八年级上册焦作数学全册全套试卷(提升篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册焦作数学全册全套试卷(提升篇)(Word版含解析)
一、八年级数学三角形填空题(难)
1.如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是_____.
【答案】30
【解析】
【分析】
由于BD=2DC,那么结合三角形面积公式可得S△ABD=2S△ACD,而S△ABC=S△ABD+S△ACD,可得出S△ABC=3S△ACD,而E是AC中点,故有S△AGE=S△CGE,于是可求S△ACD,从而易求S△ABC.
【详解】
解:∵BD=2DC,∴S△ABD=2S△ACD,∴S△ABC=3S△ACD.
∵E是AC的中点,∴S△AGE=S△CGE.
又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.
故答案为30.
【点睛】
本题考查了三角形的面积公式、三角形之间的面积加减计算.注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.
2.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C 的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.
(1)如图2,在△ABC中,∠B>∠C,若经过两次折叠,∠BAC是△ABC的好角,则∠B与
∠C 的等量关系是_______;
(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。
【答案】B 2C ∠∠= 140°、120°或80°
【解析】
【分析】
(1)根据折叠性质可得∠A 1B 1B 2=∠C ,∠AA 1B 1=∠B ,由三角形外角性质可得
∠AA 1B 1=2∠C ,根据等量代换可得∠B=2∠C ;(2)先求出经过三次折叠,∠BAC 是△ABC 的好角时,∠B 与∠C 的等量关系为∠B=3∠C ,进而可得经过n 次折叠,∠BAC 是△ABC 的好角时∠B 与∠C 的等量关系为∠B=n ∠C ,因为最小角是20º,是△ABC 的好角,根据好角定义,设另两角分别为20mº,4mn°,由题意得20m+20mn+20=180°,所以m(n+1)=8,再根据m 、n 都是正整数可得m 与n+1是8的整数因子,从而可以求得结果.
【详解】
(1)根据折叠性质得∠B=∠AA 1B 1,∠A 1B 1B 2=∠C ,
∵∠AA 1B 1=∠A 1B 1B 2+∠C ,
∴∠B=2∠C
故答案为:∠B=2∠C
(2)如图:∵根据折叠的性质知,∠B=∠AA 1B 1,∠C=∠A 2B 2C ,∠A 1B 1C=∠A 1A 2B 2, ∴根据三角形的外角定理知,∠A 1A 2B 2=∠C+∠A 2B 2C=2∠C ;
∵根据四边形的外角定理知,∠BAC+∠B+∠AA 1B 1-∠A 1B 1C=∠BAC+2∠B-2∠C=180°, 根据三角形ABC 的内角和定理知,∠BAC+∠B+∠C=180°,
∴∠B=3∠C ;
∴当∠B=2∠C 时,∠BAC 是△ABC 的好角;当∠B=3∠C 时,∠BAC 是△ABC 的好角; 故若经过n 次折叠∠BAC 是△ABC 的好角,则∠B 与∠C (不妨设∠B >∠C )之间的等量关系为∠B=n ∠C ;
∵最小角为20°,
∴设另两个角为20m°和20mn°,
∴20°+20m°+20mn°=180°,即m(1+n)=8,
∵m 、n 为整数,
∴m=1,1+n=8;或m=2,1+n=4;或m=4,1+n=2.
解得:m=1,n=7;m=2,n=3,m=4,n=1,
∴另两个角为20°、140°或40°、120°或80°、80°,
∴此三角形最大角为140°、120°或80°时,三个角均是此三角形的好角.
故答案为:140°、120°或80°
【点睛】
本题考查了翻折变换(折叠问题).充分利用三角形内角和定理、三角形外角定理以及折叠的性质是解题关键.
3.如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则
∠AEC=_______°.
【答案】65
【解析】
如图,∵AE平分∠DAC,CE平分∠ACF,
∴∠1=1
2∠DAC,∠2=1
2
∠ACF,
∴∠1+∠2=1
2
(∠DAC+∠ACF),
又∵∠DAC+∠ACF=(180°-∠BAC)+(180°-∠ACB)=360°-(∠BAC+∠ACB),且
∠BAC+∠ACB=180°-∠ABC=180°-50°=130°,
∴∠1+∠2=1
2
(360°-130°)=115°,
∴在△ACE中,∠E=180°-(∠1+∠2)=180°-115°=65°.
4.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10
【解析】
【分析】
【详解】
解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.
