【优质课件】教科版高中物理选修3-51.1碰撞教学优秀课件.ppt
碰撞 课件

2mEk;E几k 个12 关pv或系p转换2Ev动k 能、动
量.
(3)完全非弹性碰撞: 碰撞过程中动量守恒,碰撞结束后两 物体结合为一整体以相同的速度运动,系统动能损失最大.
(1)当遇到两物体发生碰撞的问题,不管碰撞环 境如何,要首先想到利用动量守恒定律. (2)对心碰撞是同一直线上的运动过程,只在一个方向上列动 量守恒方程即可,此时应注意速度正、负号的选取.
【解题指导】求解此题应把握以下三点:
【标准解答】从两小球碰撞后到它们再次相遇,小球A和B速度
大小保持不变.根据它们通过的路程之比为1∶4,可知小球A和
小球B在碰撞后的速度大小之比为1∶4.设碰撞后小球A和B的
速度分别为v1和v2,在碰撞过程中动量守恒,碰撞前后动能相等:
m1v0
m1v1
m 2 v 2,12
【典例2】在光滑的水平面上,质量为m1的小球A以速度v0向 右运动.在小球A的前方O点有一质量为m2的小球B处于静止状 态,如图所示.小球A与小球B发生正碰后小球A、B均向右运动. 小球B被在Q点处的墙壁弹回后与小球A在P点相遇,PQ=1.5PO. 假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性碰撞,求 两小球质量之比m1/m2 .
5.三种碰撞类型的特点:对于弹性碰撞,碰撞前后无动能损 失;对于非弹性碰撞,碰撞前后有动能损失;对于完全非弹 性碰撞,碰撞前后动能损失最大. (1)弹性碰撞:碰撞过程中不仅动量守恒,而且机械能守恒, 碰撞前后系统动能相等.同时,在碰撞问题中常做动量和动能 的换算. (2)非弹性碰撞:碰撞过程中动量守恒,碰撞结束后系统动能 小于碰撞前系统动能.减少的动能转化为其他形式的能量.
1 2
mBv02
1 2
m A v12
1 2
高中物理 人教版选修3-5 第4课 碰撞

第4课碰撞备课堂教学目标:(一)知识与技能1.会用动量守恒定律处理碰撞问题。
2.掌握弹性碰撞和非弹性碰撞的区别。
3.知道对心碰撞和非对心碰撞的区别。
4.知道什么是散射。
5.会用动量、能量的观点综合分析、解决一维碰撞问题.(二)过程与方法1、通过探究一维弹性碰撞的特点,体验科学探究的过程(由简单到复杂),掌握科学探究的方法(理论和实验相结合)。
2、理解从研究宏观碰撞到微观碰撞的引申思路,体验这种引申的重大意义,并进一步感受动量守恒定律的普适性。
(三)情感态度与价值观知道散射和中子的发现过程,体会理论对实践的指导作用,进一步了解动量守恒定律的普适性.重点:碰撞类问题的处理思想以及一维弹性碰撞的定量分析。
用动量、能量的观点综合分析、解决一维碰撞问题。
难点:通过定性研究二维弹性碰撞,理解从研究宏观碰撞到微观碰撞的引申思路。
教学方法:讲练法、举例法、阅读法教学用具:投影仪、投影片讲法速递(一)引入新课:观看丁俊晖打斯诺克的视频,讨论回答斯诺克在碰撞中有些在一条直线上,有些不在一条直线上的原因。
板书:第4节碰撞(二)进行新课:预习检查:1.从能量角度分类(1)弹性碰撞:碰撞过程中机械能守恒.(2)非弹性碰撞:碰撞过程中机械能不守恒.(3)完全非弹性碰撞:碰撞后合为一体或碰后具有共同速度,这种碰撞动能损失最大. 2.从碰撞前后物体运动的方向是否在同一条直线上分类(1)正碰:(对心碰撞)两个球发生碰撞,如果碰撞之前球的速度方向与两球心的连线在同一条直线上,碰撞之后两个球的速度方向仍会沿着这条直线的方向而运动.(2)斜碰:(非对心碰撞)两个球发生碰撞,如果碰撞之前球的运动速度方向与两球心的连线不在同一条直线上,碰撞之后两球的速度方向都会偏离原来两球心的连线而运动.判断正误:1.发生碰撞的两个物体,动量是守恒的.(√) 2.发生碰撞的两个物体,机械能是守恒的.(×)3.碰撞后,两个物体粘在一起,动量是守恒的,但机械能损失是最大的.(√) 思考:两小球发生对心碰撞,碰撞过程中,两球的机械能守恒吗?【提示】 两球发生对心碰撞,动量是守恒的,但机械能不一定守恒,只有发生弹性碰撞时,机械能才守恒.预习检查: 1.弹性碰撞特例(1)两质量分别为m 1、m 2的小球发生弹性正碰,v 1≠0,v 2=0,则碰后两球速度分别为v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1.(2)若m 1=m 2的两球发生弹性正碰,v 1≠0,v 2=0,则v ′1=0,v ′2=v 1,即两者碰后交换速度. (3)若m 1≪m 2,v 1≠0,v 2=0,则二者弹性正碰后,v 1′=-v 1,v 2′=0.表明m 1被反向以原速率弹回,而m 2仍静止.(4)若m 1≫m 2,v 1≠0,v 2=0,则二者弹性正碰后,v ′1=v 1,v ′2=2v 1.表明m 1的速度不变,m 2以2v 1的速度被撞出去.2.散射 (1)定义微观粒子相互接近时并不发生直接接触,因此微观粒子的碰撞又叫做散射. (2)散射方向由于粒子与物质微粒发生对心碰撞的概率很小,所以多数粒子在碰撞后飞向四面八方. 判断正误:1.与静止的小球发生弹性碰撞时,入射小球碰后的速度不可能大于其入射速度.(√) 2.两球发生弹性正碰时,两者碰后交换速度.(×)3.微观粒子发生散射时,并不是微观粒子直接接触碰撞.(√)思考:1.如图所示,光滑水平面上并排静止着小球2、3、4,小球1以速度v 0射来,已知四个小球完全相同,小球间发生弹性碰撞,则碰撞后各小球的运动情况如何?【提示】 小球1与小球2碰撞后交换速度,小球2与小球3碰撞后交换速度,小球3与小球4碰撞后交换速度,最终小球1、2、3静止,小球4以速度v 0运动.2.微观粒子能否碰撞?动量守恒定律适用于微观粒子吗?【提示】 宏观物体碰撞时一般相互接触,微观粒子碰撞时不一定接触,但只要符合碰撞的特点,就可认为是发生了碰撞,可以用动量守恒的规律分析求解.弹性碰撞的规律推导:质量为m 1的物体,以速度v 1与原来静止的物体m 2发生完全弹性碰撞,设碰撞后它们的速度分别为v ′1和v ′2,碰撞前后的速度方向均在同一直线上。
高中物理选修3-5步步高全套学案及课件第一章2课时1

