(3份试卷汇总)2019-2020学年内蒙古巴彦淖尔市中考数学预测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()
A.2:3 B.3:2 C.4:9 D.9:4
2.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是()
A.B.
C.D.
3.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()
A.6(m﹣n)B.3(m+n)C.4n D.4m
4.下列图形中,可以看作是中心对称图形的是()
A.B.C.D.
5.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()
A.10 B.14 C.10或14 D.8或10
6.抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x1<2<x2,x1+x2<4,则下列判断正确的是()
A .m <n
B .m≤n
C .m >n
D .m≥n
7.如图,二次函数y=ax 1+bx+c (a≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称
轴为直线x=1,且OA=OC .则下列结论:
①abc >0;②9a+3b+c >0;③c >﹣1;④关于x 的方程ax 1+bx+c=0(a≠0)有一个根为﹣1a
;⑤抛物线上有两点P (x 1,y 1)和Q (x 1,y 1),若x 1<1<x 1,且x 1+x 1>4,则y 1>y 1.其中正确的结论有( )
A .1个
B .3个
C .4个
D .5个
8.如图,矩形ABCD 中,AB=8,BC=1.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )
A .25
B .35
C .5
D .6 9.在函数y =
1x x 中,自变量x 的取值范围是( ) A .x≥1 B .x≤1且x≠0 C .x≥0且x≠1 D .x≠0且x≠1
10.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC=35°,则∠CAB 的度数为( )
A .35°
B .45°
C .55°
D .65°
二、填空题(本题包括8个小题)
11.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长
为 .
12.如图,线段AB 是⊙O 的直径,弦CD⊥AB,AB=8,∠CAB=22.5°,则CD的长等于
___________________________.
13.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.
14.将一副三角板如图放置,若20
AOD
∠=,则BOC
∠的大小为______.
15.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.
16.如图,已知,第一象限内的点A在反比例函数y=2
x
的图象上,第四象限内的点B在反比例函数y=
k
x
的图象上.且OA⊥OB,∠OAB=60°,则k的值为_________.
17.已知整数k<5,若△ABC的边长均满足关于x的方程2x3x80
k
-+=,则△ABC的周长是.18.在△ABC中,AB=AC,把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N.如果△CAN 是等腰三角形,则∠B的度数为___________.
三、解答题(本题包括8个小题)
19.(6分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.
20.(6分)作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相
等.(写出作法,保留作图痕迹)
21.(6分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.
22.(8分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.
23.(8分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积.
24.(10分)如图,AB是⊙O的直径,AC BC
,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
求∠BAC的度数;当点D在AB上方,且CD⊥BP时,求证:PC=AC;在
点P的运动过程中
①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.
25.(10分)老师布置了一个作业,如下:已知:如图1ABCD的对角线AC的垂直平分线EF交AD于点F,交BC于点E,交AC于点O.求证:四边形AECF是菱形.
某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:能找出该同学错误的原因吗?请你指出来;请你给出本题的正确证明过程.
26.(12分)矩形AOBC中,OB=4,OA=1.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平
面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=k
x
(k>0)的图象与边
AC交于点E。

当点F运动到边BC的中点时,求点E的坐标;连接EF,求∠EFC的正切值;如图2,将△CEF 沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
参考答案
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.C
【解析】
【分析】
由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.
【详解】
∵△ABC与△DEF相似,相似比为2:3,
∴这两个三角形的面积比为4:1.
故选C.
【点睛】
此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.
2.D
【解析】
分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜
边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.
详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;
B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于1
2
两交
点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;
C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;
D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;
故选D.
点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.3.D
【解析】
【详解】
解:设小长方形的宽为a,长为b,则有b=n-3a,
阴影部分的周长:
2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.
故选D.
4.A
【解析】
分析:根据中心对称的定义,结合所给图形即可作出判断.
详解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
5.B
【解析】
试题分析: ∵2是关于x 的方程x 2﹣2mx+3m=0的一个根,
∴22﹣4m+3m=0,m=4,
∴x 2﹣8x+12=0,
解得x 1=2,x 2=1.
①当1是腰时,2是底边,此时周长=1+1+2=2;
②当1是底边时,2是腰,2+2<1,不能构成三角形.
所以它的周长是2.