故答案为:10 .
考点:多边形的内角和定理.
5.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .
【答案】12
【解析】
试题解析:根据题意,得
(n-2)•180-360=1260,
解得:n=11.
那么这个多边形是十一边形.
考点:多边形内角与外角.
6.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于 ______ 度.
【答案】108°
【解析】
【分析】
如图,易得△OCD 为等腰三角形,根据正五边形内角度数可求出∠OCD ,然后求出顶角∠COD ,再用360°减去∠AOC 、∠BOD 、∠COD 即可
【详解】 ∵五边形是正五边形,
∴每一个内角都是108°,
∴∠OCD=∠ODC=180°-108°=72°,
∴∠COD=36°,
∴∠AOB=360°-108°-108°-36°=108°.
故答案为108°
【点睛】
本题考查正多边形的内角计算,分析出△OCD 是等腰三角形,然后求出顶角是关键.
二、八年级数学三角形选择题(难)
7.如图,CD 是ABC 的一条中线,E 为BC 边上一点且2,BE CE AE CD 、相交于,F 四边形BDFE 的面积为6,则ABC 的面积是( )
A.14B.14.4C.13.6D.13.2
【答案】B
【解析】
【分析】
连结BF,设S△BDF=x,则S△BEF=6-x,由CD是中线可以得到S△ADF=S△BDF,S△BDC=S△ADC,
由BE=2CE可以得到S△CEF=1
2
S△BEF,S△ABE=
2
3
S△ABC,进而可用两种方法表示△ABC的面
积,由此可得方程,进而得解.【详解】
解:如图,连接BF,
设S△BDF=x,则S△BEF=6-x,
∵CD是中线,
∴S△ADF=S△BDF=x,S△BDC= S△ADC=1
2△ABC
,
∵BE=2CE,
∴S△CEF=1
2
S△BEF=
1
2
(6-x),S△ABE=
2
3
S△ABC,
∵S△BDC= S△ADC=1
2△ABC
,
∴S△ABC=2S△BDC
=2[x+3
2
(6-x)]
=18-x,
∵S△ABE=2
3
S△ABC,
∴S△ABC=3
2
S△ABE
=3
2
[2x+ (6-x)]
=1.5x+9,
∴18-x =1.5x+9,
解得:x=3.6,
∴S△ABC=18-x,
=18-3.6
=14.4,
故选:B.
【点睛】
本题考查了三角形的中线能把三角形的面积平分,等高三角形的面积比等于底的比,熟练掌握这个结论记以及方程思想是解题的关键.
8.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为()
A.120°B.135°C.150°D.不能确定
【答案】B
【解析】
【分析】
先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.
【详解】
解:
∵∠1+∠2=90°,
∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,
∴∠EAF+∠EDF=1
2
×270°=135°.
∵AE⊥DE,
∴∠3+∠4=90°,
∴∠FAD+∠FDA=135°-90°=45°,
∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.
故选B.
【点睛】
本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.
9.如图,ABC的面积为1.分别倍长(延长一倍)AB,BC,CA得到111
A B C.再分别倍长A1B1,B1C1,C1A1得到222
A B C.…… 按此规律,倍长2018次后得到的
201820182018
A B C的面积为()
A.2017
6B.2018
6C.2018
7D.2018
8
【答案】C
【解析】
分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A1B1C1的面积是△ABC的面积的7倍,依此类推写出即可.
详解:连接AB1、BC1、CA1,根据等底等高的三角形面积相
等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1=72S△ABC,依此类推,S△AnBnCn=7n S△ABC.∵△ABC 的面积为1,∴S△AnBnCn=7n,∴S△A2018B2018C2018=72018.
故选C.
点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.
10.一个多边形内角和是900°,则这个多边形的边数是()
A.7 B.6 C.5 D.4
【答案】A
【解析】
【分析】
n边形的内角和为(n-2)180°,由此列方程求n的值即可.
【详解】
设这个多边形的边数为n,
则:(n-2)180°=900°,
解得n=7.
故答案为:A.
【点睛】
本题考查了多边形的内角和,熟练掌握该知识点是本题解题的关键.
11.一正多边形的内角和与外角和的和是1440°,则该正多边形是()
A.正六边形B.正七边形C.正八边形D.正九边形
【答案】C
【解析】
【分析】
依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.
【详解】
解:设多边形的边数为n,根据题意列方程得,
(n﹣2)•180°+360°=1440°,
n﹣2=6,
n=8.
