2020-2021学年北京西城区七年级上期末数学试卷及答案解析
2020-2021学年度北京市西城区学习探究诊断七年级数学上学期全一册测试题
第一章 有理数测试1 正数和负数学习要求了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量.课堂学习检测一、判断题(正确的在括号内画“√”,错误的画“×”)( )1.某仓库运出30吨货记作-30吨,则运进20吨货记作+20吨. ( )2.节约4吨水与浪费4吨水是一对具有相反意义的量.( )3.身高增长1.2cm 和体重减轻1.2kg 是一对具有相反意义的量. ( )4.在小学学过的数前面添上“-”号,得到的就是负数. 二、填空题5.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.6.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.7.甲冷库的温度为-6℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是______. 8.______既不是正数,也不是负数;它______整数,______有理数(填“是”或“不是”). 9.整数可以看作分母为1的______,有理数包括____________. 10.把下列各数填在相应的大括号内:74,6,0,14.3,5.0,432,14,5.8,51,27----正数集合{_______________________________________________________________…} 负数集合{_______________________________________________________________…} 非负数集合{_____________________________________________________________…} 有理数集合{_____________________________________________________________…}综合、运用、诊断一、填空题11.若把公元2008年记作+2008,那么-2008年表示______.12.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是-10米,+20米,则现在潜水艇在距水面______米的深处. 13.是正数而不是整数的有理数是____________________. 14.是整数而不是正数的有理数是____________________. 15.既不是正数,也不是负数的有理数是______________. 16.既不是真分数,也不是零的有理数是______________.17.在下列数中:,31- 11.11111,725.95 95.527,0,+2004,-2π,1.12122122212222,,111-非负有理数有__________________________________________. 二、判断题(正确的在括号里画“√”,错误的画“×”) ( )18.带有正号的数是正数,带有负号的数是负数. ( )19.有理数是正数和小数的统称.( )20.有最小的正整数,但没有最小的正有理数. ( )21.非负数一定是正数.( )22.311-是负分数. 三、解答题23.-3.782( ).(A)是负数,不是分数 (B)不是分数,是有理数 (C)是负数,也是分数 (D)是分数,不是有理数 24.下面说法中正确的是( ).(A)正整数和负整数统称整数 (B)分数不包括整数(C)正分数,负分数,负整数统称有理数 (D)正整数和正分数统称正有理数25.一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加工要求最大不超过______毫米,最小不小于______毫米.拓展、探究、思考26.一批螺帽产品的内径要求可以有±0.02 mm 的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).(A)1个(B)2个(C)3个(D)5个测试2 相反数 数轴学习要求掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小.课堂学习检测一、填空题1.________________的两个数,叫做互为相反数;零的相反数是______.2.0.4与______互为相反数,______与-(-7)互为相反数,a 的相反数是______. 3.规定了______、______和______的______叫数轴. 4.所有的有理数都能用数轴上的______来表示.5.数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。
2020-2021学年北京西城区七年级上期末数学试卷
第 1 页 共 14 页
2020-2021学年北京西城区七年级上期末数学试卷
一.选择题(共10小题,满分30分)
1.(3分)﹣4的倒数是( )
A .14
B .−14
C .4
D .﹣4 【解答】解:﹣4的倒数是−14.
故选:B .
2.(3分)根据国家气象局统计,全球平均每年发生雷电次数约为16000000次,将16000000
用科学记数法表示为( )
A .1.6×108
B .1.6×107
C .16×106
D .1.6×106
【解答】解:将16000000用科学记数法表示为:1.6×107次.
故选:B .
3.(3分)下列运算中,正确的是( )
A .2a +3b =5ab
B .2a 2+3a 2=5a 2
C .3a 2﹣2a 2=1
D .2a 2b ﹣2ab 2=0 【解答】解:A .2a 与3b 不是同类项,所以不能合并,故本选项不合题意;
B .2a 2+3a 2=5a 2,故本选项符合题意;
C .3a 2﹣2a 2=a 2,故本选项不合题意;
D .2a 2b 与﹣2ab 2不是同类项,所以不能合并,故本选项不合题意.
故选:B .
4.(3分)如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知CA +CB >AB ,其依据是
( )
A .两点之间,线段最短
B .两点确定一条直线
C .两点之间,直线最短
D .直线比线段长 【解答】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知CA +CB >AB ,其依据是:两点之间,线段最短,。
2020-2021学年北京西城区七年级上期末数学试卷及答案解析
第 1 页 共 20 页 2020-2021学年北京西城区七年级上期末数学试卷
一.选择题(共10小题,满分30分)
1.(3分)﹣4的倒数是( )
A .14
B .−14
C .4
D .﹣4
2.(3分)根据国家气象局统计,全球平均每年发生雷电次数约为16000000次,将16000000
用科学记数法表示为( )
A .1.6×108
B .1.6×107
C .16×106
D .1.6×106
3.(3分)下列运算中,正确的是( )
A .2a +3b =5ab
B .2a 2+3a 2=5a 2
C .3a 2﹣2a 2=1
D .2a 2b ﹣2ab 2=0 4.(3分)如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知CA +CB >AB ,其依据是
( )
A .两点之间,线段最短
B .两点确定一条直线
C .两点之间,直线最短
D .直线比线段长 5.(3分)下列解方程去分母正确的是( )
A .由x 3−1=1−x 2,得2x ﹣1=3﹣3x
B .由x−22
−x 4=−1,得 2x ﹣2﹣x =﹣4 C .由y 3−1=y 5,得 2 y ﹣15=3y
D .由y+12=y 3+1,得 3( y +1)=2 y +6
6.(3分)若2a ﹣3b =﹣1,则代数式1﹣4a +6b 的值为( )
A .﹣1
B .1
C .2
D .3
7.(3分)有理数a ,b 在数轴上的对应点的位置如图所示,则( )
A .ab >0
B .a ﹣b >0
C .a +b <0
D .|a |<|b |。
2020-2021学年北京市西城区七年级上学期期末数学试卷(附解析)
2020-2021学年北京市西城区七年级上学期期末数学试卷一、选择题(本大题共10小题,共20.0分)1.下列各组数的比较大小中,不正确的是()A. −65>−(−35) B. −(+3)<−(−4)C. 0>−|−3|D. +(−2)<−(−1)2.“嫦娥一号”月球探测卫星于2007年10月24日成功发射,11月26日国家航天局正式公布“嫦娥一号”传回的第一幅月面图象.该幅月球表面图,成像区域的面积为128800平方公里.这个数据用科学记数法表示为()A. 1288×102平方公里B. 0.1288×106平方公里C. 1.288×106平方公里D. 1.288×105平方公里3.化简−(−x+y)−[−(x−y)]得()A. 2yB. 2xC. 2x−2yD. 04.下列说法错误的是()A. 直棱柱的侧面都是长方形B. 正方体的所有棱长都相等C. 棱柱的侧面可能是三角形D. 圆柱的侧面展开图为长方形5.下列说法错误的是()A. 若a=b,则3−2a=3−2bB. 若ac =bc,则a=bC. 若|a|=|b|,则a=bD. 若a=b,则ca=cb6.从甲的位置看乙,乙处在北偏西30°,那么从乙的位置看甲,甲处在()A. 南偏东60°B. 南偏西60°C. 南偏东30°D. 南偏西30°7.已知b−a=3,ab=2,计算:a2b−ab2等于()A. −6B. 6C. 5D. −18.如果a2=4,|b|=2,且ab<0,则a+b的值是()A. 0B. 4C. ±4D. 6或29.若∠A=53°20′,则∠A的补角的度数为()A. 36°40′B. 126°40′C. 127°40′D. 146°40′10.如果有2014名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2014名学生所报的数是()A. 1B. 2C. 3D. 4二、填空题(本大题共9小题,共19.0分)11.兰州至乌鲁木齐的高速铁路于2014年年底开通运营,这条长1700km的高速铁路使两地旅行时间由原来的20ℎ缩短到8ℎ,将这条铁路的长用科学计数法可表示为__________m.12.若方程6x+3=0与关于y的方程4y+m=15的解相等,则m=______.13.地球与月球的平均距离大约为384000km,用科学记数法表示这个数据为_______km若与是同类项,则________.14. 若∠A=20.25°,∠B=20°18′,则∠A______ ∠B(填“>”、“<”或“=”).15. 当−1<a<0时,试比较大小:a______1a.16. 一张桌子由一个桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有10立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?设用x立方米的木材做桌面,可列方程______ .17. 如图所示,已知线段AB=100厘米,M为AB的中点,P在MB上,N为PB的中点,且NB=18厘米,则PM的长是_________厘米.18. 将m的2倍与n的5倍的差用代数式表达为______ .19. 观察下列单项式a、12a2、13a3、14a4、15a5…按照这些单项式的系数和指数的变化规律,第十个单项式应该是______ .三、解答题(本大题共10小题,共80.0分)20. 画一个菱形,使它的两条对角线长度分别为4cm,3cm.21. 规定∣∣a cb d∣∣=ad−bc,如∣∣∣2−130∣∣∣=2×0−3×(−1)=3.(1)若∣∣∣−2+x5x1∣∣∣>2,求x的取值范围;(2)若∣∣∣32y x ∣∣∣=m +5,∣∣∣∣112y x ∣∣∣∣=12(m −1),求x −y 的值.22. 计算:(1)√24−3√23−√−273; (2)先化简,再求值:−a 2b +(3ab 2−a 2b)−2(2ab 2−a 2b),其中,a =−1,b =−2.23. (1)计算:0.25×(−2)3−[4÷(−23)2+1]+(−1)2017(2)解方程:x +2(x−3)3=6−x−76;24. 解方程组(1){y =x +37x +5y =9; (2){3(x −1)=y +55(y −1)=3(x +5).25. 小明同学看课本中的阅读材料(初识“几何画板”)时,在电脑上尝试探索.先画了射线OA ,OB ,OC .(1)如图1,小明用“构造(C)”菜单中的“角平分线”功能分别构造∠AOB 的平分线OD 和∠BOC 的平分线OE .①小明度量两角的大小如图,则∠BOC =______°,∠DOE =______°.②拖动点B,使点B在∠AOC内部移动,射线OD,OE随之变动,变动过程中∠DOE的度数改变吗?请说明理由.(2)如图2若小明在∠AOB,∠BOC内部分别以每秒3°和每秒1°的速度绕点O逆时针旋转射线OA,OB得到OM,ON,若同时旋转t秒后有∠MOC=∠AON=90°,且满足∠CON∠AOC =211,求此时∠BOM的度数.26. 某学校在商场购买了A、B两种品牌的足球,已知购买4个A品牌的足球和6个B品牌足球共需620元;购买6个A品牌的足球和8个B品牌的足共需860元.(1)求A、B两种品牌的足球的单价.(2)为响应习总书记“足球进校园”的号召,所学状决定再次购买A、B两种品牌的足球共50个,恰逢该商场对足球的售价进行调整,A品牌足球的售价比第一次购买时提高了10%,如果此次购买A、B两种足球的总费用不超过2900元,那么这所学校最多可购买多少个B品牌的足球?27. 把下面的直线补充成一条数轴,然后在数轴上标出下列各数,并用“<”连接起来.−3,+l,212,−l.5.28. 经过平移,小鱼上的点A移到了点B.(1)请画出平移后的小鱼;(2)该小鱼是怎样从点A移到了点B?(上下左右)29. 在数轴上把下列各数表示出米,并用“<”连接各数.5,−2,|−4|,−(−1),0,−(+3)参考答案及解析1.答案:A解析:解:A、∵−(−35)=35,∴−65<−(−35),故本选项符合要求;B、∵−(+3)=−3,−(−4)=4,∴−(+3)<−(−4),故本选项不符合要求;C、∵−|−3|=−3,∴0>−|−3|,故本选项不符合要求;D、∵+(−2)=−2,−(−1)=1,∴+(−2)<−(−1),故本选项不符合要求;故选A.先根据相反数和绝对值化简符号,再根据有理数的大小比较法则比较即可.本题考查了有理数的大小比较法则,相反数,绝对值的应用,能正确化简符号是解此题的关键.2.答案:D解析:解:128800=1.288×105.故选D.科学记数法表示为a×10n(1≤|a|<10,n是整数):确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.3.答案:C解析:解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:--得+,−+得−,++得+,+−得−.运用整式的加减运算顺序,先去括号,再合并同类项.解:原式=x−y+(x−y)=x−y+x−y=2x−2y.故选C.4.答案:C解析:解:A、直棱柱的侧面都是长方形,说法是正确的,不符合题意;B、正方体的所有棱长都相等,说法是正确的,不符合题意;C、棱柱的侧面是长方形,不可能是三角形,原来的说法是错误的,符合题意;D、圆柱的侧面展开图为长方形,说法是正确的,不符合题意;故选:C.要根据各种几何体的特点进行判断.本题考查了认识立体图形,要准确掌握各种棱柱的特点.5.答案:C解析:解:(C)∵|a|=|b|,∴a=±b,故选:C.根据等式的性质即可求出答案.本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.6.答案:C解析:解:如图,甲的位置看乙,乙处在北偏西30°,那么从乙的位置看甲,甲处在南偏东30°.故选:C.作出图形,甲看乙的方向是北偏西25°,是以甲为标准,反之乙看甲的方向是甲相对于乙的方向与位置.本题主要考查了方向角的定义,在叙述方向角时一定要注意以哪个图形为参照物.7.答案:A解析:本题考查了分解因式和求代数式的值,能够整体代入是解此题的关键.先利用提取公因式法分解因式,再将b−a=3,ab=2代入求出其值即可.解:∵b−a=3,ab=2,∴a2b−ab2=−ab(b−a)=−2×3=−6.故选:A.8.答案:A解析:本题考查的是有理数的乘方、绝对值的性质以及有理数的混合运算,基础题根据乘方法则、绝对值的性质求出a、b,根据题意确定a、b的值,根据有理数的加法法则计算即可.解:∵a2=4,|b|=2,∴a=±2,b=±2,∵ab<0,∴a=2,b=−2或a=−2,b=2,则a+b=0,故选A.9.答案:B解析:解:∵∠A=53°20′,∴∠A的补角为180°−53°20′=126°40′.故选:B.根据补角的定义,∠A的补角等于180°减去∠A的度数即可.本题考查了补角的定义,要注意度、分、秒是60进制.10.答案:D解析:试题分析:本题考查观察能力。
北京市西城区2020—2021学年度第一学期期末试卷+答案+听力材料
北京市西城区2020—2021学年度第一学期期末试卷+答案+听力材料北京市西城区2020—2021学年度第一学期期末试卷高一英语2021.1本试卷共13页,共140分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第Ⅰ卷(共75分)I. 听力理解(共三节,22.5分)第一节: (共4小题; 每小题1.5分,共6分)听下面四段对话,每段对话后有一道小题,从每题所给的A、B、C三个选项中选出最佳选项。
每段对话你将听一遍。
1. What does the man think the weather will be like in the afternoon?A. Cloudy.B. Rainy.C. Sunny.2. Where does the conversation probably take place?A. In a restaurant.B. In a cinema.C. In a supermarket.3. Why did the man leave his previous job?A. To study further.B. To get experience.C. To find a new job.4. Why does the woman make the phone call?A. To book a service.B. To ask about a delivery.C. To arrange a meeting.第二节:(共6小题;每小题1.5分,共9分)听下面三段对话,每段对话后有两道小题,从每题所给的A、B、C三个选项中选出最佳选项。
每段对话你将听两遍。
听第5段材料,回答第5至第6小题。
5. What is the woman?A. A bus driver.B. A college student.C. A shop assistant.6. How much will the woman save with a discount?A. 50 dollars.B. 30 dollars.C. 20 dollars.听第6段材料,回答第7至第8小题。
北京2020-2021学年西城区七年级上册期末数学试卷(含答案)试题
北京市西城区2020秋学年度第一学期期末试卷七年级数学 2021.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.据中新社2017年10月8日报道,2017年我国粮食总产量达到736 000 000吨,将736 000 000用科学记数法表示为( ).(A )673610⨯ (B )773.610⨯ (C )87.3610⨯ (D )90.73610⨯2. 如图所示,将两个圆柱体紧靠在一起,从上面看这两个立体图形,得到的平面图形是( ).(A ) (B ) (C ) (D )3. 下列运算中,正确的是( ).(A )2(2)4=-- (B ) 224=- (C )236= (D )3(3)27-=-4. 下列各式进行的变形中,不.正确..的是( ). (A )若3a =2b ,则3a +2 =2b +2 (B )若3a =2b ,则3a -5 =2b - 5(C )若3a =2b ,则 9a =4b (D )若3a =2b ,则23a b = 5.若2(1)210x y -++=,则x +y 的值为( ). (A )12 (B )12- (C )32 (D )32-6. 在一些商场、饭店或写字楼中,常常能看到一种三翼式旋转门在圆柱体的空间內旋转. 旋转门的三片旋转翼把空间等分..成三个部分,下图是从上面俯视旋转门的平面图,两片旋转翼之间的角度是().(A)100°(B)120°(C)135°(D)150°7. 实数a,b,c,d在数轴上对应点的位置如图所示,正确的结论是(A)a > c(B)b +c > 0 (C)|a|<|d| (D)-b<d8. 如图,在下列各关系式中,不.正确..的是().(A)AD - CD=AB + BC(B)AC- BC=AD -DB(C)AC- BC=AC + BD(D)AD -AC=BD -BC9. 某礼品包装商店提供了多种款式的包装纸片,将它们沿实线折叠(图案在包装纸片的外部,内部无图案),再用透明胶条粘合,就折成了正方体包装盒,小明用购买的纸片制作的包装盒如右图所示,在下列四种款式的纸片中,小明所选的款式的是().(A)(B)(C)(D).10.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人? 如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是( ).(A )10060(100)x x =- (B )60100(100)x x =-(C )10060(100)x x =+ (D )60100(100)x x =+二、填空题(本题共20分,第11~14题每小题3分,第15~18题每小题2分)11.已知x = 2是关于x 的方程3x + a = 8的解,则a = . 12.一个有理数x 满足: x <0且2x <,写出一个满足条件的有理数x 的值: x = .13.在一面墙上用一根钉子钉木条时,木条总是来回晃动;用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为 .14.已知222x x +=,则多项式2243x x +-的值为 .15.已知一个角的补角比这个角的一半多30°,设这个角的度数为x °,则列出的方程是: .16.右图是一所住宅的建筑平面图(图中长度单位:m ),这所住宅的建筑面积为 m. .17.如图,点A ,O ,B 在同一条直线上,射线OD平分∠BOC ,射线OE 在∠AOC 的内部,且∠DOE =90°,写出图中所有互为余角的角: .18.如图,一艘货轮位于O 地,发现灯塔A 在它的正北方向上,这艘货轮沿正东方向航行,到达B 地,此时发现灯塔A 在它的北偏西60°的方向上.(1) 在图中用直尺、量角器画出B 地的位置;(2) 连接AB ,若货轮位于O 地时,货轮与灯塔A 相距1.5千米,通过测量图中AB 的长度,计算出货轮到达B 地时与灯塔A 的实际距离约为 千米(精确到0.1千米).三、计算题(本题共16分,每小题4分)19.(21)(9)(8)(12)---+---解:20. 311()()(2)424-⨯-÷- 解:21.31125(25)25()424⨯--⨯+⨯- 解:22.3213(2)0.254[()]4028-⨯-÷--- 解:四、解答题(本题共20分,每小题5分)23.先化简,再求值:2223()2()3x xy x y xy ---+,其中1x =-,3y =.解:24.解方程 12423x x +-+=.解:25.解方程组 253 1.x y x y +=⎧⎨-=⎩, 解:26.已知AB =10,点C 在射线 AB 上, 且12BC AB =,D 为AC 的中点. (1)依题意,画出图形;(2)直接写出线段BD 的长.解:(1)依题意,画图如下:(2)线段BD 的长为 .五、解答题(本题共13分,第27题6分,第28题7分)27.列方程或方程组解应用题为了备战学校体育节的乒乓球比赛活动,某班计划买5副乒乓球拍和若干盒乒乓球(多于5盒).该班体育委员发现在学校附近有甲、乙两家商店都在出售相同品牌的乒乓球拍和乒乓球,乒乓球拍每副售价100元,乒乓球每盒售价25元.经过体育委员的洽谈,甲商店给出每买一副乒乓球拍送一盒乒乓球的优惠;乙商店给出乒乓球拍和乒乓球全部九折的优惠.(1)若这个班计划购买6盒乒乓球,则在甲商店付款元,在乙商店付款元;(2)当这个班购买多少盒乒乓球时,在甲、乙两家商店付款相同?28. 如图,A,O,B三点在同一直线上,∠BOD与∠BOC互补.(1)试判断∠AOC与∠BOD之间有怎样的数量关系,写出你的结论,并加以证明;(2)OM平分∠AOC,ON平分∠AOD,①依题意,将备用图补全;②若∠MON=40°,求∠BOD的度数.解:(1)答:∠AOC与∠BOD之间的数量关系为:;理由如下:(2)①补全图形;②备用图北京市西城区第一学期期末试卷七年级数学附加题2021.1试卷满分:20分一、填空题(本题共6分)1.用“△”定义新运算:对于任意有理数a,b,当a≤b时,都有2a b a b∆=;当a>b时,都有2a b ab∆=.那么,2△6 = ,2()3-△(3)-= .二、解答题(本题共14分,每小题7分)2.输液时间与输液速率问题静脉输液是用来给病人注射液体和药品的.在医院里,静脉输液是护士护理中最重要的一项工作,护士需要依据输液速率D,即每分钟输入多少滴液体,来计算输完点滴注射液的时间t(单位:分钟).他们使用的公式是:dVtD=,其中,V 是点滴注射液的容积,以毫升(ml)为单位,d 是点滴系数,即每毫升(ml)液体的滴数.(1)一瓶点滴注射液的容积为360毫升,点滴系数是每毫升25 滴,如果护士给病人注射的输液速率为每分钟50滴,那么输完这瓶点滴注射液需要多少分钟?(2)如果遇到的病人年龄比较大时,护士会把输液速率缩小为原来的12,准确地描述,在V 和d 保持不变的条件下,输完这瓶点滴注射液的时间将会发生怎样的变化?3.阅读下列材料:我们给出如下定义:数轴上给定两点A,B以及一条线段PQ,若线段AB的中点R在线段PQ 上(点R能与点P或Q重合),则称点A与点B关于线段PQ径向对称.下图为点A与点B关于线段PQ径向对称的示意图.解答下列问题:如图1,在数轴上,点O为原点,点A表示的数为−1,点M表示的数为2.图1(1)①点B,C,D分别表示的数为−3,32,3,在B,C,D三点中,与点A关于线段OM径向对称;②点E 表示的数为x,若点A与点E关于线段OM的径向对称,则x的取值范围是;(2)点N是数轴上一个动点,点F表示的数为6,点A与点F关于线段ON径向对称,线段ON的最小值是;(3)在数轴上,点H,K,L表示的数分别是−5,−4,−3,当点H以每秒1个单位长度的速度向正半轴方向移动时,线段KL同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t(t>0)秒,问t为何值时,线段KL上至少存在一点与点H关于线段OM径向对称.解:(1)①与点A关于线段OM的径向对称;②x的取值范围是;(2)线段ON的最小值是;(3)北京市西城区第一学期期末试卷七年级数学参考答案及评分标准2021.1 一、选择题(本题共30分,每小题3分)三、计算题(本题共16分,每小题4分)19.(21)(9)(8)(12)---+---解:(21)(9)(8)(12)---+---= -21 + 9 - 8 + 12 ............................................................................................ 1分= -29 + 21 ............................................................................................................. 3分= -8 ....................................................................................................................... 4分20.311()()(2)424-⨯-÷-解:311()()(2)424-⨯-÷-319424=-⨯÷ ....................................................................................................... 2分314429=-⨯⨯ ....................................................................................................... 3分16=-.................................................................................................................... 