数学奥林匹克高中训练题(30)及答案
2022CMO试题及答案
2022CMO试题及答案一、选择题(每题5分,共30分)1. 下列哪项不是中国数学奥林匹克(CMO)的参赛条件?A. 必须为中国公民B. 必须在数学竞赛中取得优异成绩C. 必须获得学校推荐D. 必须年满18周岁答案:D2. CMO的举办时间通常是在每年的:A. 3月B. 6月C. 9月D. 12月答案:C3. 在CMO比赛中,以下哪项不是评分标准之一?A. 解题的创造性B. 解题的速度C. 解题的准确性D. 解题的规范性答案:B4. CMO的参赛者通常需要通过以下哪项选拔?A. 省级数学竞赛B. 市级数学竞赛C. 校级数学竞赛D. 国家数学竞赛答案:A5. CMO的奖项设置通常包括:A. 金牌、银牌、铜牌B. 一等奖、二等奖、三等奖C. 特等奖、优胜奖D. 杰出奖、优秀奖答案:A6. 下列哪项不是CMO的参赛意义?A. 提高数学素养B. 选拔数学人才C. 增强国际竞争力D. 获得高考加分答案:D二、填空题(每题5分,共30分)7. CMO的全称是_________。
答案:中国数学奥林匹克8. 2022年CMO的主办城市是_________。
答案:【具体城市名称】9. CMO的比赛通常分为两天进行,每天有_________道题目。
答案:310. CMO的参赛者年龄一般不超过_________岁。
答案:2011. CMO的题目涵盖了代数、几何、组合等多个数学领域,其中_________是必考内容。
答案:平面几何12. CMO的获奖者有机会代表中国参加_________。
答案:国际数学奥林匹克(IMO)三、解答题(每题20分,共40分)13. 证明:对于任意的正整数n,n的立方与n的2倍之和,总是大于n的平方。
答案:证明:设n为任意正整数。
考虑表达式 n^3 + 2n - n^2,我们需要证明对于所有n > 0,该表达式大于n^2。
n^3 + 2n - n^2 = n^2(n + 2) - n^2 = n^2(n + 2 - 1) =n^2(n + 1)。
数学奥林匹克高中训练题(20)及答案
数学奥林匹克高中训练题(20)第一试一、选择题(本题满分36分;每小题6分) 1.(训练题25)已知函数1x ay x a -=---的反函数的图象关于点(1,3)-成中心对称图形;则实数a 等于(A).(A) 2 (B)3 (C)-2 (D)-42.(训练题25)我们把离心率等于黄金比215-的椭圆称之为“优美椭圆”.设a by a x (12222=+>b >0)为优美椭圆;,F A 分别是它的左焦点和右端点;B 是它的短轴的一个端点;则ABF ∠等于(C).(A)60o(B)75o(C)90o(D)120o3.(训练题25)已知ABC ∆三边的长分别是,,a b c ;复数12,z z 满足1212,,z a z b z z c ==+=;那么复数21z z 一定是(C). (A)是实数 (B)是虚数 (C)不是实数 (D)不是纯虚数4.(训练题25)函数21522223411(1)6()1x x C x x P f x C C C ++-⋅-⋅=+++的最大值是(D). (A)20 (B)10 (C)10- (D) 20-5.(训练题25)以O 为球心;4为半径的球与三条相互平行的直线分别切于,,A B C 三点.已知4=∆BOC S ;16ABC S ∆>;则ABC ∠等于(B).(A)12π (B)512π (C)712π (D)1112π 6.(训练题25)在集合{1,2,3,,10}M =的所有子集中;有这样一族不同的子集;它们两两的交集都不是空集;那么这族子集最多有(B).(A)102个 (B)92个 (C)210个 (D) 29个二、填空题(本题满分54分;每小题9分)1.(训练题25)在直角坐标系中;一直角三角形的两条直角边分别平行于两坐标轴;且两直角边上的中A 1 AC 1B 1BCD线所在直线方程分别是31y x =+和2y mx =+;则实数m 的值是3124或 . 2.(训练题25)设()(0,1)1xx a f x a a a =>≠+;[]m 表示不超过实数m 的最大整数;则函数]21)([]21)([--+-x f x f 的值域是 {1,0}- .3.(训练题25)设,,a b c 是直角三角形的三条边长;c 为斜边长;那么使不等式kabc b a c a c b c b a ≥+++++)()()(222对所有直角三角形都成立的k 的最4.(训练题25)如图;正三棱柱111ABC A B C -的各条棱长都是1;截面1BCD 在棱1AA 上的交点为D ;设这个截面与底面ABC 和三个侧面111111,,ABB A BCC B CAAC 所成的二面角依次为1234,,,αααα;若1234cos cos cos cos αααα+=+5.(训练题25)已知()f x 是定义域在实数集的函数,且(2)[1()]1().(1)2f x f x f x f +-=+=若则(1949)f 2 .6.(训练题25)设1x 是方程12cos 3sin 3-=-a x x 的最大负根;2x 是方程222cos 2sin x x a -=的最小正根;那么;使不等式12x x ≤成立的实数a 的取值范围是1122a a ≤-=或 . 第二试一、(训练题25)(本题满分25分)某眼镜车间接到一任务;需要加工6000个A 型零件和2000个B 型零件;这个车间有214名工人;他们每一个人加工5个A 型零件的时间可加工3个B 型零件.将这些人分成两组同时工作;每组加工同一型号的零件;为了在最短的时间完成;应怎样分组?77二、(训练题25)(本题满分25分)已知一个四边形的各边长都是整数;并且任意一边的长都能整除其余三边之和.求证:这个四边形必有两边相等. 三、(训练题25)(本题满分35分)实数数列1231997,,,,a a a a 满足:1223199619971997a a a a a a -+-++-=.若数列{}n b 满足:12(1,21997)kk a a a b k k++==.求199719963221b b b b b b -++-+- 的最大可能值.四、(训练题25)(本题满分35分)给定两个七棱锥;它们有公共的底面1234567A A A A A A A ;顶点12,P P 在底面的两侧.现将下述线段中的每一条染红;蓝两色之一:12,P P ;底面上的所有的对角线和所有的侧棱.求证:图中心存在一个同色三角形.。
高中数学竞赛模拟试题及参考答案(可编辑)
