于静止状态,其中PM 水平,地面上固定一绝缘且内壁光滑的圆弧细管道GH ,圆心P 与a 球位置重合,管道底端H 与水平地面相切,一质量为m 可视为质点的带电小球b 从G 端口由静止释放,当小球b 运动到H 端时对管道壁恰好无弹力,重力加速度为g 。

在小球b 由G 滑到H 过程中,下列说法中正确的是( )
A .小球b 机械能保持不变
B .小球b 所受库仑力大小始终为2mg
C .细线PM 的拉力先增大后减小
D .小球b 加速度大小一直变大 【答案】ACD 【解析】 【详解】
A .小球b 所受库仑力和管道的弹力始终与速度垂直,即只有重力做功,所以小球b 机械能守恒,故A 正确;
B .小球b 机械能守恒,从G 滑到H 过程中,有:
212
mgR mv =
H 处有:
2
-库m F mg =R
v
则有:
F 库=3mg
故B 错误;
C .设PN 与竖直方向成α角,对球a 受力分析,将其分解: 竖直方向上有:
F PN cos α=mg +F 库sin θ
水平方向上有:
F 库cos θ+F PN sin α=F PM 。

解得:
(
3)
PM
mgcos
F mgtan
cos
θα
α
α
-
=+
下滑时θ从0增大90°,细线PM的拉力先增大后减小,故C正确;
D.设b与a的连线与水平方向成θ角,则有:任意位置加速度为向心加速度和切向加速度合成,即为:
(
)
2
2
222
12
()
532
2
v cos
a a a gcos g
R
θ
θ
-
=+=+=
可知小球的加速度一直变大,故D正确。

故选ACD。

5.如图,质量分别为m A和m B的两小球带有同种电荷,电荷量分别为q A和q B,用绝缘细线悬挂在天花板上。

平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为θ1与θ2(θ1>θ2)。

两小球突然失去各自所带电荷后开始摆动,最大速度分别为v A和v B,最大动能分别为E k A和E k B。

则()
A.m A一定大于m B
B.q A一定小于q B
C.v A一定大于v B
D.E k A一定大于E k B
【答案】CD
【解析】
【详解】
A.对小球A受力分析,受重力、静电力、拉力,如图所示:
根据平衡条件,有:
1
tan
A
F
m g
θ=
故:
1tan A F
m g θ
=

同理,有:
2
tan B F
m g θ=

由于θ1>θ2,故m A <m B ,故A 错误;
B .两球间的库仑力是作用力与反作用力,一定相等,与两个球是否带电量相等无关,故B 错误;
C .设悬点到AB 的竖直高度为h ,则摆球A 到最低点时下降的高度:
111
1
(1)cos cos h h h h θθ∆=
-=- 小球摆动过程机械能守恒,有
2
12
A A A A m g h m v ∆=
解得:
2A A v g h =⋅∆
由于θ1>θ2,A 球摆到最低点过程,下降的高度△h A >△h B ,故A 球的速度较大,故C 正确;
D .小球摆动过程机械能守恒,有
mg △h =E K

(1cos )(1cos )tan k FL
E mg h mgL θθθ
=∆=-=
- 其中L cos θ相同,根据数学中的半角公式,得到:
1cos (1cos )cos ()cos tan tan sin 2
k FL E FL FL θθ
θθθθθ-=
-==⋅ 其中FL cos θ相同,故θ越大,动能越大,故E kA 一定大于E kB ,故D 正确。