4分21.31125(25)25()424⨯--⨯+⨯-解:31125(25)25()424⨯--⨯+⨯-=311252525424⨯+⨯-⨯............................................................................... 1分=31125()424⨯+-............................................................................................. 2分=25 .................................................................................................................................. 4分22.3213(2)0.254[()]4028-⨯-÷---解:3213(2)0.254[()]4028-⨯-÷---=1380.254()4048-⨯-÷-- ............................................................................... 1分 =180.254()408-⨯-÷-- .................................................................................. 2分=24840-+⨯- .................................................................................................... 3分=10- ................................................................................................................... 4分四、解答题(本题共21分,23~25题每小题5分,第26题6分)23.2223()2()3x xy x y xy ---+,其中1x =-,3y =. 解:2223()2()x xy x y xy ---+=22233223x xy x y xy --++ ............................................................................. 2分 =222x y + ............................................................................................................. 3分 当1x =-,3y =时,原式=22(1)23-+⨯ ............................................................................................. 4分=19. ............................................................................................................ 5分24.解方程12423x x +-+= . 解: 去分母,得 3(1)2(2)24x x ++-=. ......................................................... 1分去括号,得 332424x x ++-=. .............................................................. 2分 移项,得 322443x x +=+-. .................................................................. 3分 合并同类项,得 525x =. .......................................................................... 4分 系数化1,得 5x =. ..................................................................................... 5分25.253 1.x y x y +=⎧⎨-=⎩,解:由①得 52x y =-.③ .................................................................................. 1分把③代入②,得 3(52)1y y --=. ................................................................ 2分 解这个方程,得 2y =. .................................................................................. 3分 把2y =代入③,得 1x =. .......................................................................... 4分①②所以,这个方程组的解为 12.x y =⎧⎨=⎩,................................................................. 5分26.解:(1)依题意,画图如下:图1 图2.................................................................................................................... 4分 (2)15或5. ....................................................................................... 6分五、解答题(本题共13分,第27题6分,第28题7分)27.(1)525 ,585;....................................................................................................... 2分(2)解:设这个班购买x ( x >5 ) 盒乒乓球时,在甲、乙两家商店付款相同. .............................................................................................................................. 3分由题意,得100525(5)0.910050.925x x ⨯+-=⨯⨯+⨯. .......... 5分 解方程,得 30x =.答:购买30盒乒乓球时,在甲、乙两家商店付款相同. ................... 6分28.解:(1)∠AOC =∠BOD ; ....................................................................................... 1分理由如下:∵ 点A ,O ,B 三点在同一直线上,∴ ∠AOC +∠BOC = 180°. ................................................................ 2分 ∵ ∠BOD 与∠BOC 互补, ∴ ∠BOD +∠BOC = 180°.∴ ∠AOC =∠BOD . .......................................................................... 3分(2)①补全图形,如图所示.②设∠AOM =α,∵ OM 平分∠AOC , ∴ ∠AOC =2∠AOM =2α. ∵ ∠MON =40°,∴ ∠AON =∠MON +∠AOM =40°+ α. ∵ ON 平分∠AOD ,∴ ∠AOD =2∠AON =80° +2α. 由(1)可得 ∠BOD =∠AOC =2α, ∵∠BOD +∠AOD =180°, ∴ 2α. + 80 +2α.=180°. ∴ 2α. =50°.∴ ∠BOD =50°. ......................................................................... 7分D C B A D C B A七年级数学附加题参考答案及评分标准 2021.1一、填空题(本题共6分)1. 24,-6 ................................................................................................................ 6分 二、解答题(本题共14分,每小题7分)2.解:(1)由D = 50, d = 25, 360V =, dVt D=, ∴ 2536050t ⨯=. ........................................................................... 3分 ∴ t =180. ............................................................................. 4分答:输完点滴注射液的时间是180分钟.(2)设输的速率为D 1滴/分,点滴注射的时间为t 1分钟,则11dVt D =. ......................................................................................... 5分 输液速率缩小为112D 2,点滴注射的时间延长到t 2分钟, 则21112212dV dVt t D D ===, .................................................................... 6分 答:在d 和V 保持不变的条件下,D 将缩小到原来的12时,点输完滴注射的时间延长为原来的2倍. ......................................................................................... 7分 3.(1)①点C ,点D 与点A 是关于线段OM 的径向对称点; ............................ 2分②x 的取值范围是1≤x ≤5; ......................................................................... 4分 (2)52...................................................................................................................... 5分 (3)解:移动时间为t (t >0)秒时,点H ,K ,L 表示的数分别是−5+t ,−4+3t ,−3+3t .此时,线段HK 的中点R 1表示的数是922t -, 线段HL 的中点R 2表示的数是2t−4.当线段R 1R 2在线段OM 上运动时,线段KL 上至少存在一点与点P 关于线段OM 径向对称. 当R 2经过点O 时,2t−4=0时,t =2.当R 1经过点M 时,922t -=2时,t =134. ∴ 当2≤t ≤134时,线段R 1R 2在线段OM 上运动. 2113 4时,线段KL上至少存在一点与点P关于线段OM径向对称.∴2≤t≤。
2020-2021学年北京市七年级(上)期末数学试卷 (word版含答案)
2020-2021学年北京市七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)1.在下列数π,+1,6.7,﹣15,0,,﹣1,25%中,属于整数的有()A.2个B.3个C.4个D.5个2.直线AB,线段CD,射线EF的位置如图所示,下图中不可能相交的是()A.B.C.D.3.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为()A.0.5×1011千克B.50×109千克C.5×109千克D.5×1010千克4.下列说法一定正确的是()A.a的倒数是B.a的相反数是﹣aC.﹣a是负数D.2a是偶数5.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是()A.B.C.D.6.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.a=b+D.=+7.下列方程中,解为x=﹣3的是()A.3x﹣=0B.x+=0C.x﹣1=0D.6x+=08.若单项式3x2m﹣1y5与单项式﹣5x3y n是同类项,则m,n的值分别为()A.3,5B.2,3C.2,5D.3,﹣29.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy ﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.﹣7xy B.+7xy C.﹣xy D.+xy10.如图,有一块表面刷了红漆的立方体,长为4cm,宽为5cm,高为3cm,现在把它切分成边长为1厘米的小正方形,能够切出两面刷了红漆的正方体有()个.A.48B.36C.24D.12二、填空题(本题共16分,每小题2分)11.数a的位置如图,化简|a|+|a+4|=.12.计算:48°47'+53°35'=.13.已知|x+1|+(y+2)2=0,则x+y=.14.有理数5.614精确到百分位的近似数为.15.已知方程(a﹣2)x2+2ax﹣12=0是关于x的一元一次方程,则a=.16.已知一个角的补角是它余角的3倍,则这个角的度数为.17.如图,点A在点O的北偏西15°方向,点B在点O的北偏东30°方向,若∠1=∠AOB,则点C在点O的方向.18.已知数轴上A、B两点所对应的数分别是1和3,P为数轴上任意一点,对应的数为x.(1)则A、B两点之间的距离为;(2)式子|x﹣1|+|x﹣3|+…+|x﹣2017|+|x﹣2019|的最小值为.三、解答题:19.(8分)计算:(1)﹣(﹣1)3+[(﹣2)2﹣(3﹣4)×5];(2)(﹣+﹣)÷(﹣).20.(8分)解方程:(Ⅰ)2(x﹣2)﹣(1﹣3x)=x+3;(Ⅱ)﹣x=﹣121.(5分)先化简,再求值:2(3x2+y)﹣(2x2﹣y),其中,y=﹣1.22.(4分)如图所示,工厂A与工厂B想在公路m旁修建一座共用的仓库O,并且要求O 到A与O到B的距离之和最短,请你在m上确定仓库应修建的O点位置,同时说明你选择该点的理由.23.(4分)如图,AB∥CD,∠B=∠D,试说明∠1=∠2.请你完成下列填空,把解答过程补充完整.解:∵AB∥CD,∴∠BAD+∠D=180°().∵∠B=∠D,∴∠BAD+=180°(等量代换).∴(同旁内角互补,两直线平行).∴∠1=∠2()24.(6分)如图,将连续的偶数2,4,6,8,10,…排成一数阵,有一个能够在数阵中上下左右平移的T字架,它可以框出数阵中的五个数.试判断这五个数的和能否为426?若能,请求出这五个数;若不能,请说明理由.25.(6分)如图,点B是线段AC上一点,且AB=21cm,BC=AB.(1)试求出线段AC的长;(2)如果点O是线段AC的中点,请求线段OB的长.26.(6分)阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a﹣b=a÷b,那么a与b就叫做“差商等数对”,记为(a,b).例如:4﹣2=4÷2;﹣3=÷3;(﹣)﹣(﹣1)=(﹣)÷(﹣1);则称数对(4,2),(,3),(﹣,﹣1)是“差商等数对”.根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是(填序号);①(﹣8.1,﹣9);②(,);③(﹣3,﹣6).(2)如果(x,4)是“差商等数对”,请求出x的值;(3)如果(m,n)是“差商等数对”,那么m=(用含n的代数式表示).27.(7分)如图,某校的“图书码”共有7位数字,它是由6位数字代码和校验码构成,其结构分别代表“种类代码、出版社代码、书序代码和校验码”.其中校验码是用来校验图书码中前6位数字代码的正确性,它的编制是按照特定的算法得来的.以上图为例,其算法为:步骤1:计算前6位数字中偶数位数字的和a,即a=9+1+3=13;步骤2:计算前6位数字中奇数位数字的和b,即b=6+0+2=8;步骤3:计算3a与b的和c,即c=3×13+8=47;步骤4:取大于或等于c且为10的整数倍的最小数d,即d=50;步骤5:计算d与c的差就是校验码X,即X=50﹣47=3.请解答下列问题:(1)《数学故事》的图书码为978753Y,则“步骤3”中的c的值为,校验码Y 的值为.(2)如图①,某图书码中的一位数字被墨水污染了,设这位数字为m,你能用只含有m 的代数式表示上述步骤中的d吗?从而求出m的值吗?写出你的思考过程.(3)如图②,某图书码中被墨水污染的两个数字的差是4,这两个数字从左到右分别是多少?请直接写出结果.2020-2021学年北京市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.在下列数π,+1,6.7,﹣15,0,,﹣1,25%中,属于整数的有()A.2个B.3个C.4个D.5个【分析】根据整数的定义,可得答案.【解答】解:在数π,+1,6.7,﹣15,0,,﹣1,25%中,属于整数的有+1,﹣15,0,﹣1,一共4个.故选:C.2.直线AB,线段CD,射线EF的位置如图所示,下图中不可能相交的是()A.B.C.D.【分析】依据图形中的直线、射线或线段有无交点,即可得到结论【解答】解:A选项中,直线AB与线段CD无交点,符合题意;B选项中,直线AB与射线EF有交点,不合题意;C选项中,线段CD与射线EF有交点,不合题意;D选项中,直线AB与射线EF有交点,不合题意;故选:A.3.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为()A.0.5×1011千克B.50×109千克C.5×109千克D.5×1010千克【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:50 000 000 000=5×1010,故选:D.4.下列说法一定正确的是()A.a的倒数是B.a的相反数是﹣aC.﹣a是负数D.2a是偶数【分析】依据倒数、相反数、负数及偶数的定义逐一判断可得.【解答】解:A.a的倒数是(a≠0),此选项错误;B.a的相反数是﹣a,此选项正确;C.﹣a(a>0)是负数,此选项错误;D.2a(a为整数)是偶数,此选项错误;故选:B.5.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是()A.B.C.D.【分析】根据主视图的概念求解可得.【解答】解:该几何体的主视图如下:故选:C.6.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.a=b+D.=+【分析】分别利用等式的基本性质判断得出即可.【解答】解:由等式3a=2b+5,可得:3a﹣5=2b,3a+1=2b+6,a=,当c=0时,无意义,不能成立,故选:D.7.下列方程中,解为x=﹣3的是()A.3x﹣=0B.x+=0C.x﹣1=0D.6x+=0【分析】依次解各个选项的一元一次方程,选出解为x=﹣3的选项即可.【解答】解:A.解方程3x﹣=0得:x=,即A项错误,B.解方程x+=0得:x=﹣3,即B项正确,C.解方程得:x=3,即C项错误,D.解方程6x+=0得:x=﹣,即D项错误,故选:B.8.若单项式3x2m﹣1y5与单项式﹣5x3y n是同类项,则m,n的值分别为()A.3,5B.2,3C.2,5D.3,﹣2【分析】直接利用同类项的定义分析得出答案.【解答】解:∵单项式3x2m﹣1y5与单项式﹣5x3y n是同类项,∴2m﹣1=3,n=5,解得:m=2,故m,n的值分别为:2,5.故选:C.9.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy ﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.﹣7xy B.+7xy C.﹣xy D.+xy【分析】根据题意得出整式相加减的式子,再去括号,合并同类项即可.【解答】解:由题意得,被墨汁遮住的一项=(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)﹣(﹣x2+y2)=﹣x2+3xy﹣y2+x2﹣4xy+y2+x2﹣y2=﹣xy.故选:C.10.如图,有一块表面刷了红漆的立方体,长为4cm,宽为5cm,高为3cm,现在把它切分成边长为1厘米的小正方形,能够切出两面刷了红漆的正方体有()个.A.48B.36C.24D.12【分析】根据立方体表面刷了红漆,由两面刷了红漆的正方体分布比较特殊,延四周找出即可.【解答】解:∵一块表面刷了红漆的立方体,长为4cm,宽为5cm,高为3cm,现在把它切分成边长为1厘米的小正方形,∴能够切出两面刷了红漆的正方体只在上下两个底面的四周上和4条棱的中间一个,且每个面上4个角上的立方体有3个面刷了漆,∴符合要求的立方体有:(3+3+2+2)×2+4=24,故选:C.二、填空题(本题共16分,每小题2分)11.数a的位置如图,化简|a|+|a+4|=4.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴得:﹣1<a<0,∴a<0,a+4>0,则原式=﹣a+a+4=4.故答案为:4.12.计算:48°47'+53°35'=102°22'.【分析】利用1°=60′,1′=60″进行计算即可.【解答】解:48°47'+53°35'=101°82′=102°22′,故答案为:102°22′.13.已知|x+1|+(y+2)2=0,则x+y=﹣3.【分析】先根据非负数的性质求出x、y,然后代入代数式进行计算即可得解.【解答】解:由题意得x+1=0,y+2=0,解得x=﹣1,y=﹣2,所以x+y=(﹣1)+(﹣2)=﹣3.故答案为:﹣3.14.有理数5.614精确到百分位的近似数为 5.61.【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【解答】解:5.614可看到1在百分位上,后面的4不能进.所以有理数5.614精确到百分位的近似数为5.61.故答案为:5.61.15.已知方程(a﹣2)x2+2ax﹣12=0是关于x的一元一次方程,则a=2.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:依题意得:a﹣2=0且a≠0,解得a=2.故答案是:2.16.已知一个角的补角是它余角的3倍,则这个角的度数为45°.【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【解答】解:设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°﹣α=3(90°﹣α),解得α=45°.故答案为:45°.17.如图,点A在点O的北偏西15°方向,点B在点O的北偏东30°方向,若∠1=∠AOB,则点C在点O的南偏东45°(或东南方向)方向.【分析】根据方向角的表示方法,可得答案.【解答】解:由题意知,∠AOB=15°+30°=45°.∵∠1=∠AOB,∴∠1=45°.∴点C在点O的南偏东45°(或东南方向)方向.故答案是:南偏东45°(或东南方向).18.已知数轴上A、B两点所对应的数分别是1和3,P为数轴上任意一点,对应的数为x.(1)则A、B两点之间的距离为2;(2)式子|x﹣1|+|x﹣3|+…+|x﹣2017|+|x﹣2019|的最小值为510050.【分析】(1)根据两点间的距离公式即可求解;(2)观察已知条件可以发现,|x﹣a|表示x到a的距离.要是题中式子取得最小值,则应该找出与最小数和最大数距离相等的x的值,此时式子得出的值则为最小值.【解答】解:(1)A、B两点之间的距离为3﹣1=2.故答案为:2;(2)由已知条件可知,|x﹣a|表示x到a的距离,只有当x到1的距离等于x到2019的距离时,式子取得最小值.∴当x==1010时,式子取得最小值,此时原式=1009+1007+1005+…+1+1+…+1007+1009=510050.故答案为:510050.三、解答题:19.(8分)计算:(1)﹣(﹣1)3+[(﹣2)2﹣(3﹣4)×5];(2)(﹣+﹣)÷(﹣).【分析】(1)先算乘方,再算乘除,最后算加减即可;(2)先将除法转化为乘法,再根据乘法分配律计算即可.【解答】解:(1)原式=﹣(﹣1)+[4﹣(﹣1)×5]=1+[4﹣(﹣5)]=1+9=10;(2)原式===18﹣24+9=3.20.(8分)解方程:(Ⅰ)2(x﹣2)﹣(1﹣3x)=x+3;(Ⅱ)﹣x=﹣1【分析】(Ⅰ)依次去括号、移项、合并同类项、系数化为1可得;(Ⅱ)依次去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(Ⅰ)2x﹣4﹣1+3x=x+3,2x+3x﹣x=3+4+1,4x=8,x=2;(Ⅱ)4(2x﹣1)﹣12x=3(2x+1)﹣12,8x﹣4﹣12x=6x+3﹣12,8x﹣12x﹣6x=3﹣12+4,﹣10x=﹣5,x=.21.(5分)先化简,再求值:2(3x2+y)﹣(2x2﹣y),其中,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6x2+2y﹣2x2+y=4x2+3y,当,y=﹣1时,原式=1﹣3=﹣2.22.(4分)如图所示,工厂A与工厂B想在公路m旁修建一座共用的仓库O,并且要求O 到A与O到B的距离之和最短,请你在m上确定仓库应修建的O点位置,同时说明你选择该点的理由.【分析】根据两点之间线段最短,连接AB与直线m的交点即为所求.【解答】解:如图,连接AB交直线m于点O,则O点即为所求的点.理由如下:根据连接两点的所有线中,线段最短,∴OA+OB最短.23.(4分)如图,AB∥CD,∠B=∠D,试说明∠1=∠2.请你完成下列填空,把解答过程补充完整.解:∵AB∥CD,∴∠BAD+∠D=180°(两直线平行,同旁内角互补).∵∠B=∠D,∴∠BAD+∠B=180°(等量代换).∴AD∥BC(同旁内角互补,两直线平行).∴∠1=∠2(两直线平行,内错角相等)【分析】根据平行线的性质和平行线的判定解答.【解答】解:∵AB∥CD,∴∠BAD+∠D=180°(两直线平行,同旁内角互补).∵∠B=∠D,∴∠BAD+∠B=180°(等量代换).∴AD∥BC(同旁内角互补,两直线平行).∴∠1=∠2(两直线平行,内错角相等).24.(6分)如图,将连续的偶数2,4,6,8,10,…排成一数阵,有一个能够在数阵中上下左右平移的T字架,它可以框出数阵中的五个数.试判断这五个数的和能否为426?若能,请求出这五个数;若不能,请说明理由.【分析】根据题意结合图形设最小数为x,则其余数为:x+10,x+12,x+14,x+20,进而求出即可.【解答】解:可以求出这五个数.理由如下:设最小数为x,则其余数为:x+10,x+12,x+14,x+20.由题意得,x+(x+10)+(x+12)+(x+14)+(x+20)=426,解方程得:x=74.所以这五个数为74,84,86,88,94.25.(6分)如图,点B是线段AC上一点,且AB=21cm,BC=AB.(1)试求出线段AC的长;(2)如果点O是线段AC的中点,请求线段OB的长.【分析】(1)由B在线段AC上可知AC=AB+BC,把AB=21cm,BC=AB代入即可得到答案;(2)根据O是线段AC的中点及AC的长可求出CO的长,由OB=CO﹣BC即可得出答案.【解答】解:(1)∵AB=21cm,BC=AB=7cm,∴AC=AB+BC=21+7=28(cm);(2)由(1)知:AC=28cm,∵点O是线段AC的中点,∴CO=AC=×28=14(cm),∴OB=CO﹣BC=14﹣7=7(cm).26.(6分)阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a﹣b=a÷b,那么a与b就叫做“差商等数对”,记为(a,b).例如:4﹣2=4÷2;﹣3=÷3;(﹣)﹣(﹣1)=(﹣)÷(﹣1);则称数对(4,2),(,3),(﹣,﹣1)是“差商等数对”.根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是①(填序号);①(﹣8.1,﹣9);②(,);③(﹣3,﹣6).(2)如果(x,4)是“差商等数对”,请求出x的值;(3)如果(m,n)是“差商等数对”,那么m=(用含n的代数式表示).【分析】(1)利用题中的新定义判断即可;(2)根据题中的新定义列出方程,求出方程的解即可得到x的值;(3)利用题中的新定义得到等式,表示出m即可.【解答】解:(1)①∵﹣8.1﹣(﹣9)=﹣8.1+9=0.9,﹣8.1÷(﹣9)=0.9,∴﹣8.1﹣(﹣9)=﹣8.1÷(﹣9),∴(﹣8.1,﹣9)是“差商等数对”;②∵,,∴,∴不是“差商等数对”;③∵﹣3﹣(﹣6)=﹣3+6=3,,∴﹣3﹣(﹣6)≠﹣3÷(﹣6),∴(﹣3,﹣6)不是“差商等数对”;故答案为:①;(2)由题意得:,解得;(3)由题意得:,解得,故答案为:.27.(7分)如图,某校的“图书码”共有7位数字,它是由6位数字代码和校验码构成,其结构分别代表“种类代码、出版社代码、书序代码和校验码”.其中校验码是用来校验图书码中前6位数字代码的正确性,它的编制是按照特定的算法得来的.以上图为例,其算法为:步骤1:计算前6位数字中偶数位数字的和a,即a=9+1+3=13;步骤2:计算前6位数字中奇数位数字的和b,即b=6+0+2=8;步骤3:计算3a与b的和c,即c=3×13+8=47;步骤4:取大于或等于c且为10的整数倍的最小数d,即d=50;步骤5:计算d与c的差就是校验码X,即X=50﹣47=3.请解答下列问题:(1)《数学故事》的图书码为978753Y,则“步骤3”中的c的值为73,校验码Y的值为7.(2)如图①,某图书码中的一位数字被墨水污染了,设这位数字为m,你能用只含有m 的代数式表示上述步骤中的d吗?从而求出m的值吗?写出你的思考过程.(3)如图②,某图书码中被墨水污染的两个数字的差是4,这两个数字从左到右分别是多少?请直接写出结果.【分析】(1)根据特定的算法代入计算即可求解;(2)根据特定的算法依次求出a,b,c,d,再根据d为10的整数倍即可求解;(3)根据校验码为8结合两个数字的差是4即可求解.【解答】解:(1)∵《数学故事》的图书码为978753Y,∴a=7+7+3=17,b=9+8+5=22,则“步骤3”中的c的值为3×17+22=73,校验码Y的值为80﹣73=7.故答案为:73,7;(2)依题意有a=m+1+2=m+3,b=6+0+0=6,c=3a+b=3(m+3)+6=3m+15,d=c+X=3m+15+6=3m+21,∵d为10的整数倍,∴3m的个位数字只能是9,∴m的值为3;(3)可设这两个数字从左到右分别是p,q,依题意有a=p+9+2=p+11,b=6+1+q=q+7,c=3(p+11)+(q+7)=3p+q+40,则3p+q的个位是2,∵|p﹣q|=4,∴p=4,q=0或p=9,q=5或p=2,q=6.故这两个数字从左到右分别是4,0或9,5或2,6.。