数学奥林匹克高中训练题第一试一、填空题(每小题8份,共64分)1.函数3()2731xx f x +=-+在区间[0,3]上的最小值为_____.2.在数列{}n a 中,113a =,且12[]n n n a a a +=-,则20092010a a +=_____. 3.若集合{|61,}A x x n n N ==-∈,{|83,}B x x n n N ==+∈,则A B 中小于2010的元素个数为_____. 4.若方程sin (1)cos 2n x n x n ++=+在π<<x 0上有两个不等实根,则正整数n 的最小值为_____. 5.若c b a >>,0=++c b a ,且21,x x 为02=++c bx ax 的两实根,则||2221x x -的取值范围为_____.6.在四面体-O ABC 中,若点O 处的三条棱两两垂直,,则在该四面体的表面上与点A 距离为2的点形成的曲线长度之和为_____.7.有n 个中心在坐标原点,以坐标轴为对称轴的椭圆的准线都是1x =.若第k (1,2,,)k n = 个椭圆的离心率2kk e -=,则这n 个椭圆的长轴之和为_____.8.某校进行投篮比赛,共有64人参加.已知每个参赛者每次投篮的命中率均为34,规定只有连续命中两次才能被录取,一旦录取就停止投篮,否则一直投满4次.设ξ表示录取人数,则E ξ=_____.二、解答题(共56分)9.(16分)设抛物线22y px =(0)p >的焦点为F ,点A 在x 轴上点F 的右侧,以FA 为直径的圆与抛物线在x 轴上方交于不同的两点,M N ,求证:FM FN FA +=.10.(20分)是否存在(0,)2πθ∈,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列?并说明理由.11.(20分)设函数32()f x ax bx cx d =+++的图像Γ上有两个极值点,P Q ,其中P 为坐标原点, (1)当点Q 的坐标为(1,2)时,求()f x 的解析式;(2)当点Q 在圆22(2)(3)1x y -+-=上时,求曲线Γ的切线斜率的最大值.加试一、(40分)设圆的内接四边形ABCD 的顶点D 在直线,,AB BC CA 上的射影分别为,,P Q R ,且ABC∠与ADC ∠的平分线交于点E ,求证:点E 在AC 上的充要条件是PR QR =.二、(40分)已知周长为1的i i i A B C ∆(1,2)i =的三条边的长分别为,,i i i a b c .设2224i i i i i i i p a b c a b c =+++(1,2)i =,求证:121||54p p -<.三、(50分)是否存在互不相同的素数,,,p q r s ,使得它们的和为640,且2p qs +和2p qr +都是完全平方数?若存在,求,,,p q r s 的值;若不存在,说明理由.四、(50分)对n 个互不相等的正整数,其中任意六个数中都至少存在两个数,使得其中一个能整除另一个.求n 的最小值,使得在这n 个数中一定存在六个数,其中一个能被另外五个整除.参 考 答 案 第一试一、1.53-.令3xt =,[0,3]x ∈,则有3()()271f x g t t t ==-+,[1,27]t ∈,而2'()3273(3)(3)g t t t t =-=-+.故当[1,3]t ∈时,'()0g t <,()g t 单调递减,当[3,27]t ∈时,'()0g t >,()g t 单调递增.所以当3t =,()g t 取得最小值min ()(3)53g t g ==-,即当1x =时,()f x 取得最小值53-.2.2009. 由已知可得113a =,223a =,343a =.下面用数学归纳法证明:21n n a a +-=,1n n a a n ++=.显然,当1n =时,结论成立.假设当n k =时,结论成立,即是有21k k a a +-=,1k k a a k ++=.则当1n k =+时,3122222[](2[])2()([][])2[1][])1k k k k k k k k k k k k a a a a a a a a a a a a ++++++-=---=---=-+-=(. 121(1)1k k k k a a a a k ++++=++=+. 即,当1n k =+时,结论也成立.综上所述,21n n a a +-=,1n n a a n ++=总成立.故200920102009a a +=.3.84.由题意若x A ∈,则5(mod 6)x ≡ ,若x B ∈,则3(mod 8)x ≡ ,故若x A B ∈ ,则11(mod 24)x ≡ ,即若x A B ∈ ,则2411x k =+,于是可得满足题意的元素共有84个.4.4. 由已知得11sin 12cos x n x --=---,而1sin 2cos xx---表示上半个单位圆(不包括端点)上的动点(cos ,sin )P x x 与定点(2,1)Q -的斜率k ,要满足题意就要直线PQ 与上半个单位圆(不包括端点)有两个不同的交点,此时4(,1)3k ∈--,从而可得11(0,)3n ∈,故3n >,即正整数n 的最小值为4. 5.[0,3).由0=++c b a 知方程02=++c bx ax 有一个实数根为1,不妨设11x =,则由韦达定理可知2cx a=.而c b a >>,0=++c b a ,故0,0a c ><,且a a c c >-->,则122c a -<<-,故2221()44c x a<=<,从而可得2212||[0,3)x x -∈.6.32π. 如图,点,M N 分别在棱,AB AC 上,且2AM AN ==,点,E F 分别在棱,OB OC 上,且1OE OF ==,则2AE AF ==,因此,符合题意的点形成的曲线有:①在面OBC 内,以O 为圆心,1为半径的弧EF ,其长度为2π;②在面AOB 内,以A 为圆心,2为半径的弧EM ,其长度为6π;③在面AOC 内,以A 为圆心,2为半径的弧FN ,其长度为6π;④在面ABC 内,以A 为圆心,2为半径的弧MN ,其长度为23π.所以,所求的曲线长度之和为2326632πππππ+++=. 7.122n --.设第k 个椭圆的长半轴为k a ,焦半径为k c ,则由题意有21k k a c =,2k k k kce a -==,故可得2k k a -=,于是可得121222212n nn a a a ----+++=+++=- ,故这n 个椭圆的长轴之和为12(12)22n n---=-.8.1894. 由于每位参赛者被录取的概率均为331331133189444444444256p =⨯+⨯⨯+⨯⨯⨯=,故录取人数ξ服从二项分布,即189(64,)256B ξ~,所以189189642564E ξ=⨯=.