6.如图所示,某电场的电场线分布关于 y 轴(沿竖直方向)对称,O 、M 、N 是 y 轴上的三 个点,且 OM=MN 。

P 点在 y 轴右侧,MP ⊥ON 。


A .M 点场强大于 N 点场强
B .M 点电势与 P 点的电势相等
C .将正电荷由 O 点移动到 P 点,电场力做负功
D .在 O 点静止释放一带正电粒子,该粒子将沿 y 轴正方向做直线运动
【答案】AD
【解析】
【详解】
A、从图像上可以看出,M点的电场线比N点的电场线密集,所以M 点场强大于 N 点场强,故A对;
B、沿着电场线电势在降低,由于电场不是匀强电场,所以M和P点不在同一条等势线上,所以M 点电势与 P 点的电势不相等,故B错;
C、结合图像可知:O点的电势高于P点的电势,正电荷从高电势运动到低电势,电场力做正功,故C错;
D、在 O 点静止释放一带正电粒子,根据电场线的分布可知,正电荷一直受到向上的电场力,力与速度在一条直线上,故粒子做直线运动,故D对;
故选AD
7.如图所示,竖直墙面与水平地面均光滑且绝缘,两个带有同种电荷的小球A、B分别处于竖直墙面和水平地面上,且处于同一竖直平面内,若用图示方向的水平推力F作用于小球B,则两球静止于图示位置,如果将小球B向左推动少许,待两球重新达到平衡时,则两个小球的受力情况与原来相比()
A.竖直墙面对小球A的弹力减小
B.地面对小球B的弹力一定不变
C.推力F将增大
D.两个小球之间的距离增大
【答案】ABD
【解析】
【分析】
【详解】
整体法可知地面对小球B的弹力一定不变,B正确;假设A球不动,由于A、B两球间距变小,库仑力增大,A球上升,库仑力与竖直方向夹角变小,而其竖直分量不变,故库仑力变小A、B两球间距变大,D正确;但水平分量减小,竖直墙面对小球A的弹力减小,推力F将减小,故A正确,C错误。

故选ABD。

8.如右图,M、N和P是以MN为直径的半圆弧上的三点,O点为半圆弧的圆心,.电荷量相等、符号相反的两个电荷分别置于M、N两点,这时O点电场强
度的大小为E 1;若将N 点处的点电荷移至P 点,则O 点的场强大小变为E 2.E 1与E 2之比为( )
A .1:2
B .2:1
C .
D .
【答案】B 【解析】 【分析】 【详解】 试题分析:由
得:;若将N 点处的点电荷移至P 点,则O 点
的场强大小变为E 2,知两点电荷在O 点的场强夹角为1200,由矢量的合成知,
得:
,B 对
9.如图所示,A 、B 、C 为放置在光滑水平面上的三个带电小球(可视为点电荷),其中B 与C 之间用长为L 的绝缘轻质细杆相连,现把A 、B 、C 按一定的位置摆放,可使三个小球都保持静止状态。

已知小球B 的带电量为-q ,小球C 的带电量为+4q ,则以下判断正确的是( )
A .小球A 的带电量可以为任何值
B .轻质细杆一定处于被拉伸状态
C .小球A 与B 之间的距离一定为
4
L D .若将A 向右平移一小段距离,释放后A 一定向左运动 【答案】A 【解析】 【分析】 【详解】
AC .小球A 受力平衡,设小球AB 之间的距离为x ,根据平衡条件有
()
A A 224q q q q
k
k x L x ⋅=+ 解得
x L =
所以小球A 的电荷量可以为任意值,可以带正电,也可以带负电,A 正确,C 错误;
B .对小球B ,小球A 和小球
C 对其静电力的合力为
A 224q q q q
F k
k x L
⋅=- 由于不知道小球A 的带电量,所以无法确定小球A 和小球C 对小球B 的静电力的合力是否为零,故无法判断轻杆是否被拉伸,B 错误;
D .小球A 在原来的位置是平衡的,若将A 向右平移一小段距离,小球B 和小球C 对其的静电力均增加,且小球B 对其的静电力增加的更快,但由于小球A 的电性不确定,所以释放后A 的运动方向也不确定,D 错误。