故这个多边形的边数为8.
故选:C.
【点睛】
考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.
12.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:
①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG;其中正确的个数是()
A.1B.2C.3D.4
【答案】C
【解析】
【分析】
根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.
【详解】
①∵EG∥BC,
∴∠CEG=∠ACB.
又∵CD是△ABC的角平分线,
∴∠CEG=∠ACB=2∠DCB,故正确;
④无法证明CA平分∠BCG,故错误;
③∵∠A=90°,
∴∠ADC+∠ACD=90°.
∵CD平分∠ACB,
∴∠ACD=∠BCD,
∴∠ADC+∠BCD=90°.
∵EG∥BC,且CG⊥EG,
∴∠GCB=90°,即∠GCD+∠BCD=90°,
∴∠ADC=∠GCD,故正确;
②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,
∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,
∴∠DFE=360°﹣135°﹣90°=135°,
∴∠DFB=45°=∠CGE,
∴∠CGE=2∠DFB,
∴∠DFB=∠CGE,故正确.
故选C .
点睛:本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.
三、八年级数学全等三角形填空题(难)
13.如图,在ABC ∆和ADE ∆中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,C ,D ,E 三点在同一条直线上,连接BD ,则下列结论正确的是___________.
①ABD ACE ∆≅∆
②45ACE DBC ∠+∠=︒
③BD CE ⊥
④180EAB DBC ∠+∠=︒
【答案】①②③④
【解析】
【分析】
根据全等三角形的判定和性质,以及等腰三角形的性质解答即可.
【详解】
解:∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC ,
即:∠BAD=∠CAE ,
∵AB=AC ,AE=AD ,
∴△BAD ≌△CAE (SAS ),故①正确;
∵△BAD ≌△CAE ,
∴∠ABD=∠ACE ,
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,故②正确;
∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,
则BD ⊥CE ,故③正确;
∵90BAC DAE ∠=∠=︒,
∴∠BAE+∠DAC=180°,
∵∠ADB=∠E=45°,
∴DAC DBC ∠=∠,
∴180
EAB DBC
∠+∠=︒,故④正确;
故答案为:①②③④.
【点睛】
此题主要考查了全等三角形的判定及性质,以及等腰三角形的性质,注意细心分析,熟练应用全等三角形的判定以及等腰三角形的性质是解决问题的关键.
14.如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA =30°,则线段AO的长是_____.
【答案】5
【解析】
【分析】
作∠CAO的平分线AD,交BO的延长线于点D
,连接CD,由等边对等角得到∠CAB=
∠CBA=50°,再推出∠DAB=∠DBA,得到AD=BD,然后可证△ACD≌△BCD,最后证
△ACD≌△AOD,即可得AO=AC=5.
【详解】
解:如图,作∠CAO的平分线AD,交BO的延长线于点D,连接CD,
∵AC=BC=5,
∴∠CAB=∠CBA=50°,
∵∠OAB=10°,
∴∠CAD=∠OAD=1(CAB OAB)
2
∠-∠=()
1
5010
2
︒︒
-=20°,
∵∠DAB=∠OAD+∠OAB=20°+10°=30°,
∴∠DAB=30°=∠DBA,
∴AD=BD,∠ADB=120°,
在△ACD与△BCD中
AC BC
AD BD
CD CD
=
⎧
⎪
=
⎨
⎪=
⎩
∴△ACD≌△BCD(SSS)
∴
∠CDA =∠CDB ,
∴∠CDA =∠CDB =()1360ADB 2︒-∠=()
13601202
︒︒-=120°, 在△ACD 与△AOD 中 CDA ADO 120AD AD
CAD OAD ︒
⎧∠=∠=⎪=⎨⎪∠=∠⎩
∴△ACD ≌△AOD (ASA )
∴AO =AC=5,
故答案为5.
【点睛】
本题考查全等三角形的判定和性质,作辅助线构造全等三角形是解决本题的关键.
15.如图,在△ABC 中,AB=AC ,点D 是BC 的中点,点E 是△ABC 内一点,若
∠AEB=∠CED=90°,AE=BE ,CE=DE=2,则图中阴影部分的面积等于__________.
【答案】4
【解析】
【分析】
作DG ⊥BE 于G ,CF ⊥AE 于F ,可证△DEG ≌△CEF ,可得DG=CF ,则是S △BDE =S △AEC ,由D 是BC 中点可得S △BED =2,即可求得阴影部分面积.