二、9.由已知得(,0)2p F ,设点(,0)A a ,则12FA a p =-,故以FA 为直径的圆为22222()()44a p a p x y +--+=.令1122(,),(,)M x y N x y ,则可知12,x x 是方程2222()2()44a p a p x px +--+=的两个实数根,将该方程化简得:22(23)0x a p x ap --+=,由韦达定理得1223322a p x x a p -+==-.故121131()()()2222FM FN x p x p a p p a p FA +=+++=-+=-=,即FM FN FA +=.10.当(0,)2πθ∈时,函数sin y x =与cos y x =的图像关于直线4x π=对称,函数tan y x =与cot y x =的图像也关于直线4x π=对称,且当4πθ=时,sin ,cos ,tan ,cot θθθθ的任一排列均不可能成等差数列.故只需考虑是否存在(0,)4πθ∈使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列即可.假设存在(0,)4πθ∈符合题意,则由sin cos tan cot θθθθ<<<可知cot tan cos sin θθθθ-=-,从而有sin cos sin cos θθθθ+=⋅,故2(sin cos )12sin cos 1sin 2θθθθθ⋅=+⋅=+.而2(sin cos )1θθ⋅<,且1sin 21θ+>,故假设不成立.即,不存在这样的θ,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列.11.因为32()f x ax bx cx d =+++,所以'2()32f x ax bx c =++.因为图像Γ上有一个极值点P 为坐标原点,所以'(0)0f =,且(0)0f =.故0c d ==.(1)当点Q 的坐标为(1,2)时,由'(1)0f =与(1)2f =可得:320a b +=,且2a b +=.解之,得:4,6a b =-=.此时,32()46f x x x =-+.(2)∵'2()32f x ax bx =+,且由题意点Q 在圆22(2)(3)1x y -+-=上知0a <,∴曲线Γ的切线斜率k 的最大值为'()f x 的最大值2max3b k a=-.设点Q 的坐标为(,)m n ,则有'()0f m =,且()f m n =,∴2320am bm +=,且32am bm n +=.∴32b m a =-,23nb m=. ∴2max 332b n k a m =-=⋅. ∵n m表示过原点且与圆22(2)(3)1x y -+-=有公共点的直线的斜率,而过原点且与圆22(2)(3)1x y -+-=有公共点的直线斜率的最大值为2∴2max33(23322b n k a m =-=⋅≤=+∴曲线Γ的切线斜率的最大值为3加 试一、由西姆松定理知,,P Q R 三点共线.由题意易知,,,C Q D R 四点共圆,则有DCA DQR DQP ∠=∠=∠,同样有,,,A P R D 四点共圆,则有D A C D P R D P ∠=∠=∠.故DAC ∆∽DPQ ∆,同理,可得:DAB ∆∽DRQ ∆,DBC ∆∽DPR ∆,因此有:PR DB DA DP PR BA BC QR DC DQ QR BCDB BA⋅===⋅⋅. 从而PR QR =的充要条件是DA BADC BC=.又由三角形的角平分线的性质定理可得,ABC ADC ∠∠的平分线分AC 的比分别为,BA DABC DC.故命题成立. 二、由题意知1i i i a b c ++=,且不妨设i i i a b c ≤≤,则由于三角形的三边关系可得102i i i a b c <≤≤<,于是不难得312121210(12)(12)(12)()327i i i i i i a b c a b c -+-+-<---≤=. 2222222(12)(12)(12)12()4()814()812[()()]812(4)12i i i i i i i i i i i i i i ii i i i i i i i i i i i i i i i i i i i i i i i ia b c a b c a b b c c a a b c a b b c c a a b c a b c a b c a b c a b c a b c p ---=-+++++-=-+++-=-+++-++-=-+++=- 从而可得131272i p ≤<,所以121||54p p -<. 三、由640p q r s +++=,且,,,p q r s 是互不相同的素数知,,,p q r s 都是奇数.设2222p qs m p qr n ⎧+=⎪⎨+= ⎪⎩ ①②, 并不妨设s r <,则m n <.由①,②可得()()()()m p m p qsn p n p qr-+=⎧⎨-+=⎩.若1m p ->,则由m p n p n p -<-<+可得m p q n p +==-,故2q m n =+,,s m p r n p =-=+,从而2s r m n q +=+=,故23640p q r s p q q p q +++=++=+=.又由于23s m p q p =-=-≥,故可得90p ≤,逐一令p 为不大于90的素数加以验证便知此时无解.若1m p -=,则21qs m p p =+=+,故12qs p -=.而q m p n p <+<+,故,2q n p r n p p q =-=+=+. 故3(1)3226402qs p q r s p q s q s -+++=++=++=,即是有(32)(34)385771929q s ++==⨯⨯,于是得3419,32729s q +=+=⨯,故5,67s q ==,从而167,401p r ==.综上可得167,67,401,5p q r s ====或167,67,5,401p q r s ====.四、所求的最小正整数26n =.我们分两步来证明,第一步说明25n ≤不行,第二步说明26n =是可以的.首先说明当25n ≤时是不行的.我们构造如下的25个正整数:543215432154321543215432122222;33333;55555;7,7777;1111111111,,,,,,,,,,,,,,,,,,,①②③④⑤.