2动量课时1动量及动量定理[学习目标] 1.理解动量概念及其矢量性,会计算一维情况下的动量变化量.2.理解冲量的概念,知道冲量是矢量;理解动量定理及其表达式.3.能够利用动量定理解释有关现象和解决实际问题.一、动量1.动量(1)定义:物体的质量和速度的乘积叫做物体的动量.用符号p表示,单位:kg·m/s.(2)动量是矢(选填“矢”或“标”)量,方向与速度的方向相同,运算遵循平行四边形定则.(3)动量是状态量(选填“状态量”或“过程量”).2.动量变化Δp=p′-p(1)方向:与速度变化的方向相同.(2)若p′、p不在一条直线上,要用平行四边形定则求矢量差.二、动量定理1.冲量(1)定义:力与力的作用时间的乘积叫做力的冲量.(2)公式:I=Ft.(3)单位:牛顿·秒,符号N·s.2.动量定理(1)内容:物体所受合外力的冲量等于物体动量的变化.(2)公式:Ft=m v′-m v或I=Δp.[即学即用]1.判断下列说法的正误.(1)动量相同的物体,运动方向一定相同.(√)(2)一个物体的动量改变,它的动能一定改变.(×)(3)一个物体(质量不变)的动能改变,它的动量一定改变.(√)(4)冲量是矢量,其方向与力的方向相同.(√)(5)若物体在一段时间内,其动量发生了变化,则物体在这段时间内受到的合外力一定不为零.(√) (6)物体受到的合外力的冲量越大,它的动量变化量一定越大.(√)2.质量为m的物体以初速度v竖直向上抛出,经时间t,达到最高点,速度变为0,以竖直向上为正方向,重力加速度为g,在这个过程中,物体的动量变化量是________,重力的冲量是__________. 答案-m v-mgt一、对动量及其变化量的理解[导学探究]在激烈的橄榄球赛场上,一个较瘦弱的运动员携球奔跑时迎面碰上了高大结实的对方运动员,自己被碰倒在地,而对方却几乎不受影响,这说明运动物体产生的效果不仅与速度有关,而且与质量有关.(1)若质量为60 kg的运动员(包括球)以5 m/s的速度向东奔跑,他的动量是多大?方向如何?若他以大小不变的速率做曲线运动时,他的动量是否变化?(2)若这名运动员与对方运动员相撞后速度变为零,他的动量的变化量多大?动量的变化量的方向如何?答案(1)300 kg·m/s方向向东变化(2)300 kg·m/s方向向西[知识深化]1.动量:p=m v,是描述物体运动状态的物理量.2.动量的变化量(1)动量变化的三种情况:大小变化、方向变化、大小和方向同时变化.(2)关于动量变化量的求解①若初、末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算.②若初、末动量不在同一直线上,运算时应遵循平行四边形定则.例1羽毛球是速度较快的球类运动之一,运动员扣杀羽毛球的速度可达到100 m/s,假设羽毛球飞来的速度为50 m/s,运动员将羽毛球以100 m/s的速度反向击回.设羽毛球的质量为10 g,试求:(1)运动员击球过程中羽毛球的动量变化量;(2)运动员击球过程中羽毛球的动能变化量.答案(1)1.5 kg·m/s,方向与羽毛球飞来的方向相反(2)37.5 J解析(1)以羽毛球飞来的方向为正方向,则p1=m v1=10×10-3×50 kg·m/s=0.5 kg·m/s,p 2=m v 2=-10×10-3×100 kg·m /s =-1 kg·m/s,所以动量的变化量Δp =p 2-p 1=-1 kg·m /s -0.5 kg·m/s =-1.5 kg·m/s, 即羽毛球的动量变化量大小为1.5 kg·m/s,方向与羽毛球飞来的方向相反.(2)羽毛球的初动能:E k =12m v 12=12.5 J,羽毛球的末动能:E k ′=12m v 22=50 J,所以ΔE k =E k ′-E k =37.5 J.动量与动能的区别与联系1.区别:动量是矢量,动能是标量,质量相同的两物体,动量相同时动能一定相同,但动能相同时,动量不一定相同.2.联系:动量和动能都是描述物体运动状态的物理量,大小关系为E k =p 22m 或p =2mE k .二、冲量及冲量的计算[导学探究] 如图1所示,一个质量为m 的物体在与水平方向成θ角的拉力F 的作用下保持静止状态,经过一段时间t ,拉力F 做的功是多少?拉力F 的冲量是多大?图1答案 拉力F 做的功是零,但冲量是Ft . [知识深化]1.求冲量时,一定要注意是哪个力在哪一段时间内的冲量.2.公式I =Ft 只适用于计算恒力的冲量,若求变力的冲量,可考虑用以下方法求解: (1)用动量定理I =m v ′-m v 求冲量. (2)若力随时间均匀变化,则可用平均力求冲量.(3)若给出了力F 随时间t 变化的图像,可用F -t 图像与t 轴所围的面积求冲量.例2 在倾角为37°、足够长的固定斜面上,有一质量为5 kg 的物体沿斜面下滑,物体与斜面间的动摩擦因数μ=0.2,求物体下滑2 s 的时间内,物体所受各力的冲量.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8) 答案 见解析解析 物体沿斜面下滑的过程中,受重力、支持力和摩擦力的作用.重力的冲量I G =Gt =mgt =5×10×2 N·s =100 N·s,方向竖直向下.支持力的冲量I N =Nt =mg cos 37°·t =5×10×0.8×2 N·s =80 N·s,方向垂直于斜面向上. 摩擦力的冲量I f =ft =μmg cos 37°·t =0.2×5×10×0.8×2 N·s =16 N·s,方向沿斜面向上.1.在求力的冲量时,首先明确是求哪个力的冲量,是恒力还是变力,如是恒力,再用I =Ft 进行计算.2.注意不要忘记说明冲量的方向. 三、动量定理的理解和应用 [导学探究]1.如图2所示,一个质量为m 的物体(与水平面无摩擦)在水平恒力F 的作用下,经过时间t ,速度从v 变为v ′,应用牛顿第二定律和运动学公式推导物体的动量变化量Δp 与恒力F 及作用时间t 的关系.图2答案 物体在题述过程中的加速度a =v ′-vt根据牛顿第二定律F =ma 可得F =m v ′-vt整理得:Ft =m (v ′-v ) 即Ft =m v ′-m v =Δp .2.在日常生活中,有不少这样的事例:跳远时要跳在沙坑里;跳高时在下落处要放海绵垫子;从高处往下跳,落地后双腿往往要弯曲;轮船边缘及轮渡的码头上都装有橡胶轮胎……这样做的目的是什么?答案 延长作用时间以减小作用力. [知识深化]1.对动量定理的理解(1)动量定理反映了合外力的冲量是动量变化的原因.(2)动量定理的表达式是矢量式,运用动量定理解题时,要注意规定正方向.(3)公式中的F 是物体所受的合外力,若合外力是均匀变化的力,则F 应是合外力在作用时间内的平均值.2.应用动量定理定量计算的一般步骤选定研究对象,明确运动过程→进行受力分析,确定初、末状态→选取正方向,列动量定理方程求解例3 如图3所示,用0.5 kg 的铁锤竖直把钉子钉进木头里,击打时铁锤的速度为4.0 m/s.如果击打后铁锤的速度变为0,击打的作用时间是0.01 s,求:图3(1)不计铁锤受的重力,铁锤钉钉子时,钉子受到的平均作用力;(2)考虑铁锤受的重力,铁锤钉钉子时,钉子受到的平均作用力.(g 取10 m/s 2) 答案 (1)200 N,方向竖直向下 (2)205 N,方向竖直向下解析 (1)以铁锤为研究对象,不计重力时,只受钉子的作用力,方向竖直向上,设为F 1,取竖直向上为正方向,由动量定理可得F 1t =0-m v所以F 1=-0.5×(-4.0)0.01N =200 N,方向竖直向上.由牛顿第三定律知,钉子受到的平均作用力为200 N,方向竖直向下.(2)若考虑重力,设此时铁锤受钉子的作用力为F 2,对铁锤应用动量定理,取竖直向上为正方向,则(F 2-mg )t =0-m vF 2=-0.5×(-4.0)0.01 N +0.5×10 N =205 N,方向竖直向上.由牛顿第三定律知,钉子受到的平均作用力为205 N,方向竖直向下.在用动量定理进行定量计算时注意: (1)列方程前首先选取正方向;(2)分析速度时一定要选取同一参考系,一般是选地面为参考系;(3)公式中的冲量应是合外力的冲量,求动量的变化量时要严格按公式,且要注意动量的变化量是末动量减去初动量.例4 (多选)对下列几种物理现象的解释,正确的是( ) A.击打钉子时,不用橡皮锤仅仅是因为橡皮锤太轻 B.跳远时,在沙坑里填沙,是为了减小冲量C.易碎品运输时,要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间以减小作用力D.在车内推车推不动,是因为车(包括人)所受合外力的冲量为零 答案 CD解析 击打钉子时,不用橡皮锤是因为橡皮锤与钉子的作用时间长,作用力小;跳远时,在沙坑里填沙,是为了延长人与地的接触时间,减小作用力,所以A 、B 项不正确;据动量定理F ·t =Δp知,当Δp相同时,t越长,作用力越小,故C项正确;车能否移动或运动状态能否改变取决于所受的合外力,与内部作用无关,所以D项正确.利用动量定理解释现象的问题主要有三类1.Δp一定,t短则F大,t长则F小.2.F一定,t短则Δp小,t长则Δp大.3.t一定,F大则Δp大,F小则Δp小.1.(动量定理的理解)(多选)下面关于物体动量和冲量的说法,正确的是()A.物体所受合外力冲量越大,它的动量也越大B.物体所受合外力冲量不为零,它的动量一定要改变C.物体动量变化量的方向,就是它所受合外力的冲量方向D.物体所受合外力冲量越大,它的动量变化量就越大答案BCD2.(动量定理的简单应用)(多选)在任何相等时间内,物体动量的变化量总是相等的运动可能是()A.匀速圆周运动B.匀变速直线运动C.自由落体运动D.平抛运动答案BCD3.(动量定理的分析)篮球运动员通常要伸出两臂迎接传来的篮球,两臂随球迅速收缩至胸前,这样做可以()A.减小球对手的冲量B.减小球对人的冲击力C.减小球的动量变化量D.减小球的动能变化量答案 B解析在篮球运动员接球的过程中,手对球的冲量等于球的动量的变化量,接球时,两臂随球迅速收缩至胸前,并没有减小球对手的冲量,也没有减小球的动量变化量,更没有减小球的动能变化量,只是延长了手与球的作用时间,从而减小了球对人的冲击力,B正确.4.(动量定理的计算)0.2 kg的小球竖直向下以6 m/s的速度落至水平地面,再以4 m/s的速度反向弹回,取竖直向上为正方向,g取10 m/s2.(1)小球与地面碰撞前后的动量变化量的大小为多少?(2)若小球与地面的作用时间为0.2 s,则小球受到的地面的平均作用力为多大? 答案 (1)2 kg·m/s (2)12 N解析 (1)小球与地面碰撞前的动量为p 1=m (-v 1)=0.2×(-6) kg·m /s =-1.2 kg·m/s 小球与地面碰撞后的动量为p 2=m v 2=0.2×4 kg·m /s =0.8 kg·m/s 小球与地面碰撞前后动量变化量的大小为Δp =p 2-p 1=2 kg·m/s. (2)由动量定理得(F -mg )Δt =Δp所以F =Δp Δt +mg =20.2N +0.2×10 N =12 N.一、选择题考点一 对动量和动量变化量的理解 1.关于动量,以下说法正确的是( )A.做匀速圆周运动的质点,其动量不随时间发生变化B.悬线拉着的摆球在竖直面内摆动时,每次经过最低点时的动量均相同C.匀速飞行的巡航导弹巡航时动量始终不变D.平抛运动的质点在竖直方向上的动量与运动时间成正比 答案 D解析 做匀速圆周运动的质点速度方向时刻变化,动量时刻变化,故A 项错;单摆的摆球相邻两次经过最低点时动量大小相等,但方向相反,故B 项错;巡航导弹巡航时虽速度不变,但由于燃料不断燃烧(导弹中燃料占其总质量的一部分,不可忽略),从而使导弹总质量不断减小,导弹动量减小,故C 项错;平抛运动的质点在竖直方向上的分运动为自由落体运动,在竖直方向上的动量p 竖=m v y =mgt ,故D 项正确.2.质量为0.5 kg 的物体,运动速度为3 m /s,它在一个变力作用下速度变为7 m/s,方向和原来方向相反,则这段时间内动量的变化量为( ) A.5 kg·m/s,方向与原运动方向相反 B.5 kg·m/s,方向与原运动方向相同 C.2 kg·m/s,方向与原运动方向相反 D.2 kg·m/s,方向与原运动方向相同 答案 A解析 以原来的运动方向为正方向,由定义式Δp =m v ′-m v 得Δp =(-7×0.5-3×0.5) kg·m /s =-5 kg·m/s,负号表示Δp 的方向与原运动方向相反.考点二 对冲量的理解和计算3.放在水平桌面上的物体质量为m ,用一个大小为F 的水平推力推它t 秒,物体始终不动,那么t 秒内,推力的冲量大小是( ) A.Ft B.mgt C.0 D.无法计算答案 A4.质量为1 kg 的物体做直线运动,其速度-时间图像如图1所示,则物体在前10 s 内和后10 s 内所受合外力的冲量分别是( )图1A.10 N·s,10 N·sB.10 N·s,-10 N·sC.10 N·s,0D.0,-10 N·s 答案 D解析 由题图可知,在前10 s 内初、末状态的动量相同,p 1=p 2=5 kg·m /s,由动量定理知I 1=0;在后10 s 内末状态的动量p 3=-5 kg·m/s,由动量定理得I 2=p 3-p 2=-10 N·s,故正确答案为D.5.质量为m 的钢球由高处自由落下,以速率v 1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v 2.在碰撞过程中,地面对钢球的冲量的方向和大小为( ) A.向下,m (v 1-v 2) B.向下,m (v 1+v 2) C.向上,m (v 1-v 2) D.向上,m (v 1+v 2)答案 D解析 设竖直向上的方向为正方向,对钢球应用动量定理得Ft -mgt =m v 2-(-m v 1)=m v 2+m v 1由于碰撞时间极短,重力的冲量可忽略不计.所以Ft =m (v 2+v 1),即地面对钢球的冲量方向向上,大小为m (v 2+v 1).6.(多选)一细绳系着小球,在光滑水平面上做匀速圆周运动,小球质量为m ,速度大小为v ,做匀速圆周运动的周期为T ,则以下说法中正确的是( ) A.经过时间t =T2,小球动量变化量为0B.经过时间t =T4,小球动量变化量大小为2m vC.经过时间t =T2,细绳对小球的冲量大小为2m vD.经过时间t =T 4,重力对小球的冲量大小为mgT4答案 BCD解析 经过时间t =T2,小球转过了180°,速度方向正好反向,若规定开始计时时的速度方向为正,则动量变化量为Δp =-m v -m v =-2m v ,细绳对小球的冲量为I =Δp =-2m v ,故冲量大小为2m v ,A 错误,C 正确;经时间t =T4,小球转过了90°角,根据矢量合成法则可得,动量变化量大小为Δp ′=2m v ,重力对小球的冲量大小为I G =mgt =mgT4,B 、D 正确.7.水平推力F 1和F 2分别作用于水平面上等质量的甲、乙两物体上,作用一段时间后撤去推力,物体将继续运动一段时间后停下来.两物体的v -t 图像如图2所示,图中线段AB 平行于线段CD ,则整个运动过程中( )图2A.F 1的冲量大于F 2的冲量B.F 1的冲量等于F 2的冲量C.两物体受到的摩擦力大小相等D.两物体受到的摩擦力大小不等 答案 C解析 甲、乙先做匀加速运动,撤去推力后做匀减速运动.题图中线段AB 平行于线段CD ,表明甲、乙与水平面的动摩擦因数相同,又甲、乙质量相等,所以两物体受到的摩擦力大小相等,选项C 正确,D 错误;因为整个运动过程中两物体的动量改变量均为零,所以推力的冲量大小等于物体受到的摩擦力的冲量大小.由题图可知甲的运动时间小于乙的运动时间,所以甲的摩擦力的冲量小于乙的摩擦力的冲量,则F 1的冲量小于F 2的冲量,选项A 、B 错误. 考点三 动量定理的分析和计算8.从某高处落下一个鸡蛋,分别落到相同高度的棉絮上和水泥地上,下列结论正确的是( ) A.落到棉絮上的鸡蛋不易破碎,是因为它的动量变化小 B.落到水泥地上的鸡蛋易碎,是因为它受到的冲量大 C.落到棉絮上的鸡蛋不易破碎,是因为它的动量变化率大D.落到水泥地上的鸡蛋易碎,是因为它的动量变化快 答案 D9.(多选)如图3所示,把重物G 压在纸带上,用一水平力缓慢拉动纸带,重物跟着纸带一起运动,若迅速拉动纸带,纸带将会从重物下抽出,下列解释正确的是( )图3A.在缓慢拉动纸带时,重物和纸带间摩擦力大B.在迅速拉动纸带时,纸带对重物的摩擦力小C.在缓慢拉动纸带时,纸带对重物的冲量大D.在迅速拉动纸带时,纸带对重物的冲量小 答案 CD10.(多选)一个质量为0.18 kg 的垒球,以25 m /s 的水平速度飞向球棒,被球棒击打后反向水平飞回,速度大小变为45 m/s,设球棒与垒球的作用时间为0.01 s.下列说法正确的是( ) A.球棒对垒球的平均作用力大小为1 260 N B.球棒对垒球的平均作用力大小为360 N C.球棒对垒球做的功为126 J D.球棒对垒球做的功为36 J 答案 AC解析 设球棒对垒球的平均作用力为F ,由动量定理得F t =m (v 1-v 0),取末速度方向为正方向,则v 1=45 m /s,v 0=-25 m /s,代入得F =1 260 N.由动能定理得W =12m v 12-12m v 02=126 J,故A 、C 正确.11.为估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水位上升了45 mm.查询得知,当时雨滴竖直下落的速度约为12 m/s.据此估算该压强约为(设雨滴撞击睡莲后无反弹,不计雨滴重力,雨水的密度为1×103 kg·m -3)( )A.0.15 PaB.0.54 PaC.1.5 PaD.5.4 Pa 答案 A解析 以1 s 内下落的雨滴为研究对象,设圆柱形水杯的底面积为S ,则1 s 内下落的雨滴的质量m =ρSh3 600,取竖直向上为正方向,则v =-12 m/s,由动量定理得Ft =0-m v ,又p =FS ,联立解得p =-ρv h 3 600=103×12×0.0453 600Pa =0.15 Pa. 二、非选择题12.(冲量和动量的计算)将质量为m =1 kg 的小球,从距水平地面高h =5 m 处,以v 0=10 m /s 的水平速度抛出,不计空气阻力,g 取10 m/s 2.求:(1)抛出后0.4 s 内重力对小球的冲量;(2)平抛运动过程中小球动量的增加量Δp ;(3)小球落地时的动量大小p ′.答案 (1)4 N·s 方向竖直向下(2)10 N·s 方向竖直向下 (3)10 2 kg·m/s解析 (1)重力是恒力,0.4 s 内重力对小球的冲量I 1=mgt 0=1×10×0.4 N·s =4 N·s,方向竖直向下.(2)由于平抛运动的竖直分运动为自由落体运动,故h =12gt 2, 落地时间t =2h g=1 s.小球平抛运动过程中只受重力作用,所以合外力的冲量为 I =mgt =1×10×1 N·s =10 N·s,方向竖直向下.由动量定理得Δp =I =10 N·s,方向竖直向下.(3)小球落地时竖直分速度为v y =gt =10 m/s.由速度合成知,落地速度v =v 02+v y 2=102+102 m/s =10 2 m/s,所以小球落地时的动量大小为p ′=m v =10 2 kg·m/s.13.(动量定理的应用)质量为m 的物体静止在足够大的水平面上,物体与水平面间的动摩擦因数为μ,重力加速度为g ,有一水平恒力F 作用于物体上,并使之加速前进,经时间t 1后撤去此恒力,求物体运动的总时间t .答案 Ft 1μmg解析 方法一:物体的运动可分为两个阶段,第一阶段水平方向受F 、f 两个力的作用,时间为t 1,物体由A 运动到B ,速度达到v 1;第二阶段物体水平方向只受摩擦力f 的作用,时间为t 2,由B 运动到C ,速度由v 1变为0.设由A 到B 为正方向,据动量定理:第一阶段:(F -f )t 1=m v 1-0=m v 1第二阶段:-f ·t 2=0-m v 1=-m v 1两式相加:F·t1-f(t1+t2)=0因为f=μmg,则总时间t=t1+t2=Ft1μmg.方法二:把两个阶段当成一个过程来看,F作用t1时间,μmg则作用了t时间,动量变化Δp=0.Ft1-μmgt=0,t=Ft1μmg.。
科学探究——一维弹性碰撞-精品课件