【详解】
作DG ⊥BE 于G ,CF ⊥AE 于F ,
∴∠DGE=∠CFE=90°,
∵∠AEB=∠DEC=90°,
∴∠GED+∠DEF=90°,∠DEF+∠CEF=90°,
∴∠GED=∠CEF ,
又∵DE=EC ,
∴△GDE ≌△FCE ,
∴DG=CF ,
∵S △BED =
12BE•DG ,S △BED =12
AE•CF ,AE=BE , ∴S △BED =S △BED ,
∵D 是BC 的中点,
∴S△BDE=S△EDC=
1
22
2
⨯⨯=2,
∴S阴影=2+2=4,
故答案为4.
【点睛】
本题考查了全等三角形的判定与性质,正确添加辅助线构造全等三角形是解题的关键.
16.在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,∠C<90°,若∠B满足条件:______________,则△ABC≌△DEF.
【答案】∠B≥∠A.
【解析】
【分析】
虽然题目中∠B为锐角,但是需要对∠B进行分类探究会理解更深入:可按“∠B是直角、钝角、锐角”三种情况进行,最后得出∠B、∠E都是锐角时两三角形全等的条件.
【详解】
解:需分三种情况讨论:
第一种情况:当∠B是直角时:
如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,可知:△ABC与△DEF一定全等,依据的判定方法是HL;
第二种情况:当∠B是钝角时:如图②,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H.
∵∠B=∠E,且∠B、∠E都是钝角.
∴180°-∠B=180°-∠E,
即∠CBG=∠FEH.
在△CBG和△FEH中,
CBG FEH
G H
BC EF
∠∠
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
∴△CBG≌△FEH(AAS),
∴CG=FH,
在Rt△ACG和Rt△DFH中,
AC DF
CG FH
⎧
⎨
⎩
=
,
=
∴Rt △ACG ≌Rt △DFH (HL ),
∴∠A=∠D ,
在△ABC 和△DEF 中,
A D
B E
AC DF ∠∠⎧⎪∠∠⎨⎪⎩==,=
∴△ABC ≌△DEF (AAS );
第三种情况:当∠B 是锐角时:
在△ABC 和△DEF 中,AC=DF ,BC=EF ,∠B=∠E ,且∠B 、∠E 都是锐角,小明在△ABC 中(如图③)以点C 为圆心,以AC 长为半径画弧交AB 于点D ,假设E 与B 重合,F 与C 重合,得到△DEF 与△ABC 符号已知条件,但是△AEF 与△ABC 一定不全等,
所以有两边和其中一边的对角对应相等的两个三角形不一定全等;
由图③可知,∠A=∠CDA=∠B+∠BCD ,
∴∠A >∠B ,
∴当∠B≥∠A 时,△ABC 就唯一确定了,
则△ABC ≌△DEF .
故答案为:∠B≥∠A .
【点
睛】
本题是三角形综合题,考查全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键.
17.AD ,BE 是△ABC 的高,这两条高所在的直线相交于点O ,若BO=AC ,BC=a ,CD=b ,则AD 的长为______.
【答案】AD 的长为a-b 或b-a 或a+b 或
12
a 或b. 【解析】
【分析】
分别讨论△ABC 为锐角三角形时、∠A 、∠B 、∠C 分别为钝角时和∠A 为直角时五种情况,利用AAS 证明△BOD ≌△ACD ,可得BD=AD ,根据线段的和差关系即可得答案.
【详解】
①如图,当△ABC 为锐角三角形时,
∵AD 、BE 为△ABC 的两条高,
∴∠CAD+∠AOE=90°,∠CBE+∠BOD=90°,
∵∠BOD=∠AOE,
∴∠CAD=∠OBD,
又∵∠ODB=∠ADC=90°,OB=AC,
∴△BOD≌△ACD,
∴AD=BD,
∵BC=a,CD=b,
∴AD=BD=BC-CD=a-b.
②如图,当∠B为钝角时,
∵∠C+∠CAD=90°,∠O+∠CAD=90°,∴∠C=∠O,
又∵∠ADC=∠ODB=90°,OB=AC,
∴△BOD≌△ACD,
∴BD=AD,
∴AD=CD-BC=b-a.
③如图,当∠A为钝角时,
同理可证:△BOD≌△ACD,
∴AD=BC-CD=a-b.