故选A 。

10.如图所示,质量为m 的带电小球用绝缘丝线悬挂于P 点,另一带正电小球M 固定在带电小球的左侧,小球平衡时,绝缘丝线与竖直方向夹角为θ,且两球球心在同一水平线上.关于悬挂小球的电性和所受库仑力的大小,下列判断正确的是( )
A .正电,
mg
tan θ
B .正电,mg tan θ
C .负电,mg tan θ
D .负电,
mg
tan θ
【答案】B 【解析】 【分析】 【详解】
小球 M 带正电,两球相斥,故小球带正电;以小球为研究对象,对小球进行受力分析,根据小球处于平衡状态可知,F=mgtgθ,故选B .
【点睛】
对于复合场中的共点力作用下物体的平衡其解决方法和纯力学中共点力作用下物体的平衡适用完全相同的解决方法.
11.如图所示,小球A 、B 质量均为m ,初始带电荷量均为+q ,都用长为L 的绝缘细线挂在绝缘的竖直墙上O 点,A 球紧靠绝缘的墙壁且其悬线刚好竖直,球B 悬线偏离竖直方向θ角而静止.如果保持B 球的电荷量不变,使小球A 的电荷量缓慢减小,当两球间距缓慢
变为原来的
1
3
时,下列判断正确的是( )
A .小球
B 受到细线的拉力增大 B .小球B 受到细线的拉力变小
C .两球之间的库仑力大小不变
D .小球A 的电荷量减小为原来的
127
【答案】D 【解析】 【详解】
AB.小球B 受力如图所示,两绝缘线的长度都是L ,则△OAB 是等腰三角形,如果保持B 球
的电量不变,使A 球的电量缓慢减小,当两球间距缓慢变为原来的
1
3
时,θ变小,F 减小; 线的拉力T 与重力G 相等,G =T ,即小球B 受到细线的拉力不变;对物体A :
cos()22
A A T G F πθ
=+-
则θ变小,T A 变小;故AB 错误;
CD.小球静止处于平衡状态,当两球间距缓慢变为原来的1/3时,由比例关系可知,库仑力变为原来的1/3,因保持B 球的电量不变,使A 球的电量缓慢减小,由库仑定律
2
A B
Q Q F k
r = 解得:球A 的电量减小为原来的
1
27
,故C 错误,D 正确;
12.如图所示,绝缘水平面上一绝缘轻弹簧一端固定在竖直墙壁上,另一端栓接一带负电小物块,整个装置处在水平向右的匀强电场中。

现保持匀强电场的场强大小不变,仅将其方向改为指向左偏下方向,物块始终保持静止,桌面摩擦不可忽略,则下列说法正确的是 ( )
A .弹簧一定处于拉伸状态
B .相比于电场变化前,变化后的摩擦力的大小一定减小
C .变化后的摩擦力不可能为零
D .相比于电场变化前,变化后弹簧的弹力和摩擦力的合力大小一定变小 【答案】D 【解析】 【分析】 【详解】
A .如果电场力和弹力都远小于最大静摩擦力,那么无论怎么样改变电场,物块都是静止,弹簧可以处于压缩也可以处于伸长状态,故 A 错误;
B .不知道弹簧处于拉伸还是压缩状态,不知道电场力和弹力的大小和方向,故无法判断摩擦力方向及大小变化,故B ;
C .如果变化后电场力的水平分力与弹簧的弹力等大反向,摩擦力为零,故C 错误;
D .由题根据三个力的平衡可知,弹簧的弹力和摩擦力的合力与水平方向电场力等大反向,水平方向电场力变小,弹簧的弹力和摩擦力的合力必定变小,故D 正确。

故选D 。

13.如图,质量分别为 m A 和 m B 的两小球带有同种电荷,电荷量分别为 q A 和 q B ,用绝缘细线悬挂在天花板上.平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为 θ1 与 θ2(θ1>θ2).两小球突然失去各自所带电荷后开始摆动,最大速度分别 v A 和 v B ,最大动能分别为 E kA 和 E kB .则( )
A .m A :m
B =tan θ1: tan θ2 B .q A :q B =1: 1
C .1
2
:tan
tan 2
2A B v v θθ=
D .1
2
:tan :tan
2
2
kA kB E E θθ=
【答案】D 【解析】 【分析】 【详解】
A.对A球进行受力分析可知,A所受到的库仑力大小为
A1
tan
F m gθ
=
同理B受到的库仑力为
B2
tan
F m gθ
=
两球间的库仑力大小相等方向相反,因此
A B21
:tan:tan
m mθθ
=①
A错误;
B.两个小球间的库仑力总是大小相等,与两小球带电量大小无关,因此无法求出两球电量间的关系,B错误;
CD.由于两球处于同一高度,则
1122
cos cos=
l l h
θθ
=②
又由于两球下摆的过程中,机械能守恒,则
2
k
1
(1cos)
2
mgl E mv
θ
-==③
由②③联立可得
1
1
2
2
1
1
cos
1
1
cos
v
v
θ
θ
-
=
-
由①②③联立利用三角函数关系可得
1
kA
2
kB
tan
2
tan
2
E
E
θ
θ
=
C错误,D正确。