碰撞过程中系统动量守恒
碰撞前后系统机械能不变
一、 弹性碰撞:
在理想情况下,物体碰撞后,形变 能够完全恢复,不发热、发声,系统内 无机械能的损失的碰撞,称为弹性碰撞, 又称完全弹性碰撞。
物理选修3-5(鲁科版)
科学探究 —— 一维弹性碰撞
福建省漳州第一中学 郑珍
新课导入
生活中的各种碰撞现象
动手体验:玻璃珠实验
实验探究:碰撞的规律
? 想一想
1.系统在碰撞过程中合速度变化吗? 2.系统在碰撞过程中总动量变化吗? 3.系统在碰撞过程中能量(机械能)变化吗? ······
? 想一想
撞后两物体 都向前运动 .
(2)若 m1 < m2 , 则 ʋ1ʹ < 0, ʋ2ʹ > 0 ,表示 碰撞后质量小的物体 反弹回来 . (3)若 m1 = m2,则 ʋ1ʹ = 0、ʋ2ʹ = ʋ1,表示两 物体碰撞后 交换速度 .
动手体验:玻璃珠实验
思考:
所有的碰撞都满足系统机械能守恒?
课堂总结
弹性碰撞: 碰撞过程中机械能守恒,这样的碰撞叫做弹性碰撞。
(1) 规律:动量守恒、机械能守恒 (2) 能量转化情况:系统动能没有损失
二、弹性碰撞的规律
ʋ1 ʋ2 = 0
m1
m2
m11 m11 m22
1 2
m112
1 2
m1 12
1 2
m222
Ʋ1’ ʋ2’
m1 m2
1
m1 m1
m2 m2
1
2
2m1 m1 m2
1
高三物理一轮复习第六章碰撞与运量守恒第1讲动量动量定理课件

