翼城县外国语学校2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
翼城县外国语学校2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 函数y=sin (
2x+)图象的一条对称轴方程为( ) A .x=
﹣
B .x=
﹣
C .
x=
D .
x=
2. 设a=lge ,b=(lge )2,
c=lg
,则( )
A .a >b >c
B .c >a >b
C .a >c >b
D .c >b >a 3.
在中,
、、分别为角
、
、
所对的边,若
,则此三角形的形状一定是
( ) A .等腰直角 B .等腰或直角 C .等腰 D .直角
4.
若
,
,且
,则λ与μ的值分别为( )
A
.
B .5,2
C
.
D .﹣5,﹣2
5. 若y x ,满足约束条件⎪⎪⎩
⎪
⎪⎨⎧≥≤-+≥+-0
033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )
A .1-
B .
C .3-
D .3
6. 已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O
是坐标原点,且,那么实数
a 的取值范围是( ) A
. B
.
C .
D
.
7. 若关于的不等式
2
043
x a
x x +>++的解集为31x -<<-或2x >,则的取值为( ) A . B .12 C .1
2
- D .2-
8. 已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( ) A .
B .
C .
D .
9. 已知点P (1
,﹣),则它的极坐标是( )
A
.
B
.
C
.
D
.
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
10.函数f (x )=有且只有一个零点时,a 的取值范围是( )
A .a ≤0
B .0<a <
C .<a <1
D .a ≤0或a >1
11.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )
A .2+
B .1+
C .
D .
12.甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:
乙校:
则x ,y A 、12,7 B 、 10,7 C 、 10,8 D 、 11,9
二、填空题
13.若等比数列{a n }的前n 项和为S n ,且
,则
= .
14.命题“∃x ∈R ,2x 2
﹣3ax+9<0”为假命题,则实数a 的取值范围为 .
15.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .
16.命题“若1x ≥,则2421x x -+≥-”的否命题为 . 17.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 .
18.在极坐标系中,点(2,)到直线ρ(cos θ+
sin θ)=6的距离为 .
三、解答题
19.已知等差数列{a n },满足a 3=7,a 5+a 7=26.
(Ⅰ)求数列{a n }的通项a n ; (Ⅱ)令b n =(n ∈N *
),求数列{b n }的前n 项和S n .
20.(本小题满分16分)
给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;
(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.
21.如图所示,已知在四边形ABCD 中,AD ⊥CD ,AD=5,AB=7,BD=8,∠BCD=135°. (1)求∠BDA 的大小 (2)求BC 的长.
22.设函数f (x )=kx 2+2x (k 为实常数)为奇函数,函数g (x )=a f (x )﹣1(a >0且a ≠1).
(Ⅰ)求k 的值;
(Ⅱ)求g (x )在[﹣1,2]上的最大值;
(Ⅲ)当时,g (x )≤t 2
﹣2mt+1对所有的x ∈[﹣1,1]及m ∈[﹣1,1]恒成立,求实数t 的取值范围.
23.设函数f (x )=e mx +x 2﹣mx .
(1)证明:f (x )在(﹣∞,0)单调递减,在(0,+∞)单调递增; (2)若对于任意x 1,x 2∈,都有|f (x 1)﹣f (x 2)|≤e ﹣1,求m 的取值范围.
24.(本小题满分13分)
如图,已知椭圆2
2:14
x C y +=的上、下顶点分别为,A B ,点P 在椭圆上,且异于点,A B ,直线,AP BP 与直线:2l y =-分别交于点,M N ,
(1)设直线,AP BP 的斜率分别为12,k k ,求证:12k k ⋅为定值; (2)求线段MN 的长的最小值;
(3)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论.
【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.
翼城县外国语学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】A
【解析】解:对于函数y=sin(2x+),令2x+=kπ+,k∈z,
求得x=π,可得它的图象的对称轴方程为x=π,k∈z,
故选:A.
【点评】本题主要考查正弦函数的图象的对称性,属于基础题.
2.【答案】C
【解析】解:∵1<e<3<,
∴0<lge<1,∴lge>lge>(lge)2.
∴a>c>b.
故选:C.
【点评】本题主要考查对数的单调性.即底数大于1时单调递增,底数大于0小于1时单调递减.
3.【答案】B
【解析】
因为,所以由余弦定理得,
即,所以或,
即此三角形为等腰三角形或直角三角形,故选B
答案:B
4.【答案】A
【解析】解:由,得.
又,,
∴,解得.
故选:A.
【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.