2020-2021学年七年级上学期期末考试数学试题含参考答案
2020年秋学期期末测试七年级数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.﹣3的相反数是()A.1 3B.13-C.3 D.﹣3 2.下列几何体,都是由平面围成的是()A.圆柱B.三棱柱C.圆锥D.球3.下列各式中,正确的是()A.22a b ab+=B.224235x x x+=C.()3434x x--=--D.2222a b a b a b-+= 4.已知关于x的一元一次方程3240x a--=的解是2x=,则a的值为()A.﹣5 B.﹣1 C.1 D.55.如图,是一个正方体的表面展开图.若该正方体相对面上的两个数和为0,则a b c+-的值为()A.﹣6 B.﹣2 C.2 D.46.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.34二、填空题(本大题共有10小题,每小题3分,共30分)7.2021的绝对值是.8.双十一购物狂欢节,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,2020年双十一购物狂欢节全网销售额高达267 400 000 000元,将267 400 000 000用科学记数法表示为_____________.9.若∠A=34°,则∠A的补角等于____________°.10.请写出一个系数是﹣3、次数是4的单项式:_______________.11.如图是某个几何体的三视图,则该几何体的名称是_______________.12.已知2320x y-+=,则22(3)5x y-+的值为_______________.13.若一个等腰三角形的两边长分别为4cm 和9cm,则这个等腰三角形的周长是_______cm.14.若多项式23352x kxy--与2123xy y-+的和中不含xy项,则k的值是_________.15.如图,在ΔABC中,BD平分∠ABC交AC于点D,EF∥BC交BD于点G,若∠BEG=130°,则∠DGF=________°.16.如图,是一个长、宽、高分别为a、b、c(a>b>c)长方体纸盒,将此长方体纸盒沿不同的棱剪(第5题图)(第6题图)(第11题图)(第15题图)(第16题图)开,展成的一个平面图形是各不相同的.则在这些不同的平面图形中,周长最大的值是_______________.(用含a 、b 、c 的代数式表示)三、解答题(本大题共有8小题,共102分.解答时应写出必要的步骤)17.(本题12分)计算: (1)213(4)33⎛⎫---+-+ ⎪⎝⎭; (2)()2020112(3)2---+-÷.18.(本题8分)解下列方程:(1)43211x x -=+; (2)21)1323(x x --=-.19.(本题8分)先化简,再求值:22222(5)2(2)a b ab a b a b ab +-+--,其中1a =-,3b =.20.(本题8分)若方程2(31)12x x +=+的解与关于x 的方程622(3)3kx -=+的解互为倒数,求k 的值.21.(本题10分)如图是由相同边长的小正方形组成的网格图形,小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,△ABC 的三个顶点都在格点上,利用网格画图.(注:所画格点、线条用黑色水笔描黑)(1)过点A 画BC 的垂线,并标出垂线所过格点P ;(2)过点A 画BC 的平行线,并标出平行线所过格点Q ; (3)画出△ABC 向右平移8个单位长度后△A ′B ′C ′的位置;(4)△A ′B ′C ′的面积为________.22.(本题10分)用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =a (a +b ). 例如:1※2=1×(1+2)=1×3=3. (1)求(﹣3) ※5的值;(2)若(﹣2) ※(3x -2)=x +1,求x 的值.23.(本题10分)如图,已知直线AB,CD相交于点O,∠AOE与∠AOC互余.(1)若∠BOD=32°,求∠AOE的度数;(2)若∠AOD:∠AOC=5∶1,求∠BOE的度数.24.(本题10分)如图1,直线MN∥PQ、ΔABC按如图放置,∠ACB=90°,AC、BC分别与MN、PQ相交于点D、E,若∠CDM=40°.(1)求∠CEP的度数;(2)如图2,将△ABC绕点C逆时针旋转,使点B落在PQ上得△A'B'C,若∠CB'E=22°,求∠A'CB的度数.25.(本题12分)全球新冠疫情爆发后,口罩成了急需物资,中国企业积极采购机械生产口罩,为全球抗击疫情作出了贡献.某企业准备采购A、B两种机械共15台,用于生产医用口罩和N95医用防护口罩,A种机械每天每台可以生产医用口罩7万个,B种机械每天每台可以生产N95医用防护口罩2万个,根据疫情需要每天生产的医用口罩要求是N95医用防护口罩的4倍.(1)求该企业A、B两种机械各需要采购多少台?(2)设该企业每天生产数量相同的同一类型口罩,每天销售9万元,并提供优惠政策:购买不超过10天不优惠,超过10天不超过20天的部分打九折,超过20天不超过30天的部分打8折,超过30天的部分打7折.①某国内医疗机构购买了该企业2周的口罩产量,问应付多少钱?②某国外医疗机构一次性付款207万元,问医疗机构购买了多少天的口罩产量?26.(本题14分)两个完全相同的长方形ABCD 、EFGH ,如图所示放置在数轴上. (1)长方形ABCD 的面积是__________.(2)若点P 在线段AF 上,且PE +PF =10,求点P 在数轴上表示的数.(3)若长方形ABCD 、EFGH 分别以每秒1个单位长度、3个单位长度沿数轴正方向移动.设两个长方形重叠部分的面积为S ,移动时间为t .①整个运动过程中,S 的最大值是____________,持续时间是__________秒. ②当S 是长方形ABCD 面积一半时,求t 的值.附加题1.如图①,在长方形 A BCD 中, E 点在 A D 上,并且∠ABE = 28︒ ,分别以 B E 、CE 为折痕进行折叠并压平,如图②,若图②中∠A ED =n ︒,则∠D E C 2. 如上图,已知点A 是射线BE 上一点,过A 作AC ⊥BF ,垂足为C ,CD ⊥BE ,垂足为D ,给出下列结论:①∠1是∠ACD 的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF ;④与∠ADC 互补的角共有3个.其中正确结论有_____. 3.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长. (2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?2020年秋学期期末学业质量测试七年级数学参考答案题号 1 2 3 4 5 6 答案CBDCBD(本大题共有10题,每小题3分,共30分)7. 2021 8. 2.674×1011 9. 146 10.﹣3x 4(答案不唯一) 11. 六棱柱 12. 1 13. 22 14. 8 15. 25 16. 8a +4b +2c三、解答题(本大题共有8题,共102分.解答时应写出必要的步骤)17.(1)解:原式213433=-+-+(2分) 21(34)33⎛⎫=--++ ⎪⎝⎭(2分)71=-+6=- (2分)(2)解:原式12(3)2=-+-⨯(3分) 16=-- (1分) 7=- (2分) 18.(1)解:42311x x -=+ (2分) 214x = (1分) 7x = (1分)(2)解:()32196x x --=- (1分) 32196x x -+=- (1分) 1110x -=- (1分)1011x = (1分) 19.解:原式22222524a b ab a b a b ab =-+-+(2分)22222254a b a b a b ab ab =+--+2ab =- (3分) 当1a =-,3b =时,()2213ab -=--⨯ (2分)9= (1分)20.解: ()23112x x +=+6212x x +=+41x =-14x =- (2分)14-的倒数是4-(2分) 将4-代入方程()62233kx -=+ 则6223k-=-(2分)626k -=- 212k -=-6k = (2分)21.(1)画出垂线(1分) (2)标出格点P (1分) (2)画出平行线(1分)只要标出1个格点Q (1分) (3)画出三角形(2分)标出字母(1分) (4)9.5 (3分)22.解:(1)由题意知,()3-※5()()335=-⨯-+⎡⎤⎣⎦ (2分)()32=-⨯ 6=- (2分)(2)由题意知,()2-※(32)x -()()()2232x =-⨯-+-⎡⎤⎣⎦(2分)()()234x =-⨯- 68x =-+(2分)因为()2-※(32)1x x -=+ 所以681x x -+=+(1分)77x -=-1x = (1分)23.解:(1)因为∠AOC 与∠BOD 是对顶角所以∠AOC =∠BOD =32°(1分) 因为∠AOE 与∠AOC 互余所以∠AOE +∠AOC =90°(1分) 所以∠AOE =90°-∠AOC (1分)=90°-32° =58° (2分)(2)因为∠AOD :∠AOC =5:1所以∠AOD =5∠AOC (1分) 因为∠AOC +∠AOD =180°(1分) 所以6∠AOC =180°∠AOC =30°(1分) 由(1)知∠BOD =∠AOC =30°∠COE =∠DOE =90°(1分)所以∠BOE =∠DOE +∠BOD=90°+30° =120°(1分)24.解:(1)连接DE因为MN ∥PQ所以∠MDE +∠PED =180°(2分)即∠CDM +∠CEP +∠CDE +∠CED =180° 因为∠CDE +∠CED +∠DCE =180°所以∠CDM +∠CEP =∠DCE =90°(1分) 所以∠CEP =90°-∠CDM=90°-40° =50°(2分)(2)由(1)知∠CEP =50°因为∠CEP +∠CEB '=180° 所以∠CEB '=180°-∠CEP=180°-50° =130°(1分)因为∠ECB '+∠CEB '+∠CB 'E =180° 所以∠ECB '=180°-∠CEB '-∠CB 'E=180°-130°-22° =28°(1分)因为∠A 'CB '是由∠ACB 旋转得到 所以∠A 'CB '=∠ACB =90°(1分) 所以∠A 'CB =∠A 'CB '+∠ECB '=90°+28° =118°(2分)25.解:(1)设采购A 种机械x 台,则采购B 种机械(15-x )台.(1分)由题意得742(15)x x =⨯-(3分)解得8x =151587x -=-=答:采购A 种机械8台,采购B 种机械7台.(2分) (2)①两周=14天9×10+9×0.9×4 (1分) =90+32.4=122.4(万元)答:应付122.4万元.(1分)②购买20天费用:9×10+8.1×10=171(万元)购买30天费用:9×10+8.1×10+7.2×10=243(万元) 171<207<243设国外医疗机构购买了y 天的口罩产量(20<y <30) 则9×10+8.1×10+7.2×(y -20)=207(2分) 解得y =25答:国外医疗机构购买了25天的口罩产量.(2分)26.(1)48 (3分)(2)设点P 在数轴上表示的数是x , 则(10)10PE x x =--=+(4)4PF x x =--=+ (1分) 因为10PE PF +=所以(10)(4)10x x +++= (1分) 解得2x =-答:点P 在数轴上表示的数是﹣2.(1分)(3)①36;1 (4分) ②由题意知移动t 秒后,点E 、F 、A 、B 在数轴上分别表示的数是 103t -+、43t -+、2t +、10t + 情况一:当点A 在E 、F 之间时(43)(2)26AF t t t =-+-+=- 由题意知148242AF AD S ⋅==⨯= 所以()62624t ⋅-=解得5t =(2分)情况二:当点B 在E 、F 之间时()()10103202BE t t t =+--+=-由题意知148242BE BC S ⋅==⨯=所以()620224t ⋅-= 解得8t =(1分)综上所述,当S 是长方形ABCD 面积一半时,5t =或8.(1分)附加题1.(28+1/2 n )°2. 答案为①④.3. 【答案】解:(1)∵OA =10cm ,OB =5cm ,∴AB =OA +OB =15cm . ∵点C 是线段 AB 的中点,∴AC =12AB =7.5cm ,∴CO =AO -AC =10-7.5=2.5(cm ). (2)①∵PQ =1,∴|15-(4x -3x )|=1,∴|15-x |=1,∴15-x =±1,解得:x =14或16.②∵PM =10+7x -4x =10+3x ,OQ =5+3x ,OM =7x ,∴4PM +3OQ ﹣mOM =4(10+3x )+3(5+3x )-7mx =55+(21-7m )x ,要使4PM +3OQ ﹣mOM定值,则21-7m =0,解得:m =3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t -2t =90,解得:t =22.5; ②如图2,根据题意得:6t +90=360+2t ,解得:t =67.5.综上所述:当t =22.5秒和67.5秒时,射线 OC ⊥OD .。
2020-2021学年北京市西城区七年级(上)期末数学试卷(附答案详解)
2020-2021学年北京市西城区七年级(上)期末数学试卷1.−23的相反数是()A. −23B. 23C. 32D. −322.国家统计局公布的数据显示,经初步核算,2020年尽管受到新冠疫情的影响,前三个季度国内生产总值仍然达到近697800亿元,按可比价格计算,同比增长了6.2%.将数据697800用科学记数法表示为()A. 697.8×103B. 69.78×104C. 6.978×105D. 0.6978×1063.下列计算正确的是()A. −2(a−b)=−2a+bB. 2c2−c2=2C. 3a+2b=5abD. x2y−4yx2=−3x2y4.如图是某个几何体的平面展开图,则这个几何体是()A. 长方体B. 三棱柱C. 四棱锥D. 三棱锥5.下列方程变形中,正确的是()A. 方程x−12−x5=1,去分母得5(x−1)−2x=10B. 方程3−x=2−5(x−1),去括号得3−x=2−5x−1C. 方程23t=32,系数化为1得t=1D. 方程3x−2=2x+1,移项得3x−2x=−1+26.如图,OA表示北偏东20°方向的一条射线,OB表示南偏西50°方向的一条射线,则∠AOB的度数是()A. 100°B. 120°C. 140°D. 150°7.若x2−3x=4,则3x2−9x+8的值是()A. 20B. 16C. 4D. −48.如图,数轴上的点A表示的数为有理数a,下列各数中在0,1之间的是()A. |a|B. −aC. |a|−1D. a+19.下列说法正确的是()(1)如果互余的两个角的度数之比为1:3,那么这两个角分别为45°和135°(2)如果两个角是同一个角的补角,那么这两个角不一定相等(3)如果两个角的度数分别是73°42′和16°18′,那么这两个角互余(4)一个锐角的余角比这个锐角的补角小90°A. 1个B. 2个C. 3个D. 4个10.如图表示3×3的数表,数表每个位置所对应的数都是1,2或3.定义a∗b为数表中第a行第b列的数,例如,数表第3行第1列所对应的数是2,所以3∗1=2.若2∗3=(2x+1)∗2,则x的值为()A. 0,2B. 1,2C. 1,0D. 1,311.用四舍五入法取近似数:2.7682≈______.(精确到0.01)12.若x=−1是关于x的方程2x−m=5的解,则m的值是______.13.若−12x m+3y与2x4y n+3是同类项,则(m+n)21=______.14.如图所示的网格是正方形网格,则∠AOB______∠MPN.(填“>”,“=”或“<”)15.用符号[a,b]表示a,b两数中的较大者,用符号(a,b)表示a,b两数中的较小者,则[−1,−12]+(0,−32)的值为______.16.我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题“今有五等诸侯,共分橘子60颗,人别加三颗,问五人各得几何?”题目大意是:诸侯5人,共同分60个橘子,若后面的人总比前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x个,依题意可列方程得______.17.如图,C,D,E为线段AB上三点,AB=2,则AB的长为______;(1)若DE=15CD,则CD的长为______.(2)在(1)的条件下,若点E是DB的中点,AC=1318.有四个大小完全相同的小长方形和两个大小完全相同的大长方形按如图所示的位置摆放,按照图中所示尺寸,小长方形的长与宽的差是______(用含m,n的式子表示).19.如图,已知平面内有四个点A,B,C,D.根据下列语句按要求画图.(1)连接AB;(2)作射线AD,并在线段AD的延长线上用圆规截取DE=AB;(3)作直线BC与射线AD交于点F.观察图形发现,线段AF+BF>AB,得出这个结论的依据是:______.20.计算:(1)13+(−24)−25−(−20);(2)25÷5×(−15)÷(−34);(3)(−79+56−34)×(−36); (4)−14−(1−0.5)×13×|1−(−5)2|.21. 先化简,再求值:(3ab 2−a 2b)−a 2b −2(2ab 2−a 2b),其中a =1,b =−2.22. 解下列方程:(1)3(x +1)=5x −1;(2)2x −13=2x +16−123. 解方程组:{2x +3y =−34x +5y =−7.24.请补全下面的解题过程(括号中填写推理的依据)已知:如图,点A,O,B在同一条直线上,OD平分∠AOE,∠COD=90°.求证:OC是∠BOE的平分线.证明:因为OD是∠AOE的平分线,所以∠AOD=∠DOE.(理由:______)因为∠COD=90°.所以∠DOE+∠______=90°,∠AOD+∠BOC=180°−∠COD=______°.因为∠AOD=∠DOE,所以∠______=∠______.(理由:______)所以OC是∠BOE的平分线.25.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.26.数轴上有A,B两个点,点A在点B的左侧,已知点B表示的数是2,点A表示的数是a.(1)若a=−3,则线段AB的长为______;(直接写出结果)(2)若点C在线段AB之间,且AC−BC=2,求点C表示的数;(用含a的式子表示)(3)在(2)的条件下,点D在数轴上C点左侧,AC=2AD,BD=4BC,求a的值.27.观察下列等式,探究其中的规律并回答问题:1+8=32,1+8+16=52,1+8+16+24=72,1+8+16+24+32=k2,…,(1)第4个等式中正整数k的值是______;(2)第5个等式是:______;(3)第n个等式是:______.(其中n是正整数)28.如图所示的三种拼块A,B,C,每个拼块都是由一些大小相同、面积为1个单位的小正方形组成,如编号为A的拼块的面积为3个单位.现用若干个这三种拼块拼正方形,拼图时每种拼块都要用到,且这三种拼块拼图时可平移、旋转,或翻转.(1)若用1个A种拼块,2个B种拼块,4个C种拼块,则拼出的正方形的面积为______个单位.(2)在图1和图2中,各画出了一个正方形拼图中1个A种拼块和1个B种拼块,请分别用不同的拼法将图1和图2中的正方形拼图补充完整.要求:所用的A,B,C三种拼块的个数与(1)不同,用实线画出边界线,拼块之间无缝隙,且不重叠.(AB+ 29.对于数轴上的点A,B,C,D,点M,N分别是线段AB,CD的中点,若MN=e2 CD),则将e的值称为线段AB,CD的相对离散度.特别地,当点M,N重合时,规定e=0.设数轴上点O表示的数为0,点T表示的数为2.(1)若数轴上点E,F,G,H表示的数分别是−3,−1,3,5,则线段EF,OT的相对离散度是______,线段FG,EH的相对离散度是______;(2)设数轴上点O右侧的点S表示的数是s,若线段OS,OT的相对离散度为e=1,2求s的值;(3)数轴上点P,Q都在点O的右侧(其中点P,Q不重合),点R是线段PQ的中点,设线段OP,OT的相对离散度为e1,线段OQ,OT的相对离散度为e2,当e1=e2时,直接写出点R所表示的数r的取值范围.答案和解析1.【答案】B【解析】解:−23的相反数为23.故选:B .一个非0数的相反数就是只有符号不同的两个数.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【答案】C【解析】解:697800用科学记数法表示为6.978×105,故选:C .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.【答案】D【解析】解:A 、−2(a −b)=−2a +2b ,故此选项错误;B 、2c 2−c 2=c 2,故此选项错误;C 、3a +2b ,无法合并,故此选项错误;D 、x 2y −4yx 2=−3x 2y ,正确.故选:D .直接利用合并同类项分别计算得出答案此题主要考查了整式的加减,正确合并同类项是解题关键.4.【答案】C【解析】解:由图可知展开侧面为三角形,则该几何体为棱锥,再由底而为四边形,则可得此几何体为四棱锥.故选:C.由图可知展开侧面为三角形,则该几何体为棱锥,再由底而为四边形,则可得此几何体.此题主要考查的是几何体的展开图,熟记几何体的侧面、底面图形特征即可求解.5.【答案】A【解析】解:∵方程x−12−x5=1,去分母得5(x−1)−2x=10,∴选项A符合题意;∵方程3−x=2−5(x−1),去括号得3−x=2−5x+5,∴选项B不符合题意;∵方程23t=32,系数化为1得t=94,∴选项C不符合题意;∵方程3x−2=2x+1,移项得3x−2x=1+2,∴选项D不符合题意.故选:A.根据等式的性质,逐项判断即可.此题主要考查了解一元一次方程的方法,要熟练掌握,注意等式的性质的应用.6.【答案】D【解析】解:因为OA表示北偏东20°方向的一条射线,OB表示南偏西50°方向的一条射线,所以∠AOB=20°+90°+(90°−50°)=150°.故选:D.根据方向角的定义可直接确定∠AOB的度数.本题考查了方向角及其计算.掌握方向角的概念是解题的关键.7.【答案】A【解析】解:∵x2−3x=4,∴3x2−9x−15=3(x2−3x)+8=3×4+8=20,故选:A.先把3x2−9x+8变形为3(x2−3x)+8,然后利用整体代入的方法计算.此题考查了代数式求值,利用了整体代入的思想进行解答是解题关键.8.【答案】C【解析】解:由图可知−2<a<−1,A、|a|>1,故A不符合题意,B、−a>1,故B不符合题意,C、1<|a|<2,则0<|a|−1<1,故C符合题意,D、−2<a<−1,则−1<a+1<0,故D不符合题意,故选:C.根据数轴上a的位置可得a得范围,从而得到答案.本题考查数轴、绝对值及有理数的运算,题目较容易,关键是根据数轴上点的位置判断a得范围.9.【答案】B【解析】解:(1)如果互余的两个角的度数之比为1:3,那么这两个角分别为22.5°和67.5°,故原说法错误;(2)如果两个角是同一个角的补角,那么这两个角一定相等,故原说法错误;(3)如果两个角的度数分别是73°42′和16°18′,那么这两个角互余,故原说法正确;(4)一个锐角的余角比这个锐角的补角小90°,故正确.正确的个数有2个,故选:B.根据余角和补角的定义,结合度分秒的换算逐项计算可判断求解.本题主要考查补角和余角,灵活运用余角和补角的性质及求解角的度数是解题的关键.10.【答案】C【解析】解:∵2∗3=(2x+1)∗2,∴(2x+1)∗2=3,根据数表,可得:2x+1=3或2x+1=1,解得:x=1或x=0.故选:C.首先根据题意,由2∗3=(2x+1)∗2,可得:(2x+1)∗2=3,然后根据数表,可得:2x+1=3或2x+1=1,据此求出x的值为多少即可.此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.11.【答案】2.77【解析】解:2.7682≈2.77.(精确到0.01).故答案为:2.77.把千分位上的数字8进行四舍五入即可;本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.12.【答案】−7【解析】解:把x=−1代入方程得:−2−m=5,解得:m=−7,故答案是:−7.把x=−1代入方程计算即可求出m的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.【答案】−1【解析】解:由题意得:m +3=4,n +3=1,∴m =1,n =−2,∴(m +n)21=(1−2)21=−1,故答案为:−1.根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.本题考查了同类项.解题的关键是熟练掌握同类项的定义.14.【答案】=【解析】解:根据网格的特征以及角的表示可知,∠MPN =∠COD ,而∠COD =∠AOB ,因此∠MPN =∠AOB ,故答案为:=.根据正方形网格的特征,以及角叉开的程度进行判断即可.本题考查角的大小比较,理解角的意义和正方形网格特征是正确判断的前提.15.【答案】−2【解析】解:根据题意得:[−1,−12]+(0,−32)=−12+(−32)=−2.故答案为:−2.根据题意列出算式,计算即可得到结果.此题主要考查了有理数大小比较,熟记有理数大小比较的方法是解答本题的关键. 16.【答案】(x −6)+(x −3)+x +(x +3)+(x +6)=60【解析】解:设中间的那个人分得x 个,由题意得:(x −6)+(x −3)+x +(x +3)+(x +6)=60,故答案为:(x −6)+(x −3)+x +(x +3)+(x +6)=60.设中间的那个人分得x个,则其它四人各分得(x−6)个,(x−3)个,(x+3)个,(x+6)个,根据共分橘子60颗列出方程即可.此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.17.【答案】10 92【解析】解:(1)∵DE=15AB=2,∴AB=10;(2)∵点E是DB的中点,DE=2,∴DB=2DE=4,∵AB=10,∴AD=AB−DB=10−4=6,∵AC=13CD,∴CD=34AD=92.故答案为92.(1)由15AB=2计算可求解AB的长;(2)由中点的定义可求得DB的长,结合AB的长可得AD=6,结合已知条件可求解CD 的长.