如上,我们把这25个正整数分成5组,则任意选取六个数都一定会有两个数在同一组,显然在同一组中的这两个数中的一个能整除另一个;另一方面,由于每一组数只有5个,因此所选的六个数必然至少选自两组数,即是说在所选的六个数中不存在其中一个能被另五个整除的数.所以,当25n =时是不行的.对于25n <,也可类似地证明.其次说明当26n =时是可以的.我们首先定义“好数组”.如果一数组中的数都在所给定的26个正整数中,其中最大的一个记为a ,除a 外的25个数中没有a 的倍数,且这25个数中所有a 的约数都在这组数中,那么我们称这个数组为“好数组”.(一个“好数组”中的数可以只有一个).现证这样的“好数组”至多有五个.否则,必存在六个“好数组”,我们考虑这六个“好数组”中的最大数,分别记为,,,,,a b c d e f ,由题知六个数,,,,,a b c d e f 中必然存在一个能整除另一个,不妨记为|b a ,即是说a 的约数b 不在a 所在的“好数组”中,这与“好数组”的定义不符,故“好数组”至多有五个.由于“好数组”至多有五个,而所给的正整数有26个,因此至少存在一个“好数组”中有六个数,考虑这个“好数组”中的最大数,由“好数组”的定义知这个数组中至少另有五个数都能整除该数.综上可得,所求的最小正整数26n =.陕西师范大学附中 王全 710061 wangquan1978@。
2019年高一数学奥林匹克竞赛决赛试题及答案
2019年**一中高一数学竞赛奥赛班试题(决赛)及答案(时间:5月16日18:40~20:40)满分:120分一、 选择题(本大题共6小题,每小题5分,满分30分)1.已知M=},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( )A. MB. NC. PD.P M 2.函数()142-+=xx x x f 是( )A 是偶函数但不是奇函数B 是奇函数但不是偶函数C 既是奇函数又是偶函数 C 既不是奇函数也不是偶函数3.已知不等式m 2+(cos 2θ-5)m +4sin 2θ≥0恒成立,则实数m 的取值范围是( )A . 0≤m ≤4B . 1≤m ≤4C . m ≥4或x ≤0D . m ≥1或m ≤04.在△ABC 中,c b a ,,分别是角C B A ,,所对边的边长,若0sin cos 2sin cos =+-+B B A A ,则cba +的值是( ) A.1 B.2 C.3 C.2 5. 设 0ab >>, 那么 21()a b a b +- 的最小值是A. 2B. 3C. 4D. 56.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则B CBAC Acos tan sin cos tan sin ++的取值范围是( )A. (0,)+∞B.C.D. )+∞.二、填空题(本大题共10小题,每小题5分,满分50分)7.母线长为3的圆锥中,体积最大的那一个的底面圆的半径为 8.函数|cos sin |2sin )(x x ex x f ++=的最大值与最小值之差等于 。
个个9.设函数,:R R f →满足1)0(=f ,且对任意的R y x ∈,,都有)1(+xy f =2)()()(+--x y f y f x f ,则________________)(=x f 。
数学奥林匹克高中训练题33及答案
数学奥林匹克高中训练题33及答案数学奥林匹克高中训练题(33)第一试一、选择题(本题满分36分,每小题6分)1.(训练题33)1=的解集是(D).(A){1(B)1{10(C)1{π (D)φ 2.(训练题33)一个三角形的三条边恰为221,21,1m m m m +++-,则这个三角形中最大角为(B). (A)3π (B)32π (C)43π (D)56π 3.(训练题33)己知()f x 是R 上的奇函数,()g x 是R 上的偶函数 , 若2()()23f x g x x x -=++, 则()()f x g x +=(A).(A)223x x -+- (B)223x x +- (C)223x x --+ (D)223x x -+4.(训练题33)满足方程组221410580,x y x y ?+--+=?=的数组(,)x y 是(C). (A) 294152180,294155217-+ (B) 294155217,294152180+- (C) 294152180,294155217+- (D) 294155217,294152180-+ 5.(训练题33)tan 1x =是54x π=的(A). (A)必要条件, 但非充分条件. (B)充分条件, 但非必要条件.(C)充分条件, 也是必要条件. (D)非充分条件, 也非必要条件.6.(训练题33)正方形纸片ABCD , 沿对角线AC 对折, 使D 点在面ABC 外, 这时DB 与面ABC 所成的角一定不等于(D).(A)30° (B)45° (C)60° (D)90°二、填空题(本题满分54分,每小题9分)1.(训练题33)若1098762()222361f x x x x x x x x =+--++++, 则1)f = 4 .2.(训练题33)n N ∈,则111112123123n++++=+++++++ 21n n + .3.(训练题33)若2000199819961994(1)(62)(1)(3)(1)(237)(1)(102)i i i i z i i i i ++---=+-+-+ ,则z = 1 . 4.(训练题33)多项式2200122001(22)(33)x x x x +++--展开后合并同类项,所得结果中x 的奇次项系数之和为 -1 .5.(训练题33)正方体1111ABCD A BC D -棱长为1,E 是DC 中点,F 是1BB 中点,则四面体1AD EF 的体积是524 .6.(训练题33)在坐标平面上,由条件1,23y x y x ?≥--??≤-+??所限定的平面区域的面积是16 .三、(训练题33)(本题满分20分)tan5o 是有理数还是无理数?请证明!四、(训练题33)(本题满分20分)公差为4的有限项的等差数列,它的首项的平方与其余所有项之和不超过100.请你回答,这个等差数列最多可以有多少项?(8)五、(训练题33)(本题满分20分),,a b c 均为实数,,,a b b c c a ≠≠≠.证明:222322a b c b c a c a b a b b c c a+-++-++-≤<-+-+-.第二试一、(训练题33)(本题满分50分),O H 分别是锐角ABC ?的外心与垂心,点D 在AB 上,AD AH =,点E 在AC 上,AE AO =.证明:DE AE =.二、(训练题33)(本题满分50分)某工厂的m 位工人共提了n 条(1)n >不同的合理化建议.经统计发现,每两个工人提的合理化建议中都至少有一条相同的建议,但没有两个工人所提的建议完全相同.证明: 12n m -≤.三、(训练题33)(本题满分50分)在圆上有21个点.证明:以这些点为端点组成的所有弧中,不超过120o 的弧不少于100条.。