故选D。

14.两个等量异种电荷A、B固定在绝缘的水平面上,电荷量分别为+Q和-Q,俯视图如图所示。

一固定在水平桌面的足够长的光滑绝缘管道与A、B的连线垂直,且到A的距离小于到B的距离,管道内放一个带负电小球P(可视为试探电荷),现将电荷从图示C点静止释放,C、D两点关于O点(管道与A、B连线的交点)对称。

小球P从C点开始到D点的运动过程中,下列说法正确的是()
A.先做减速运动,后做加速运动
B.经过O点的速度最大,加速度也最大
C.O点的电势能最小,C、D两点的电势相同
D.C、D两点受到的电场力相同
【答案】C
【解析】
【分析】
【详解】
A.根据电场分布和力与运动的关系可知带电小球先做加速运动,后做减速运动,选项A 错误;
B.经过O点的速度最大,沿着光滑绝缘管道方向上的加速度为零,选项B错误;
C.带电小球P在O点的电势能最小,C、D两点的电势相同,选项C正确;
D.C、D两点受到的电场力方向不同,故电场力不同,选项D错误。

故选C。

15.如图所示,用两根长度均为l的绝缘轻绳将正电的小球悬挂在水平的天花板下,小球的质量为m,轻绳与天花板的夹角均为θ=30°,小球正下方距离也为l的A处有一绝缘支架上同样有一个带电小球,此时轻绳的张力均为0,现在将支架水平向右移动到B处,B 处位置为与竖直方向的夹角为θ处,小球处于静止状态,则()
A.A处的带电小球带负电
B.A处与B处库仑力大小之比为23
C.支架处于B处,左边绳子张力为
3 mg
D.支架处于B处,右边绳子张力为
3
2
mg mg
+
【答案】C
【解析】
【分析】
【详解】
A当绝缘支架上的带电小球在A位置时,轻绳的张力均为0,说明上方小球受力平衡,受
力分析可知其只受重力和库仑力,因此A处的带电小球带正电,故选项A错误;
B.根据库仑定律可得
2
Qq
F k
r
=
因此在A处与B处库仑力大小之比等于带点小球距离平方的倒数比,即
2
2
2
1
A
B
F r
F r
=
因为θ=30°,所以
:4:3
A B
F F=
故选项B错误;
CD.支架处于B处,两球间的库仑力为
33
44
B A
F F mg
==
设左、右绳的张力分别为F1和F2,则由正交分解可得
12
3
sin30
cos330
4
0cos
mg
F F
+=
12
3
cos30
sin3030
4
cos
F F mg
mg
++=
解得
1
3
F mg mg
=-
2
3
F mg mg
=-
故选项C正确,选项D错误。