本题主要考查线段的中点,两点间的距离,求解线段AD的长是解题的关键.18.【答案】m−n2【解析】解:设小长方形的长为x,宽为y,根据题意得:m+y−x=n+x−y,即2x−2y=m−n,整理得:x−y=m−n2.则小长方形的长与宽的差是m−n2.故答案为:m−n2.设小长方形的长为x,宽为y,根据题意由大长方形的长度相等列出方程求出x−y的值,即为长与宽的差.此题考查了二元一次方程的应用,解题关键是弄清题意,找到合适的等量关系,列出方程,注意整体思想的运用.19.【答案】两点之间,线段最短【解析】解:(1)如图,AB即为所求;(2)如图,射线AD即为所求;(3)直线BC即为所求;线段AF+BF>AB,得出这个结论的依据是:两点之间,线段最短.故答案为:两点之间,线段最短.(1)根据作图语句连接AB即可;(2)根据射线和线段的定义即可作射线AD,并在线段AD的延长线上用圆规截取DE= AB;(3)根据直线和射线定义即可作直线BC与射线AD交于点F,进而可得出结论的依据.本题考查了作图−复杂作图,直线、射线、线段,线段的性质:两点之间,线段最短,解决本题的关键是掌握基本作图方法.20.【答案】解:(1)原式=13−24−25+20=−16;(2)原式=25×15×15×43=43;(3)原式=−79×(−36)+56×(−36)−34×(−36)=28−30+27 =25;×24(4)原式=−1−0.5×13=−1−4=−5.【解析】(1)原式利用减法法则变形,计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.【答案】解:原式=3ab2−a2b−a2b−4ab2+2a2b=−ab2,当a=1,b=−2时,原式=−1×(−2)2=−4.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)去括号,可得:3x+3=5x−1,移项,可得:3x−5x=−1−3,合并同类项,可得:−2x=−4,系数化为1,可得:x=2.(2)去分母,可得:2(2x−1)=2x+1−6,去括号,可得:4x−2=2x+1−6,移项,可得:4x−2x=1−6+2,合并同类项,可得:2x=−3,.系数化为1,可得:x=−32【解析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.23.【答案】解:{2x +3y =−3①4x +5y =−7②, ②−①×2得:−y =−1,解得:y =1,把y =1代入①得:x =−3,则方程组的解为{x =−3y =1.【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.【答案】角平分线的定义 COE 90 COE BOC 等角的余角相等【解析】证明:因为OD 是∠AOE 的平分线,所以∠AOD =∠DOE.(理由:角平分线的定义),因为∠COD =90°.所以∠DOE +∠COE =90°,∠AOD +∠BOC =180°−∠COD =90°,因为∠AOD =∠DOE ,所以∠COE =∠BOC(理由:等角的余角相等),所以OC 是∠BOE 的平分线.故答案依次为:角平分线的定义,COE ,90,COE ,BOC ,等角的余角相等. 根据角平分线的定义,以及等角的余角相等逐步推理证明∠COE =∠BOC 即可求证OC 是∠BOE 的平分线.本题考查角平分线的定义以及证明推理过程的正确书写,熟练掌握角平分线的定义,以及等角的余角相等逐步推理证明∠COE =∠BOC 是解题的关键.25.【答案】解:(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,依题意,得:{2x +3y =803x +2y =95,解得:{x =25y =10, 答:A 型汽车每辆的进价为25万元,B 型汽车每辆的进价为10万元.(2)设购进A 型汽车m 辆,购进B 型汽车n 辆,m <n ,依题意,得:25m +10n =200,∴m =8−25n.∵m ,n 均为正整数,∴n 为5的倍数,∴{m =6n =5或{m =4n =10或{m =2n =15, ∵m <n ,∴{m =6n =5不合题意舍去, ∴共2种购买方案,方案一:购进A 型车4辆,B 型车10辆;方案二:购进A 型车2辆,B 型车15辆.【解析】(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,根据“2辆A 型汽车、3辆B 型汽车的进价共计80万元;3辆A 型汽车、2辆B 型汽车的进价共计95万元”,列出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进A 型汽车m 辆,购进B 型汽车n 辆,根据总价=单价×数量,即可得出关于m ,n 的二元一次方程,结合m ,n 均为正整数即可得出各购买方案.本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.26.【答案】5【解析】解:(1)AB =2−(−3)=5.故答案为:5;(2)设点C 表示的数为x ,则AC =x −a ,BC =2−x ,∵AC −BC =2,∴x −a −(2−x)=2,解得x=2+ a2.∴点C表示的数为2+a2;(3)依题意AC=x−a=2+ a2−a=2− a2,AD=12AC=12(2− a2)=1−a4,AB=2−a,BD=4BC=4(2−x)=4(2−2− a2)=−2a.分两种情况:①当点D在点A的左侧时,∵BD=AB+AD,∴−2a=2−a+1−a4,解得a=−4;②当点D在点A的右侧,点C的左侧时,∵BD=AB−AD,∴−2a=2−a−1+a4,解得a=−45.综上,a的值是−4或−45.(1)根据点A、B表示的数利用两点间的距离公式即可求出AB的长度;(2)设点C表示的数为x,则AC=x−a,BC=2−x,根据AC−BC=2,即可得出关于x的一元一次方程,解之即可得出结论;(3)根据题意得到AC=x−a=2− a2,AD=12AC=1−a4,AB=2−a,BD=4BC=−2a.再分①点D在点A的左侧时,BD=AB+AD;②点D在点A的右侧,点C的左侧时,BD=AB−AD,分别列出方程,解之即可.本题考查了数轴和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27.【答案】9 1+8+16+24+32+40=1121+8+16+24+32+...+8n=(2n+ 1)2【解析】解:(1)1+8+16+24+32=k2,且k取正整数,∴k=9,故答案为:9;(2)观察上面的规律可得:第5个等式是:1+8+16+24+32+40=112,故答案为:1+8+16+24+32+40=112;(3)根据已知等式可归纳为:第n个等式是:1+8+16+24+32+...+8n=(2n+1)2.故答案为:1+8+16+24+32+...+8n=(2n+1)2.(1)根据给出的算式计算即可;(2)总结规律继续写出第5个算式即可;(3)根据上面的式子可归纳第n个等式为1+8+16+24+32+...+8n=(2n+1)2.本题主要考查数字的变化规律,总结归纳出数字的变化规律是解题的关键.28.【答案】25【解析】解:(1)1个A种拼块,2个B种拼块,4个C种拼块,面积=3+6+16=25,故答案为:25.(2)图形如图所示:(1)求出各个图形的面积和即可.(2)分别用3个A,2G B,1个C或4个A,1个吧,1个C,拼面积为25的正方形即可.本题考查利用旋转,平移设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.29.【答案】32【解析】解:(1)∵点E,F表示的数分别是−3,−1,∴EF=2,EF的中点M对应的数为−2.∵数轴上点O表示的数为0,点T表示的数为2,∴OT=2,OT的中点N所对应的数为1.∴MN=3.∵MN=e2(EF+OT),∴3=e2(2+2).∴e=32;∵数轴上点E,F,G,H表示的数分别是−3,−1,3,5,∴FG=4,FG的中点J对应的数为1,EH=8,EH的中点K对应的数为1,∴JK=0,∴e=0.故答案为:32;0;(2)设线段OS,OT的中点为L,K,∵数轴上点O右侧的点S表示的数是s,点T表示的数为2,∴OS=s,OT=2.∴点L,K在数轴上表示的数为s2,1,∴LK=|1−s2|.∵线段OS,OT的相对离散度为e=12,∴|1−s2|=12×12(s+2).∴s+2=|4−2s|.解得:s=23或s=6.答:s的值为23或6.(3)r≥2.理由:数轴上点P,Q在数轴上对应的数为m,n,∵数轴上点P,Q都在点O的右侧(其中点P,Q不重合),∴m>0,n>0,且m≠n.∵点R是线段PQ的中点,∴点R所表示的数r=m+n2.设线段OP,OT的中点为M,N,则M对应的数为m2,N点对应的数为1,∵线段OP,OT的相对离散度为e1,∴|m2−1|=e12(m+2).∴e1=|m−2|m+2.同理可得:e2=|n−2|n+2.∵e1=e2,∴|m−2|m+2=|n−2|n+2.①当m−2>0,n−2>0时,解得:m=n,∵点P,Q不重合,∴m≠n,舍去;②当m−2<0,n−2<0时,解得:m=n,同样,不合题意舍去;③当m−2>0,n−2<0时,解得:mn=4.④当m−2<0,n−2>0时,解得:mn=4.综上,mn=4.∵m2−2mn+n2=(m−n)2≥0,∴(m−n)2+4mn≥4mn.∴(m+n)2≥16.∴(m+n)24≥4.即(m+n2)2≥4.∴m+n2≥2.即r≥2.(1)依据相对离散度的计算公式,解答即可;(2)利用对离散度的计算公式,列出关于s的方程,解方程即可得出结论;(3)设P,Q对应的数为m,n,则R对应的数r=m+n;利用对离散度的计算公式,分2别得出e1,e2,利用e1=e2时,根据分类讨论的思想得到m,n的关系式,最终得出r 的取值范围.本题主要考查了数轴,数轴上的点的几何意义,绝对值的意义,非负数的应用.本题是阅读型题目,准确理解题目中的定义与公式并熟练应用是解题的关键.。
北京市西城区2020—2021学年度第一学期期末试卷(含答案)
北京市西城区2020—2021学年度第一学期期末试卷高三语文2021.1本试卷共10页,共150分。
考试时长150分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
一、本大题共5小题,共18分。
阅读下面的材料,完成1-5题。
材料一建国七十年来,我国粮食产量稳步提升,其中科技的贡献有目共睹。
科技选种育种对粮食增产作用巨大。
比如作物全息定域选种,是在作物具有强遗传势的部位选种的方法。
实验证明,玉米的强遗传势区在果穗中下部,选用这一部位的籽粒做种,比用顶部的籽粒做种增产35.4%;高粱果穗上部的籽粒充实饱满,生活力强,在结实丰产方面有较强的遗传性,选用上部籽粒做种比用中部籽粒做种增产6.4%~10.8%。
任何作物随着本身遗传性状的改良,生产性能会不断提高。
我国水稻种植从20世纪50年代中后期开始,由高秆品种改为新培育出的矮秆品种,该品种耐肥抗倒,单位面积产量比高秆品种增加30%以上。
1986年袁隆平提出杂交水稻的育种战略,历经九年艰苦攻关,中国独创的两系法杂交水稻取得成功,又使单产比常规品种增产15%~20%。
专家预测目前正在培育的超高产品种,将比现有品种在单产上提高近一倍。
科学技术可以改善耕地条件,进而扩大某些粮食作物种植区域,还可以提高粮食生产过程中有限资源的利用率。
例如在实施塑料薄膜覆盖后,土壤一般可增温2~5℃,覆盖期内地表积温增加200~300℃,从而使作物适宜耕作区的纬度向北推移2~4°,海拔提高1000~2000m。
由于该技术可应用的作物范围广,一般增产幅度可达30%~50%。
同时,地膜覆盖能使耕层土壤含水量提高2.77%~4.55%,每亩土壤蒸发量减少100~150m3。
单位农产品的平均耗水量减少一半,就相当于灌溉面积扩大了一倍。
农机装备技术的进步也至关重要。
21世纪以来我国农机装备技术发展极为快速。
机械设备如深松机、无人驾驶联合耕播作业机等逐渐被推广使用的同时,很多新技术也在其中得到应用。
2020—2021学年北京市西城区七年级上期末数学试卷含答案解析
2020—2021学年北京市西城区七年级上期末数学试卷含答案解析一、选择题(本题共28分,第1~8题每小题3分,第9、10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2020秋•吴中区期末)下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)3D.(﹣2)22.(2020秋•西城区期末)科学家发觉,距离银河系约2 500 000光年之遥的仙女星系正在向银河系靠近.其中2 500 000用科学记数法表示为()A.0.25×107B.2.5×106C.2.5×107D.25×1053.(2020秋•西城区期末)下列各式中正确的是()A.﹣(2x+5)=﹣2x+5 B.﹣(4x﹣2)=﹣2x+2C.﹣a+b=﹣(a﹣b) D.2﹣3x=﹣(3x+2)4.(2020秋•西城区期末)下列运算正确的是()A.7a+a=7a2B.3x2y﹣2yx2=x2yC.5y﹣3y=2 D.3a+2b=5ab5.(2020秋•西城区期末)已知a﹣b=1,则代数式2a﹣2b﹣3的值是()A.1 B.﹣1 C.5 D.﹣56.(2020秋•西城区期末)空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排列的顺序是()制冷剂编号 R22R12R410A制冷剂二氟一氯甲烷二氟二氯甲烷二氟甲烷50%,五氟乙烷50%沸点近似值﹣41 ﹣30 ﹣52(精确到1℃)A.R12,R22,R410A B.R22,R12,R410AC.R410A,R12,R22D.R410A,R22,R127.(2020秋•西城区期末)历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x 等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x﹣5的值记为f (﹣1),那么f(﹣1)等于()A.﹣7 B.﹣9 C.﹣3 D.﹣18.(2020秋•西城区期末)下列说法中,正确的是()①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10.A.①②B.②③C.②④D.③④9.(2分)(2020秋•西城区期末)点M,N,P和原点O在数轴上的位置如图所示,点M,N,P 对应的有理数为a,b,c(对应顺序暂不确定).假如ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O10.(2分)(2020秋•西城区期末)用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如图所示,那么从左面看它得到的平面图形一定不是()A.B.C.D.二、填空题(本题共23分,第11~13题每小题3分,第14、15题每小题3分,第16~18题每小题3分)11.(2020秋•宝应县期末)﹣2021的相反数是.12.(2020秋•西城区期末)单项式的次数是.13.(2020秋•西城区期末)用四舍五入法将3.886精确到0.01,所得到的近似数为.14.(4分)(2020秋•西城区期末)如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=;(2)在图中画出∠AOC的一个余角,要求那个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠,那个余角的度数等于.15.(4分)(2020秋•西城区期末)用含a的式子表示:(1)比a的6倍小5的数:;(2)假如北京某天的最低气温为a℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为℃.16.(2分)(2020秋•西城区期末)请写出一个只含字母x的整式,满足当x=﹣2时,它的值等于3.你写的整式是.17.(2分)(2020秋•泰兴市期末)一件商品按成本价提高20%标价,然后打9折出售,现在仍可获利16元,则商品的成本价为元.18.(2分)(2020秋•西城区期末)如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.若小明从编号为4的点开始,第1次“移位”后,他到达编号为的点,…,第2021次“移位”后,他到达编号为的点.三、运算题(本题共16分,每小题12分)19.(12分)(2020秋•西城区期末)(1)(﹣12)﹣(﹣20)+(﹣8)﹣15.(2)﹣.(3)19×+(﹣1.5)÷(﹣3)2.20.(4分)(2020秋•西城区期末)以下是一位同学所做的有理数运算解题过程的一部分:(1)请你在上面的解题过程中仿照给出的方式,圈画出他的错误之处,并将正确结果写在相应的圈内;(2)请就此题反映出的该同学有理数运算把握的情形进行具体评判,并对相应的有效避错方法给出你的建议.四、先化简,再求值(本题5分)21.(5分)(2020秋•西城区期末)先化简,再求值:5(4a2﹣2ab3)﹣4(5a2﹣3ab3),其中a=﹣1,b=2.五、解答题(本题5分)22.(5分)(2020秋•西城区期末)解方程:.六、解答题(本题7分)23.(7分)(2020秋•西城区期末)如图,∠CDE+∠CED=90°,EM平分∠CED,并与CD边交于点M.DN平分∠CED,并与EM交于点N.(1)依题意补全图形,并猜想∠EDN+∠NED的度数等于;(2)证明以上结论.证明:∵DN平分∠CDE,EM平分∠CED,∴∠EDN=,∠NED=.(理由:)∵∠CDE+∠CED=90°,∴∠EDN+∠NED=×(∠+∠)=×90°=°.七、解决下列问题(本题共10分,每小题5分)24.(5分)(2020秋•西城区期末)已知右表内的各横行中,从第二个数起的数都比它左边相邻的数大m;各竖列中,从第二个数起的数都比它上边相邻的数大n.求m,n以及表中x的值.25.(5分)(2020秋•西城区期末)从2016年1月1日开始,北京市居民生活用气阶梯价格制度将正式实施,一样生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28元/m3收费,超过350立方米的部分按2.5元/m3收费.小冬一家有五口人,他想帮父母运算一下实行阶梯价后,家里天然气费的支出情形.(1)假如他家2021年全年使用300立方米天然气,那么需要交多少元天然气费?(2)假如他家2021年全年使用500立方米天然气,那么需要交多少元天然气费?(3)假如他家2021年需要交1563元天然气费,他家2021年用了多少立方米天然气?八、解答题(本题6分)26.(6分)(2020秋•西城区期末)如图,数轴上A,B两点对应的有理数分别为10和15,点P 从点A动身,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O动身,以每秒2个单位长度的速度沿数轴正方向运动,设运动时刻为t秒.(1)当0<t<5时,用含t的式子填空:BP=,AQ=;(2)当t=2时,求PQ的值;(3)当PQ=时,求t的值.九、附加题(试卷满分:20分)27.(6分)(2020秋•西城区期末)操作题:公元初,中美洲玛雅人使用的一种数字系统与其他计数方式都不相同,它采纳二十进位制但只有3个符号,用点“•”划“”、卵形“”来表示我们所使用的自然数,如自然数1~19的表示见下表,另外在任何数的下方加一个卵形,就表示把那个数扩大到它的20倍,如表中20和100的表示.(1)玛雅符号表示的自然数是;(2)请你在右边的方框中画出表示自然数280的玛雅符号:.28.(5分)(2020秋•西城区期末)推理判定题七年级五个班的班长因为参加校学生干部培训会而没有观看年级的乒乓球竞赛.年级组长让他们每人猜一猜其中两个班的竞赛名次.这五个班长各自推测的结果如表所示:一班名次二班名次三班名次四班名次五班名次一班班长猜 3 5二班班长猜1 4三班班长猜 5 4四班班长猜 2 1五班班长猜3 4正确结果年级组长说,每班的名次都至少被他们中的一人说对了,请你依照以上信息将一班~五班的正确名次填写在表中最后一行.29.(9分)(2020秋•西城区期末)解答题唐代大诗人李白喜好饮酒作诗,民间有“李白斗酒诗百篇”之说.《算法统宗》中记载了一个“李白沽酒”的故事.诗云:注:古代一斗是10升.大意是:李白在郊外春游时,做出如此一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的19升酒.按照如此的约定,在第3个店里遇到朋友正好喝光了壶中的酒.(1)列方程求壶中原有多少升酒;(2)设壶中原有a0升酒,在第n个店饮酒后壶中余a n升酒,如第一次饮后所余酒为a1=2a0﹣19(升),第二次饮后所余酒为a2=2a1﹣19=2(2a0﹣19)﹣19=22a0﹣(21+1)×19(升),….①用a n的表达式表示a n,再用a0和n的表达式表示a n;﹣1②按照那个约定,假如在第4个店喝光了壶中酒,请借助①中的结论求壶中原有多少升酒.2020-2021学年北京市西城区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共28分,第1~8题每小题3分,第9、10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(2020秋•吴中区期末)下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)3D.(﹣2)2【考点】正数和负数.【分析】依照在一个数的前面机上负号确实是那个数的相反数,负数的绝对值是它的相反数,负数的奇数次幂是负数,负数的偶数次幂是正数,可得答案.【解答】解:A、﹣(﹣2)=2,故A错误;B、|﹣2|=2,故B错误;C、(﹣2)3=﹣8,故C正确;D、(﹣2)2=4,故D错误;故选:C.【点评】本题考查了正数和负数,小于零的数是负数,化简各数是解题关键.2.(2020秋•西城区期末)科学家发觉,距离银河系约2 500 000光年之遥的仙女星系正在向银河系靠近.其中2 500 000用科学记数法表示为()A.0.25×107B.2.5×106C.2.5×107D.25×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2 500 000用科学记数法表示为2.5×106.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2020秋•西城区期末)下列各式中正确的是()A.﹣(2x+5)=﹣2x+5 B.﹣(4x﹣2)=﹣2x+2C.﹣a+b=﹣(a﹣b) D.2﹣3x=﹣(3x+2)【考点】去括号与添括号.【专题】常规题型.【分析】分别依照去括号与添括号的法则判定各选项即可.【解答】解:A、﹣(2x+5)=﹣2x﹣5,故本选项错误;B、﹣(4x﹣2)=﹣2x+1,故本选项错误;C、﹣a+b=﹣(a﹣b),故本选项正确;D、2﹣3x=﹣(3x﹣2),故本选项错误.故选C.【点评】本题考查去括号与添括号的知识,注意把握去括号法则:假如括号外的因数是正数,去括号后原括号内各项的符号与原先的符号相同;假如括号外的因数是负数,去括号后原括号内各项的符号与原先的符号相反.添括号法则:添括号时,假如括号前面是正号,括到括号里的各项都不变号,假如括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.4.(2020秋•西城区期末)下列运算正确的是()A.7a+a=7a2B.3x2y﹣2yx2=x2yC.5y﹣3y=2 D.3a+2b=5ab【考点】合并同类项.【专题】运算题.【分析】依照合并同类项的法则和同类项的定义分别对每一项进行运算即可.【解答】解:A、7a+a=8a,故本选项错误;B、3x2y﹣2yx2=x2y,故本选项正确;C、5y﹣3y=2y,故本选项错误;D、3a+2b,不是同类项,不能合并,故本选项错误;故选B.【点评】此题考查了合并同类项,熟练把握合并同类项的法则和同类项的定义是本题的关键.5.(2020秋•西城区期末)已知a﹣b=1,则代数式2a﹣2b﹣3的值是()A.1 B.﹣1 C.5 D.﹣5【考点】代数式求值.【专题】运算题;实数.【分析】原式前两项提取2变形后,将a﹣b=1代入运算即可求出值.【解答】解:原式=2(a﹣b)﹣3,当a﹣b=1时,原式=2﹣3=﹣1.故选B.【点评】此题考查了代数式求值,熟练把握运算法则是解本题的关键.6.(2020秋•西城区期末)空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排列的顺序是()制冷剂编号 R22R12R410A制冷剂二氟一氯甲烷二氟二氯甲烷二氟甲烷50%,五氟乙烷50%﹣41 ﹣30 ﹣52沸点近似值(精确到1℃)A.R12,R22,R410A B.R22,R12,R410AC.R410A,R12,R22D.R410A,R22,R12【考点】有理数大小比较.【专题】应用题.【分析】数与负数以0为分界点,正数、0都比负数大;负数与负数比较大小,负号后面的数字越小,那个负数反而越大;反之,负号后面的数字越大,那个负数就越小.【解答】解:因为﹣52<﹣41<﹣32,因此这三种制冷剂按沸点从低到高排列的顺序是R410A,R22,R12,故选D【点评】此题考查了学生正、负数大小比较的方法,只要把握方法就专门好解答.但要注意,在负数与负数比较大小时,不要认为负号后面的数越大那个数越大.7.(2020秋•西城区期末)历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x 等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x﹣5的值记为f (﹣1),那么f(﹣1)等于()A.﹣7 B.﹣9 C.﹣3 D.﹣1【考点】代数式求值.【专题】新定义.【分析】把x=﹣1代入f(x)运算即可确定出f(﹣1)的值.【解答】解:依照题意得:f(﹣1)=1﹣3﹣5=﹣7.故选A.【点评】此题考查了代数式求值,熟练把握运算法则是解本题的关键.8.(2020秋•西城区期末)下列说法中,正确的是()①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10.A.①②B.②③C.②④D.③④【考点】直线、射线、线段;两点间的距离;余角和补角.【分析】依照耀线及线段的定义及特点可判定各项,从而得出答案.【解答】解:①射线AB和射线BA不是同一条射线,错误;②若AB=BC,点B在线段AC上时,则点B为线段AC的中点,错误;③同角的补角相等,正确;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10,正确.故选D.【点评】本题考查射线及线段的知识,注意差不多概念的把握是解题的关键.9.(2分)(2020秋•西城区期末)点M,N,P和原点O在数轴上的位置如图所示,点M,N,P 对应的有理数为a,b,c(对应顺序暂不确定).假如ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O【考点】数轴.【专题】探究型.【分析】依照数轴和ab<0,a+b>0,ac>bc,能够判定a、b、c对应哪一个点,从而能够解答本题.【解答】解:∵ab<0,a+b>0,∴数a表示点M,数b表示点P或数b表示点M,数a表示点P,则数c表示点N,∴由数轴可得,c>0,又∵ac>bc,∴a>b,∴数b表示点M,数a表示点P,即表示数b的点为M.故选A.【点评】本题考查数轴,解题的关键是明确数轴的特点能依照题目中的信息,判定各个数在数轴上对应哪一个点.10.(2分)(2020秋•西城区期末)用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如图所示,那么从左面看它得到的平面图形一定不是()A.B.C.D.【考点】简单组合体的三视图;由三视图判定几何体.【分析】依照从左边看得到的图形是左视图,可得答案.【解答】解:A、加号的水平线上每个小正方形上面都有一个小正方形,故A正确;B、加号的水平线上左边小正方形上有一个小正方形中间位置的小正方形上有两个小正方形,故B 正确;C、加号的竖直的线上最上边小正方形上有两个小正方形,故C错误;D、加号的竖直的线上最上边小正方形上有两个小正方形,最下边的小正方形上有一个小正方形,故D正确;故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.二、填空题(本题共23分,第11~13题每小题3分,第14、15题每小题3分,第16~18题每小题3分)11.(2020秋•宝应县期末)﹣2021的相反数是﹣2021.【考点】相反数.【分析】依照只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2021的相反数是﹣2021.故答案为:﹣2021..【点评】本题考查了相反数,在一个数的前面加上负号确实是那个数的相反数.12.(2020秋•西城区期末)单项式的次数是4.【考点】单项式.【分析】单项式中所有字母的指数的和叫单项式的次数.【解答】解:单项式的次数是4.故答案为:4.【点评】本题要紧考查的是单项式的概念,把握单项式的次数的定义是解题的关键.13.(2020秋•西城区期末)用四舍五入法将3.886精确到0.01,所得到的近似数为 3.89.