考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质. 6.C
【解析】
分析:将一般式配方成顶点式,得出对称轴方程2x =,根据抛物线2
441y ax ax a =-+-与x 轴交于,A B 两点,得出()()244410a a a =--⨯->,求得
0a >,
距离对称轴越远,函数的值越大,根据121224x x x x <<+<,,判断出它们与对称轴之间的关系即可判定.
详解:∵()2244121y ax ax a a x =-+-=--,
∴此抛物线对称轴为2x =,
∵抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,
∴当24410ax ax a -+-=时,()()244410a a a =--⨯->,得0a >,
∵121224x x x x <<+<,,
∴1222x x ,->-
∴m n >,
故选C .
点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,
7.D
【解析】
【分析】
根据抛物线的图象与系数的关系即可求出答案.
【详解】
解:由抛物线的开口可知:a <0,由抛物线与y 轴的交点可知:c <0,由抛物线的对称轴可知:2b a ->0,∴b >0,∴abc >0,故①正确;
令x=3,y >0,∴9a+3b+c >0,故②正确;
∵OA=OC <1,∴c >﹣1,故③正确;
∵对称轴为直线x=1,∴﹣2b a
=1,∴b=﹣4a . ∵OA=OC=﹣c ,∴当x=﹣c 时,y=0,∴ac 1﹣bc+c=0,∴ac ﹣b+1=0,∴ac+4a+1=0,∴c=41a a +-
,∴设关于x 的方程ax 1+bx+c=0(a≠0)有一个根为x ,∴x ﹣c=4,∴x=c+4=1a
-
,故④正确; ∵x 1<1<x 1,∴P 、Q 两点分布在对称轴的两侧,
∵1﹣x 1﹣(x 1﹣1)=1﹣x 1﹣x 1+1=4﹣(x 1+x 1)<0,
即x 1到对称轴的距离小于x 1到对称轴的距离,∴y 1>y 1,故⑤正确.
故选D .
【点睛】 本题考查的是二次函数图象与系数的关系,二次函数y=ax 1+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.本题属于中等题型.
8.C
【解析】
试题分析:连接EF 交AC 于点M ,由四边形EGFH 为菱形可得FM=EM ,EF ⊥AC ;利用”AAS 或ASA”易证△FMC ≌△EMA ,根据全等三角形的性质可得AM=MC ;在Rt △ABC 中,由勾股定理求得AC=45,且tan ∠BAC=12
BC AB =;在Rt △AME 中,AM=12AC=25,tan ∠BAC=12EM AM =可得EM=5;在Rt △AME 中,由勾股定理求得AE=2.故答案选C .
考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.
9.C
【解析】
【分析】
根据分式和二次根式有意义的条件进行计算即可.
【详解】
由题意得:x≥2且x ﹣2≠2.解得:x≥2且x≠2.
故x的取值范围是x≥2且x≠2.
故选C.
【点睛】
本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.
10.C
【解析】
分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由
∠CAB=90°-∠B即可求得.
详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,
∴∠B=∠ADC=35°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB=90°-∠B=55°,
故选C.
点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.
二、填空题(本题包括8个小题)
11.1.
【解析】
试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,
则AD=1,BF=BC+CF=BC+1,DF=AC,
又∵AB+BC+AC=1,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
考点:平移的性质.
12.
【解析】
【分析】
连接OC,如图所示,由直径AB 垂直于CD,利用垂径定理得到 E 为CD 的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE 为等腰直角三角形,求出CE 的长,进而得出CD.【详解】
连接OC,如图所示:
∵AB 是⊙O 的直径,弦CD⊥AB,
∴OC= 1
AB=4,
2
∵OA=OC,
∴∠A=∠OCA=22.5°,
∵∠COE 为△AOC 的外角,
∴∠COE=45°,
∴△COE 为等腰直角三角形,
∴CE= 2
2
OC=22,
∴CD=2CE=42,
故答案为42.
【点睛】
考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.13.1
【解析】
【详解】
试题分析:如图,延长CF交AB于点G,
∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,
∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.
又∵点D是BC中点,∴DF是△CBG的中位线.
∴DF=1
2BG=
1
2
(AB﹣AG)=
1
2
(AB﹣AC)=1.
14.160°
【解析】
试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,
∴∠COA=∠BOD=90°﹣20°=70°,
∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,。

相关文档
最新文档