滑。以下说法正确的是 ( )
A.a比b先到达S,它们在S点的动量不相等 B.a与b同时到达S,它们在S点的动量不相等 C.a比b先到达S,它们在S点的动量相等 D.b比a先到达S,它们在S点的动量相等
【解析】选A。在物体下落的过程中,只有重力对物体 做功,故机械能守恒 故有mgh=1 mv2
2.用动量定理解释现象: (1)Δ p一定时,F的作用时间越短,力就越大;时间越长, 力就越小。 (2)F一定,此时力的作用时间越长,Δ p就越大;力的作 用时间越短,Δ p就越小。 分析问题时,要把哪个量一定,哪个量变化搞清楚。
3.动量定理的两个重要应用: (1)应用I=Δ p求变力的冲量。 如果物体受到大小或方向改变的力的作用,则不能直接 用I=Ft求变力的冲量,可以求出该力作用下物体动量的 变化量Δ p,等效代换为力的冲量I。
【易错辨析】 (1)动量越大的物体,其速度越大。 ( ) (2)物体的动量越大,其惯性也越大。 ( ) (3)物体所受合力不变,则动量也不变。 ( ) (4)物体沿水平面运动时,重力不做功,其冲量为零。
()
(5)物体所受合外力的冲量方向与物体末动量的方向相 同。 ( ) (6)物体所受合外力的冲量方向与物体动量变化的方向 相同。 ( )
【高考命题探究】 【典例1】(2017·合肥模拟)一质量为m的物体放在光 滑的水平面上,今以恒力F沿水平方向推该物体,在相同 的时间间隔内,下列说法正确的是 ( )
世纪金榜导学号42722132 A.物体的位移相等 B.物体动能的变化量相等 C.F对物体做的功相等 D.物体动量的变化量相等
【解析】选D。物体在水平恒力作用下做匀加速直线运 动,在相同的时间间隔内物体的位移逐渐增大,故A错误; 根据动能定理得知,物体动能的变化量逐渐增大,故B错 误;由功的公式W=FL知道,在相同的时间间隔内,F做功 增大,故C错误;根据动量定理得:Ft=Δ P,F、t相等,则 Δ P相等,即物体动量的变化量相等,故D正确。
《高三物理碰撞》课件

弹性碰撞的实例
两个小球在光滑水平面上发生弹性碰撞
01
在这种情况下,两个小球在碰撞前后的速度满足动量守恒和动
能守恒,且没有能量损失。
两个分子在气体中的弹性碰撞
02
气体分子之间的碰撞大多数是弹性碰撞,因为它们之间的相互
作用力较小,能量损失也很小。
原子核之间的弹性碰撞
03
原子核之间的相互作用力很强,但它们之间的碰撞仍然可以近
似为弹性碰撞,因为它们的动量很大,能量损失很小。
03
非弹性碰撞
非弹性碰撞的定义
非弹性碰撞是指两个物体在碰撞过程中动能损失不能被完全吸收和转化的碰撞过程 。
在非弹性碰撞中,两个物体的速度在碰撞后会发生变化,但它们的总动能会减少。
碰撞的特点
总结词
碰撞具有时间短暂、动量守恒、能量守恒等特点。
详细描述
碰撞过程非常短暂,通常只有几个毫秒甚至更短的时间。在这么短的时间内,系统的动 量和能量是守恒的,即系统的总动量和总能量在碰撞前后保持不变。这是因为在经典物 理学中,系统的总动量和总能量是守恒的,只有在相对论中才会出现动量和能量的不守
该公式表示碰撞前后,系统内 各物体的动量总和保持不变。
动量守恒定律的实例
子弹打木块
一颗子弹以一定速度打入静止的 木块,在子弹打入的过程中,子 弹和木块组成的系统动量守恒。
弹性碰撞
两个小球在光滑的水平面上发生碰 撞,如果碰撞为弹性碰撞,则碰撞 前后两小球的速度总和保持不变。
天体运动
在行星绕恒星运动的过程中,如果 忽略其他星体的影响,行星和恒星 组成的系统动量守恒。
人教版高中物理选修3-5第16章第4节碰撞(共52张PPT)

[解析] (1)斜抛的手榴弹在水平方向上做匀速直线运动,在 最高点处爆炸前的速度
v1=v0cos 60°=12v0 设 v1 的方向为正方向,如图所示. 由动量守恒定律得 3mv1=2mv′1+mv2 其中爆炸后大块弹片速度 v′1=2v0 解得 v2=-2.5v0,“-”号表示 v2 的方向与爆炸前速度方向 相反. (2)爆炸过程中转化为动能的化学能等于系统动能的增量,即
C;由碰撞后
A
球不
可能穿越 B 球,即pAm′≤pBm′,可排除选项 B.所以,四个
选项中只有选项 A 是可能的.
2.甲、乙两球在光滑水平轨道上同向运动,已知它们的动量
分别是 p 甲=5 kg·m/s,p 乙=7 kg·m/s,甲追上乙并发生碰
撞,碰后乙球的动量变为 p 乙′=10 kg·m/s,则两球质量 m 甲、
B.pA′=8 kg·m/s,pB′=4 kg·m/s C.pA′=-2 kg·m/s,pB′=14 kg·m/s D.pA′=-4 kg·m/s,pB′=17 kg·m/s
[解析] 由碰撞前后两球总动量守恒,即 pA+pB=pA′+
pB′,可排除选项 D;由碰撞后两球总动能不可能增加,即
p2A + p2B ≥pA′2+pB′2,可排除选项 2m 2m 2m 2m
[解析] (1)以初速度 v0 的方向为正方向,设 B 的质量为 mB, A、B 碰撞后的共同速度为 v,由题意知:碰撞前瞬间 A 的速 度为v2,碰撞前瞬间 B 的速度为 2v,由动量守恒定律得 mv2+2mBv=(m+mB)v① 由①式得 mB=m2 .②
(2)从开始到碰后的全过程,由动量守恒定律得 mv0=(m+mB)v③ 设碰撞过程 A、B 系统机械能的损失为Δ E,则
高中物理《碰撞》ppt课件1

m1v1 m v m v
' 1 1
' 2 2
1 1 1 2 '2 '2 m1v1 m1v1 m2v2 2 2 2
(m1 m2 ) v v1 m1 m2
' 1
2m1 v v1 m1 m2
' 2
讨 论 若 m2 >> m1 , 则v1’ = -v1 , v2’ = 0 若 m2 << m1 , 则v1’ = v1, 若 m1 = m2 , v2’ = 2v1
例 2
如图所示,一质量为m的子弹以水平速度 v0飞向 小球,小球的质量为M,悬挂小球的绳长为L,子弹击 中小球并留在其中,求(1)子弹打小球过程中所产生 的热量(2)小球向右摆起的最大高度。
v0
m
M
例 3
如图,弧形斜面质量为M,静止于光滑 水平,曲面下端极薄一质量为m的小球以 速度VO向左运动,小球最多能升高到离 水平面h处,求该系统产生的热量。
例 4
如图所示.质量为m的小车静止在光滑 的水平桌面上,小车的光滑弧面底部与桌面 相切,一个质量为m的小球以速度v0向小车 飞来,设小球不会越过小车,求小车能获得 的最大速度?此后小球做什么运动?
例 5
用轻弹簧相连的质量均为m=2㎏的A、B 两物体都以v=6m/s的速度在光滑的水平地面上 运动,弹簧处于原长,质量M = 4㎏的物体C 静止在前方,如图所示。B与C碰撞后二者粘 在一起运动,在以后的运动中,求: (1)当弹簧的弹性势能最大时物体A的速度。 (2)弹性势能的最大值是多大?
则v1’ = 0 , v2’ = v1
二、非弹性碰撞
1、概念: 如果碰撞过程中机械能不守恒,这样的 碰撞叫非弹性碰撞。
高中物理奥林匹克竞赛专题--碰撞(共16张PPT)