2020年中国高中数学奥林匹克试题与解答 精品
ORQN MFED CBAP2020年中国数学奥林匹克试题与解答(2020年1月11日)一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分别是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分别作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,线段BC ,AD 的中点分别为M ,N .(1)若A ,B ,C ,D 四点共圆,求证:EM FN EN FM ⋅=⋅;(2)若 EM FN EN FM ⋅=⋅,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解(1)设Q ,R 分别是OB ,OC 的中点,连接EQ ,MQ ,FR ,MR ,则11,22EQ OB RM MQ OC RF ====,又OQMR 是平行四边形, 所以OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆, 所以ABD ACD ∠=∠,于是22EQO ABD ACD FRO ∠=∠=∠=∠,所以EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ∆≅∆, 所以 EM =FM , 同理可得 EN =FN ,所以 EM FN EN FM ⋅=⋅. (2)答案是否定的.当AD ∥BC 时,由于B C ∠≠∠,所以A ,B ,C ,D 四点不共圆,但此时仍然有EM FN EN FM ⋅=⋅,证明如下:如图2所示,设S ,Q 分别是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,则11,22NS OD EQ OB ==,所以NS ODEQ OB=. ① 又11,22ES OA MQ OC ==,所以ES OAMQ OC=. ② 而AD ∥BC ,所以OA ODOC OB=, ③ 由①,②,③得NS ESEQ MQ=. 因为 2NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠,()(1802)EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+︒-∠(180)2AOE EOB AOD AOE =∠+︒-∠=∠+∠, 即NSE EQM ∠=∠,所以NSE ∆~EQM ∆,故EN SE OAEM QM OC==(由②). 同理可得, FN OAFM OC =, 所以 EN FNEM FM=, 从而 EM FN EN FM ⋅=⋅.二、求所有的素数对(p ,q ),使得q p pq 55+.解:若pq |2,不妨设2=p ,则q q 55|22+,故255|+qq .由Fermat 小定理, 55|-qq ,得30|q ,即5,3,2=q .易验证素数对)2,2(不合要求,)3,2(,)5,2(合乎要求.若pq 为奇数且pq |5,不妨设5=p ,则qq 55|55+,故6255|1+-q q .当5=q 时素数对)5,5(合乎要求,当5≠q 时,由Fermat 小定理有15|1--q q ,故626|q .由于q 为奇素数,而626的奇素因子只有313,所以313=q .经检验素数对)313,5(合乎要求.若q p ,都不等于2和5,则有1155|--+q p pq ,故SO RQNFEDCBA P)(m od 05511p q p ≡+--. ①由Fermat 小定理,得 )(m od 151p p ≡- , ②故由①,②得)(m od 151p q -≡-. ③设)12(21-=-r p k,)12(21-=-s q l, 其中s r l k ,,,为正整数. 若l k ≤,则由②,③易知)(mod 1)1()5(5)5(1112121)12)(12(2)12(21)12(2p r r q s r s p s l k l k l -≡-≡==≡=----------,这与2≠p 矛盾!所以l k >.同理有l k <,矛盾!即此时不存在合乎要求的),(q p . 综上所述,所有满足题目要求的素数对),(q p 为)3,2(,)2,3(,)5,2(,)2,5(,)5,5(,)313,5(及)5,313(.三、设m ,n 是给定的整数,n m <<4,1221+n A A A Λ是一个正2n +1边形,{}1221,,,+=n A A A P Λ.求顶点属于P 且恰有两个内角是锐角的凸m 边形的个数.解 先证一个引理:顶点在P 中的凸m 边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.事实上,设这个凸m 边形为m P P P Λ21,只考虑至少有一个锐角的情况,此时不妨设221π<∠P P P m ,则)13(2122-≤≤>∠-=∠m j P P P P P P m m j ππ,更有)13(211-≤≤>∠+-m j P P P j j j π.而321P P P ∠+11P P P m m -∠>π,故其中至多一个为锐角,这就证明了引理. 由引理知,若凸m 边形中恰有两个内角是锐角,则它们对应的顶点相邻.在凸m 边形中,设顶点i A 与j A 为两个相邻顶点,且在这两个顶点处的内角均为锐角.设i A 与j A 的劣弧上包含了P 的r 条边(n r ≤≤1),这样的),(j i 在r 固定时恰有12+n 对.(1) 若凸m 边形的其余2-m 个顶点全在劣弧j i A A 上,而j i A A 劣弧上有1-r 个P 中的点,此时这2-m 个顶点的取法数为21--m r C .(2) 若凸m 边形的其余2-m 个顶点全在优弧j i A A 上,取i A ,j A 的对径点i B ,j B ,由于凸m 边形在顶点i A ,j A 处的内角为锐角,所以,其余的2-m 个顶点全在劣弧j i B B 上,而劣弧j i B B 上恰有r 个P 中的点,此时这2-m 个顶点的取法数为2-m rC .