新初中数学数据分析经典测试题附答案解析(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新初中数学数据分析经典测试题附答案解析(2)
一、选择题
1.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()
A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6
【答案】D
【解析】
【分析】
根据平均数、中位数、众数以及方差的定义判断各选项正误即可.
【详解】
A、数据中5出现2次,所以众数为5,此选项正确;
B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;
C、平均数为(7+5+3+5+10)÷5=6,此选项正确;
D、方差为1
5
×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;
故选:D.
【点睛】
本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.
2.某实验学校女子排球队12名队员的年龄分布如图所示,则这12名队员的年龄的众数、平均数分别是()
A.15岁,14岁B.15岁,15岁
C.15岁,15
6
岁D.14岁,15岁
【答案】A
【解析】
【分析】
根据众数、平均数的定义进行计算即即可.
【详解】
观察图表可知:人数最多的是5人,年龄是15岁,故众数是15.
这12名队员的年龄的平均数是:123131142155161
14
12
⨯+⨯+⨯+⨯+⨯
=
故选:A
【点睛】
本题主要考查众数、平均数,熟练掌握众数、平均数的定义是解题的关键.
3.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( )
A.平均数B.中位数C.众数D.以上都不对
【答案】B
【解析】
【分析】
此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.
【详解】
15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,
所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.
故选B.
【点睛】
理解平均数,中位数,众数的意义.
4.有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不
变,则x
y
等于()
A.3
4
a
b
B.
4
3
a
b
C.
3
4
b
a
D.
4
3
b
a
【答案】D
【解析】
【分析】
根据已知条件表示出价格变化前后两种糖果的平均价格,进而得出等式求出即可.【详解】
解:∵甲、乙两种糖果,原价分别为每千克a元和b元,
两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,
∴两种糖果的平均价格为:ax by
x y
+
+