v 2 v1 e v10 v 20
hn
其中 v ... v 分别为第 1 , 2 , ... n 次碰后的回升速度 1 n
h h 分别为第 1 , 2 应 当 是 常 数 , 每 次 碰 撞 中 都 一 样 , 不 变 。 故 有
v v v v 3 1 2 e ...... n v v v v 1 2 n 1
§ 2— 7
碰撞
(Central collision)
作为动量和能量守恒的具体应用,介绍一下两物体的对 心碰撞。碰撞有如下特点。 1)碰撞是冲击力,相互作用时间极短,冲击力>>非 冲力,可不考虑非冲击力的作用。 2)碰撞时间极短,但碰撞前后物体运动状态的改变 非常显著,因而易于分清过程始末状态,便于用守恒 定律来研究。 对心碰撞-----碰撞前后的速度矢量都沿两球中心 (质心)连心线上的碰撞。 我们把物体视为“球模型”来考虑。
n h h 2n 1n 1 所以: h ( e ) h ( ) h n n 1 h n
15 – 8 多普勒效应
第十五章 机械波
例2 一小球m与物体M作弹性碰撞,求弹簧的最 大压缩量。m=1kg,M=5kg,ι =1m,k=2x103N/m。
1 mgh mv0 解 m: 2 v0 2 gh
非弹性碰撞 由于非保守力的作用 ,两物体碰撞
后,使机械能转换为热能、声能,化学能等其他形式
的能量 .
完全非弹性碰撞 两物体碰撞后,以同一速度运动 .
1、完全非弹性碰撞: 15 – 8 多普勒效应
第十五章 机械波
v
O
m1
1 0
m1
v
m1 m2 2
1 0
v 22 00
高中物理教科版选修3-5教学案:第一章 第1节 碰撞 Word版含答案

第1节碰__撞( 对应学生用书页码P1 )一、碰撞现象1、碰撞做相对运动的两个( 或几个)物体相遇而发生相互作用,运动状态发生改变的过程。
2、碰撞特点( 1 )时间特点:在碰撞过程中,相互作用时间很短。
( 2 )相互作用力特点:在碰撞过程中,相互作用力远远大于外力。
( 3 )位移特点:在碰撞过程中,物体发生速度突变时,位移极小,可认为物体在碰撞前后仍在同一位置。
试列举几种常见的碰撞过程。
提示:棒球运动中,击球过程;子弹射中靶子的过程;重物坠地过程等。
二、用气垫导轨探究碰撞中动能的变化1、实验器材气垫导轨,数字计时器、滑块和光电门,挡光条和弹簧片等。
2、探究过程( 1 )滑块质量的测量仪器:天平。
( 2 )滑块速度的测量仪器:挡光条及光电门。
( 3 )数据记录及分析,碰撞前、后动能的计算。
三、碰撞的分类1、按碰撞过程中机械能是否损失分为:( 1 )弹性碰撞:碰撞过程中动能不变,即碰撞前后系统的总动能相等,E k1+E k2=E k1′+E k2′。
( 2 )非弹性碰撞:碰撞过程中有动能损失,即动能不守恒,碰撞后系统的总动能小于碰撞前系统的总动能。
E k1′+E k2′<E k1+E k2。
( 3 )完全非弹性碰撞:碰撞后两物体黏合在一起,具有相同的速度,这种碰撞动能损失最大。
2、按碰撞前后,物体的运动方向是否沿同一条直线可分为: ( 1 )对心碰撞( 正碰 ):碰撞前后,物体的运动方向沿同一条直线。
( 2 )非对心碰撞( 斜碰 ):碰撞前后,物体的运动方向不在同一直线上。
( 高中阶段只研究正碰 )。
( 对应学生用书页码P1 )探究一维碰撞中的不变量1.探究方案方案一:利用气垫导轨实现一维碰撞 ( 1 )质量的测量:用天平测量。
( 2 )速度的测量:v =Δx Δt ,式中Δx 为滑块( 挡光片 )的宽度,Δt 为数字计时器显示的滑块( 挡光片 )经过光电门的时间。
( 3 )各种碰撞情景的实现:利用弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥设计各种类型的碰撞,利用滑块上加重物的方法改变碰撞物体的质量。
高中物理选修3-5步步高全套学案及课件第一章3课时2