所以,满足题设的凸m 边形的个数为))()()(12()12()()12(11111111121211221∑∑∑∑∑==--+---=-=--=----+-+=⎪⎭⎫⎝⎛++=++nr nr m rm r m r m r n r m r n r m r nr m rm r C C C C n C C n CCn))(12(111--+++=m n m n C C n .四、给定整数3≥n ,实数n a a a ,,,21Λ满足 1min 1=-≤<≤j i nj i a a .求∑=nk k a 13的最小值.解 不妨设n a a a <<<Λ21,则对n k ≤≤1,有k n a a a a k k n k n k 2111-+≥-≥++-+-,所以()∑∑=-+=+=nk kn knk ka a a 13131321()()()∑=-+-+-+⎪⎭⎫ ⎝⎛++-+=n k k n k kn k k n k a a a a a a 121211414321 ()∑∑==-+-+≥+≥n k nk kn k k n a a 13131218181. 当n 为奇数时,222113313)1(412221-=⋅⋅=-+∑∑-==n i k n n i nk . 当n 为偶数时,32113)12(221∑∑==-=-+n i nk i k n⎪⎪⎪⎭⎫ ⎝⎛-=∑∑==21313)2(2ni n j i j)2(4122-=n n . 所以,当n 为奇数时,2213)1(321-≥∑=n a nk k,当n 为偶数时,)2(3212213-≥∑=n n a nk k,等号均在n i n i a i ,,2,1,21Λ=+-=时成立. 因此,∑=nk k a 13的最小值为22)1(321-n (n 为奇数),或者)2(32122-n n (n 为偶数). 五、凸n 边形P 中的每条边和每条对角线都被染为n 种颜色中的一种颜色.问:对怎样的n ,存在一种染色方式,使得对于这n 种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形P 的顶点,且它的3条边分别被染为这3种颜色?解 当n 3≥为奇数时,存在合乎要求的染法;当n 4≥为偶数时,不存在所述的染法。
【精品】数学奥林匹克竞赛高中训练题集【共36份】
奥林匹克数学竞赛高中训练题集
目 录
数学奥林匹克高中训练题(01) ........................................................................................................................... 1 数学奥林匹克高中训练题(02) ........................................................................................................................... 3 数学奥林匹克高中训练题(03) .............................................................................................. 4 数学奥林匹克高中训练题(04) ........................................................................................................................... 6 数学奥林匹克高中训练题(05) ...................................................................................................
数学奥林匹克高中训练题(30)及答案
数学奥林匹克高中训练题(30)第一试一、选择题(本题满分36分:每小题6分)1.(训练题37)a 是由1998个9组成的1998位数:b 是由1998个8组成的1998位数:则b a ⋅的各位数字之和为(C).(A)19980 (B)19971 (C)17982 (D)179912.(训练题37)已知)2,0(π∈x :则方程03832=++ctgx x ctg 的所有根的和为(C).(A)π3 (B)π4 (C)π5 (D)π63.(训练题37)已知三个正数a 、b 、c 之和为10:如果它们之中没有一个大于其余数的2倍:那么abc 的最小值是(B).(A)32 (B)4131 (C)9727(D)16137 4.(训练题37)已知])32()32[(21n n n x -++=)(N n ∈:n x 为正整数:则19981999x 的个位数字为(B).(A)1 (B)2 (C)6 (D)75.(训练题37)已知ABC ∆中:2lg ,2lg ,2lg C tg B tg A tg 成等差数列:则B ∠的取值范围是(B). (A)60π≤∠<B (B)30π≤∠<B (C)323ππ≤∠≤B (D)ππ≤∠≤B 32 6.(训练题37)一只小球放入一长方形容器内:且与共点的三个面相接触:小球上有一点到这三个面的距离分别是cm 3:cm 3:cm 6:则这只小球的半径(D).(A)只为cm 3 (B)只为cm 6 (C)只为cm 9 (D)以上说法不对二、填空题(本题满分54分:每小题9分)1.(训练题37)已知!1999|1998n :则正整数n 的最大值为 55 .2.(训练题37)已知0O 是正ABC ∆的内切圆:1O 与0O 外切且与ABC ∆的两边相切:…:1n O +与n O 外切且与ABC ∆两边相切)(N n ∈.那么:在ABC ∆内所有这些可能的圆(包括0O :n O )(N n ∈)的面积之和与ABC ∆ 3.(训练题37)P 是边长为2的正ABC ∆所在平面上的一动点:且16222=++PC PB PA :则动点P的轨迹为 以正ABC ∆的中心为圆心:2为半径的圆 .4.(训练题37)已知方程)(88N n n z y x ∈=++有666组正整数解),,(z y x .那么n 的最大值是 304 .5.(训练题37)已知正四面体ABCD 的六条棱的长分别为cm 4:cm 7:cm 20:cm 22:cm 28:xcm 。
2019年中国数学奥林匹克完整试题及解析
题 5. 数列 {an } 定义如下: 正整数 a1 > 1, an+1 = an + P (an ), n ≥ 1, 其中, P (x) 表示正整数 x 的最 大素因子. 证明: 数列 {an } 中有完全平方数.