④如图,当∠C为钝角时,
同理可证:△BOD≌△ACD,
∴AD=BD=BC+CD=a+b.
⑤当∠B为直角时,点O、D、B重合,OB=0,不符合题意,当∠C为直角时,点O、C、D、E重合,CD=0,不符合题意,如图,当∠A为直角时,点A、E、O重合,
∵OB=AC,∠CAB=90°,
∴△ABC是等腰直角三角形,
∵AD⊥BC,
∴AD是Rt△ABC斜边中线,
∴AD=AD=1
2
BC=
1
2
a=b.
综上所述:AD的长为a-b或b-a或a+b或1
2
a或b.
故答案为:a-b或b-a或a+b或1
2
a或b
【点睛】
本题主要考查全等三角形的判定与性质,全等三角形的判定方法有:SSS、AAS、ASA、SAS、HL等,注意:SAS时,角必须是两边的夹角,SSA和AAA不能判定两个三角形全等.灵活运用分类讨论的思想是解题关键.
18.如图,在ABC中,ACB90,CA CB
∠==.点D在AB上,点F在CA的延长线上,连接FD并延长交BC于点E,若∠BED=2∠ADC,AF=2,DF=7,则ABC的面积为______.
【答案】25 2
【解析】
【分析】
作CD的垂直平分线交AD于M,交CD与N,根据垂直平分线的性质可得MC=MD,进而可得∠MDC=∠MCD,根据已知及外角性质可得∠AMC=∠BED,由等腰直角三角形的性质可得∠B=∠CAB=45°,根据三角形内角和定理可得∠ACM=∠BDE,进而可证明
∠ADF=∠ACM,进而即可证明∠FCD=∠FDC,根据等腰三角形的性质可得CF=DF,根据已知可求出AC的长,根据三角形面积公式即可得答案.
【详解】
作CD的垂直平分线交AD于M,交CD与N,
∵MN是CD的垂直平分线,
∴MC=MD,
∴∠MDC=∠MCD,
∵∠AMC=∠MDC=∠MCD,
∴∠AMC=2∠ADC,
∵∠BED=2∠ADC,
∴∠AMC=∠BED,
∵∠ACB=90°,AC=BC,
∴∠B=∠CAB=45°,
∵∠ACM=180°-∠CAM-∠AMC,∠BDE=180°-∠B-∠BED,
∴∠ACM=∠BDE,
∵∠BDE=∠ADF,
∴∠ADF=∠ACM,
∴∠ADF+∠ADC=∠ACM+∠MCD,即∠FCD=∠FDC,
∴FC=FD,
∵AF=2,FD=7,
∴AC=FC-AF=7-2=5,
∴S△ABC=1
2
×5×5=
25
2
.
故答案为:
252
【点睛】 本题考查了等腰三角形的判定与性质及线段垂直平分线的性质,线段垂直平分线上的点,到线段两端的距离相等;等腰三角形的两个底角相等;熟练掌握相关的定理及性质是解题关键.
四、八年级数学全等三角形选择题(难)
19.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',连接AO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60°得到:②点O 与O '的距离为4;③150AOB ∠=︒;④S 四边形643AOBO ;⑤9634
AOC AOB S S +=+△△.其中正确的结论是( )
A .①②③④
B .①②③⑤
C .①②④⑤
D .①②③④⑤
【答案】D
【解析】
【分析】 证明△BO ′A ≌△BOC ,又∠OBO ′=60°,所以△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;
由△OBO ′是等边三角形,可知结论②正确;
在△AOO ′中,三边长为3,4,5,这是一组勾股数,故△AOO ′是直角三角形;进而求得∠AOB =150°,故结论③正确;
643AOO OBO AOBO S S S '∆'∆'=+=+四边形④正确;
如图②,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.利用旋转变换构造等边三角形与直角三角形,将S △AOC +S △AOB 转化为S △COO ″+S △AOO ″,计算可得结论⑤正确.
【详解】
解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,
又∵OB =O ′B ,AB =BC ,
∴△BO ′A ≌△BOC ,又∵∠OBO ′=60°,
∴△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,
故结论①正确;
如图①,连接OO ′,
∵OB =O ′B ,且∠OBO ′=60°,
∴△OBO ′是等边三角形,
∴OO ′=OB =4.
故结论②正确;
∵△BO ′A ≌△BOC ,∴O ′A =5.