课时2反冲现象与火箭的发射[学习目标] 1.了解反冲运动及反冲运动的典型事例.2.能够应用动量守恒定律解决反冲运动问题.3.了解火箭的工作原理及决定火箭最终速度大小的因素.一、反冲现象1.定义一个静止的物体在内力的作用下分裂为两部分,一部分向某个方向运动,另一部分必然向相反的方向运动的现象.2.规律:反冲运动中,相互作用力一般较大,满足动量守恒定律.二、火箭1.工作原理:利用反冲运动,火箭燃料燃烧产生的高温、高压燃气从尾部喷管迅速喷出,使火箭获得巨大的向前的速度.2.影响火箭获得速度大小的两个因素(1)喷气速度:现代火箭的喷气速度为2 000~4 000 m/s.(2)质量比:火箭起飞时的质量与燃料燃尽时的质量之比.喷气速度越大,质量比越大,火箭获得的速度越大.3.现代火箭的主要用途:利用火箭作为运载工具,如发射探测仪器、常规弹头和核弹头、人造卫星和宇宙飞船等.[即学即用]1.判断下列说法的正误.(1)反冲运动是相互作用的物体之间的作用力与反作用力产生的效果.(√)(2)只有系统合外力为零的反冲运动才能用动量守恒定律来分析.(×)(3)反冲运动的原理既适用于宏观物体,也适用于微观粒子.(√)(4)火箭点火后离开地面加速向上运动,是地面对火箭的反作用力作用的结果.(×)(5)在没有空气的宇宙空间,火箭仍可加速前行.(√)2.如图1所示是一门旧式大炮,炮车和炮弹的质量分别是M和m,炮筒与地面的夹角为α,炮弹射出出口时相对于地面的速度为v0.不计炮车与地面的摩擦,则炮车向后反冲的速度大小为v =________.图1答案m v 0cos αM解析 取炮弹与炮车组成的系统为研究对象,因不计炮车与地面的摩擦,所以水平方向动量守恒.炮弹发射前,系统的总动量为零,炮弹发射后,炮弹的水平分速度为v 0cos α,根据动量守恒定律有:m v 0cos α-M v =0所以炮车向后反冲的速度大小为v =m v 0cos αM.一、反冲运动的理解和应用例1 反冲小车静止放在水平光滑玻璃上,点燃酒精,水蒸气将橡皮塞水平喷出,小车沿相反方向运动.如果小车原来的总质量M =3 kg,水平喷出的橡皮塞的质量m =0.1 kg,水蒸气质量忽略不计.(1)若橡皮塞喷出时获得的水平速度v =2.9 m/s,求小车的反冲速度;(2)若橡皮塞喷出时速度大小不变,方向与水平方向成60°角,小车的反冲速度又如何(小车一直在水平方向运动)?答案 (1)0.1 m/s,方向与橡皮塞运动的方向相反 (2)0.05 m/s,方向与橡皮塞运动的水平分运动方向相反解析 (1)小车和橡皮塞组成的系统所受外力之和为零,初始状态系统总动量为零. 以橡皮塞运动的方向为正方向 根据动量守恒定律,m v +(M -m )v ′=0 v ′=-m M -m v =-0.13-0.1×2.9 m /s =-0.1 m/s负号表示小车运动方向与橡皮塞运动的方向相反,反冲速度大小是0.1 m/s. (2)小车和橡皮塞组成的系统水平方向动量守恒. 以橡皮塞运动的水平分运动方向为正方向,有 m v cos 60°+(M -m )v ″=0v ″=-m v cos 60°M -m =-0.1×2.9×0.53-0.1m /s =-0.05 m/s负号表示小车运动方向与橡皮塞运动的水平分运动方向相反,反冲速度大小是0.05 m/s. 针对训练 “爆竹声中一岁除,春风送暖入屠苏”,爆竹声响是辞旧迎新的标志,是喜庆心情的流露.有一个质量为3m 的爆竹斜向上抛出,到达最高点时速度大小为v 0、方向水平向东,在最高点爆炸成质量不等的两块,其中一块质量为2m ,速度大小为v ,方向水平向东,则另一块的速度是( )A.3v 0-vB.2v 0-3vC.3v 0-2vD.2v 0+v答案 C解析 在最高点水平方向动量守恒,以水平向东为正方向,由动量守恒定律可知,3m v 0=2m v +m v ′,可得另一块的速度为v ′=3v 0-2v ,故C 正确. 二、火箭的工作原理分析 [导学探究]1.火箭飞行的工作原理是什么?答案 火箭靠向后连续喷射高速气体飞行,利用了反冲原理.2.设火箭发射前的总质量是M ,燃料燃尽后的质量为m ,火箭燃气的喷射速度为v ,试求燃料燃尽后火箭飞行的最大速度v ′.答案 在火箭发射过程中,由于内力远大于外力,所以可认为动量守恒.取火箭的速度方向为正方向,发射前火箭的总动量为0,发射后的总动量为m v ′-(M -m )v 则由动量守恒定律得0=m v ′-(M -m )v 所以v ′=M -m m v =⎝⎛⎭⎫M m -1v .[知识深化]1.火箭喷气属于反冲类问题,是动量守恒定律的重要应用.2.分析火箭类问题应注意的三个问题(1)火箭在运动过程中,随着燃料的燃烧,火箭本身的质量不断减小,故在应用动量守恒定律时,必须取在同一相互作用时间内的火箭和喷出的气体为研究对象.注意反冲前、后各物体质量的变化.(2)明确两部分物体初、末状态的速度的参考系是否为同一参考系,如果不是同一参考系要设法予以调整,一般情况要转换成对地的速度. (3)列方程时要注意初、末状态动量的方向.例2 一火箭喷气发动机每次喷出m =200 g 的气体,气体离开发动机喷出的速度v =1 000 m/s.设火箭质量M =300 kg,发动机每秒钟喷气20次. (1)当第三次喷出气体后,火箭的速度多大? (2)运动第1 s 末,火箭的速度多大? 答案 (1)2 m /s (2)13.5 m/s 解析 规定与v 相反的方向为正方向. (1)设喷出三次气体后,火箭的速度为v 3,以火箭和喷出的三次气体为研究对象,据动量守恒定律得:(M -3m )v 3-3m v =0,故v 3=3m v M -3m ≈2 m/s.(2)发动机每秒钟喷气20次,以火箭和喷出的20次气体为研究对象,根据动量守恒定律得:(M -20m )v 20-20m v =0,故v 20=20m vM -20m ≈13.5 m/s.三、反冲运动的应用——“人船模型” 1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题. 2.人船模型的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0.(2)运动特点:人动船动,人停船停,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1.(3)应用此关系时要注意一个问题:公式中的v 1、v 2和x 一般都是相对地面而言的. 例3 有一只小船停在静水中,船上一人从船头走到船尾.如果人的质量m =60 kg,船的质量M =120 kg,船长为l =3 m,则船在水中移动的距离是多少?(水的阻力不计) 答案 1 m解析 人在船上走时,由于人、船组成的系统所受合外力为零,总动量守恒,因此系统的平均动量也守恒,如图所示.设人从船头走到船尾所用时间为t ,在这段时间内船后退的距离为x ,人相对地面运动的距离为l -x ,选船后退的方向为正方向,由动量守恒定律有:M xt -m l -x t =0所以x =m M +m l =60120+60×3 m =1 m.“人船模型”是利用平均动量守恒求解的一类问题,解决这类问题应明确: (1)适用条件:①系统由两个物体组成且相互作用前静止,系统总动量为零;②在系统内发生相对运动的过程中至少有一个方向的动量守恒(如水平方向或竖直方向). (2)画草图:解题时要画出各物体的位移关系草图,找出各长度间的关系,注意两物体的位移是相对同一参考系的位移.1.(反冲运动的认识)下列不属于反冲运动的是( ) A.喷气式飞机的运动 B.直升机的运动 C.火箭的运动 D.章鱼的运动答案 B2.(反冲运动的计算)步枪的质量为4.1 kg,子弹的质量为9.6 g,子弹从枪口飞出时的速度为855 m/s,步枪的反冲速度约为( ) A.2 m/s B.1 m/s C.3 m/s D.4 m/s 答案 A解析 以子弹从枪口飞出时速度的反方向为正方向,由动量守恒定律:M v 1-m v 2=0,得v 1=9.6×10-3×8554.1m /s ≈2 m/s.3.(火箭的工作原理)运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是( ) A.燃料推动空气,空气反作用力推动火箭B.火箭发动机用力将燃料燃烧产生的气体向后推出,气体的反作用力推动火箭C.火箭吸入空气,然后向后排出,空气对火箭的反作用力推动火箭D.火箭燃料燃烧发热,加热周围空气,空气膨胀推动火箭 答案 B4.(人船模型的迁移)质量为m 、半径为R 的小球,放在半径为2R 、质量为2m 的大空心球内,大球开始静止在光滑水平面上.当小球从如图2所示的位置无初速度沿内壁滚到最低点时,大球移动的距离是( )图2A.R 2B.R 3C.R 4D.R 6答案 B解析 由水平方向平均动量守恒有:mx 小球=2mx 大球,又x 小球+x 大球=R ,所以x 大球=13R ,B 正确.一、选择题考点一反冲运动的理解和应用1.关于反冲运动的说法中,正确的是()A.抛出物m1的质量要小于剩下的质量m2才能反冲B.若抛出物质量m1大于剩下的质量m2,则m2所受的力大于m1所受的力C.反冲运动中,牛顿第三定律适用,但牛顿第二定律不适用D.抛出部分和剩余部分都适用于牛顿第二定律答案 D解析由于系统的一部分向某一方向运动,而使另一部分向相反方向运动,这种现象叫反冲运动.定义中并没有确定两部分物体之间的质量关系,故选项A错误.在反冲运动中,两部分之间的作用力是一对作用力与反作用力,由牛顿第三定律可知,它们大小相等,方向相反,故选项B错误.在反冲运动中一部分受到的另一部分的作用力产生了该部分的加速度,使该部分的速度逐渐增大,在此过程中对每一部分牛顿第二定律都成立,故选项C错误,D正确.2.小车上装有一桶水,静止在光滑水平地面上,如图1所示,桶的前、后、底及侧面各装有一个阀门,分别为S1、S2、S3、S4(图中未全画出).要使小车向前运动,可采用的方法是()图1A.打开阀门S1B.打开阀门S2C.打开阀门S3D.打开阀门S4答案 B解析根据反冲运动特点,当阀门S2打开时,小车将受到向前的推力,从而向前运动,故B项正确,A、C、D项均错误.3.(多选)向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b 两块,若质量较大的a块的速度方向仍沿原来的方向,则()A.b的速度方向一定与原速度方向相反B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达水平地面D.在炸裂过程中,a、b受到的力大小一定相等答案CD解析爆炸后系统的总机械能增加,但不能确定a、b两块的速度大小及b块的速度方向,所以A、B不能确定;因炸开后两者都做平抛运动,且高度相同,故C对;由牛顿第三定律知D对.4.质量为m的人站在质量为2m的平板小车上,以共同的速度在水平地面上沿直线前行,车所受地面阻力的大小与车对地面压力的大小成正比.当车速为v0时,人从车上以相对于地面大小为v0的速度水平向后跳下.跳离瞬间地面阻力的冲量忽略不计,则下列图中能正确表示车运动的v-t图像的是()答案 B解析人和车以共同的速度在水平地面上沿直线前行,做匀减速直线运动,当车速为v0时,人从车上以相对于地面大小为v0的速度水平向后跳下,跳离前后系统动量守恒,规定车的速度方向为正方向,则有(m+2m)v0=2m v+(-m v0),得v=2v0,人跳离后小车做匀减速直线运动,车所受地面阻力的大小与车对地面压力的大小成正比,所以人跳离前后,车的加速度不变,所以能正确表示车运动的v-t图像的是选项B.考点二火箭问题分析5.(多选)采取下列哪些措施有利于增加火箭的飞行速度()A.使喷出的气体速度更大B.使喷出的气体温度更高C.使喷出的气体质量更大D.使喷出的气体密度更小答案AC解析设原来的总质量为M,喷出的气体质量为m,喷出的气体速度为v,剩余的质量(M-m)的速度为v′,由动量守恒定律得出:(M-m)v′=m v,则v′=m vM-m,因此m越大,v′越大;v 越大,v′越大.故A、C正确.6.将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A.m M v 0B.M m v 0C.M M -m v 0D.m M -m v 0 答案 D考点三 “人船模型”的应用7.(多选)一气球由地面匀速上升,当气球下的吊梯上站着的人沿着梯子上爬时,下列说法正确的是( )A.气球可能匀速上升B.气球可能相对地面静止C.气球可能下降D.气球运动速度不发生变化 答案 ABC解析 设气球质量为M ,人的质量为m ,由于气球匀速上升,系统所受的外力之和为零,当人沿吊梯向上爬时,动量守恒,以向上为正方向,则(M +m )v 0=m v 1+M v 2,在人向上爬的过程中,气球的速度为v 2=(M +m )v 0-m v 1M .当v 2>0时,气球可匀速上升;当v 2=0时,气球静止;当v 2<0时,气球下降.所以选项A 、B 、C 均正确;要使气球运动速度不变,则人相对地面的速度仍为v 0,即人不上爬,显然不对,D 选项错误.8.如图2所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )图2A.mh M +mB.Mh M +mC.mh (M +m )tan αD.Mh (M +m )tan α答案 C解析 此题属于“人船模型”问题,m 与M 组成的系统在水平方向上动量守恒,以m 在水平方向上对地位移的方向为正方向,设m 在水平方向上对地位移大小为x 1,M 在水平方向上对地位移大小为x 2,则0=mx 1-Mx 2.① 且x 1+x 2=htan α.②由①②可得x 2=mh(M +m )tan α,故选C.9.(多选)某同学想用气垫导轨模拟“人船模型”.在实验室里,该同学将一质量为M 、长为L 的滑块置于水平气垫导轨上(不计摩擦)并接通电源.该同学又找来一个质量为m 的蜗牛置于滑块的一端,在食物的诱惑下,蜗牛从该端移动到另一端.下列说法正确的是( ) A.只有蜗牛运动,滑块不运动 B.滑块运动的距离是M M +m LC.蜗牛运动的位移是滑块的Mm 倍D.滑块与蜗牛运动的距离之和为L 答案 CD解析 根据“人船模型”,易得滑块的位移大小为m M +m L ,蜗牛运动的位移大小为MM +m L ,C 、D正确. 二、非选择题10.(反冲问题模型)如图3所示,带有光滑的半径为R 的14圆弧轨道的滑块静止在光滑水平面上,滑块的质量为M ,将一个质量为m 的小球从A 处由静止释放,当小球从B 点水平飞出时,滑块的速度为多大?(重力加速度为g )图3答案 m2gRM (M +m )解析 运动过程中小球和滑块组成的系统机械能守恒,又因为系统在水平方向不受外力,故系统水平方向动量守恒,设小球从B 点飞出时速度大小为v 1,滑块的速度大小为v 2,以v 1的方向为正方向,则有:m v 1-M v 2=0,mgR =12m v 12+12M v 22,解得v 2=m2gRM (M +m ).11.(火箭发射问题)课外科技小组制作一只“水火箭”,用压缩空气压出水流使火箭运动.假如喷出的水流流量保持为2×10-4 m 3/s,喷出速度保持为对地10 m/s.启动前火箭总质量为1.4 kg,则启动2 s 末火箭的速度可以达到多少?(已知火箭沿水平轨道运动且阻力不计,水的密度是103 kg/m 3) 答案 4 m/s解析 “水火箭”喷出水流做反冲运动,设火箭原来的总质量为M ,喷出水流的流量为Q ,水的密度为ρ,水流的喷出速度大小为v ,火箭的反冲速度大小为v ′,由动量守恒定律得(M -ρQt )v ′=ρQt v ,启动2 s 末火箭的速度为v ′=ρQt v M -ρQt =103×2×10-4×2×101.4-103×2×10-4×2m /s =4 m/s. 12.(“人船模型”的应用)平板车停在水平光滑的轨道上,平板车上有一人从固定在车上的货厢边,沿水平方向顺着轨道方向跳出,落在平板车地板上的A 点,距货厢的水平距离为l =4 m,如图4所示.人的质量为m ,车连同货厢的质量为M =4m ,货厢高度为h =1.25 m.图4求:(g 取10 m/s 2)(1)车从人跳出后到落到地板期间的反冲速度大小;(2)人落在地板上并站定以后,车还运动吗?车在地面上移动的位移是多少? 答案 (1)1.6 m/s (2)车不运动 0.8 m解析 (1)人从货厢边跳离的过程,系统(人、车和货厢)的动量守恒,设人的水平速度大小是v 1,车的反冲速度大小是v 2,则m v 1-M v 2=0,v 2=14v 1.人跳离货厢后做平抛运动,车以v 2做匀速直线运动,运动时间为t =2hg=0.5 s,在这段时间内人的水平位移x 1和车的位移x 2分别为x 1=v 1t , x 2=v 2t , 由图可知:x 1+x 2=l ,即v 1t +v 2t =l ,则v 2=l 5t =45×0.5m /s =1.6 m/s.(2)人落到车上A 点的过程中,系统水平方向的动量守恒(水平方向系统不受外力),人落到车上前的水平速度大小仍为v 1,车的速度大小为v 2,落到车上后设它们的共同速度为v ,根据水平方向动量守恒,得m v 1-M v 2=(M +m )v ,则v =0,故人落到车上A 点站定后车的速度为零. 车的水平位移为x 2=v 2t =1.6×0.5 m =0.8 m.。
碰撞问题分析PPT课件