故选C。

二、第九章静电场及其应用解答题易错题培优(难)
16.如图所示,在绝缘的水平面上,相隔2L的,A、B两点固定有两个电量均为Q的正点电荷,C、O、D是AB连线上的三个点,O为连线的中点,CO=OD=L/2。一质量为m、电量为q的带电物块以初速度v0从c点出发沿AB连线向B运动,运动过程中物块受到大小恒定的阻力作用。当物块运动到O点时,物块的动能为初动能的n倍,到达D点刚好速度为零,然后返回做往复运动,直至最后静止在O点。已知静电力恒量为k,求:
(1)AB两处的点电荷在c点产生的电场强度的大小;
(2)物块在运动中受到的阻力的大小;
(3)带电物块在电场中运动的总路程。
【答案】(1)
(2) (3)
【解析】 【分析】 【详解】
(1)设两个正点电荷在电场中C 点的场强分别为E 1和E 2,在C 点的合场强为E C ;则
12()2kQ E L =
;223()2kQ
E L = 则E C =E 1-E 2 解得:E C =
2
32 9kQ
L . (2)带电物块从C 点运动到D 点的过程中,先加速后减速.AB 连线上对称点φC =φD ,电场力对带电物块做功为零.设物块受到的阻力为f , 由动能定理有:−fL =0−1
2
mv 02 解得:2
012f mv L

(3)设带电物块从C 到O 点电场力做功为W 电,根据动能定理得:
22
0011222
L W f n mv mv 电=-⋅⋅-
解得:()201
214
W n mv -电=
设带电物块在电场中运动的总路程为S ,由动能定理有:W 电−fs =0−1
2
mv 02 解得:s=(n+0.5)L 【点睛】
本题考查了动能定理的应用,分析清楚电荷的运动过程,应用动能定理、点电荷的场强公式与场的叠加原理即可正确解题.
17.如图所示,MPQO 为有界的竖直向下的匀强电场,电场强度为E ,ACB 为光滑固定的半圆形轨道,轨道半径为R ,A 、B 为圆水平直径的两个端点,AC 为
1
4
圆弧一个质量为m ,电荷量为+q 的带电小球,从A 点正上方高为H 处由静止释放,并从A 点沿切线进入半圆轨道不计空气阻力及一切能量损失.
(1)小球在A 点进入电场时的速度;
(2)小球在C 点离开电场前后瞬间对轨道的压力分别为多少; (3)小球从B 点离开圆弧轨道后上升到最高点离B 点的距离. 【答案】(12gH (2)233mgH mg qE R ++、232mgH
mg qE R
++; (3)
qER
H mg
+. 【解析】 【详解】
(1)对从释放到A 点过程,根据动能定理,有:
2
102
A mgH mv =
- 解得:
2A v gH =(2)对从释放到最低点过程,根据动能定理,有:
2
1()02
mg H R qER mv +=
-+ ……① 小球在C 点离开电场前瞬间,根据牛顿第二定律,有:
2
1N mg q v E R
m --= ……..②
小球在C 点离开电场后瞬间,根据牛顿第二定律,有:
2
2v N mg m R
-=……. ③
联立①②③解得:
1233mgH
N mg qE R =++ 2232mgH
N mg qE R =++
根据牛顿第三定律,小球在C 点离开电场前后瞬间对轨道的压力分别为
1233mgH
N mg qE R
'=++
2232mgH
N mg qE R
'=++
(3)从释放小球到右侧最高点过程,根据动能定理,有:
()00mg H h qER -+=-
解得:
qER
h H mg
=
+ 答:(1)小球在A 点进入电场时的速度为2gH ;
(2)小球在C 点离开电场前后瞬间对轨道的压力分别为233mgH
mg qE R
++
、232mgH
mg qE R
++
; (3)小球从B 点离开圆弧轨道后上升到最高点离B 点的距离为
qER
H mg
+.
18.如图所示,质量为m 的小球A 穿在绝缘细杆上,杆的倾角为α,小球A 带正电,电量为q 。

在杆上B 点处固定一个电量为Q 的正电荷。

将A 由距B 竖直高度为H 处无初速释放,小球A 下滑过程中电量不变。

不计A 与细杆间的摩擦,整个装置处在真空中。

已知静电力常量k 和重力加速度g 。

(1)A 球刚释放时的加速度是多大?
(2)当A 球的动能最大时,求此时A 球与B 点的距离。

【答案】(1)22
si s n in kQ a g q mH
=-αα
;(2)sin kQq
x mg =α
【解析】 【分析】 【详解】
(1)由牛顿第二定律可知
mg sin α-F =ma
根据库仑定律
2Qq F k
r =,sin H
r α
= 得
22
si s n in kQ a g q mH
=-αα。