在△AOO ′中,三边长为3,4,5,这是一组勾股数,
∴△AOO ′是直角三角形,∠AOO ′=90°,
∴∠AOB =∠AOO ′+∠BOO ′=90°+60°=150°,
故结论③正确;
2313446432AOO OBO AOBO S S S '∆'∆'=+=⨯⨯+⨯=+四边形, 故结论④正确;
如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.
易知△AOO ″是边长为3的等边三角形,△COO ″是边长为3、4、5的直角三角形,
则23193436324
AOC AOB COO AOO AOCO S S S S S ∆∆∆''∆''''+==+=⨯⨯+⨯=+四边形, 故结论⑤正确.
综上所述,正确的结论为:①②③④⑤.
故选:D .
【点睛】
本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB 向不同方向旋转,体现了结论①﹣结论④解题思路的拓展应用.
20.如图,在等腰△ABC 中,AB =AC ,∠A =20°,AB 上一点D ,且AD =BC ,过点D 作
DE ∥BC 且DE =AB ,连接EC ,则∠DCE 的度数为( )
A .80°
B .70°
C .60°
D .45°
【答案】B
【解析】
【分析】 连接AE .根据ASA 可证△ADE ≌△CBA ,根据全等三角形的性质可得AE=AC ,
∠AED=
∠BAC=20°,根据等边三角形的判定可得△ACE 是等边三角形,根据等腰三角形的判定可得△DCE 是等腰三角形,再根据三角形内角和定理和角的和差关系即可求解.
【详解】
如图所示,连接AE .
∵AB=DE ,AD=BC
∵DE ∥BC ,
∴∠ADE=∠B ,可得AE=DE
∵AB=AC ,∠BAC=20°,
∴∠DAE=∠ADE=∠B=∠ACB=80°,
在△ADE 与△CBA 中,
DAE ACB AD BC
ADE B ∠∠⎧⎪⎨⎪∠∠⎩
===, ∴△ADE ≌△CBA (ASA ),
∴AE=AC ,∠AED=∠BAC=20°,
∵∠CAE=∠DAE-∠BAC=80°-20°=60°,
∴△ACE 是等边三角形,
∴CE=AC=AE=DE ,∠AEC=∠ACE=60°,
∴△DCE 是等腰三角形,
∴∠CDE=∠DCE ,
∴∠DEC=∠AEC-∠AED=40°,
∴∠DCE=∠CDE=(180-40°)÷2=70°.
故选B .
【点睛】
考查了等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,三角形内角和定理,平行线的性质,综合性较强,有一定的难度.
21.如图,AD 是ABC 的角平分线,DE AC ⊥;垂足为,//E BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.给出下列三个结论:①DE DF =;②DB DC =;③AD BC ⊥.其中正确的结论共有( )个
A .0
B .1
C .2
D .3
【答案】D
【解析】
【分析】 由BF ∥AC ,AD 是ABC 的角平分线,BC 平分ABF ∠得∠ADB=90︒;利用AD 平分∠CAB 证得△ADC ≌△ADB 即可证得DB=DC ;根据DE AC ⊥证明△CDE ≌△BDF 得到DE DF =.
【详解】
∵DE AC ⊥,BF ∥AC,
∴EF ⊥BF ,∠CAB+∠ABF=180︒,
∴∠CED=∠F=90︒,
∵AD 是ABC 的角平分线,BC 平分ABF ∠,
∴∠DAB+∠DBA=
12
(∠CAB+∠ABF)=90︒, ∴∠ADB=90︒,即AD BC ⊥,③正确; ∴∠ADC=∠ADB=90︒,
∵AD 平分∠CAB,
∴∠CAD=∠BAD,
∵AD=AD,
∴△ADC ≌△ADB,
∴DB=DC ,②正确;
又∵∠CDE=∠BDF ,∠CED=∠F ,
∴△CDE ≌△BDF,
∴DE=DF ,①正确;
故选:D.
【点睛】
此题考查平行线的性质,三角形全等的判定及性质,角平分线的定义.
22.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是()
A.AH=2DF B.HE=BE C.AF=2CE D.DH=DF
【答案】A
【解析】
【分析】
通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解.