5. 【答案】D 【
解
析
】
考
点:简单线性规划. 6. 【答案】A
【解析】解:设AB 的中点为C ,则
因为
,
所以|OC|≥|AC|,
因为|OC|=,|AC|2=1﹣|OC|2
,
所以2(
)2
≥1,
所以a ≤﹣1或a ≥1,
因为
<1,所以﹣
<a <
,
所以实数a 的取值范围是,
故选:A .
【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.
7. 【答案】D 【解析】
试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程
2
043
x a
x x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.
考点:不等式与方程的关系. 8. 【答案】C
【解析】解:设g(x)=xe x,y=mx﹣m,
由题设原不等式有唯一整数解,
即g(x)=xe x在直线y=mx﹣m下方,
g′(x)=(x+1)e x,
g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,
故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0),
结合函数图象得K PA≤m<K PB,
即≤m<,
,
故选:C.
【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.
9.【答案】C
【解析】解:∵点P的直角坐标为,∴ρ==2.
再由1=ρcosθ,﹣=ρsinθ,可得,结合所给的选项,可取θ=﹣,
即点P的极坐标为(2,),
故选C.
【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.
10.【答案】D
【解析】解:∵f(1)=lg1=0,
∴当x≤0时,函数f(x)没有零点,
故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,
即a>2x,或a<2x在(﹣∞,0]上恒成立,
故a>1或a≤0;
故选D.
【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.
11.【答案】A
【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,
∴原四边形为直角梯形,
且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,
∴直角梯形ABCD的面积为,
故选:A.
12.【答案】B
【解析】1从甲校抽取110× 1 200
=60人,
1 200+1 000
=50人,故x=10,y=7.
从乙校抽取110× 1 000
1 200+1 000
二、填空题
13.【答案】.
【解析】解:∵等比数列{a n}的前n项和为S n,且,
∴S4=5S2,又S2,S4﹣S2,S6﹣S4成等比数列,
∴(S4﹣S2)2=S2(S6﹣S4),
∴(5S2﹣S2)2=S2(S6﹣5S2),
解得S6=21S2,
∴==.
故答案为:.
【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题.
14.【答案】﹣2
≤a ≤2
【解析】解:原命题的否定为“∀x ∈R ,2x 2
﹣3ax+9≥0”,且为真命题, 则开口向上的二次函数值要想大于等于0恒成立,
只需△=9a 2
﹣4×2×9≤0,解得:﹣2
≤a ≤2.
故答案为:﹣2≤a ≤2
【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.
15.【答案】63
【解析】解:解方程x 2﹣5x+4=0,得x 1=1,x 2=4.
因为数列{a n }是递增数列,且a 1,a 3是方程x 2﹣5x+4=0的两个根, 所以a 1=1,a 3=4.
设等比数列{a n }的公比为q ,则,所以q=2. 则
.
故答案为63.
【点评】本题考查了等比数列的通项公式,考查了等比数列的前n 项和,是基础的计算题.
16.【答案】若1x <,则2421x x -+<- 【解析】
试题分析:若1x <,则2421x x -+<-,否命题要求条件和结论都否定. 考点:否命题.
17.【答案】 3x ﹣y ﹣11=0 .
【解析】解:设过点P (4,1)的直线与抛物线的交点 为A (x 1,y 1),B (x 2,y 2),
即有y 12=6x 1,y 22
=6x 2,
相减可得,(y 1﹣y 2)(y 1+y 2)=6(x 1﹣x 2),
即有k AB =
=
==3,
则直线方程为y ﹣1=3(x ﹣4), 即为3x ﹣y ﹣11=0.
将直线y=3x ﹣11代入抛物线的方程,可得 9x 2﹣72x+121=0,判别式为722﹣4×9×121>0, 故所求直线为3x ﹣y ﹣11=0. 故答案为:3x ﹣y ﹣11=0.
18.【答案】 1 .
【解析】解:点P (2,)化为P
.
直线ρ(cos θ+
sin θ)=6化为
.
∴点P 到直线的距离d==1.
故答案为:1. 【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档
题.
三、解答题
19.【答案】
【解析】解:(Ⅰ)设{a n }的首项为a 1,公差为d , ∵a 5+a 7=26
∴a 6=13,
,
∴a n =a 3+(n ﹣3)d=2n+1;
(Ⅱ)由(1)可知,
∴
.