由此可知:四个选项均满足动量守恒原则.
②从物理情景可行性原则看:因为碰后m2不可能越过 m1向左运动,∴B错
其余选项均符合此原则.
③从能量守恒原则看. 碰后体系最大动能为:
E k max
1 2
m 1v12
1 2
m
2
v
2 2
1 4 32 1 2 32
2
2
(等于碰前体系的动能)
27J
.
Q m 1 v 1 m 2 v 2 (m 1 m 2 )v
m1 v1=v20 m2 v2=v10
.
例如:如图:地面光滑 m1=m2=m3=m, m2,m3 静止.碰撞过程中无机械 能损失,碰后三个小球速 度如何?
解:碰后交换速度,
v1 v2 0
v3 v0
m1 v0
m2 m3
(沿原方向前进)
.
<2> v20=0
m1
m2
v10
v1
(m1 m2)v10 m1 m2
碰撞问题的解应同时遵循三个原则1动量守恒原则1102201122mvmvmvmv10201020memmmm碰撞过程中体系动能不可能增值有爆炸情况者例外3物理情景可行性原则符合实际情况若物体碰后沿同一方向运动则后面的物体的速度一定比前面的小不可能再碰发生正碰后物体的前后左右位置不可能发生改变两物体相向碰撞后不可能再次出现相向运动
v1 v10
③ m1 m2 则 v 1 0
v2 v10
m1被反弹
否则违背能量守恒
m2动能最大,此 时速度、动量、 动能全部交换
④ m1 m2
则
v1
(m1m2)v10 m1m2
v10
m1获得冲 量最大
上海科教版高中物理选修3-5课件 美妙的守恒定律课件1

碰撞后总动能 Ek′=12×2m(v2)2=14mv2
所以碰撞过程中动能减少
ΔEk=Ek-Ek′=
1 4
mv2
即碰撞过程中动能不守恒.
要点提炼
1.碰撞的特点 (1)经历的时间 极短 ,通常情况下,碰撞所经历的时间在整个力 学过程中是可以忽略的; (2)碰撞双方相互作用的内力往往 远大于 外力. 2.三种碰撞类型 (1)弹性碰撞 动动量能守守恒恒::12mm1v1v1+21+m122mv22=v22=m112vm1′1v+1′m22+v212′m2v2′2
(2)非弹性碰撞 动量守恒:m1v1+m2v2= m1v1′+m2v2′ 动能减少,损失的动能转化为 内能 |ΔEk|= Ek初-Ek末 =Q (3)完全非弹性碰撞
动量守恒:m1v1+m2v2=(m1+m2)v共 碰撞中动能损失 最多 ,即 |ΔEk|=12m1v21+12m2v22- 12(m1+m2)v2共
答案 D
4.在光滑的水平面上,质量为m1的小球A
以速度v0向右运动.在小球A的前方O点有
一质量为m2的小球B处于静止状态,如图7
图7
所示.小球A与小球B发生正碰后小球A、B
均向右运动.小球B被在Q点处的墙壁弹回后与小球A在P点相遇,
PQ=1.5PO.假设小球间的碰撞及小球与墙壁之间的碰撞都是弹
性的,求两小球质量之比m1∶m2.
三、碰撞需满足的三个条件
要点提炼
1.动量守恒,即p1+p2=p1′+p2′.
2.动能不增加,即Ek1+Ek2≥Ek1′+Ek2′
或
p21 + p22 2m1 2m2
≥p21m′12+p22m′22.
3.速度要符合情景:碰撞后,原来在前面的物体的速度一定 增大,且原来在前面的物体的速度大于或等于原来在后面的物 体的速度,即v前′≥v后′,否则碰撞没有结束.
碰撞的几种类型ppt课件

解:两棒只受相互作用的磁场力,且始终大小相等,
方向相反,因此动量守恒。
B
由 m1V0= (m1+m2) V
b
a
得 V=m1V0 / (m1+m2)
V0
m2
.
m1
8
例3 将两条完全相同的磁铁(磁性极强)分别固 定在质量相等的小车在同一直线上相向运动,水平 面光滑,开始时甲车速度大小为3米/秒,乙车速度大 小为2米/秒, (如图所示)
1.物块m1滑到最高点位置时,二者的速度; 2.物块m1从圆弧面滑下后,二者速度 3.若m1= m2物块m1从圆弧面滑下后,二者速度
m1
v0
m2
.
6
解:(1)由动量守恒得
m1V0=(m1+m2)V
V= m1V0 / (m1+m2) =0.5 m/s
(2)由弹性碰撞公式
V1
m1 m1
m2 m2
V0
2621m/ 26
3. 若m1 >>m2
V1 V 0 V 2 2V 0
4. 若A、B两物分别以v1、v2运动 则
V1
(m1
m2)v1 2m2v2 m1 m2
V2
(m2
m1)v2 2m1v1
m1 m2
.
质量相等的两物体弹性碰 撞后交换速度仍成立.
5
例1 如图2所示,光滑水平面上质量为
m1=2kg的物块以v0=2m/s的初速冲向质量 为m2=6kg静止的光滑圆弧面斜劈体。求:
克的小球,自离槽口 高4米处山静止落下,与圆弧槽相切
进入槽内,在运动过程中圆弧槽最大速率是多少?
“上当”解法: 小球开始与槽接触要抵达最低点过程中, 木桩对槽有作用力,小球与槽组成的系统动量不守 恒.球在最低点开始向右侧运动时,槽离开挡板,此后 系统水平动量守恒,球到达槽口时其速度水平分量恰好 跟槽速度相同,竖直分量使球向上升起,当球离开槽口 抛出,此时槽的速度达最大值V.设v为球到达槽底时 的速度,则有:
高中物理知识点总结 碰撞与动量守恒课件 选修3-5