【详解】
解:∵∠BAC=45°,BD⊥AC,
∴∠CAB=∠ABD=45°,
∴AD=BD,
∵AB=AC,AE平分∠BAC,
∴CE=BE=1
2
BC,∠CAE=∠BAE=22.5°,AE⊥BC,
∴∠C+∠CAE=90°,且∠C+∠DBC=90°,
∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°,
∴△ADF≌△BDC(AAS)
∴AF=BC=2CE,故选项C不符合题意,
∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°,∴AG=BG,DG⊥AB,∠AFD=67.5°
∴∠AHG=67.5°,
∴∠DFA=∠AHG=∠DHF,
∴DH=DF,故选项D不符合题意,
连接BH,
∵AG=BG,DG⊥AB,
∴AH=BH,
∴∠HAB=∠HBA=22.5°,
∴∠EHB=45°,且AE⊥BC,
∴∠EHB=∠EBH=45°,
∴HE=BE,
故选项B不符合题意,
故选:A.
【点睛】
本题考查三角形全等的性质与判定,等腰直角三角形的性质,关键在于熟练掌握基本知识点,灵活运用知识点.
23.如图,在△ABC中,∠ABC=45°, BC=4,以AC为直角边,点A为直角顶点向△ABC
的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .
A.8 B.10 C.2D.2
【答案】A
【解析】
【分析】
将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质得到AE=AB,∠BAE=∠DOC=90°,过D点作DF⊥BC,证△EBC≌BFD,可得DF=BC=4,再用三角形面积公式即可得出答案.
【详解】
解:如下图所示,将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,
根据旋转的性质可知EC=BD ,AE=AB ,∠BAE=∠DOC=90°,
∴△ABE 是等腰直角三角形,
∴∠ABE=45°,
又∵∠ABC=45°,
∴∠EBC=90°,
∵∠BDF+∠DBF=90°,∠ECB+∠DBF=90°,
∴∠BDF=∠ECB
在△EBC 和△BFD 中
EBC=BFD=90ECB=BDF
EC=BD ⎧∠∠⎪∠
∠⎨⎪⎩
∴△EBC ≌△BFD (AAS )
∴DF=BC=4
∴△DBC 的面积=
11BC DF=44=822
⋅⨯⨯ 故选A.
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定,是一道综合性较强的题,难度较大,关键是正确的作出辅助线构造全等三角形.
24.如图,A ABC CB =∠∠,AD 、BD 、CD 分别平分ABC 的EAC ∠、ABC ∠、ACF ∠,以下结论:①AD BC ∥;②2ACB ADB ∠=∠;③90ADC ABD ∠=︒-∠;④BD 分ADC ∠;⑤3BDC BAC ∠=∠。
其中误的结论有( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出
∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.【详解】
解:∵AD平分∠EAC,
∴∠EAC=2∠EAD,
∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,∴①正确;
∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,∠ABC=∠ACB,
∴∠ABC=∠ACB=2∠DBC,
∴∠ACB=2∠ADB,∴②正确;
在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,
∴∠ADC+∠ABD=90°
∴∠ADC=90°-∠ABD,∴③正确;
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵∠ADB=∠DBC,
1
90
2
ADC ABC ∠=︒-∠,
∴∠ADB不等于∠CDB,∴④错误;
∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,
∴∠BAC=2∠BDC,∴⑤错误;
综上所述,错误的是④⑤
即错误的有2个,
故选:B.
【点睛】
考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力.
五、八年级数学轴对称三角形填空题(难)
25.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N 分别是AD,AB上的动点,则BM+MN的最小值是______.
【答案】5
【解析】
【分析】
作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.
【详解】
如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.
∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).
∵AB=5,∠BAC=45°,∴BH==5.
∵BM+MN的最小值是BM+MN=BM+MH=BH=5.
故答案为5.
【点睛】
本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.
26.在平面直角坐标系xOy中,已知点A(2,3),在x轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有_____个.
【答案】4
【解析】
【分析】
以O为圆心,OA为半径画弧交x轴于点P1、P3,以A为圆心,AO为半径画弧交x轴于点P4,作OA的垂直平分线交x轴于P2.
【详解】
解:如图,使△AOP是等腰三角形的点P有4个.
故答案为4.
【点睛】
本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关
键.
27.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;
②点O 到ABC ∆各边的距离相等;③1902
BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2
AD AB AC BC =+-.其中正确的结论是.__________.
【答案】①②③⑤
【解析】
【分析】
由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC =90°+12
∠A 正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF =BE +CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得
④设OD =m ,AE +AF =n ,则S △AEF =
12
mn ,故④错误,根据HL 证明△AMO ≌△ADO 得到AM =AD ,同理可证BM =BN ,CD =CN ,变形即可得到⑤正确.