【考点】近似数和有效数字.【分析】把千分位上的数字6进行四舍五入即可.【解答】解:3.886≈3.89(精确到0.01).故答案为3.89.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,能够用精确度表示.一样有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字差不多上那个数的有效数字.14.(4分)(2020秋•西城区期末)如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=42°30′;(2)在图中画出∠AOC的一个余角,要求那个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠AOD,那个余角的度数等于47°30′.【考点】余角和补角;度分秒的换算.【分析】(1)依照图形进行角的运算即可;(2)依照余角的概念作图、运算即可.【解答】解:(1)∠AOC=∠AOB﹣∠BOC=42°30′;(2)如图,∠AOC的余角是∠AOD,90°﹣42°30′=47°30′.故答案为:(1)42°30′;(2)AOD;47°30′.【点评】本题考查的是余角和补角的概念以及角的运算,把握两个角的和为90°,则这两个角互余是解题的关键.15.(4分)(2020秋•西城区期末)用含a的式子表示:(1)比a的6倍小5的数:6a﹣5;(2)假如北京某天的最低气温为a℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为(a+10)℃.【考点】列代数式.【分析】(1)被减数是6a,减数为5,依此即可求解;(2)依照题意可得:中午12点的气温=最低气温+升高的气温,依此即可求解.【解答】解:(1)a的6倍为6a,小5即为6a﹣5;(2)中午12点的气温为(a+10)℃.故答案为:6a﹣5;(a+10).【点评】考查了列代数式,(1)题关键是找好题中关键词,如“倍”;(2)注意气温上升为加.16.(2分)(2020秋•西城区期末)请写出一个只含字母x的整式,满足当x=﹣2时,它的值等于3.你写的整式是﹣x或x+5.【考点】代数式求值.【专题】运算题;开放型.【分析】写出一个整式,使x=﹣2时值为3即可.【解答】解:答案不唯独,如﹣x或x+5.故答案为:﹣x或x+5【点评】此题考查了代数式求值,熟练把握运算法则是解本题的关键.17.(2分)(2020秋•泰兴市期末)一件商品按成本价提高20%标价,然后打9折出售,现在仍可获利16元,则商品的成本价为200元.【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品的成本价是x元,则商品的标价为x(1+20%),等量关系为:标价×90%=成本+利润,把相关数值代入求解即可.【解答】解:设这种商品的成本价是x元,则商品的标价为x(1+20%),由题意可得:x×(1+20%)×90%=x+16,解得x=200,即这种商品的成本价是200元.故答案为:200.【点评】此题考查一元一次方程的应用,得到售价的等量关系是解决本题的关键,难度一样,注意细心审题.18.(2分)(2020秋•西城区期末)如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.若小明从编号为4的点开始,第1次“移位”后,他到达编号为3的点,…,第2021次“移位”后,他到达编号为4的点.【考点】规律型:数字的变化类;规律型:图形的变化类.【分析】从编号为4的点开始走4段弧:4→5→1→2→3,即可得出结论;依次求出第2,3,4,5次的结合查找规律,依照规律分析第2021次的编号即可.【解答】解:从编号为4的点开始走4段弧:4→5→1→2→3,因此第一次“移位”他到达编号为3的点;第二次移位后:3→4→5→1,到编号为1的点;第三次移位后:1→2,到编号为2的点;第四次移位后:2→3→4,回到起点;能够发觉:他的位置以“3,1,2,4,”循环显现,2021÷4=504,整除,因此第2021次移位后他的编号与第四次相同,到达编号为4的点;故答案为:3,4.【点评】此题要紧考查循环数列规律的探究与应用,依照已知求出部分数据找到循环周期是解题的关键.三、运算题(本题共16分,每小题12分)19.(12分)(2020秋•西城区期末)(1)(﹣12)﹣(﹣20)+(﹣8)﹣15.(2)﹣.(3)19×+(﹣1.5)÷(﹣3)2.【考点】有理数的混合运算.【专题】运算题;实数.【分析】(1)原式利用减法法则变形,运算即可得到结果;(2)原式先运算乘方运算,再运算乘除运算即可得到结果;(3)原式先运算乘方运算,再运算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣12+20﹣8﹣15=﹣35+20=﹣15;(2)原式=﹣×3×(﹣8)=6;(3)原式=19.5×﹣1.5×=(19.5﹣1.5)×=18×=2.【点评】此题考查了有理数的混合运算,熟练把握运算法则是解本题的关键.20.(4分)(2020秋•西城区期末)以下是一位同学所做的有理数运算解题过程的一部分:(1)请你在上面的解题过程中仿照给出的方式,圈画出他的错误之处,并将正确结果写在相应的圈内;(2)请就此题反映出的该同学有理数运算把握的情形进行具体评判,并对相应的有效避错方法给出你的建议.【考点】有理数的混合运算.【专题】图表型;实数.【分析】(1)出错地点有2处,一是绝对值求错,一是乘除运算顺序错误,改正即可;(2)依照有理数运算顺序写出建议即可.【解答】解:(1)如图所示:(2)有理数运算顺序为:先算乘方及绝对值运算,再算乘除运算,最后算加减运算,同级运算从左到右依次进行.【点评】此题考查了有理数的混合运算,熟练把握运算法则是解本题的关键.四、先化简,再求值(本题5分)21.(5分)(2020秋•西城区期末)先化简,再求值:5(4a2﹣2ab3)﹣4(5a2﹣3ab3),其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】运算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入运算即可求出值.【解答】解:原式=20a2﹣10ab3﹣20a2+12ab3=2ab3,当a=﹣1,b=2时,原式=﹣16.【点评】此题考查了整式的加减﹣化简求值,熟练把握运算法则是解本题的关键.五、解答题(本题5分)22.(5分)(2020秋•西城区期末)解方程:.【考点】解一元一次方程.【专题】运算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母,得3(1﹣2x)﹣21=7(x+3),去括号,得3﹣6x﹣21=7x+21,移项,得﹣6x﹣7x=21﹣3+21,合并,得﹣13x=39,系数化1,得x=﹣3,则原方程的解是x=﹣3.【点评】此题考查了解一元一次方程,熟练把握运算法则是解本题的关键.六、解答题(本题7分)23.(7分)(2020秋•西城区期末)如图,∠CDE+∠CED=90°,EM平分∠CED,并与CD边交于点M.DN平分∠CED,并与EM交于点N.(1)依题意补全图形,并猜想∠EDN+∠NED的度数等于45°;(2)证明以上结论.证明:∵DN平分∠CDE,EM平分∠CED,∴∠EDN=,∠NED=CED.(理由:角平分线的定义)∵∠CDE+∠CED=90°,∴∠EDN+∠NED=×(∠CDE+∠CED)=×90°=45°.【考点】角的运算;角平分线的定义.【分析】(1)依照题意画出图形,然后由角平分线的定义可求得∠EDN+∠NED=45°;(2)依照角平分线的定义以及证明过程进行填写即可.【解答】(1)解:如图所示:猜想∠EDN+∠NED=45°.(2)证明:∵DN平分∠CDE,EM平分∠CED,∴∠EDN=,∠NED=CED.(理由:角平分线的定义),∵∵∠CDE+∠CED=90°,∴∠EDN+∠NED=(∠CDE+∠CED)==45°.故答案为:(1)45°;(2)CED;角平分线的定义;;CDE;CED;;45.【点评】本题要紧考查的是角的运算、角平分线的定义,逆用乘法的分配律求得∠EDN+∠NED=(∠CDE+∠CED)是解题的关键.七、解决下列问题(本题共10分,每小题5分)24.(5分)(2020秋•西城区期末)已知右表内的各横行中,从第二个数起的数都比它左边相邻的数大m;各竖列中,从第二个数起的数都比它上边相邻的数大n.求m,n以及表中x的值.【考点】一元一次方程的应用.【分析】依照表内的各横行中,从第二个数起的数都比它左边相邻的数大m得出12+2m=18,解方程求出m的值;再由各竖列中,从第二个数起的数都比它上边相邻的数大n,得出(12+m)+3n=30,解方程求出n的值;进而求得x的值.【解答】解:∵各横行中,从第二个数起的数都比它左边相邻的数大m,∴12+2m=18,解得m=3.又∵各竖列中,从第二个数起的数都比它上边相邻的数大n,∴(12+m)+3n=30,将m=3代入上述方程得15+3n=30,解得n=5.现在x=12﹣2m+n=12﹣2×3+5=11.【点评】本题考查了一元一次方程的应用,解题关键是要读明白题目的意思,依照题目给出的条件,找出合适的等量关系列出方程,再求解.25.(5分)(2020秋•西城区期末)从2016年1月1日开始,北京市居民生活用气阶梯价格制度将正式实施,一样生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28元/m3收费,超过350立方米的部分按2.5元/m3收费.小冬一家有五口人,他想帮父母运算一下实行阶梯价后,家里天然气费的支出情形.(1)假如他家2021年全年使用300立方米天然气,那么需要交多少元天然气费?(2)假如他家2021年全年使用500立方米天然气,那么需要交多少元天然气费?(3)假如他家2021年需要交1563元天然气费,他家2021年用了多少立方米天然气?【考点】一元一次方程的应用.【分析】(1)依照一样生活用气收费标准,可得小冬一家需要交天然气费2.28×300,运算即可;(2)依照一样生活用气收费标准,可得小冬一家需要交天然气费2.28×350+2.5×(500﹣350),运算即可;(3)设设小冬家2021年用了x立方米天然气.第一判定出小冬家2021年所用天然气超过了500立方米,然后依照他家2021年需要交1563元天然气费建立方程,求解即可.【解答】解:(1)假如他家2021年全年使用300立方米天然气,那么需要交天然气费2.28×300=684(元);(2)假如他家2021年全年使用500立方米天然气,那么需要交天然气费2.28×350+2.5×(500﹣350)=798+375=1173(元);(3)设小冬家2021年用了x立方米天然气.∵1563>1173,∴小冬家2021年所用天然气超过了500立方米.依照题意得2.28×350+2.5×(500﹣350)+3.9(x﹣500)=1563,解得x=600.答:小冬家2021年用了600立方米天然气.【点评】本题考查了一元一次方程的应用,解题关键是要读明白题目的意思,依照题目给出的条件,找出合适的等量关系列出方程,再求解.八、解答题(本题6分)。
2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)
2020—2021学年七年级上期数学期末质量监测试题注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.12.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A 重合的点是()A.点B ,IB.点C ,EC.点B ,ED.点C ,H8.下列各组数中,相等的是()A.()23-与23- B.()32-与32-C.23与23- D.32-与()32-9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.9410.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +-> D.0b c a +->11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +312.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x⨯++= D.3(20)5109x x ⨯++=+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.14.若5a =,3b =-,且0a b +>,则ab =_______.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg 4741体重与平均体重的差值/kg+302-+416.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.20.如图,已知点A ,B ,C ,利用尺规,按要求作图:(1)作线段AB ,AC ,过B ,C 作射线BQ ;在射线CQ 上截取CD=BC ,在射线DQ 上截取DE=BD ;(2)连接AE ,在线段AE 上截取AF=AC ,作直线AD 、线段DF ;(3)比较BC 与DF 的大小,直接写出结果.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.22.解方程:(1)()235x x +=-;(2)325123y y ---=.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/325.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h,骑车速度是步行速度的4倍,从学校到家有2km的路程,通过计算发现,方案1比方案2多用6min.(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km,用含x的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.-和10的位置上,沿数轴做向东、向西移动的游戏.26.如图,甲、乙两人(看成点)分别在数轴10移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)请用含m,n的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.2020—2021学年七年级上期数学期末质量监测试题答案解析注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.1【答案】B【解析】【分析】直接利用有理数的加法法则计算即可.-+=-【详解】211故选:B.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.2.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,根据“面动成体”可得答案.【详解】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体:符合题意,故选:B.【点睛】本题考查“面动成体”,解题的关键是明确点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】D【解析】【分析】根据主视图定义,由此观察即可得出答案.【详解】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱【详解】解:上述四个几何体中,圆柱、圆锥和球的截面图都有可能是圆;只有棱柱的截面图不可能是圆.故选D .5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+【答案】A 【解析】【分析】根据绝对值的性质化简化简求解.【详解】A.()()94---=9455-+=-=,故正确;B.()()94941313-+-=--=-=,故错误;C.949413-+-=+=,故错误;D .9+4-+=9413+=,故错误;故选A .【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤C.②③④D.②④⑤【答案】C 【解析】【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【详解】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知体育运动项目的定义.7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A重合的点是()A.点B,IB.点C,EC.点B,ED.点C,H【答案】B【解析】【分析】首先能想象出来正方形的展开图,然后作出判断即可.【详解】由正方形的展开图可知A、C、E重合,故选B.【点睛】本题考查了正方形的展开图,比较简单.8.下列各组数中,相等的是()A.()23-与23-B.()32-与32-C.23与23-D.32-与()32-【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵(-3)2=9,-32=-9,故选项A不符合题意,-=,故选项B不符合题意,∵(-2)3=-8,328∵32=9,-32=-9,故选项C不符合题意,∵-23=-8,(−2)3=-8,故选项D 符合题意,故选D .【点睛】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.94【答案】B 【解析】【分析】根据给出的※的含义,以及有理数的混合运算的运算法则,即可得出答案.【详解】解: a ※2(1)b a b =÷-,∴()3-※4()()2=341933-÷-=÷=,故选B .【点睛】本题考查了新定义的运算以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,后算加减;同级运算,应按从左往右的顺序进行计算,如果有括号,要先计算括号里的.10.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +->D.0b c a +->【答案】D 【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|,∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意;0a b c +-<,故选项C 错误,不符合题意;0b c a +->,故选项D 正确,符合题意;故选:D .【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +3【答案】C 【解析】【分析】先求出从甲盒子中取出2枚后剩下的棋子数,再求出从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数,把它们相减即可求解.【详解】解:依题意可知,乙盒中的围棋子的枚数是n +2+3-(n -2)=7.故选:C .【点睛】考查了列代数式,关键是得到从甲盒子中取出2枚后剩下的棋子数,从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数.12.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x ⨯++=D.3(20)5109x x ⨯++=+【答案】D 【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“”内数字为x ,根据题意可得:3×(20+x )+5=10x+9.故选:D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.【答案】2;【解析】【分析】方程移项合并后,将x 的系数化为1,即可求出方程的解.【详解】解:213x -=23+1x =2x=4,解得:x=2.故答案为:2.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,将x 的系数化为1,求出解.14.若5a =,3b =-,且0a b +>,则ab =_______.【答案】15-;【解析】【分析】根据绝对值的意义及a+b>0,可得a ,b 的值,再根据有理数的乘法,可得答案.【详解】解:由|a|=5,b=-3,且满足a+b >0,得a=5,b=-3.当a=5,b=-3时,ab=-15,故答案为:-15.【点睛】本题考查了绝对值、有理数的加法、有理数的乘法,确定a 、b 的值是解题的关键.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg4741体重与平均体重+302-+4的差值/kg【答案】7;【解析】【分析】根据题目中的平均体重即可分别求出体重与平均体重的差值及体重,然后填表即可得出最重的和最轻的同学体重,再相减即可得出答案.【详解】解: 某中学七年级学生的平均体重是44kg,∴小润的体重与平均体重的差值为4744=3-kg;+kg;小华的体重为443=47+kg;小颖的体重为440=44-kg;小丽的体重为442=42--kg;小惠的体重与平均体重的差值为4144=3+kg;小胜的体重为444=48填表如下:姓名小润小华小颖小丽小惠小胜体重/kg474744424148体重与平均体重+3+302--3+4的差值/kg可知,最重的同学的体重是48kg,最轻的同学的体重是41kg∴最重和最轻的同学体重相差4841=7-kg.故答案为:7.【点睛】本题考查了有理数加减的应用,熟练掌握有理数的加减运算法则是解题的关键.16.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).【答案】2αβ-【解析】【分析】由,AOD AOC DOC ∠=∠+∠,DOC BOD BOC ∠=∠-∠可得:,AOD AOC BOD BOC ∠=∠+∠-∠从而可得答案.【详解】解:,AOD AOC DOC ∠=∠+∠ ,DOC BOD BOC ∠=∠-∠,AOD AOC BOD BOC ∴∠=∠+∠-∠,,AOC BOD BOC αβ∠=∠=∠= 2.AOD ααβαβ∴∠=+-=-故答案为:2.αβ-【点睛】本题考查的是角的和差关系,掌握利用角的和差关系进行计算是解题的关键.17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).【答案】20125400x π-+;【解析】【分析】根据题意和图形可知,水池的面积是长方形的面积减去两个扇形的面积,本题得以解决.【详解】解:由图可得,水池的面积为:20×(x +20)−π×102×14−π×202×14=20125400x π-+(m 2),故答案为:20125400x π-+.【点睛】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解: 甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.【答案】(1)-6;(2)5【解析】【分析】(1)根据有理数的混合运算法则先算乘除后算加减即可;(2)根据有理数混合运算法则先算括号里面的再算乘除.【详解】解:(1)原式=93-+6=-;(2)原式123+12234⎛⎫=-⨯ ⎪⎝⎭12312+×1212234=⨯-⨯6+89=-5=.【点睛】此题考查了有理数混合运算的运算法则,难度一般,认真计算是关键,注意能简便运算的尽量简便运算.20.如图,已知点A,B,C,利用尺规,按要求作图:(1)作线段AB,AC,过B,C作射线BQ;在射线CQ上截取CD=BC,在射线DQ上截取DE=BD;(2)连接AE,在线段AE上截取AF=AC,作直线AD、线段DF;(3)比较BC与DF的大小,直接写出结果.【答案】(1)见解析;(2)见解析;(3)BC=DF【解析】【分析】(1)利用几何语言画出对应的图形即可;(2)利用几何语言画出对应的图形即可;(3)利用作图特征和等量代换即可得出答案.【详解】解:(1)、(2)如图所示,要求有作图痕迹;(3)BC=DF.证明:由作图知CD=DF ,又 CD=BC ,∴BC=DF .【点睛】本题考查了尺规作图-线段,利用圆规和直尺的特征作图是解题的关键.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.【答案】(1)2ab c -;(2)236x xy --+【解析】【分析】(1)原式先去括号,然后合并同类项即可得到答案;(2)原式先去括号,然后合并同类项即可得到答案.【详解】解:(1)()()222ab c ab c -+-+242ab c ab c =--+2ab c =-.(2)()22233(2)x xy x xy --+-+2262+336x xy x xy =-+-+236x xy =--+.【点睛】本题考查整式的加法运算,要先去括号,然后合并同类项.运用去括号法则进行多项式化简.合并同类项时,注意只把系数想加减,字母与字母的指数不变.22.解方程:(1)()235x x +=-;(2)325123y y ---=.【答案】(1)11x =-;(2)5y =-【解析】【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可;(2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y 系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).【答案】(1)6至11月三种品牌电脑销售量总量最多是B 品牌,11月份,A 品牌的销售量为270台;(2)221台;(3)答案不唯一,如,建议买C 品牌电脑;或建议买A 品牌电脑,或建议买B 产品,见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)根据A品牌电脑销售量及A品牌电脑所占百分比即可求出11月份电脑的总的销售量,再减去A、B、C品牌的销售量即可得出答案;(3)从所占的百分比、每月销售量增长比等方面提出建议即可.【详解】解:(1)6至11月三种品牌电脑销售量总量最多是B品牌;11月份,A品牌的销售量为270台;(2)11月,A品牌电脑销售量为270台,A品牌电脑占27%,÷=(台).所以,11月份电脑的总的销售量为27027%1000---=(台).其它品牌的电脑有:1000234270275221(3)答案不唯一.如,建议买C品牌电脑.销售量从6至11月,逐月上升;11月份,销售量在所有品牌中,占的百分比最大.或:建议买A品牌电脑.销售量从6至11月,逐月上升,且每月销售量增长比C品牌每月的增长量要快.或:建议买B产品.因为B产品6至11月的总的销售量最多.【点睛】本题考查了条形图、折线统计图、扇形统计图,熟练掌握和理解统计图中各个数量及数量之间的关系是解题的关键.24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/3【答案】(1)见解析;(2)()22v b a b =-;(3)见解析,剪去的小正方形的边长可能是3cm 【解析】【分析】(1)将正方形的四个角的小正方形大小要一致即可;(2)根据图形中的字母表示的长度即可得出()22v b a b =-;(3)将18a =cm 结合容积公式及表格即可得出答案.【详解】解:(1)如图所示(可以不标出a ,b ,但四个角上的正方形大小要一致).(2)无盖厂长方体盒子的容积v 为()22v b a b =-(3)当18a =,b=1时,()2221(1821)256v b a b =-=⨯-⨯=,当18a =,b=2时,()2222(1822)392v b a b =-=⨯-⨯=,当18a =,b=3时,()2223(1832)432v b a b =-=⨯-⨯=,当18a =,b=4时,()2224(1842)400v b a b =-=⨯-⨯=,当18a =,b=5时,()2225(1825)320v b a b =-=⨯-⨯=,当18a =,b=6时,()2226(1826)216v b a b =-=⨯-⨯=,填表如下:剪去小正方形的边长/cm 123456……无盖长方体的容积/3cm 256392432400320216……有表可知,无盖长方体容积取得最大值时,剪去的小正方形的边长可能是3cm .【点睛】本题考查了代数式求值的实际应用,结合题意得到等量关系是解题的关键.25.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km ,用含x 的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.【答案】(1)见解析;(2)2210=52020x x +++,或62156010x x --=;(3)需要的时间为48min 【解析】【分析】(1)根据题意可知小区在学校的左边,标出即可;(2)根据“步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .”解答即可;(3)设学校到图书馆的路程为x km ,根据题意得出226554560x x +=++⨯,求解后即可得出方案1需要的时间.【详解】解:(1)如图所示;(2)根据题意,得2210=52020x x +++,或62156010x x --=(3)设学校到图书馆的路程为x km ,根据题意,得226554560x x +=++⨯解方程,得4x =.所以,455x =.460=485⨯.答:方案1中,需要的时间为48min .【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找到命题中隐含的等量关系式是解题的关键.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,甲、乙两人(看成点)分别在数轴10-和10的位置上,沿数轴做向东、向西移动的游戏.移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m 次,乙猜对了n 次.(1)请用含m ,n 的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.【答案】(1)甲在数轴上的位置上的点代表的数为:640m -,其中010m ≤≤,且m 为整数;乙在数轴上的位置上的点代表的数为:405n -,其中010n ≤≤,且n 为整数;(2)n 的值2n =或6n =【解析】【分析】(1)甲猜对了m 次,则猜错了()10m -次,根据“如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位”即可表示出甲在数轴上的位置上的点;乙猜对了n 次,则猜错了()10n -次,根据“如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位”即可表示出乙在数轴上的位置上的点;(2)分两种情况:当甲在乙西面,甲乙相距10个单位及当甲在乙东面,甲乙相距10个单位,列关于m 、n 的方程,将10m =求n 的值即可.【详解】解:(1)甲猜对了m 次,则猜错了()10m -次,10次游戏结束后,甲在数轴上的位置上的点,代表的数为:()103310640m m m -+--=-,其中010m ≤≤,且m 为整数;乙猜对了n 次,则猜错了()10n -次,10次游戏结束后,乙在数轴上的位置上的点,代表的数为:()102310405n n n -+-=-,其中010n ≤≤,且n 为整数.(2)当甲在乙西面,甲乙相距10个单位,可得64010405m n -+=-,其中,=10m ,010n ≤≤,即60570n +=,解得2n =.当甲在乙东面,甲乙相距10个单位,可得。