四、碰撞 1.概念:碰撞是指物体间的相互作用持续的时间很短, 而物体间相互作用力很大的现象. 2.特点:在碰撞现象中,一般都满足内力________外力, 可认为相互碰撞的系统动量________. 3.分类 (1)弹性碰撞:碰撞过程中机械能________,即碰撞前后 系统总动能相等. (2)非弹性碰撞:碰撞过程中机械能________,即碰撞后 的机械能________碰撞前的机械能. (3)完全非弹性碰撞:碰撞后物体________,具有 ________的速度,这种碰撞系统动能损失________.
第十三页,共21页。
(1)如果m1=m2,则v1′=v2,v2′=v1,即交换速度. (2)如果碰前一物体静止,设v2=0,则碰撞后的速度为
v1′=mm11- +mm22v1,v2′=m12+m1m2v1 具体的有以下几种情况
①m1=m2时,则有v1′=0,v2′=v1 即碰后实现了动量和动能的全部转移(交换速度). ②m1≫m2时,有v1′≈v1,v2′≈2v1 即碰后m1的速度几乎未变,仍按原来的方向运动,质量 小的物体m2将以m1速度的两倍向前运动. ③m1≪m2时,有v1′≈-v1,v2′≈0 即碰后m1按原来的速率弹回,m2几乎未动.
第八页,共21页。
1.研究对象:相互作用的物体组成的系统. 2.正确理解“总动量保持不变”,不仅指系统的初末两个 时刻的总动量相等,而且指系统在整个过程中任意两个时刻 的总动量相等.
第九页,共21页。
3.动量守恒定律的三性 (1)矢量性:对于作用前后物体的运动方向都在同一直线 上的问题,应选取统一的正方向,凡是与选取正方向相同的 动量为正,相反为负.若方向未知,可设为与正方向相同列 动量守恒方程,通过解得结果的正负,判定未知量的方向. (2)同时性:动量是一个瞬时量,动量守恒指的是系统任 一瞬时的动量守恒,列方程m1v1+m2v2=m1v1′+m2v2′时,等 号左侧是作用前(或某一时刻)各物体的动量和,等号右侧是作 用后(或另一时刻)各物体的动量和,不同时刻的动量不能相 加.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、碰撞的分类
按碰撞过程中机械能是否损失分为:
(1)弹性碰撞:碰撞过程不中变动能 , 即 碰 撞 前 后系相统等 的总
动能 ,Ek1+Ek2=Ek1′+Ek2′.
不守恒
(2)非弹性碰撞:小碰于撞过程中有动能损失,即
动能
,碰撞后系统的总动能
碰
撞前系统的总动能.
粘合在一起
相同
Ek1′+Ek2′<Ek1损+失E最k2大.
二、弹性碰撞和非弹性碰撞
碰撞中能量特点:碰撞过程中,一般伴随机械 能的损失,即Ek1′+Ek2′≤Ek1+Ek2,其中,碰 撞过程中,无机械能损失的碰撞为弹性碰撞.
弹性碰撞:若两球碰撞后形变能完全恢复,并 没有能量损失,碰撞前后系统的动能相等,这 类碰撞称为弹性碰撞.
非弹性碰撞:若两球碰后它们的形变不能完全 恢复原状,一部分动能最终转化为内能,碰前 碰后系统的动能不再相等,这种碰撞叫做非弹 性碰撞.如果碰撞后二者成为一个整体,系统 的动能损失得最多,这种碰撞叫做完全非弹性
(1)把两小车加在一起计算,有一个什么物的速 度之和是否相等?这说明了什么问题?
解析 (1)由纸带可以看出,A、B两小车碰前和 碰后都是向右运动,且碰撞发生在从题图所示纸 带右边数起第5个点时,A车碰前碰后都看成匀速 运动.
碰前A车的速度:vA=0.062.6×4 cm/s=0.825 m/s. 碰后A与B一起运动的速度:vAB=0.052.8×5 cm/s=0.58 m/s 碰前A车的mAvA=0.6×0.825 kg·m/s=0.495 kg·m/s 碰后A、B两车的质量和速度乘积之和为 (mA+mB)vAB=(0.6+0.2)×0.58 kg·m/s=0.464 kg·m/s 在误差允许的范围内,mAvA=(mA+mB)vAB,即二者的质量和速 度的乘积之和在碰撞前后是相等的.
答案 (1)在误差允许的范围内,质量和速度的乘 积之和在碰撞前后是相等的.
(2)碰撞过程中总动能减少了,碰撞前后速度之和 不相等,说明A与B碰撞时传递给B的不是速度.
(3)完全非弹性碰撞:碰撞后两物体
,具有
的速度,这种碰撞动能
按碰撞前后,物体的运动方向是否沿同一条直 线可分为:
(1沿)对同一心条碰直撞线 (正碰):碰撞前后,物体的运动方
向
.
(不2)在非同对一直心线碰上撞(斜碰):碰撞前后,物体的运动
方向
.(高中阶段只研
究正碰.)
一、实验探究一维碰撞中的不变量 探究方案 方案一:利用气垫导轨实现一维碰撞 (1)质量的测量:用天平测量. (2)速度的测量:v=ΔΔxt ,式中Δx为滑块(挡光片)的宽度,Δt为 数字计时器显示的滑块(挡光片)经过光电门的时间. (3)各种碰撞情景的实现:利用弹簧片、细绳、弹性碰撞架、 胶布、撞针、橡皮泥设计各种类型的碰撞,利用滑块上加重 物的方法改变碰撞物体的质量.
1碰撞
1.认识弹性碰撞与非弹性碰撞. 2.认识对心碰撞与非对心碰撞. 3.探究碰撞中的不变量.
一、碰撞的特点
时间特点:在碰撞过程中,相互很作短用时间
.
远远大于
相互作用力特点:在碰撞过程中,相互作用力 外力.
位移特点:在碰撞过同程一中位,置 物体发生速度突变 时,位移极小,可认为物体在碰撞前后仍在
(1)用天平测相关质量. (2)安装实验装置. (3)使物体发生碰撞. (4)测量或读出相关物理量,计算有关速度. (5)改变碰撞条件,重复步骤3、4. (6)进行数据处理,通过分析比较,找出碰撞中 的守恒量.
(7)整理器材,结束实验.
数据处理
为了探究碰撞中的不变量,将实验中测得的物 理量填入如下表格
碰撞前
碰撞后
质量 m1 m2 m1
m2
速度 mv
v1 v2 v1′ v2′
m1v1+m2v2
m1v1′+ m2v2′
mv2 m1v21+m2v22 m1v1′2+m2v2′2
v v1/m1+v2/m2 v1′/m1+v2′/m2 m
经过验证后可知,在误差允许的范围内,碰撞前 后不变的量是物体的质量与速度的乘积,即m1v1 +m2v2=m1v1′+m2v2′
方案二:利用等长悬线悬挂等大小球实现一维碰 撞
(1)质量的测量:用天平测量.
(2)速度的测量:可以测量小球被拉起的角度,从 而算出碰撞前对应小球的速度,测量碰撞后小球 摆起的角度,算出碰撞后对应小球的速度.
(3)不同碰撞情况的实现:用贴胶布的方法增大两 球碰撞时的能量损失.
方案三:利用小车在光滑桌面上碰撞另一静止小车实现一维碰 撞. (1)质量的测量:用天平测量. (2)速度的测量:v=ΔΔxt ,Δx是纸带上两计数点间的距离,可用刻 度尺测量.Δt为小车经过Δx所用的时间,可由打点间隔算出.
实验器材
方案一:气垫导轨、光电计时器、天平、滑块 (两个)、弹簧片、 细绳、弹性碰撞架、胶布、 撞针、橡皮泥.
方案二:带细线的摆球(两套)、铁架台、天平、 量角器、坐标纸、胶布等.
方案三:光滑长木板、打点计时器、纸带、小 车(两个)、天平、撞针、橡皮泥.
实验步骤
不论采用哪种方案,实验过程均可按实验方案 合理安排,参考步骤如下:
探究碰撞中的不变量
【典例1】 水平光滑桌面上有A、B两个小车,质 量分别是0.6 kg和0.2 kg,A车的车尾拉着纸 带.A车以匀速向右的某一速度与静止的B车 碰撞,碰后两车连在一起共同运动,碰撞前后 打点计时器打下的纸带如图1-1-1所示(电源频 率为50 Hz).根据这些数据,请猜想:
图1-1-1
(2)由(1)中的数据可知碰撞前A车的质量和速度平方的乘积为 mAvA2 =0.6×0.825×0.825 kg·m2/s2=0.408 kg ·m2/s2 碰后A、B两车的质量和速度平方的乘积之和为 (mA+mB)vA2 B=(0.6+0.2)×0.58×0.58 kg·m2/s2=0.269 kg·m2/s2 则12mAv2A>12(mA+mB)v2AB,说明碰撞过程中总动能减少了. 碰撞前A的速度为vA=0.825 m/s,碰撞后两车的速度之和为2vAB =1.16 m/s,二者不相等,说明A与B碰撞时传递给B的不是速 度.