【详解】 ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =
12
∠ABC ,∠OCB =12∠ACB ,∠A +∠ABC +∠ACB =180°,∴∠OBC +∠OCB =90°﹣12∠A ,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12
∠A ;故③正确; ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =∠OBE ,∠OCB =∠OCF . ∵EF ∥BC ,∴∠OBC =∠EOB ,∠OCB =∠FOC ,∴∠EOB =∠OBE ,∠FOC =∠OCF ,∴BE =OE ,CF =OF ,∴EF =OE +OF =BE +CF ,故①正确;
过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA .
∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴ON =OD =OM =m ,
∴S △AEF =S △AOE +S △AOF =12AE •OM +12AF •OD =12OD •(AE +AF )=12
mn ;故④错误; ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴点O 到△ABC 各边的距离相等,故②正确;
∵AO =AO ,MO =DO ,∴△AMO ≌△ADO (HL ),∴AM =AD ;
同理可证:BM =BN ,CD =CN .
∵AM +BM =AB ,AD +CD =AC ,BN +CN =BC ,∴AD =
12
(AB +AC ﹣BC )故⑤正确. 故答案为:①②③⑤.
【点睛】
本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.
28.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为______.
【答案】
1
702n -︒ 【解析】
【分析】
根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.
【详解】
在△1ABA 中,AB=A 1B ,∠A=70°
可得:∠1BAA =∠1BA A =70°
在△112B A A 中,A 1B 1=A 1A 2
可得:∠112A B A =∠121A A B
根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B
∴∠112A B A =∠121A A B =
702︒ 同理可得:∠232A A B =
2702︒ ∠343A A B =
3702︒ …….
以此类推:∠A n =
1702n -︒ 故答案为:
1702
n -︒. 【点睛】
本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..
29.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.
【答案】①②③④
【解析】
【分析】
依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.
【详解】
有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.
故此题正确的是①②③④.
【点睛】
此题考查等边三角形的判定方法,熟记方法才能熟练运用.
30.如图,在△ABC 中,AD 是高,DE 是 AC 的垂直平分线,AE=4cm ,△ABD 的周长为 15cm , 则△ABC 的周长为______
【答案】23cm.
【解析】
【分析】
根据线段垂直平分线的性质得到AC=2AE=8,DA=DC,根据三角形的周长公式计算即可.【详解】
解:∵DE是AC的垂直平分线,
∴AC=2AE=8,DA=DC,
∵△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=15,
∴△ABC的周长=AB+BC+AC=15+8=23cm,
故答案是:23cm.
【点睛】
本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
六、八年级数学轴对称三角形选择题(难)
31.如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()
A.7.5°B.10°C.15°D.18°
【答案】C
【解析】
根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,根据AE=AD,可得∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出
α=15°,
即得到∠DEC=α=15°,
故选C.
点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.
32.如图,在△ABC中,分别以点A和点B为圆心,大于1
2
AB的长为半径画弧,两弧相
交于点M、N,作直线MN,交BC于点D,连接AD,若△ADC的周长为14,BC=8,则AC 的长为
A .5
B .6
C .7
D .8
【答案】A
【解析】
【分析】 根据题意可得MN 是直线AB 的中点,所以可得AD=BD ,BC=BD+CD ,而△ADC 为
AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC 即可求出AC .
【详解】
根据题意可得MN 是直线AB 的中点AD BD ∴=
ADC 的周长为14AC CD AD ++=
14AC CD BD ++=∴
BC BD CD =+
14AC BC =∴+
已知8BD =
6AC ∴= ,故选B
【点睛】
本题主要考查几何中的等量替换,关键在于MN 是直线AB 的中点,这样所有的问题就解决了.
33.在Rt ABC ∆中,90ACB ∠=︒,点D E 、是AB 边上两点,且CE 垂直平分,AD CD 平分,6BCE AC cm ∠=,则BD 的长为( )
A .6cm
B .7cm
C .8cm
D .9cm
【答案】A
【解析】
【分析】 根据CE 垂直平分AD ,得AC=CD ,再根据等腰在三角形的三线合一,得
ACE ECD ∠=∠,结合角平分线定义和90ACB ︒∠=,得
30ACE ECD DCB ︒∠=∠=∠=,则BD CD AC ==.
【详解】。