2019-2020学年北京市西城区七年级上期末数学试卷含答案解析.docx
2019-2020 学年北京市西城区七年级上期末数学试卷含答案解析一、选择题(本题共 28 分,第 1~ 8 题每小题 3 分,第 9、 10 题每小题3 分)下面各题均有四个选项,其中只有一个是符合题意的.1.(秋 ?期末)下列算式中,运算结果为负数的是()A .﹣(﹣ 2) B. |﹣ 2|C.(﹣ 2)3D.(﹣ 2)22 2 500 000光年之遥的仙女星系正在向银河.(秋 ?西期末)科学家发现,距离银河系约系靠近.其中 2 500000 用科学记数法表示为()7B.675A . 0.25×10 2.5×10C. 2.5×10D. 25×10 3.(秋 ?西期末)下列各式中正确的是()A .﹣( 2x+5 )=﹣ 2x+5B.﹣(4x﹣2)=﹣2x+2 C.﹣ a+b=﹣( a﹣ b)D. 2﹣ 3x=﹣( 3x+2)4.(秋 ?西期末)下列计算正确的是()A . 7a+a=7a 2B. 3x2y﹣ 2yx2=x2yC. 5y﹣ 3y=2D. 3a+2b=5ab5.(秋 ?西期末)已知a﹣ b=1,则代数式2a﹣ 2b﹣ 3 的值是()A . 1 B.﹣ 1 C. 5 D.﹣ 56.(秋 ?西期末)空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排列的顺序是()制冷剂编号R22R12R410A制冷剂二氟一氯甲烷二氟二氯甲烷二氟甲烷50%,五氟乙烷50%沸点近似值﹣ 41﹣30﹣52(精确到1℃)A . R12, R22,R410A B. R22, R12, R410AC. R410A ,R12, R22D. R410A ,R22, R127x的多项式用记号f x)来表示,把x.(秋 ?西期末)历史上,数学家欧拉最先把关于(等于某数 a 时的多项式的值用 f ( a)来表示,例如x= ﹣1 时,多项式 f( x) =x 2+3x﹣ 5的值记为 f(﹣ 1),那么 f (﹣ 1)等于()A .﹣ 7 B.﹣ 9 C.﹣ 3 D .﹣ 18.(秋 ?西期末)下列说法中,正确的是()①射线 AB 和射线 BA 是同一条射线;②若 AB=BC ,则点 B 为线段 AC 的中点;③ 同角的补角相等;④点 C 在线段 AB 上, M ,N 分别是线段AC ,CB 的中点.若MN=5 ,则线段AB=10 .A .①②B.②③C.②④D.③④9.( 2 分)(秋 ?西期末)点M ,N ,P 和原点 O 在数轴上的位置如图所示,点M , N, P 对应的有理数为a, b, c(对应顺序暂不确定).如果ab< 0,a+b> 0,ac> bc,那么表示数 b 的点为()A .点 M B.点 N C.点 P D.点 O10.( 2 分)(秋 ?西期末)用8 个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如图所示,那么从左面看它得到的平面图形一定不是()A .B.C.D.二、填空题(本题共23 分,第11~ 13 题每小题 3 分,第 14、 15 题每小题 3 分,第 16~18 题每小题 3 分)11.(秋 ?宝期末)﹣的相反数是.12.(秋 ?西期末)单项式的次数是.13.(秋 ?西期末)用四舍五入法将 3.886 精确到 0.01,所得到的近似数为.14.( 4 分)(秋 ?西期末)如图,∠AOB=72 °30′,射线 OC 在∠ AOB 内,∠ BOC=30 °.(1)∠ AOC=;(2)在图中画出∠AOC 的一个余角,要求这个余角以O 为顶点,以∠AOC 的一边为边.图中你所画出的∠AOC 的余角是∠,这个余角的度数等于.154分)(秋 ?西期末)用含a的式子表示:.((1)比 a 的 6倍小 5 的数:;(2)如果某天的最低气温为 a℃,中午12 点的气温比最低气温上升了10℃,那么中午 12点的气温为℃.16.( 2 分)(秋 ?西期末)请写出一个只含字母x 的整式,满足当x=﹣ 2 时,它的值等于3.你写的整式是.17.( 2 分)(秋 ?期末)一件商品按成本价提高20%标价,然后打9 折出售,此时仍可获利 16 元,则商品的成本价为元.18.( 2 分)(秋 ?西期末)如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1, 2,3, 4, 5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.如:小明在编号为 3 的点,那么他应走 3 段弧长,即从3→4→5→1 为第 1 次“移位”,这时他到达编号为 1 的点,那么他应走 1 段弧长,即从1→2 为第 2 次“移位”.若小明从号4的点开始,第1“ ”的点,⋯次移位后,他到达号,第次“移位”后,他到达号的点.三、算(本共16 分,每小12 分)19.( 12分)(秋 ?西期末)(1)( 12)( 20) +( 8) 15.(2).(3) 19× +( 1.5)÷( 3)2.20.( 4 分)(秋 ?西期末)以下是一位同学所做的有理数运算解程的一部分:(1)你在上面的解程中仿照出的方式,圈画出他的之,并将正确果写在相的圈内;(2)就此反映出的同学有理数运算掌握的情况行具体价,并相的有效避方法出你的建.四、先化,再求(本 5 分)21.( 5 分)(秋 ?西期末)先化,再求:22ab323a= 5( 4a) 4( 5a 3ab ),其中1, b=2 .五、解答(本 5 分)22.( 5 分)(秋 ?西期末)解方程:.六、解答题(本题7 分)237分)(秋?西期末)如图,∠CDE+ ∠ CED=90 ° EM平分∠CED,并与CD边交于.(,点 M . DN 平分∠ CED ,并与 EM 交于点 N.(1)依题意补全图形,并猜想∠EDN+ ∠ NED 的度数等于;(2)证明以上结论.证明:∵ DN 平分∠ CDE, EM 平分∠ CED ,∴∠ EDN=,∠ NED=.(理由:)∵∠ CDE+ ∠CED=90 °,∴∠ EDN+ ∠ NED=×(∠+∠) =×90°=°.七、解决下列问题(本题共10 分,每小题 5 分)24.( 5 分)(秋 ?西期末)已知右表内的各横行中,从第二个数起的数都比它左边相邻的数大 m;各竖列中,从第二个数起的数都比它上边相邻的数大n.求 m, n 以及表中 x 的值.25.( 5 分)(秋 ?西期末)从年 1 月 1 日开始,居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如 6 口以下的户年天然气用量在第二档时,其中350立方米按 2.28 元 /m 3 收费,超过 350 立方米的部分按 2.5 元 /m 3收费.小冬一家有五口 人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况. (1 )如果他家年全年使用 300 立方米天然气,那么需要交多少元天然气费? (2 )如果他家年全年使用 500 立方米天然气,那么需要交多少元天然气费? (3)如果他家年需要交1563 元天然气费,他家年用了多少立方米天然气?八、解答题(本题6 分)26.( 6 分)(秋 ?西期末)如图,数轴上 A ,B 两点对应的有理数分别为10 和 15,点 P从点 A 出发,以每秒1 个单位长度的速度沿数轴正方向运动,点 Q 同时从原点 O 出发,以每秒 2 个单位长度的速度沿数轴正方向运动,设运动时间为t 秒.(1)当 0< t <5 时,用含 t 的式子填空: BP=, AQ= ;(2)当 t=2 时,求 PQ 的值;(3)当 PQ=时,求 t 的值.九、附加题(试卷满分:20 分)27.( 6 分)(秋 ?西期末)操作题:公元初,中美洲玛雅人使用的一种数字系统与其他计数方式都不相同,它采用二十进位制但只有3个符号,用点“?划”“”、卵形“”来表示我们所使用的自然数,如自然数1~ 19 的表示见下表,另外在任何数的下方加一个卵形,就表示把这个数扩大到它的20倍,如表中20和 100 的表示.(1)玛雅符号表示的自然数是;(2)请你在右边的方框中画出表示自然数280 的玛雅符号:.28.( 5 分)(秋 ?西期末)推理判断题七年级五个班的班长因为参加校学生干部培训会而没有观看年级的乒乓球比赛.年级组长让他们每人猜一猜其中两个班的比赛名次.这五个班长各自猜测的结果如表所示:一班名次二班名次三班名次四班名次五班名次一班班长猜35二班班长猜 14三班班长猜54四班班长猜21五班班长猜 34正确结果年级组长说,每班的名次都至少被他们中的一人说对了,请你根据以上信息将一班~五班的正确名次填写在表中最后一行.299分)(秋?西期末)解答唐代大人李白喜好酒作,民有“.(李白斗酒百篇”之.《算法宗》中了一个“李白沽酒”的故事.云:注:古代一斗是10 升.大意是:李白在郊外春游,做出一条定:遇朋友,先到酒店里将里的酒增加一倍,再喝掉其中的19 升酒.按照的定,在第 3 个店里遇到朋友正好喝光了中的酒.(1)列方程求中原有多少升酒;(2)中原有 a0升酒,在第 n 个店酒后中余 a n升酒,如第一次后所余酒a1=2a019(升),第二次后所余酒a2=2a119=2 (2a019) 19=22a0( 21+1)×19(升),⋯.①用 a n﹣1的表达式表示a n,再用 a0和 n 的表达式表示a n;②按照个定,如果在第 4 个店喝光了中酒,借助① 中的求中原有多少升酒.-学年西七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共 28 分,第 1~ 8 题每小题 3 分,第 9、 10 题每小题 3 分)下面各题均有四个选项,其中只有一个是符合题意的.1. (秋 ?期末)下列算式中,运算结果为负数的是()A .﹣(﹣ 2)B . |﹣ 2| 32C .(﹣ 2)D .(﹣ 2)【考点】 正数和负数.【分析】 根据在一个数的前面机上负号就是这个数的相反数,负数的绝对值是它的相反数,负数的奇数次幂是负数,负数的偶数次幂是正数,可得答案.【解答】 解: A 、﹣(﹣ 2) =2 ,故 A 错误;B 、 |﹣ 2|=2,故 B 错误;C 、(﹣ 2) 3=﹣ 8,故 C 正确;D 、(﹣ 2) 2=4,故 D 错误;故选: C .【点评】 本题考查了正数和负数,小于零的数是负数,化简各数是解题关键.2. (秋 ?西期末)科学家发现,距离银河系约 2 500 000 光年之遥的仙女星系正在向银河系靠近.其中 2 500 000 用科学记数法表示为( )A . 0.25×107B . 2.5×106C . 2.5×107D . 25×105【考点】 科学记数法 —表示较大的数.【分析】 科学记数法的表示形式为 a ×10n的形式,其中 1≤|a|< 10, n 为整数.确定 n 的值时,要看把原数变成a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数. 【解答】 解:将 2 500 000 用科学记数法表示为 2.5×106.故选 B .【点评】 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|< 10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.3. (秋 ?西期末)下列各式中正确的是( )A .﹣( 2x+5 )=﹣ 2x+5B .﹣ ( 4x ﹣ 2) =﹣2x+2C .﹣ a+b=﹣( a ﹣ b )D . 2﹣ 3x=﹣( 3x+2)【考点】 去括号与添括号.【专题】 常规题型.【分析】 分别根据去括号与添括号的法则判断各选项即可.【解答】 解: A 、﹣( 2x+5 ) =﹣ 2x ﹣ 5,故本选项错误;B 、﹣ (4x ﹣ 2) =﹣2x+1 ,故本选项错误;C 、﹣ a+b=﹣( a ﹣ b ),故本选项正确;D 、 2﹣3x= ﹣( 3x ﹣ 2),故本选项错误.故选 C .【点评】 本题考查去括号与添括号的知识,注意掌握去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.4. (秋 ?西期末)下列计算正确的是( )A . 7a+a=7a2B . 3x 2y ﹣ 2yx 2=x 2yC . 5y ﹣ 3y=2D . 3a+2b=5ab【考点】 合并同类项.【专题】 计算题.【分析】 根据合并同类项的法则和同类项的定义分别对每一项进行计算即可.【解答】 解: A 、7a+a=8a ,故本选项错误;B 、 3x 2y ﹣ 2yx 2=x 2y ,故本选项正确;C 、 5y ﹣ 3y=2y ,故本选项错误;D 、 3a+2b ,不是同类项,不能合并,故本选项错误;故选 B .【点评】 此题考查了合并同类项,熟练掌握合并同类项的法则和同类项的定义是本题的关键.5. (秋 ?西期末)已知 a ﹣ b=1,则代数式 2a ﹣ 2b ﹣ 3 的值是()A . 1 B.﹣ 1 C. 5 D.﹣ 5【考点】代数式求值.【专题】计算题;实数.【分析】原式前两项提取 2 变形后,将a﹣ b=1 代入计算即可求出值.【解答】解:原式 =2( a﹣ b)﹣ 3,当a﹣ b=1 时,原式 =2﹣ 3=﹣ 1.故选 B .【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.(秋 ?西期末)空调常使用的三种制冷剂的沸点如下表所示,那么这三种制冷剂按沸点从低到高排列的顺序是()制冷剂编号R22R12R410A制冷剂二氟一氯甲烷二氟二氯甲烷二氟甲烷 50%,五氟乙烷 50%沸点近似值﹣ 41﹣ 30﹣ 52(精确到1℃)A . R12, R22,R410A B. R22, R12, R410AC. R410A ,R12,R22D. R410A ,R22,R12【考点】有理数大小比较.【专题】应用题.【分析】数与负数以0 为分界点,正数、0 都比负数大;负数与负数比较大小,负号后面的数字越小,这个负数反而越大;反之,负号后面的数字越大,这个负数就越小.【解答】解:因为﹣ 52<﹣ 41<﹣ 32,所以这三种制冷剂按沸点从低到高排列的顺序是R410A , R22,R12,故选 D【点评】此题考查了学生正、负数大小比较的方法,只要掌握方法就很好解答.但要注意,在负数与负数比较大小时,不要认为负号后面的数越大这个数越大.7.(秋 ?西期末)历史上,数学家欧拉最先把关于x 的多项式用记号 f ( x)来表示,把x等于某数 a 时的多项式的值用 f ( a)来表示,例如x= ﹣1 时,多项式f( x) =x 2+3x﹣ 5 的值记为 f(﹣ 1),那么 f (﹣ 1)等于()A .﹣ 7 B.﹣ 9 C.﹣ 3 D .﹣ 1【考点】代数式求值.【专题】新定义.【分析】把 x= ﹣ 1 代入 f ( x)计算即可确定出f(﹣ 1)的值.【解答】解:根据题意得:f(﹣ 1) =1 ﹣ 3﹣ 5=﹣ 7.故选 A .【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.8.(秋 ?西期末)下列说法中,正确的是()①射线 AB 和射线 BA 是同一条射线;②若 AB=BC ,则点 B 为线段 AC 的中点;③ 同角的补角相等;④点 C 在线段 AB 上, M ,N 分别是线段AC ,CB 的中点.若MN=5 ,则线段AB=10 .A .①②B.②③C.②④D.③④【考点】直线、射线、线段;两点间的距离;余角和补角.【分析】根据射线及线段的定义及特点可判断各项,从而得出答案.【解答】解:①射线 AB 和射线 BA 不是同一条射线,错误;②若 AB=BC ,点 B 在线段 AC 上时,则点 B 为线段 AC 的中点,错误;③ 同角的补角相等,正确;④点 C 在线段 AB 上, M ,N 分别是线段 AC ,CB 的中点.若 MN=5 ,则线段 AB=10 ,正确.故选 D .【点评】本题考查射线及线段的知识,注意基本概念的掌握是解题的关键.92分)(秋 ?西期末)点M,N,P和原点O在数轴上的位置如图所示,点M,N,P.(对应的有理数为a, b, c(对应顺序暂不确定).如果ab< 0,a+b> 0,ac> bc,那么表示数 b 的点为()A .点 M B.点 N C.点 P D.点 O【考点】数轴.【专题】探究型.【分析】根据数轴和ab< 0, a+b> 0, ac> bc,可以判断a、 b、c 对应哪一个点,从而可以解答本题.【解答】解:∵ ab< 0, a+b> 0,∴数 a 表示点 M ,数 b 表示点 P 或数 b 表示点 M ,数 a 表示点 P,则数 c 表示点 N,∴由数轴可得,c> 0,又∵ ac> bc,∴a> b,∴数 b 表示点 M ,数 a 表示点 P,即表示数 b 的点为 M .故选 A .【点评】本题考查数轴,解题的关键是明确数轴的特点能根据题目中的信息,判断各个数在数轴上对应哪一个点.10.( 2 分)(秋 ?西期末)用8 个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如图所示,那么从左面看它得到的平面图形一定不是()A .B.C.D.【考点】简单组合体的三视图;由三视图判断几何体.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解: A 、加号的水平线上每个小正方形上面都有一个小正方形,故 A 正确;B、加号的水平线上左边小正方形上有一个小正方形中间位置的小正方形上有两个小正方形,故 B 正确;C、加号的竖直的线上最上边小正方形上有两个小正方形,故 C 错误;D、加号的竖直的线上最上边小正方形上有两个小正方形,最下边的小正方形上有一个小正方形,故 D 正确;故选: C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.二、填空题(本题共23 分,第11~ 13 题每小题 3 分,第 14、 15 题每小题 3 分,第 16~18 题每小题 3 分)11.(秋 ?宝期末)﹣的相反数是﹣.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是﹣.故答案为:﹣..【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.(秋 ?西期末)单项式的次数是4.【考点】单项式.【分析】单项式中所有字母的指数的和叫单项式的次数.【解答】解:单项式的次数是4.故答案为: 4.【点评】本题主要考查的是单项式的概念,掌握单项式的次数的定义是解题的关键.13 3.886精确到0.01 3.89..(秋 ?西期末)用四舍五入法将,所得到的近似数为【考点】近似数和有效数字.【分析】把千分位上的数字 6 进行四舍五入即可.【解答】解: 3.886≈3.89(精确到0.01).故答案为 3.89.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0 的数字起到末位数字止,所有的数字都是这个数的有效数字.14.( 4 分)(秋 ?西期末)如图,∠AOB=72 °30′,射线 OC 在∠ AOB 内,∠ BOC=30 °.(1)∠ AOC= 42°30′ ;(2)在图中画出∠ AOC 的一个余角,要求这个余角以O 为顶点,以∠ AOC 的一边为边.图中你所画出的∠AOC 的余角是∠AOD ,这个余角的度数等于47°30′ .【考点】余角和补角;度分秒的换算.【分析】(1)根据图形进行角的计算即可;(2)根据余角的概念作图、计算即可.【解答】解:( 1)∠ AOC= ∠ AOB ﹣∠ BOC=42 °30′;(2)如图,∠ AOC 的余角是∠ AOD ,90°﹣42°30′=47°30′.故答案为:( 1) 42°30′;( 2)AOD ; 47°30′.【点评】本题考查的是余角和补角的概念以及角的计算,掌握两个角的和为90°,则这两个角互余是解题的关键.154分)(秋 ?西期末)用含a的式子表示:.((1)比 a 的 6 倍小 5 的数:6a﹣ 5 ;(2)如果某天的最低气温为a℃,中午 12 点的气温比最低气温上升了10℃,那么中午 12点的气温为( a+10)℃.【考点】列代数式.【分析】(1)被减数是6a,减数为5,依此即可求解;(2)根据题意可得:中午 12 点的气温 =最低气温 +升高的气温,依此即可求解.【解答】解:( 1)a 的 6 倍为 6a,小 5 即为 6a﹣5;(2)中午 12 点的气温为( a+10)℃.故答案为: 6a﹣ 5;( a+10).【点评】考查了列代数式,( 1)题关键是找好题中关键词,如“倍”;( 2)注意气温上升为加.162分)(秋 ?西期末)请写出一个只含字母x的整式,满足当x=﹣2时,它的值等于.(3.你写的整式是﹣x 或 x+5.【考点】代数式求值.【专题】计算题;开放型.【分析】写出一个整式,使x= 2 3 即可.【解答】解:答案不唯一,如x 或 x+5 .故答案:x 或 x+5【点】此考了代数式求,熟掌握运算法是解本的关.17.( 2 分)(秋 ?期末)一件商品按成本价提高20%价,然后打9 折出售,此仍可利 16 元,商品的成本价200元.【考点】一元一次方程的用.【】用.【分析】种商品的成本价是x 元,商品的价x( 1+20%),等量关系:价×90%= 成本 +利,把相关数代入求解即可.【解答】解:种商品的成本价是x 元,商品的价x( 1+20% ),由意可得: x×( 1+20%)×90%=x+16 ,解得 x=200 ,即种商品的成本价是200 元.故答案: 200.【点】此考一元一次方程的用,得到售价的等量关系是解决本的关,度一般,注意心.18.( 2 分)(秋 ?西期末)如,上有五个点,五个点将分成五等份(每一份称一段弧),把五个点按方向依次号1, 2,3, 4, 5.若从某一点开始,沿周方向行走,点的号是数字几,就走几段弧,我把种走法称一次“移”位.如:小明在号 3 的点,那么他走 3 段弧,即从3→4→5→1 第 1 次“移位”,他到达号 1 的点,那么他走 1 段弧,即从1→2第2 次“移位”.若小明从号4的点开始,第1“”3的点,⋯“ ”次移位后,他到达号,第次移位后,他到达号 4 的点.【考点】规律型:数字的变化类;规律型:图形的变化类.【分析】从编号为 4 的点开始走 4 段弧: 4→5→1→2→3,即可得出结论;依次求出第2,3, 4, 5 次的结合寻找规律,根据规律分析第次的编号即可.【解答】解:从编号为 4 的点开始走 4 段弧: 4→5→1→2→3,所以第一次“移位”他到达编号为 3 的点;第二次移位后:3→4→5→1,到编号为 1 的点;第三次移位后:1→2,到编号为 2 的点;第四次移位后:2→3→4,回到起点;可以发现:他的位置以“3, 1, 2, 4,”循环出现,÷4=504 ,整除,所以第次移位后他的编号与第四次相同,到达编号为 4 的点;故答案为: 3, 4.【点评】此题主要考查循环数列规律的探索与应用,根据已知求出部分数据找到循环周期是解题的关键.三、计算题(本题共16 分,每小题12 分)19.( 12 分)(秋?西期末)( 1)(﹣ 12)﹣(﹣ 20) +(﹣ 8)﹣ 15.(2)﹣.(3) 19× +(﹣ 1.5)÷(﹣3)2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:( 1)原式 =﹣ 12+20﹣ 8﹣15= ﹣ 35+20=﹣ 15;(2)原式 =﹣×3×(﹣ 8) =6;( 3)原式 =19.5 × ﹣ 1.5× =( 19.5﹣1.5) × =18 × =2.【点评】 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.( 4 分)(秋 ?西期末)以下是一位同学所做的有理数运算解题过程的一部分:( 1)请你在上面的解题过程中仿照给出的方式,圈画出他的错误之处,并将正确结果写在相应的圈内;( 2)请就此题反映出的该同学有理数运算掌握的情况进行具体评价,并对相应的有效避错方法给出你的建议.【考点】 有理数的混合运算.【专题】 图表型;实数.【分析】 (1)出错地方有 2 处,一是绝对值求错,一是乘除运算顺序错误,改正即可;( 2)根据有理数运算顺序写出建议即可.【解答】 解:( 1)如图所示:( 2)有理数运算顺序为:先算乘方及绝对值运算,再算乘除运算,最后算加减运算,同级运算从左到右依次进行.【点评】 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、先化简,再求值(本题 5 分)21 55 2﹣ 2ab 3)﹣ 4 ( 5a 2﹣ 3ab 3),其中 a=分)(秋 ?西期末)先化简,再求值: (.(﹣ 1, b=2 .【考点】 整式的加减 —化简求值.【专题】 计算题;整式.【分析】 原式去括号合并得到最简结果,把 a 与 b 的值代入计算即可求出值.2323=2ab 3,当a=﹣ 1, b=2 时,原式 =﹣ 16.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、解答题(本题 5 分)225分)(秋 ?西期末)解方程:..(【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:去分母,得 3(1﹣ 2x)﹣ 21=7( x+3),去括号,得3﹣ 6x﹣21=7x+21 ,移项,得﹣6x﹣ 7x=21 ﹣ 3+21 ,合并,得﹣ 13x=39 ,系数化1,得 x= ﹣ 3,则原方程的解是 x= ﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.六、解答题(本题7 分)23.( 7 分)(秋 ?西期末)如图,∠CDE+ ∠ CED=90 °, EM 平分∠ CED ,并与 CD 边交于点 M . DN 平分∠ CED ,并与 EM 交于点 N.(1)依题意补全图形,并猜想∠EDN+ ∠ NED 的度数等于45°;(2)证明以上结论.证明:∵ DN 平分∠ CDE, EM 平分∠ CED ,∴∠ EDN=,∠ NED=CED.(理由:角平分线的定义)∵∠ CDE+ ∠CED=90 °,∴∠ EDN+ ∠ NED=×(∠CDE +∠CED)=×90°=45°.【考点】角的计算;角平分线的定义.1)根据题意画出图形,然后由角平分线的定义可求得∠EDN+ ∠NED=45 °【分析】(;(2)根据角平分线的定义以及证明过程进行填写即可.【解答】(1)解:如图所示:猜想∠ EDN+ ∠ NED=45 °.(2)证明:∵ DN 平分∠ CDE ,EM 平分∠ CED ,∴∠ EDN=,∠ NED=CED .(理由:角平分线的定义),∵∵∠ CDE+ ∠ CED=90 °,∴∠ EDN+ ∠ NED= (∠ CDE+ ∠ CED )==45 °.故答案为:( 1) 45°;( 2)CED ;角平分线的定义;;CDE;CED;;45.【点评】本题主要考查的是角的计算、角平分线的定义,逆用乘法的分配律求得∠EDN+ ∠ NED=(∠ CDE+∠CED)是解题的关键.七、解决下列问题(本题共10 分,每小题 5 分)24.