题 6. 是否存在正实数 a1 , a2 , · · · , a19 ,使得多项式 P (x) = x20 + a19 x19 + · · · + a1 x + a0 无实数根, 但是任意调换两个系数 ai , aj 形成的新多项式都有实根.
(1)设序列 (ai ) 使 a + b + c + d 取到最大, 令 ci = 根
,下标模 40 理解.
据上一段, ci 满足题目条件, 而且(1) 中目标函数在序列 (ai ) 和 (ci ) 上取值相同, 因此可以只对具有
周期 10 的序列考虑这个最大值. 此时 a = b = c = d.
a20+k = − k (0 ≤ k ≤ 10), a30+k = a40 − k = − − k (0 ≤ k ≤ 5)
时取等.
(解题人:龚 固)
题 2. 已知: △ABC 中, AD 为角平分线, E 为 AD 上一点, EF 、EG 为 △ABD 、△ACD 外接圆 切线, F 、G 分别为切点, CF 交 BG 于 J . 过 J 的 BC 平行线交 DF 、DG 、DE 于 H 、I 、K .
(a29+k + a41 − k ) + (a15 + a35 )
≥ (x − 2k) + (x − 2k) + (x − 18 − 2k) + (x − 20)
高中数学奥林匹克竞赛试题及答案
1 求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.1956年波兰.x=1000a+100a+10b+b=11(100a+b)其中0<a≤9,0≤b≤9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b≤18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.2 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.1953年匈牙利.【证设2n2=kd,k是正整数,如果n2+d是整数x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方数.3 试证四个连续自然数的乘积加上1的算术平方根仍为自然数.1962年上海高三决赛题.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.4 已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.1963年俄【证】设此算术级数公差是d,且其中一项a=m2(m∈N).于是a+(2km+dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.5 求一个最大的完全平方数,在划掉它的最后两位数后,仍得一个完全平方数(假定划掉的两个数字中的一个非零).1964年俄.【解】设n2满足条件,令n2=100a2+b,其中0<b<100.于是n>10a,即n≥10a+1.因此b=n2100a2≥20a+1由此得 20a+1<100,所以a≤4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402≥422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.6 求所有的素数p,使4p2+1和6p2+1也是素数.1964年波兰【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.7 证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a都不是素数.1969德国.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2≥m2>1故n4+4m4不是素数.取a=4·24,4·34,…就得到无限多个符合要求的a.8 将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.1970年苏【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≤9.于是将已知数的前两位数字a、b与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!9 证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.1973年加拿大【证】因p是奇数,2是p+1的因数.因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.10 证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).美国1973年【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m 11 设n为大于2的已知整数,并设V n为整数1+kn的集合,k=1,2,….数m∈V n称为在V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.1977年荷兰【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a2·b2=a2…(直至b2分成不可分解的元素之积)与r=ab·ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.12 证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.1979年英国【证】序列1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137·73.故对一切n≥2,a n均为合数.13 如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.1984年苏【证】若不同数字多于3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,104×M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.14正整数d不等于2、5、13.证在集合{2,5,13,d}中可找到两个不同元素a、b,使得ab-1不是完全平方数.1986年德【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 5d-1=y2 13d -1=z2 其中x、y、z是正整数.x是奇数,设x=2n-1.代入有2d-1=(2n-1)2即d=2n2-2n+1 说明d也是奇数.y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.15 .求出五个不同的正整数,使得它们两两互素,而任意n(n≤5)个数的和为合数.1987年全苏【解】由n个数a i=i·n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m·n!+k(m∈N,2≤k ≤n)由于n!=1·2·…·n是k的倍数,所以m·n!+k是k的倍数,因而为合数.对任意两个数a i与a j(i>j),如果它们有公共的质因数p,则p也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j(i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.16 n≥2,证:如果k2+k+n对于整数k素数.1987苏联(1)若m≥p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n≥n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m≤p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p整除,且(p-1-m)2+(p-1-m)+n≥n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m≥m,p≥2m+1由得4m2+4m+1≤m2+m+n即3m2+3m+1-n≤0由此得17 正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.1988德国a2-kab+b2=k (1)显然(1)的解(a,b)满足ab≥0(否则ab≤-1,a2+b2=k(ab+1)≤0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a≥b.