(2)当A 球受到合力为零、加速度为零时,动能最大。

设此时A 球与B 球间的距离为x ,则
2
sin Qq k
x mg =α
解得
sin kQq
x mg =
α
【点睛】
本题关键对小球A 受力分析,然后根据牛顿第二定律求解加速度,根据力与速度关系分析
小球A 的运动情况;知道合力为零时动能最大。

19.如图所示,充电后的平行板电容器水平放置,电容为C ,极板间距离为d ,上极板正中有一小孔。

质量为m 、电荷量为+q 的小球从小孔正上方高h 处由静止开始下落,穿过小孔到达下极板处速度恰为零(不计空气阻力,极板间电场可视为匀强电场,重力加速度为g )。

求:
(1)极板间电场强度大小和电容器所带电荷量; (2)小球从开始下落运动到下极板的时间. 【答案】(1)()mg h d E qd +=,
()mgC h d Q q += (2)2h d
h
t h
g
+=【解析】 【详解】
(1)对从释放到到达下极板处过程的整个过程,由动能定理得:
()0mg h d qEd +-=
解得:()
mg h d E qd
+=
电容器两极板间的电压为:
()
mg h d U Ed q +==
故电容器的带电量为:
()
mgC h d Q CU q +==
(2)小球到达小孔前是自由落体运动,则有:
2112
h gt =
得:12h t g
=
根据速度位移关系公式,有: v 2=2gh
得:2v gh =
取竖直向下为正方向,根据动量定理对减速过程有:
2()0mg qE t mv -=-
小球从开始下落运动到下极板的时间t =t 1+t 2 联立解得:2h d h t h g
+=

20.如图所示,一光滑斜面的直角点A 处固定一带电量为+q ,质量为m 的绝缘小球。

另一同样小球置于斜面顶点B 处,已知斜面长为L ,现把上部小球从B 点从静止自由释放,球能沿斜面从B 点运动到斜面底端C 处(静电力常量为k ,重力加速度为g )
求:(1)小球从B 处开始运动到斜面中点D 处时的速度? (2)小球运动到斜面底端C 处时,球对斜面的压力是多大? 【答案】(1) 2
D gl
v =2232'3N N kq F F L ==- 【解析】
(1)由题意知:小球运动到D 点时,由于AD=AB ,所以有D B ϕϕ= 即0DB D B U ϕϕ=-=① 则由动能定理得:21
sin30022
DB L mg qu mv ︒+=-② 联立①②解得2
D gl v =
(2)当小球运动到C 点时,对球受力分析如图所示则由平衡条件得:
sin30cos30N F F mg +︒=︒库④
由库仑定律得:()
2
2
cos30kq F l =
︒库⑤
联立④⑤得:223223N kq F mg L
=-
由牛顿第三定律即
2
2
32
'
23
N N
kq
F F mg
L
==-.
21.—个带正电的微粒,从A点射入水平方向的匀强电场中,微粒沿直线AB运动,如图所示,AB与电场线夹角θ=53°,已知带电微粒的质量m=1.0×10-7kg,电荷量q=1.0×10-
10C,A、B相距L=20cm.(取g=10m/s2).求:
(1)电场强度的大小和方向;
(2)要使微粒从A点运动到B点,微粒射入电场时的最小速度是多少.
【答案】(1)7.5×10 3 V/m,方向水平向左 (2)5m/s
【解析】
【详解】
(1)带电微粒做直线运动,所受的合力与速度在同一直线上,则带电微粒受力如图所示;
由图可知,合力与速度方向相反;故粒子一定做匀减速直线运动;
由力的合成可知:
mg=qE•tanθ
可得:3
7.510V/m
tan
mg
E

==⨯,方向水平向左.
(2)微粒从A到B做匀减速直线运动,则当v B=0时,粒子进入电场速度v A最小.由动能定理:
2
1
sin cos0
2A
mgL qEL mv
θθ
--=-
代入数据得:v A5m/s。

相关文档
最新文档