20.【答案】(1) 2a = (2) a ≥2(3)两个零点. 【解析】
试题分析:(1) 开区间的最值在极值点取得,因此()f x 在1=x 处取极值,即(1)0f =′
,解得2a = ,需验证(2) ()h x 在区间(]0,1上单调递减,转化为()0h x ′
≤在区间(]0,1上恒成立,再利用变量分离转化为对应函数最值:2
41
x a x +≥的最大值,根据分式函数求最值方法求得()241x F x x =+最大值2(3)先利用导数研究函数
()x m 单调性:当()1,0∈x 时,递减,当()+∞∈,1x 时,递增;再考虑区间端点函数值的符号:()10m <,
4)0m e ->( , 4()0m e >,结合零点存在定理可得零点个数
试题解析:(1) ()2a
f x x x
=-′
由已知,(1)0f =′
即: 20a -=, 解得:2a = 经检验 2a = 满足题意 所以 2a = ………………………………………4分
因为(]0,1x ∈,所以[)1
1,x ∈+∞,所以2min
112x x ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以()max 2F x =,所以a ≥2 ……………………………………10分
(3)函数()()()6m x f x g x =--有两个零点.因为(
)22ln 6m x x x x =--+
所以(
)
)(
)1222
221x m x x x x
+=--==′ ………12分
当()1,0∈x 时,()'x m ,当()+∞∈,1x 时,()0>'x m
所以()()min 140m x m ==-<, ……………………………………14分 32
41-e)(1+e+2e )(=0e m e -<() ,8424
8
12(21))0e e e m e e -++-=>(
44
42()1)2(7)0m e e e e =-+->( 故由零点存在定理可知:
函数()x m 在4(,1)e - 存在一个零点,函数()x m 在4(1,)e 存在一个零点,
所以函数()()()6m x f x g x =--有两个零点. ……………………………………16分 考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性 【思路点睛】
对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等. 21.【答案】
【解析】(本题满分为12分)
解:(1)在△ABC 中,AD=5,AB=7,BD=8
,由余弦定理得…
=
…
∴∠BDA=60°…
(2)∵AD⊥CD,
∴∠BDC=30°…
在△ABC中,由正弦定理得,…
∴.…
22.【答案】
【解析】解:(Ⅰ)由f(﹣x)=﹣f(x)得kx2﹣2x=﹣kx2﹣2x,
∴k=0.
(Ⅱ)∵g(x)=a f(x)﹣1=a2x﹣1=(a2)x﹣1
①当a2>1,即a>1时,g(x)=(a2)x﹣1在[﹣1,2]上为增函数,∴g(x)最大值为g(2)=a4﹣1.
②当a2<1,即0<a<1时,∴g(x)=(a2)x在[﹣1,2]上为减函数,
∴g(x)最大值为.
∴
(Ⅲ)由(Ⅱ)得g(x)在x∈[﹣1,1]上的最大值为,
∴1≤t2﹣2mt+1即t2﹣2mt≥0在[﹣1,1]上恒成立
令h(m)=﹣2mt+t2,∴
即
所以t∈(﹣∞,﹣2]∪{0}∪[2,+∞).
【点评】本题考查函数的奇偶性,考查函数的最值,考查恒成立问题,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
23.【答案】
【解析】解:(1)证明:f′(x)=m(e mx﹣1)+2x.
若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.
所以,f (x )在(﹣∞,0)时单调递减,在(0,+∞)单调递增.
(2)由(1)知,对任意的m ,f (x )在单调递减,在单调递增,故f (x )在x=0处取得最小值. 所以对于任意x 1,x 2∈,|f (x 1)﹣f (x 2)|≤e ﹣1
的充要条件是
即
设函数g (t )=e t
﹣t ﹣e+1,则g ′(t )=e t
﹣1.
当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(﹣∞,0)单调递减,在(0,+∞)单调递增.
又g (1)=0,g (﹣1)=e ﹣1
+2﹣e <0,故当t ∈时,g (t )≤0.
当m ∈时,g (m )≤0,g (﹣m )≤0,即合式成立;
当m >1时,由g (t )的单调性,g (m )>0,即e m
﹣m >e ﹣1.
当m <﹣1时,g (﹣m )>0,即e ﹣m
+m >e ﹣1.
综上,m 的取值范围是
24.【答案】
【解析】(1)易知()()0,1,0,1A B -,设()00,P x y ,则由题设可知00x ≠ ,
∴ 直线AP 的斜率0101y k x -=
,BP 的斜率020
1
y k x +=,又点P 在椭圆上,所以 20014x y +=,()00x ≠,从而有2
00012200011114
y y y k k x x x -+-⋅===-.
(4分)。