( 5 分)(秋 ?西期末)已知右表内的各横行中,从第二个数起的数都比它左边相邻的数大 m;各竖列中,从第二个数起的数都比它上边相邻的数大n.求 m, n 以及表中 x 的值.【考点】一元一次方程的应用.【分析】根据表内的各横行中,从第二个数起的数都比它左边相邻的数大m 得出12+2m=18 ,解方程求出 m 的值;再由各竖列中,从第二个数起的数都比它上边相邻的数大n,得出( 12+m ) +3n=30,解方程求出 n 的值;进而求得 x 的值.【解答】 解:∵各横行中,从第二个数起的数都比它左边相邻的数大m ,∴ 12+2m=18 , 解得 m=3.又∵各竖列中,从第二个数起的数都比它上边相邻的数大n ,∴( 12+m ) +3n=30 ,将 m=3 代入上述方程得 15+3n=30 ,解得 n=5 .此时 x=12 ﹣2m+n=12 ﹣ 2×3+5=11 .【点评】 本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.( 5 分)(秋 ?西期末)从年 1 月 1 日开始,居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如6 口以下的户年天然气用量在第二档时,其中350 立方米按 2.28 元 /m 3 收费,超过 350 立方米的部分按 2.5 元 /m 3收费.小冬一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.(1 )如果他家年全年使用 300 立方米天然气,那么需要交多少元天然气费? (2)如果他家年全年使用 500 立方米天然气,那么需要交多少元天然气费? (3 )如果他家年需要交1563 元天然气费,他家年用了多少立方米天然气?【考点】 一元一次方程的应用.【分析】 (1)根据一般生活用气收费标准,可得小冬一家需要交天然气费 2.28×300,计算即可;(2)根据一般生活用气收费标准,可得小冬一家需要交天然气费2.28×350+2.5×( 500﹣350),计算即可;(3)设设小冬家年用了x 立方米天然气.首先判断出小冬家年所用天然气超过了500 立方米,然后根据他家年需要交1563 元天然气费建立方程,求解即可.【解答】解:( 1)如果他家年全年使用300 立方米天然气,那么需要交天然气费2.28×300=684(元);(2)如果他家年全年使用500 立方米天然气,那么需要交天然气费2.28×350+2.5×( 500﹣350) =798+375=1173 (元);(3)设小冬家年用了 x 立方米天然气.∵1563 > 1173,∴小冬家年所用天然气超过了500 立方米.根据题意得2.28×350+2.5×(500﹣350)+3.9(x﹣500)=1563,解得 x=600 .答:小冬家年用了 600 立方米天然气.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.八、解答题(本题 6 分)266分)(秋 ?西期末)如图,数轴上A,B两点对应的有理数分别为10和15,点P.(从点 A 出发,以每秒 1 个单位长度的速度沿数轴正方向运动,点Q 同时从原点 O 出发,以每秒 2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒.(1)当0< t <5时,用含 t 的式子填空: BP=5﹣ t , AQ= 10﹣ 2t;(2)当 t=2 时,求 PQ 的值;(3)当 PQ=时,求 t 的值.【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】(1)先求出当0< t< 5 时, P 点对应的有理数为10+t< 15,Q 点对应的有理数为2t< 10,再根据两点间的距离公式即可求出BP ,AQ 的长;(2)先求出当 t=2 时, P 点对应的有理数为10+2=12 , Q 点对应的有理数为2×2=4,再根据两点间的距离公式即可求出PQ 的长;(3)由于 t 秒时, P 点对应的有理数为 10+t, Q 点对应的有理数为 2t,根据两点间的距离公式得出 PQ=|2t﹣( 10+t) |=|t﹣10|,根据 PQ=列出方程,解方程即可.【解答】解:( 1)∵当 0< t< 5 时, P 点对应的有理数为10+t< 15,Q 点对应的有理数为2t< 10,∴B P=15 ﹣( 10+t)=5﹣ t, AQ=10 ﹣2t.故答案为 5﹣ t,10﹣ 2t;(2)当 t=2 时, P 点对应的有理数为10+2=12 , Q 点对应的有理数为2×2=4,所以 PQ=12﹣ 4=8;(3)∵ t 秒时, P 点对应的有理数为10+t, Q 点对应的有理数为2t,∴P Q=|2t ﹣( 10+t) |=|t﹣ 10|,∵PQ=,∴|t﹣10|=2.5 ,解得 t=12.5 或 7.5.【点评】此题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,( 3)中解方程时要注意分两种情况进行讨论.九、附加题(试卷满分:20 分)27.( 6 分)(秋 ?西期末)操作题:公元初,中美洲玛雅人使用的一种数字系统与其他计数方式都不相同,它采用二十进位制但只有3个符号,用点“?划”“”、卵形“”来表示我们所使用的自然数,如自然数1~ 19 的表示见下表,另外在任何数的下方加一个卵形,就表示把这个数扩大到它的20倍,如表中20和 100 的表示.。
2020-2021学年北京市西城区七年级上学期期末数学试卷(附答案解析)
2020-2021学年北京市西城区七年级上学期期末数学试卷一、选择题(本大题共10小题,共20.0分)1.下列说法:①符号相反的数互为相反数;②−a一定是一个负数;③正整数、负整数统称为整数;④一个数的绝对值越大,表示它的点在数轴上离原点越远;⑤当a≠0时,|a|总是大于0,正确的有()A. 4个B. 3个C. 2个D. 1个2.某蛋白质分子的直径是0.00000043米,用科学记数法表示为()A. 4.3×107米B. −4.3×107米C. 4.3×10−7米D. 0.43×10−6米3.计算(a−b)(a+b)(a2+b2)−(a4+b4)等于()A. 2a4B. 2b4C. −2a4D. −2b44.设计制作一个圆柱形状的包装纸盒,下列表面展开图的草图正确的是()A. B. C. D.5.6,根据下列表格对应值:判断方程ax2+bx+c=0(a≠0,a、b、c为常数)的一个解x的范围是:()A. B.C. D.6. 某人从A出发沿北偏东80°方向行走到B处,又从B处沿北偏西30°方向行走到C处,此时调整到与出发相反的方向,应该如何调整()A. 左转110°B. 右转110°C. 左转70°D. 右转70°7. 当x=2时,整式px3+qx+1的值等于2002,那么当x=−2时,整式px3+qx+1的值为()A. 2001B. −2001C. 2000D. −20008. 下列说法中,正确的是()A. 0是最小的整数;B. 一个有理数的平方总是正数;C. 任何有理数的绝对值都是正数;D. 最大的负整数是−1.9. 将一副三角尺按下列几种方式摆放,则能使∠α=∠β的摆放方式为()A. B.C. D.10. 某同学解方程5x−1=□x+3时,把“□”处的系数看错了,解得x=−4,他把“□”处的系数看成了()A. 4B. −9C. 6D. −6二、填空题(本大题共9小题,共19.0分)11. ①307000000用科学记数法可表示为______ .②85.90是精确到______ 位的数.12. 若关于x的方程2x+a+5=0的解为x=−1,则a的值为______.13. 若3x m+5y2与−2x3y n是同类项,则m−n=______ 。
2020-2021七年级上期末数学试卷(含答案)
2020-2021七年级(上)期末数学试卷一、选择题:每小题3分,共30分1.2015的相反数是()A.B.﹣2015 C.2015 D.﹣2.在﹣4,0,2.5,|﹣3|这四个数中,最大的数是()A.﹣4 B.0 C.2.5 D.|﹣3|3.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108B.21×106C.2.1×107D.2.1×1064.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D.+y=25.已知∠A=65°,则∠A的补角等于()A.125° B.105° C.115°D.95°6.下列各式正确的是()A.﹣8+5=3 B.(﹣2)3=6 C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b 7.如图所示,有理数a、b在数轴上的位置如图,则下列说法错误的是()A.b﹣a>0 B.a+b<0 C.ab<0 D.b<a8.将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A.B.C.D.9.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A.x(30﹣2x)平方厘米B.x(30﹣x)平方厘米C.x(15﹣x)平方厘米D.x(15+x)平方厘米10.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定二、填空题:每小题4分,共24分11.如果“节约10%”记作+10%,那么“浪费6%”记作:.12.按四舍五入法则去近似值:2.086≈(精确到百分位).0.03445≈(精确到0.001)13.若﹣5x n y2与12x3y2m是同类项,则m= ,n= .14.已知5是关于x的方程3x﹣2a=7的解,则a的值为.15.如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=.16.已知线段AB=acm,A1平分AB,A2平分AA1,A3平分AA2,…,A n平分AA n﹣1,则AA n= cm.三、解答题:每小题6分,共18分17.计算:﹣12014﹣6÷(﹣2)×|﹣|.18.如图,已知平面上有四个点A,B,C,D.(1)连接AB,并画出AB的中点P;(2)作射线AD;(3)作直线BC与射线AD交于点E.19.解方程:.四、解答题:每小题7分,共21分20.已知(x+2)2+|y﹣|=0,求5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.21.列方程解应用题:七、八年级学生分别到雷锋、毛泽东纪念馆参观,共590人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人,到雷锋纪念馆参观的人数有多少人?22.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一二三四五六日增减/辆﹣1 +3 ﹣2 +4 +7 ﹣5 ﹣10(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?五、解答题:每小题9分,共27分23.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的代数式分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=(直接写出结果).25.如图,已知数轴上点A,B是数轴上的一点,AB=12,动点P 从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数为,经t秒后点P走过的路程为(用含t的代数式表示);(2)若在动点P运动的同时另一动点Q从点B也出发,并以每秒4个单位长度的速度沿数轴向左匀速运动,问经多少时间点P 就能追上点Q?(3)若M为AP的中点,N为BP的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.七年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题3分,共30分1.2015的相反数是()A.B.﹣2015 C.2015 D.﹣【考点】相反数.【分析】利用相反数的定义即可得结果.【解答】解:2015的相反数是﹣2015,故选B.【点评】本题主要考查了相反数的定义,熟记定义是解答此题的关键.2.在﹣4,0,2.5,|﹣3|这四个数中,最大的数是()A.﹣4 B.0 C.2.5 D.|﹣3|【考点】有理数大小比较.【分析】|﹣3|=3,再去比较﹣4,0,2.5,3这四个数即可得出结论.【解答】解:∵|﹣3|=3,且有﹣4<0<2.5<3,∴最大的数是|﹣3|.故选D.【点评】本题考查了有理数大小的比较以及去绝对值符号,解题的关键是找出|﹣3|=3,再去进行比较.3.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108B.21×106C.2.1×107D.2.1×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2100000=2.1×106,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D.+y=2【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、正确;B、含有2个未知数,不是一元一次方程,选项错误;C、最高次数是2次,不是一元一次方程,选项错误;D、不是整式方程,不是一元一次方程,选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.已知∠A=65°,则∠A的补角等于()A.125° B.105° C.115°D.95°【考点】余角和补角.【分析】根据互补两角之和为180°求解即可.【解答】解:∵∠A=65°,∴∠A的补角=180°﹣65°=115°.故选C.【点评】本题考查了补角的知识,属于基础题,掌握互补两角之和为180°是关键.6.下列各式正确的是()A.﹣8+5=3 B.(﹣2)3=6 C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b 【考点】去括号与添括号;有理数的加法;有理数的乘方.【分析】直接利用去括号法则以及有理数的乘方运算法则分别计算得出答案.【解答】解:A、﹣8+5=﹣3,故此选项错误;B、(﹣2)3=﹣8,故此选项错误;C、﹣(a﹣b)=﹣a+b,正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.【点评】此题主要考查了去括号法则以及有理数的乘方运算等知识,正确掌握运算法则是解题关键.7.如图所示,有理数a、b在数轴上的位置如图,则下列说法错误的是()A.b﹣a>0 B.a+b<0 C.ab<0 D.b<a【考点】数轴.【分析】根据数轴上点的位置关系,可得a、b的大小,判定D,根据有理数的加法,可判断B;根据有理数的乘法,可判断C;根据有理数的减法,可判断A.【解答】解:由数轴上点的位置关系,得a>0>b,|a|<|b|,A.b﹣a<0,故此选项错误;B.a+b<0,故此选项正确;C.ab<0,故此选项正确;D.b<a,故此选项正确.故选A.【点评】本题考查了有理数的大小比较,利用数轴确定a、b的大小即|a|与|b|的大小是解题关键.8.将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【考点】点、线、面、体.【分析】根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状.【解答】解:题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.故选D.【点评】本题属于基础题,主要考查学生是否具有基本的识图能力,以及对点、线、面、体之间关系的理解.9.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A.x(30﹣2x)平方厘米B.x(30﹣x)平方厘米C.x(15﹣x)平方厘米D.x(15+x)平方厘米【考点】列代数式.【分析】先长方形的周长是30厘米,长方形的一边用为x厘米,求出长方形的另一边的长,再根据长方形的面积公式即可得出答案.【解答】解:∵长方形的周长是30厘米,长方形的一边用为x厘米,∴长方形的另一边是(15﹣x)厘米,∴该长方形的面积是x(15﹣x)平方厘米;故选C.【点评】此题考查了列代数式,关键是根据长方形的周长表示出长方形的另一边的长,用到的知识点是长方形的周长公式和面积公式.10.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定【考点】一元一次方程的应用.【分析】此类题应算出实际赔了多少或赚了多少,然后再比较是赚还是赔,赔多少、赚多少,还应注意赔赚都是在原价的基础上.【解答】解:设赚了25%的衣服的售价x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的售价y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选B.【点评】本题考查了一元一次方程的应用,注意赔赚都是在原价的基础上,故需分别求出两件衣服的原价,再比较.二、填空题:每小题4分,共24分11.如果“节约10%”记作+10%,那么“浪费6%”记作:﹣6% .【考点】正数和负数.【分析】明确“正”和“负”所表示的意义:节约用+号表示,则浪费一定用﹣表示,据此即可解决.【解答】解:因为节约10%记作:+10%,所以浪费6%记作:﹣6%.故答案为:﹣6%.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.按四舍五入法则去近似值:2.086≈ 2.09 (精确到百分位).0.03445≈0.034 (精确到0.001)【考点】近似数和有效数字.【分析】2.086精确到百分位需将千分位数字6四舍五入,0.03445精确到0.001需将小数点后第4位数字4四舍五入即可.【解答】解:2.086≈2.09(精确到百分位),0.03445≈0.034(精确到0.001),故答案为:2.09,0.034.【点评】本题主要考查近似数,四舍五入取近似数看清题目要求及精确的位数是关键.13.若﹣5x n y2与12x3y2m是同类项,则m= 1 ,n= 3 .【考点】同类项.【专题】常规题型.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),列出方程,从而求出m,n的值.【解答】解:∵﹣5x n y2与12x3y2m是同类项,∴n=3,2=2m,解得:m=1,n=3.故答案为:1,3.【点评】本题考查同类项的知识,属于基础题目,关键是掌握同类项所含字母相同,且相同字母的指数相同,这两点是易混点,同学们要注意区分.14.已知5是关于x的方程3x﹣2a=7的解,则a的值为 4 .【考点】一元一次方程的解.【专题】计算题.【分析】根据方程的解的定义,把x=5代入方程3x﹣2a=7,即可求出a的值.【解答】解:∵x=5是关于x的方程3x﹣2a=7的解,∴3×5﹣2a=7,解得:a=4.故答案为:4.【点评】本题的关键是理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.15.如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=134°.【考点】垂线;对顶角、邻补角.【分析】首先根据垂直定义可得∠EOB=90°,再根据角的和差关系可得∠COB=134°,再根据对顶角相等可得∠AOD的度数.【解答】解:∵OE⊥AB,∴∠EOB=90°,∵∠COE=44°,∴∠COB=90°+44°=134°,∴∠AOD=134°,故答案为:134°.【点评】此题主要考查了垂线以及对顶角,关键是算出∠EOB的度数,掌握对顶角相等.16.已知线段AB=acm,A1平分AB,A2平分AA1,A3平分AA2,…,A n平分AA n﹣1,则AA n= ()n a cm.【考点】两点间的距离.【专题】计算题;规律型.【分析】根据题意,找出AA1,AA2,AA3与a的关系,再按照规律解答即可.【解答】解:∵线段AB=acm,A1平分AB,A2平分AA1,A3平分AA2,∴AA1=a,AA2=a,AA n=(\frac{1}{2})na.故答案为()n a.【点评】本题主要考查两点间的距离,熟练找出规律是解答本题的关键.三、解答题:每小题6分,共18分17.计算:﹣12014﹣6÷(﹣2)×|﹣|.【考点】有理数的混合运算.【专题】计算题.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1+6××=﹣1+1=0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.如图,已知平面上有四个点A,B,C,D.(1)连接AB,并画出AB的中点P;(2)作射线AD;(3)作直线BC与射线AD交于点E.【考点】作图—复杂作图.【分析】(1)画线段AB,并找到中点P即可;(2)根据射线的性质画射线即可;(3)根据直线的性质画直线BC,根据射线的性质画射线AD.【解答】解:如图所示.【点评】此题主要考查了画射线,直线,线段,关键是掌握三种线得区别与联系.19.解方程:.【考点】解一元一次方程.【专题】计算题.【分析】方程去分母,去括号,移项合并,将y系数化为1,即可求出解.【解答】解:去分母,得3(y+1)=24﹣4(2y﹣1),去括号,得9y+3=24﹣8y+4,移项,得9y+8y=24+4﹣3,合并同类项,得17y=25,系数化为1,得y=.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.四、解答题:每小题7分,共21分20.已知(x+2)2+|y﹣|=0,求5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x 与y的值,代入计算即可求出值.【解答】解:∵(x+2)2+|y﹣|=0,∴x=﹣2,y=,则原式=5x2y﹣2x2y+xy2﹣2x2y+4﹣2xy2=x2y﹣xy2+4=2++4=6.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.21.列方程解应用题:七、八年级学生分别到雷锋、毛泽东纪念馆参观,共590人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人,到雷锋纪念馆参观的人数有多少人?【考点】一元一次方程的应用.【分析】设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589﹣x)人,根据到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.列方程求解即可.【解答】解:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589﹣x)人,由题意得,2x+56=589﹣x,解得x=178.答:到雷锋纪念馆参观的人数有178人.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一二三四五六日增减/辆﹣1 +3 ﹣2 +4 +7 ﹣5 ﹣10(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)由表格找出生产量最多与最少的,相减即可得到结果;(2)根据题意列出算式,计算即可得到结果.【解答】解:(1)7﹣(﹣10)=17(辆);(2)100×7+(﹣1+3﹣2+4+7﹣5﹣10)=696(辆),答:(1)生产量最多的一天比生产量最少的一天多生产17辆;(2)本周总生产量是696辆,比原计划减少了4辆.【点评】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键.五、解答题:每小题9分,共27分23.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的代数式分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?【考点】一元一次方程的应用;列代数式;代数式求值.【分析】(1)需要分类讨论:行程不超过3千米和行程超过3千米,根据两种收费标准进行计算;(2)把x=8代入(1)中相应的代数式进行求值即可;(3)设他坐了x千米,根据该乘客付费26.2元列出方程求解即可.【解答】解:(1)当行程不超过3千米即x≤3时时,收费10元;当行程超过3千米即x>3时,收费为:10+(x﹣3)×1.8=1.8x+4.6(元).(2)当x=8时,1.8x+4.6=1.8×8+4.6=19(元).答:乘客坐了8千米,应付费19元;(3)设他坐了x千米,由题意得:10+(x﹣3)×1.8=26.2,解得x=12.答:他乘坐了12千米.【点评】该题考查了一元一次方程的应用,列代数式及求代数式的值等问题;解决问题的关键是读懂题意,找到所求的量的等量关系,进而列出式子.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=35°(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=α(直接写出结果).【考点】角的计算;角平分线的定义.【分析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(3)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可.【解答】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=65°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,∴∠AON=∠AOC﹣∠NOC=α+β﹣β=α+β.∴∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α即∠MON=α.故答案为:α.【点评】本题考查了角平分线定义和角的有关计算,关键是求出∠AOC、∠MOC、∠NOC的度数和得出∠MON=∠MOC﹣∠NOC.25.如图,已知数轴上点A,B是数轴上的一点,AB=12,动点P 从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数为﹣4 ,经t秒后点P走过的路程为6t (用含t的代数式表示);(2)若在动点P运动的同时另一动点Q从点B也出发,并以每秒4个单位长度的速度沿数轴向左匀速运动,问经多少时间点P 就能追上点Q?(3)若M为AP的中点,N为BP的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】(1)设出B点表示的数为x,由数轴上两点间的距离即可得到x的方程,解方程即可得出x,由路程=速度×时间可得出点P走过的路程;(2)设经t秒后P点追上Q点,根据题意可得,关于t的一元一次方程,解方程即可得出时间t;(3)由P点位置的不同分两种情况考虑,依据中点的定义,可以找到线段间的关系,从而能找出MN的长度.【解答】解:(1)设B点表示x,则有AB=8﹣x=12,解得x=﹣4.∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴经t秒后点P走过的路程为6t.故答案为:﹣4;6t.(2)设经t秒后P点追上Q点,根据题意得:6t﹣4t=12,解得t=6.答:经过6秒时间点P就能追上点Q.(3)不论P点运动到哪里,线段MN都等于6.分两种情况分析:①点P在线段AB上时,如图1,MN=PM+PN=PA+PB=(PA+PB)=AB=×12=6;②点P在线段AB的延长线上时,如图2,MN=PM﹣PN=PA﹣PB=(PA﹣PB)=AB=×12=6.综上可知,不论P运动到哪里,线段MN的长度都不变,都等于6.【点评】本题考查了数轴、中点依据解一元一次方程,解题的关键是:(1)找出关于x的一元一次方程;(2)找出关于时间t 的一元一次方程;(3)由中点定义找到线段间的关系.。
2020—2021年北师大版七年级数学上册期末考试及答案【汇编】