∵甲种糖果单价下降15%,乙种糖果单价上涨20%,
∴两种糖果的平均价格为:
1520 (1)(1)
100100
a x
b y
x y
-•++
+

∵按原比例混合的糖果单价恰好不变,
∴ax by x y
++=1520
(1)(1)100100a x b y x y
-•+++,
整理,得 15ax =20by
∴43x b y a
=, 故选:D . 【点睛】
本题考查了加权平均数,解决本题的关键是表示出价格变化前后两种糖果的平均价格.
5.2018年国务院机构改革不再保留国家卫生和计划生育委员会,组建国家卫生健康委员会,在修正人口普查数据中的低龄人口漏登后,我们估计了1982-2030年育龄妇女情况.1982年中国15-49岁育龄妇女规模为2.5亿,到2011年达3.8亿人的峰值,2017年降至3.5亿,预计到2030年将降至3.0亿.则数据2.5亿、3.8亿、3.5亿、3.0亿的中位数、平均数、方差分别是( ) A .3.25亿、3.2亿、0.245 B .3.65亿、3.2亿、0.98 C .3.25亿、3.2亿、0.98 D .3.65亿、3亿、0.245
【答案】A 【解析】 【分析】
根据中位数、平均数的定义和方差公式分别进行解答即可. 【详解】
把数据2.5亿、3.8亿、3.5亿、3.0亿按从小到大的顺序排列为:2.5亿,3.亿,3.5亿,3.8亿,最中间的两个数是3.0亿和3.5亿,所以,这组数据的中位数为:3.0+3.5
=3.252
亿 平均数为:
2.5+
3.8+3.5+3.0
=3.24
亿;
方差为:S 2=14×[(2.5-3.2)2+(3.8-3.2)2+(3.5-3.2)2+(3.0-3.2)2]= 1
4
×(0.49+0.36+0.09+0.04)=0.245 故选A. 【点睛】
本题考查了中位数、平均数和方差,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=
()()()222
121n x x x x x x n ⎡⎤-+-+⋯+-⎣
⎦.
6.样本数据3,a ,4,b ,8的平均数是5,众数是3,则这组数据的中位数是( ) A .2
B .3
C .4
D .8
【答案】C
【解析】
【分析】
+=,由众数是3知a、b中一个数据为3、另一个数据为
先根据平均数为5得出a b10
7,再根据中位数的定义求解可得.
【详解】
解:Q数据3,a,4,b,8的平均数是5,
+=,
∴++++=,即a b10
3a4b825
又众数是3,
∴、b中一个数据为3、另一个数据为7,
a
则数据从小到大为3、3、4、7、8,
∴这组数据的中位数为4,
故选C.
【点睛】
此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.
7.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是()
A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定
C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定
【答案】B
【解析】
【分析】
根据方差的意义求解可得.
【详解】
∵乙的成绩方差<甲成绩的方差,
∴乙的成绩比甲的成绩稳定,
故选B.
【点睛】
本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()
A.众数是110 B.方差是16
C.平均数是109.5 D.中位数是109
【答案】A
【解析】
【分析】
根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.
【详解】
解:这组数据的众数是110,A正确;
1
6
x=×(110+106+109+111+108+110)=109,C错误;
21
S
6
= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+
(110﹣109)2]=8
3
,B错误;
中位数是109.5,D错误;
故选A.
【点睛】
本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.
9.甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随机各抽取10棵,对它们的产量进行统计,绘制统计表如下:
若从这三个品种中选择一个在该地区推广,则应选择的品种是()
A.甲B.乙C.丙D.甲、乙中任选一个【答案】A
【解析】
【分析】
根据平均数、方差等数据的进行判断即可.
【详解】
根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广.
故选:A
【点睛】
本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键.
10.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( ) A .这两组数据的波动相同 B .数据B 的波动小一些 C .它们的平均水平不相同 D .数据A 的波动小一些
【答案】B 【解析】
试题解析:方差越小,波动越小.
22,A B s s >Q
数据B 的波动小一些. 故选B.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:
设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2
S 乙,2
S 丁,则下列判断中
正确的是( )
A .x x =乙丁,22S S <乙丁
B .x x =乙丁,22
S S >乙丁 C .x x >乙丁,22
S S >乙丁
D .x x <乙丁,22
S S <乙丁
【答案】B 【解析】 【分析】
根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】
4563555260
555
x ++++=
=乙,
则()()()()()22222
2
1455563555555525560555S ⎡⎤=
⨯-+-+-+-+-⎣
⎦乙39.6=,
5153585657
555
x ++++=
=丁,
则()()()()()22222
2
1515553555855565557555S ⎡⎤=
⨯-+-+-+-+-⎣
⎦丁 6.8=,
所以x x =乙丁,22
S S >乙丁,
故选B . 【点睛】
本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差
()()()
2222
121n S x x x x x x n ⎡
⎤=-+-+⋅⋅⋅+-⎢
⎥⎣⎦,它反映了一组数据的波动大小,方差越
大,波动性越大,反之也成立.
12.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是( ) A .四位同学身高的中位数一定是其中一位同学的身高 B .丁同学的身高一定高于其他三位同学的身高 C .丁同学的身高为1.71米 D .四位同学身高的众数一定是1.65 【答案】C 【解析】 【分析】
根据平均数,中位数,众数的定义求解即可. 【详解】
解:A 、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;
B 、丁同学的身高一定高于其他三位同学的身高,错误;
C 、丁同学的身高为1.654 1.633 1.71⨯-⨯=米,正确;
D .四位同学身高的众数一定是1.65,错误. 故选:C . 【点睛】
本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键.
13.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是( ) A .小明的成绩比小强稳定 B .小明、小强两人成绩一样稳定 C .小强的成绩比小明稳定
D .无法确定小明、小强的成绩谁更稳定 【答案】A
【解析】
【分析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【详解】
∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,
故选A.
【点睛】
本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
错因分析容易题.失分原因是方差的意义掌握不牢.
14.下列说法中正确的是().
A.“打开电视,正在播放《新闻联播》”是必然事件
B.一组数据的波动越大,方差越小
C.数据1,1,2,2,3的众数是3
D.想了解某种饮料中含色素的情况,宜采用抽样调查
【答案】D
【解析】
试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.
故选D.
考点:全面调查与抽样调查;众数;方差;随机事件.
15.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()
A.平均分不变,方差变大B.平均分不变,方差变小
C.平均分和方差都不变D.平均分和方差都改变
【答案】B
【解析】
【分析】
根据平均数、方差的定义计算即可.
【详解】
∵小亮的成绩和其它39人的平均数相同,都是90分,
∴40人的平均数是90分,
∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,
∴40人的方差为[41×39+(90-90)2]÷40<41,
∴方差变小,
∴平均分不变,方差变小
故选B.
【点睛】
本题考查了平均数与方差,熟练掌握定义是解题关键.
16.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()
A.平均数B.方差C.众数D.中位数
【答案】B
【解析】
【分析】
平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.
【详解】
解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】
考核知识点:均数、众数、中位数、方差的意义.
17.一组数据-2,3,0,2,3的中位数和众数分别是()
A.0,3 B.2,2 C.3,3 D.2,3
【答案】D
【解析】
【分析】
根据中位数和众数的定义解答即可.
【详解】
将这组数据从小到大的顺序排列为:﹣2,0,2,3,3,最中间的数是2,则中位数是2;在这一组数据中3是出现次数最多的,故众数是3.
故选D.
【点睛】
本题考查了众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
18.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()
A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4
【答案】A
【解析】
【分析】
根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.【详解】
∵数据2,x,4,8的平均数是4,∴这组数的平均数为248
4
x
+++
=4,解得:x=2;
所以这组数据是:2,2,4,8,则中位数是24
2
+
=3.
∵2在这组数据中出现2次,出现的次数最多,∴众数是2.
故选A.
【点睛】
本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.
19.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()
A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5
【答案】A
【解析】
试题分析:根据众数和中位数的定义求解可得.
解:由表可知25出现次数最多,故众数为25;
12个数据的中位数为第6、7个数据的平均数,故中位数为2525
2
+
=25,
故选:A.
20.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:
这些同学平均每月阅读课外书籍本数的中位数和众数为( )
A.5,5 B.6,6 C.5,6 D.6,5
【答案】D
【解析】
【分析】
根据中位数和众数的定义分别进行解答即可.
【详解】
把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;
5出现了6次,出现的次数最多,则众数是5.
故选D.
【点睛】
此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.。

相关文档
最新文档