2020—2021年北师大版七年级数学上册期末考试及答案【汇编】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )A .12个B .16个C .20个D .30个3.如图,ABCD 为一长方形纸带,AB ∥CD ,将ABCD 沿EF 折,A 、D 两点分别与A D ''、对应,若∠1=2∠2,则∠AEF 的度数为( )A .60°B .65°C .72°D .75°4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个6.如下图,在下列条件中,能判定AB//CD 的是( )A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠3=∠47.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .10.已知三条不同的射线OA 、OB 、OC 有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB ,其中能确定OC 平分∠AOB 的有( )A .4个B .3个C .2个D .1个 二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个. 3.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.4.使分式211x x -+的值为0,这时x=________. 5.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.6.若323m x --21n y - =5是二元一次方程,则m =________,n =________.三、解答题(本大题共6小题,共72分)1.解方程(1)2(1)25(2)x x -=-+ (2)3171124x x ++-=2.化简求值:已知:(x ﹣3)2+|y+13|=0,求3x 2y ﹣[2xy 2﹣2(xy 232x y -)+3xy]+5xy 2的值.3.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.4.某住宅小区有一块草坪如图所示.已知AB =3米,BC =4米,CD =12米,DA =13米,且AB ⊥BC ,求这块草坪的面积.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、C5、B6、C7、B8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、23、344、15、70°6、2 1三、解答题(本大题共6小题,共72分)1、(1)67x =- ;(2)3x =- 2、2.3、(1)DE=3;(2)ADB S 15∆=.4、36平方米5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。
2021-2022学年北京市西城区七年级(上)期末数学试卷
2021-2022学年北京市西城区七年级(上)期末数学试卷学校姓名准考证号注意事项1.本试卷共5页,共两部分,26道题。
满分100分。
考试时间120分钟。
2.在试卷和答题纸上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。
4.在答题纸上,选择题、作图题用2B铅笔作答,其他题用黑色字迹铅笔作答。
第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.5−的绝对值是()A.5B.5−C.15D.15−2.云南的澄江化石地世界自然遗产博物馆升级改造完工,馆内所收藏的约520000000年前的澄江生物群化石,展示了寒武纪时期的生物多样化场景.将520000000用科学记数法表示应为()A.90.5210×B.85.210×C.95.210×D.75210×3.如图,数轴上的点A表示的数可能是()A.1410−B.142−C.1310−D.132−4.下列计算正确的是()A.330y y−−=B.54mn nm mn−=C.243a a a−=D.22223a b ab a b+=5.一个角的余角比它的补角的14多15°,设这个角为α,下列关于α的方程中,正确的是()A.190(180)154αα−=−+B.190(180)154αα−=−−C.1180(180)154αα−=−+D.1180(180)154αα−=−−6.我国曾发行过一款如图所示的国家重点保护野生动物(1级)邮票小全张,设计者巧妙地将“野牦牛”和“黑颈鹤”这两枚不同规格的过桥票(无邮政铭记和面值的附票,在图中标记为①,②),与其他10枚尺寸相同的普通邮票组合在一起构成一个长方形,整个画面和谐统一,以下关于图中所示的三种规格邮票边长的数量关系的结论中,正确的是( )A .2c d =B .3e a =C .4de ac ab +=D .2de ac ab −=7.下列方程变形中,正确的是( )A .方程3445x x +−,移项得3454x x −=−B .方程342x −=,系数化为1得34()2x =×−C .方程32(1)5x −+=,去括号得3225x −−=D .方程131123x x −+−=,去分母得3(1)12(31)x x −−=+ 8.用6个棱长为1的小正方体可以粘合形成不同形状的积木,将如图所示的两块积木摆放在桌面上,再从下列四块积木中选择一块,能搭成一个长、宽、高分别为3、2、3的长方体的是( )A .B .C .D .第二部分 非选择题二、填空题(共16分,每题2分) 9.3830′°=°. 10.用四舍五入法把3.786精确到0.01,所得到的近似数为 . 11.如果单项式4a x y 与35b x y 是同类项,那么a = ,b = .12.若16a =,13b =,则263a ab −的值为 . 13.若5x =是关于x 的方程234x a +=的解,则a = .14.有理数a ,b 在数轴上的对应点的位置如图所示,有以下结论:①0a b +>;②0a b −>;③1ba>;④30a b +<,其中所有正确的结论是 (只填写序号).15.线段6AB =,C 为线段AB 的中点,点D 在直线AB 上,若3BD AC =,则CD = . 16.在如图所示的星形图案中,十个“圆圈”中的数字分别是1,2,3,4,5,6,8,9,10,12,并且每条“直线”上的四个数字之和都相等.请将图中的数字补全.三、解答题(共68分,第17题18分,第18-19题,每题6分,第20题11分,第21题7分,第22题8分,第23-24题,每题6分) 17.(18分)计算: (1)5(6)(9)−+−−−;(2)851()()389−×−÷;(3)2333(2)2−−−÷;(4)457()(24)368−+−×−.18.(6分)先化简,再求值:225()2(2)2a b b a b +−++,其中2a =,1b =−.19.(6分)平面上有三个点A ,B ,O ,点A 在点O 的北偏东80°方向上,4OA cm =,点B 在点O 的南偏东30°方向上,3OB cm =,连接AB ,点C 为线段AB 的中点,连接OC .(1)依题意画出图形(借助量角器、刻度尺画图); (2)写出AB OA OB <+的依据;(3)比较线段OC 与AC 的长短并说明理由; (4)直接写出AOB ∠的度数.20.(11分)解下列方程: (1)5(1)3(1)x x −=+; (2)321142x x −+−=.21.(7分)如图,90AOB ∠=°,90COD ∠=°,OA 平分COE ∠,(090)BOD n n ∠=°<<. (1)求DOE ∠的度数(用含n 的代数式表示);请将以下解答过程补充完整. 解:90AOB ∠=° , 90BOD AOD ∴∠+∠=°. 90COD ∠=° . 90AOC AOD ∴∠+∠=°.BOD ∴∠=∠ .(理由: )BOD n ∠=° , AOC n ∴∠=°. OA 平分COE ∠,∴∠ 2AOC =∠.(理由: ) DOE COD ∴∠=∠−∠ = °.(2)用等式表示AOD ∠与BOC ∠的数量关系.22.(8分)某班手工兴趣小组的同学们计划制作一批中国结送给敬老院作为新年礼物.如果每人制作9个,那么就比计划少做17个;如果每人制作12个,那么就比计划多做4个. (1)这个手工兴趣小组共有多少人?计划要做的这批中国结有多少个?(2)同学们打算用A ,B 两种不同的编结方式来制作这一批中国结,已知每个A 型中国结需用红绳0.6米,每个B 型中国结需用红绳0.9米,现有50米红绳,制作这批中国结能恰好用完这50米红绳吗?请说明你的理由.23.(6分)在数轴上有A ,B ,C ,M 四点,点A 表示的数是1−,点B 表示的数是6,点M 位于点B 的左侧并与点B 的距离是5,M 为线段AC 的中点. (1)画出点M ,点C ,并直接写出点M ,点C 表示的数;(2)画出在数轴上与点B 的距离小于或等于5的点组成的图形,并描述该图形的特征; (3)若数轴上的点Q 满足14QA QC =,求点Q 表示的数.24.(6分)【阅读与理解】 小天同学看到如下的阅读材料:对于一个数A ,以下给出了判断数A 是否为19的倍数的一种方法:每次划掉该数的最后一位数字,将划掉这个数字的两倍与剩下的数相加得到一个和,称为一次操作,依此类推,直到数变为20以内的数为止.若最后得到的数为19.则最初的数A 就是19的倍数,否则,数A 就不是19的倍数.以436A =为例,如右面算式所示,经过第一次操作得到55,经过第二次操作得到15,1520<,1519≠.所以436不是19的倍数.当数A 的位数更多时,这种方法依然适用. 【操作与说理】(1)当532A =时,请你帮小天写出判断过程;(2)小天尝试说明方法的道理,他发现解决问题的关键是每次判断过程的第一次操作,后续的操作道理都与第一次相同,于是他列出了如下表格进行分析.请你补全小天列出的表格: 说明:abc 表示10010a b c ++,其中19a ,09b ,09c ,a ,b ,c 均为整数.四、选做题(共10分,每题5分)25.(5分)小冬阅读了教材中“借助三角尺画角”的探究活动(如图1、图2的实物图所示),他在老师指导下画出了图1所对应的几何图形,并标注了所使用三角尺的相应角度(如图3),他发现用一副三角尺还能画出其他特殊角.请你借助三角尺完成以下画图,并标注所使用三角尺的相应角度. (1)画出图2对应的几何图形;(2)设计用一副三角尺画出105°角的画图方案,并画出相应的几何图形; (3)如图4,已知30MON ∠=°,画MON ∠的角平分线OP .26.(5分)我们将数轴上点P 表示的数记为P x .对于数轴上不同的三个点M ,N ,T ,若有()N T M T x x k x x −=−,其中k 为有理数,则称点N 是点M 关于点T 的“k 星点”.已知在数轴上,原点为O ,点A ,点B 表示的数分别为2A x =−,3B x =.(1)若点B 是点A 关于原点O 的“k 星点”,则k = ;若点C 是点A 关于点B 的“2星点”,则C x = ;(2)若线段AB 在数轴上沿正方向运动,每秒运动1个单位长度,取线段AB 的中点D .是否存在某一时刻,使得点D 是点A 关于点O 的“2−星点”?若存在,求出线段AB 的运动时间;若不存在,请说明理由;(3)点Q 在数轴上运动(点Q 不与A ,B 两点重合),作点A 关于点Q 的“3星点”,记为A ′,作点B 关于点Q 的“3星点”,记为B ′.当点Q 运动时,QA QB ′′+是否存在最小值?若存在,求出最小值及相应点Q 的位置;若不存在,请说明理由.2021-2022学年北京市西城区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.(2分)5−的绝对值是( ) A .5B .5−C .15D .15−【解答】解:根据负数的绝对值等于它的相反数,得|5|5−=. 故选:A .2.(2分)云南的澄江化石地世界自然遗产博物馆升级改造完工,馆内所收藏的约520000000年前的澄江生物群化石,展示了寒武纪时期的生物多样化场景.将520000000用科学记数法表示应为( ) A .90.5210×B .85.210×C .95.210×D .75210×【解答】解:将520000000用科学记数法表示应为85.210×. 故选:B .3.(2分)如图,数轴上的点A 表示的数可能是( )A .1410− B .142−C .1310− D .132−【解答】解:如图,设A 点表示的数为x ,则 3.53x −<<−, 143.510−<− ,故A 错误; 14 3.52−<− ,故B 错误;13.53310−<−<− ,故C 正确; 132x −< ,故D 错误.故选:C .4.(2分)下列计算正确的是( ) A .330y y −−= B .54mn nm mn −= C .243a a a −=D .22223a b ab a b +=【解答】解:A .336y y y −−=−,故此选项不合题意; B .54mn nm mn −=,故此选项符合题意;C .243a a −,无法合并,故此选项不合题意;D .222a b ab +,无法合并,故此选项不合题意;故选:B .5.(2分)一个角的余角比它的补角的14多15°,设这个角为α,下列关于α的方程中,正确的是( ) A .190(180)154αα−=−+ B .190(180)154αα−=−− C .1180(180)154αα−=−+ D .1180(180)154αα−=−− 【解答】解:190(180)154αα−−−=190(180)154αα−=−+, 故选:A .6.(2分)我国曾发行过一款如图所示的国家重点保护野生动物(1级)邮票小全张,设计者巧妙地将“野牦牛”和“黑颈鹤”这两枚不同规格的过桥票(无邮政铭记和面值的附票,在图中标记为①,②),与其他10枚尺寸相同的普通邮票组合在一起构成一个长方形,整个画面和谐统一,以下关于图中所示的三种规格邮票边长的数量关系的结论中,正确的是 ( )A .2c d =B .3e a =C .4de ac ab +=D .2de ac ab −=【解答】解:c d = , ∴选项A 不符合题意;2e a = ,∴选项B 不符合题意;6de ac ab += ,∴选项C 不符合题意;2de ac ab −= , ∴选项D 符合题意,故选:D .7.(2分)下列方程变形中,正确的是( ) A .方程3445x x +−,移项得3454x x −=− B .方程342x −=,系数化为1得34()2x =×−C .方程32(1)5x −+=,去括号得3225x −−=D .方程131123x x −+−=,去分母得3(1)12(31)x x −−=+ 【解答】解:A 、方程3445x x +−,移项得3454x x −=−−,不符合题意; B 、方程342x −=,系数化为1得24()3x =×−,不符合题意;C 、方程32(1)5x −+=,去括号得3225x −−=,符合题意;D 、方程131123x x −+−=,去分母得3(1)62(31)x x −−=+,不符合题意. 故选:C .8.(2分)用6个棱长为1的小正方体可以粘合形成不同形状的积木,将如图所示的两块积木摆放在桌面上,再从下列四块积木中选择一块,能搭成一个长、宽、高分别为3、2、3的长方体的是( )A .B .C .D .【解答】解:由题意可知:要搭成一个长、宽、高分别为3、2、3的长方体,结合图形可得:侧面缺少一个由4个小正方体,它是22×铺成的四方体,由此排除A ,C , 再从正面可知,还缺少一条边由3个小正方体组成的直条,由此排除B , 故选:D .二、填空题(共16分,每题2分) 9.(2分)3830′°=38.5°. 【解答】解:160°=′ ,300.5∴′=°, 383038.5∴°′=°,故答案为:38.5.10.(2分)用四舍五入法把3.786精确到0.01,所得到的近似数为 3.79. 【解答】解:用四舍五入法把3.786精确到0.01,所得到的近似数为3.79, 故答案为:3.79.11.(2分)如果单项式4a x y 与35b x y 是同类项,那么a =3,b =4. 【解答】解: 单项式4a x y 与35b x y 是同类项, 3a ∴=,4b =,故答案为:3,4. 12.(2分)若16a =,13b =,则263a ab −的值为 0. 【解答】解:当16a =,13b =时, 原式21116()3663=×−××1166=− 0=,故答案为:0.13.(2分)若5x =是关于x 的方程234x a +=的解,则a =2−. 【解答】解:把5x =代入方程234x a +=得:1034a +=, 解得:2a =−, 故答案为:2−.14.(2分)有理数a ,b 在数轴上的对应点的位置如图所示,有以下结论:①0a b +>;②0a b −>;③1ba>;④30a b +<,其中所有正确的结论是 ①④(只填写序号).【解答】解:由a ,b 在数轴上的位置可假设1a =−, 1.5b =, 1 1.50.50a b +=−+=> , ∴①符合题意,1 1.5 2.50a b −=−−=−< ,∴②不符合题意,1.51.501b a ==−<−, ∴③不符合题意,33 1.5 1.50a b +=−+=−< , ∴④符合题意, ∴正确的结论是①④,故答案为:①④.15.(2分)线段6AB =,C 为线段AB 的中点,点D 在直线AB 上,若3BD AC =,则CD =12或6.【解答】解:分两种情况: 当点D 在点B 的右侧时,如图:点C 是线段AB 的中点,6AB =, 132CB AB ∴==, 39BD AC == ,3912CD CB BD ∴=+=+=,当点D 在点B 的左侧时,如图:点C 是线段AB 的中点,6AB =, 132CB AB ∴==, 39BD AB == ,936CD BD CB ∴=−=−=, ∴线段CD 的长为12或6,故答案为:12或6.16.(2分)在如图所示的星形图案中,十个“圆圈”中的数字分别是1,2,3,4,5,6,8,9,10,12,并且每条“直线”上的四个数字之和都相等.请将图中的数字补全.【解答】解:如图:1014924+++=,852924+++=,8311224+++=,1242624+++=,1035624+++=.三、解答题(共68分,第17题18分,第18-19题,每题6分,第20题11分,第21题7分,第22题8分,第23-24题,每题6分)17.(18分)计算:(1)5(6)(9)−+−−−;(2)851 ()()389−×−÷;(3)2333(2)2−−−÷;(4)457()(24) 368−+−×−.【解答】解:(1)5(6)(9)−+−−−569=−−+2=−;(2)851 ()() 389−×−÷85 ()()938=−×−×15=;(3)2333(2)2−−−÷ 29(8)3=−−−× 1693=−+ 113=−; (4)457()(24)368−+−×−457(24)(24)(24)368=−×−+×−−×−322021=−+33=.18.(6分)先化简,再求值:225()2(2)2a b b a b +−++,其中2a =,1b =−. 【解答】解:原式2255242a b b a b +−−+ 25a b =+,当2a =,1b =−时, 原式45=− 1=−.19.(6分)平面上有三个点A ,B ,O ,点A 在点O 的北偏东80°方向上,4OA cm =,点B 在点O 的南偏东30°方向上,3OB cm =,连接AB ,点C 为线段AB 的中点,连接OC .(1)依题意画出图形(借助量角器、刻度尺画图); (2)写出AB OA OB <+的依据;(3)比较线段OC 与AC 的长短并说明理由; (4)直接写出AOB ∠的度数.【解答】解:(1)图形如图所示:(2)AB OA OB <+(两点之间线段最短). (3)由测量法可知 2.8OC cm =, 2.1AC cm = OC AC ∴>.(4)180803070AOB ∠=°−°−°=°, 20.(11分)解下列方程: (1)5(1)3(1)x x −=+; (2)321142x x −+−=. 【解答】解:(1)去括号,可得:5533x x −+, 移项,可得:5335x x −=+, 合并同类项,可得:28x =, 系数化为1,可得:4x =.(2)去分母,可得:(3)2(21)4x x −−+=, 去括号,可得:3424x x −−−=, 移项,可得:4432x x −=++, 合并同类项,可得:39x −=, 系数化为1,可得:3x =−.21.(7分)如图,90AOB ∠=°,90COD ∠=°,OA 平分COE ∠,(090)BOD n n ∠=°<<. (1)求DOE ∠的度数(用含n 的代数式表示); 请将以下解答过程补充完整. 解:90AOB ∠=° , 90BOD AOD ∴∠+∠=°. 90COD ∠=° . 90AOC AOD ∴∠+∠=°.BOD ∴∠=∠AOC .(理由:同角的余角相等) BOD n ∠=° , AOC n ∴∠=°. OA 平分COE ∠,∴∠COE 2AOC =∠.(理由:角平分线的定义)−°.∴∠=∠−∠COE=(902)nDOE COD(2)用等式表示AOD∠与BOC∠的数量关系.【解答】解:90AOB,∠=°∴∠+∠=°90BOD AOD.∠=°COD90AOC AOD∴∠+∠=°.90∴∠=∠.(理由:同角的余角相等)BOD AOC,∠=°BOD n∴∠=°.AOC n∠,OA平分COE∴∠=∠.(理由:角平分线的定义)2COE AOC∴∠=∠−∠=−°.DOE COD COE n(902)(2)90,∠=°∠=AOB COD∴∠+∠=∠+∠=°+°=°,AOB COD BOC AOD9090180∴∠+∠=°.180AOD BOC22.(8分)某班手工兴趣小组的同学们计划制作一批中国结送给敬老院作为新年礼物.如果每人制作9个,那么就比计划少做17个;如果每人制作12个,那么就比计划多做4个.(1)这个手工兴趣小组共有多少人?计划要做的这批中国结有多少个?(2)同学们打算用A,B两种不同的编结方式来制作这一批中国结,已知每个A型中国结需用红绳0.6米,每个B型中国结需用红绳0.9米,现有50米红绳,制作这批中国结能恰好用完这50米红绳吗?请说明你的理由.【解答】解:(1)设这个手工兴趣小组共有x人,由题意可得:917124+−,x x解得:7x=,∴+=,91780x答:这个手工兴趣小组共有7人,计划要做的这批中国结有80个;(2)不能,理由如下:设编结a个A型中国结,编结b个B型中国结,由题意,得0.60.950a b+=,整理,得500 233a b+=,因为a、b都是正整数,所以(23)a b+不可能为分数,即没有符合条件的a、b的值.所以编结这批中国结(A、B型都要有)不能刚好用完50米长的红绳.23.(6分)在数轴上有A,B,C,M四点,点A表示的数是1−,点B表示的数是6,点M位于点B的左侧并与点B的距离是5,M为线段AC的中点.(1)画出点M,点C,并直接写出点M,点C表示的数;(2)画出在数轴上与点B的距离小于或等于5的点组成的图形,并描述该图形的特征;(3)若数轴上的点Q满足14QA QC=,求点Q表示的数.【解答】解:(1) 点B表示的数是6,点M位于点B的左侧并与点B的距离是5,∴点M表示的数是1,点A表示的数是1−,1(1)112AM∴=−−=+=,M为线段AC的中点,2MC AM∴==,∴点C表示的数是3,点M,点C在数轴上的位置如图所示:∴点M,点C表示的数分别为:1,3.(2)与点B的距离小于或等于5的点组成的图形,是一条线段EF,如图所示:线段EF是以点B为中点,距离为10的线段,且点E在数轴上表示的数为1,点F在数轴上表示的数为11;(3)设点Q表示的数为x,分两种情况:当点Q 在点A 的左侧, 14QA QC = ,11(3)4xx ∴−−=−, 73x ∴=−,∴点Q 表示的数为73−, 当点Q 在AB 的之间, 14QA QC = ,1(1)(3)4x x ∴−−=−, 15x ∴=−,∴点Q 表示的数为:15−,综上所述:点Q 表示的数为73−或15−.24.(6分)【阅读与理解】 小天同学看到如下的阅读材料:对于一个数A ,以下给出了判断数A 是否为19的倍数的一种方法:每次划掉该数的最后一位数字,将划掉这个数字的两倍与剩下的数相加得到一个和,称为一次操作,依此类推,直到数变为20以内的数为止.若最后得到的数为19.则最初的数A 就是19的倍数,否则,数A 就不是19的倍数.以436A =为例,如右面算式所示,经过第一次操作得到55,经过第二次操作得到15,1520<,1519≠.所以436不是19的倍数.当数A 的位数更多时,这种方法依然适用. 【操作与说理】(1)当532A =时,请你帮小天写出判断过程;(2)小天尝试说明方法的道理,他发现解决问题的关键是每次判断过程的第一次操作,后续的操作道理都与第一次相同,于是他列出了如下表格进行分析.请你补全小天列出的表格: 说明:abc 表示10010a b c ++,其中19a ,09b ,09c ,a ,b ,c 均为整数.【解答】解:(1)532∴是19的倍数.(2)53210532=×+,(532)5322M +×, 10010abc a b c ++,()102M abc a b c =++,故答案为:10532×+,5322+×,10010a b c ++,102a b c ++. (3)当()M abc 是19的倍数时,102a b c ++是19的倍数,设10219a b c m ++=,则m 为正整数, 10()1001020190M abc a b c m ++, 100102019190a b c abc c m ++=+= , ∴19019abc m c =−, m ,c 为整数, ∴abc 是19的倍数.四、选做题(共10分,每题5分)25.(5分)小冬阅读了教材中“借助三角尺画角”的探究活动(如图1、图2的实物图所示),他在老师指导下画出了图1所对应的几何图形,并标注了所使用三角尺的相应角度(如图3),他发现用一副三角尺还能画出其他特殊角.请你借助三角尺完成以下画图,并标注所使用三角尺的相应角度. (1)画出图2对应的几何图形;(2)设计用一副三角尺画出105°角的画图方案,并画出相应的几何图形; (3)如图4,已知30MON ∠=°,画MON ∠的角平分线OP .【解答】解:(1)如图即为对应的几何图形;(2)如图即为105°角及相应的几何图形;(3)如图4,MON ∠的角平分线OP 即为所求.26.(5分)我们将数轴上点P 表示的数记为P x .对于数轴上不同的三个点M ,N ,T ,若有()N T M T x x k x x −=−,其中k 为有理数,则称点N 是点M 关于点T 的“k 星点”.已知在数轴上,原点为O ,点A ,点B 表示的数分别为2A x =−,3B x =.(1)若点B 是点A 关于原点O 的“k 星点”,则k =32−;若点C 是点A 关于点B 的“2星点”,则C x =7−;(2)若线段AB 在数轴上沿正方向运动,每秒运动1个单位长度,取线段AB 的中点D .是否存在某一时刻,使得点D 是点A 关于点O 的“2−星点”?若存在,求出线段AB 的运动时间;若不存在,请说明理由;(3)点Q 在数轴上运动(点Q 不与A ,B 两点重合),作点A 关于点Q 的“3星点”,记为A ′,作点B 关于点Q 的“3星点”,记为B ′.当点Q 运动时,QA QB ′′+是否存在最小值?若存在,求出最小值及相应点Q 的位置;若不存在,请说明理由.【解答】解:(1) 点B 是点A 关于原点O 的“k 星点”, 30(20)k ∴−=−−, 解得:32k =−, 点C 是点A 关于点B 的“2星点”, 32(23)C x ∴−=×−−,7C x ∴=−, 故答案为:32−,7−; (2)设点表示的数为a ,点B 表示的数5a +,则线段AB 的中点D 表示的数为252a +,点D 是点A 关于点O 的“2−星点”, ∴2502(0)2a a +−=−×−, 56a ∴=−, 527616t −+∴==, ∴当76t =,使得点D 是点A 关于点O 的“2−星点”; (3)当点Q 在线段AB (点Q 不与A ,B 两点重合)上时,QA QB ′′+存在最小值,理由如下:设点Q 表示的数为y ,点A ′是点A 关于点Q 的“3星点”, ∴点A ′表示的数为62y −−,点B ′是点B 关于点Q 的“3星点”, ∴点B ′表示的数是92y −,|62||92||63||93|QA QB y y y y y y ′′∴+=−−−+−−=−−+−, 当2y <−时,3615QA QB y ′′+=−>,当23y −<<时,15QA QB ′′+=,当3y >时,6315QA QB y ′′+=−>,∴当点Q 在线段AB (点Q 不与A ,B 两点重合)上时,QA QB ′′+存在最小值,最小值为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 20 页 2020-2021学年北京西城区七年级上期末数学试卷
一.选择题(共10小题,满分30分)
1.(3分)﹣4的倒数是( )
A .14
B .−14
C .4
D .﹣4
2.(3分)根据国家气象局统计,全球平均每年发生雷电次数约为16000000次,将16000000
用科学记数法表示为( )
A .1.6×108
B .1.6×107
C .16×106
D .1.6×106
3.(3分)下列运算中,正确的是( )
A .2a +3b =5ab
B .2a 2+3a 2=5a 2
C .3a 2﹣2a 2=1
D .2a 2b ﹣2ab 2=0 4.(3分)如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知CA +CB >AB ,其依据是
( )
A .两点之间,线段最短
B .两点确定一条直线
C .两点之间,直线最短
D .直线比线段长 5.(3分)下列解方程去分母正确的是( )
A .由x 3−1=1−x 2,得2x ﹣1=3﹣3x
B .由x−22
−x 4=−1,得 2x ﹣2﹣x =﹣4 C .由y 3−1=y 5,得 2 y ﹣15=3y
D .由y+12=y 3+1,得 3( y +1)=2 y +6
6.(3分)若2a ﹣3b =﹣1,则代数式1﹣4a +6b 的值为( )
A .﹣1
B .1
C .2
D .3
7.(3分)有理数a ,b 在数轴上的对应点的位置如图所示,则( )
A .ab >0
B .a ﹣b >0
C .a +b <0
D .|a |<|b |。