固定k与b,把(1)看成a的二次方程,它有一根为a.设另一根为a′,则由韦达定理a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方.18 求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.1989年瑞典提供.【证】设a=(n+1)!,则a2+k(2≤k≤n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2≤k≤n+1)这n个连续正整数都不是素数的整数幂.19 n为怎样的自然数时,数32n+1-22n+1-6n是合数?1990年全苏解32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当n>l时,3n-2n>1,3n+1+2n+1>1,原数是合数.当n=1时,原数是13 20 设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.1991年罗马尼亚.证由(n-1,n)=1,得a k=n-1.令d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d≥n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.21 试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.1992年台北数学奥林匹克【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和≥15005,所以A≥15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 18001201 1700 1301 1600 14011999 1002 1899 1102 17991202 1699 1302 1599 1402………………1901 1100 1801 1200 17011300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1≤i≤20,1≤j≤10)令S i=a i+a i+1+…+a i+9(i=1,2,…,1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.22 相继10个整数的平方和能否成为完全平方数?1992年友谊杯国际数学竞赛七年级【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,23 是否存在完全平方数,其数字和为1993?1993年澳门数学奥林匹克第二轮【解】存在,取n=221即可.24 能表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?1993年美国数学邀请赛【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+5025 如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?1993年全俄数学奥林匹克【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k+m)(2k-m)是合数.26 设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.1994年澳大利亚数学奥林匹克【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n+1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.27 设a、b、c、d为自然数,并且ab=cd.试问a+b+c+d能否为素数.1995年莫斯科数学奥林匹克九年级题【解】由题意知正整数,将它们分别记作k与l.由a+c>c≥c1,b+c>c≥c2。
高中数学奥林匹克竞赛试题
高中数学奥林匹克竞赛试题高中数学奥林匹克竞赛试题一、选择题(共20小题,每小题2分,共40分。
从每题四个选项中选择一个正确答案,将其标号填入题前括号内)1. 已知函数f(x) = 2x^2 + bx + c, f(1) = 5, f(2) = 15,则b + c的值是:A. 4B. 6C. 8D. 122. 设等差数列{an}的公差为d,已知a₁ + a₃ + a₅ = 9d,a₂ + a₄ + a₆= 15d,则a₇的值为:A. 8dB. 9dC. 10dD. 11d3. 若复数z = a + bi满足|z - 1| = |z + 1|,则a的值为:A. -1B. 0C. 1D. 24. 若直线y = kx + m与椭圆(x + 2)²/9 + y²/16 = 1相交于点P,请问此时P点的横坐标x的取值范围是:A. [0, -4/3]B. [0, -2]C. (-∞, -2]D. (-∞, 0]5. 已知正整数a、b满足a + b = 10,ab = 15,则a/b的值是:A. 1/2B. 2/3C. 3/2D. 3/5二、填空题(共10小题,每小题4分,共40分)6. 若正整数x满足5x ≡ 15 (mod 17),则x的最小正整数解为_______。
7. 在平面直角坐标系中,一次函数y = kx + c经过点(1, 2),且该直线与x轴交于点(3, 0),则k的值为_______。
8. 设二次函数y = ax² + bx + c的图象与x轴交于A、B两点,若A、B两点间的距离为10,且判别式Δ = b² - 4ac > 0,则a/b的值为_______。
9. 设U为自然数集合,函数f: U → U满足f(f(f(x)))) = 1 + x,则f(2019)的值为_______。
10. 若平面上直线y = kx + 1与曲线y = x² + 2x相切于点P,请问k的取值范围是_______。
数学奥林匹克高中训练题(25)及答案
数学奥林匹克高中练习题〔25〕第一试一、选择题〔此题总分值36分,每题6分〕1.(练习题30)设{1,2}A =,那么从A 到A 的映射中,满足[()]()f f x f x =的个数是(C).(A) 1个 (B)2个 (C) 3个 (D)4个2.(练习题30)在顶点为(1997,0),(0,1997),(1997,0)-,(0,1997)-的正方形R (包括边界)中,整点的个数为(B) 个.(A)7980011 (B)7980013 (C)7980015 (D)79800173.(练习题30)设{(,)|1,0},{(,)|arctan arccot }M x y xy x N x y x y π==>=+=,那么(B). (A){(,)|1}MN x y xy == (B)M N M = (C)M N N = (D){(,)|1,}M N x y xy x y ==且不同时为负数4.(练习题30)在四面体ABCD 中,面ABC 及BCD 都是边长为2a 的等边三角形,且,,AD M N =分别为棱,AB CD 的中点,那么M 与N 在四面体上的最短距离为(A).(A)2a (B)32a (C)a (D)52a 5.(练习题30)三个三角形12,,∆∆∆的周长分别为12,,p p p .假设12∆∆∆,且较小的两个三角形1∆和2∆可以互不重叠地放入大三角形∆的内部,那么12p p +的最大值是(B).(A)p (D)2p6.(练习题30)以正n 边形顶点为顶点的不相同的三角形的个数等于(D). (A)2[]10n (B)2[]11n (C)2[]12n (D)非上述答案 二、填空题〔此题总分值42分,每题7分〕1.(练习题30)设,p q N ∈,且1p q n ≤<≤,其中n 是不小于3的自然数,那么形如p q的全体分数之和为 1(1)4n n - . 2.(练习题30)在ABC ∆中,三个角,,A B C 成等差数列.假设其对边分别为,,a b c ,并且c a -等于AC边上的高h ,那么sin 2C A -= 12. 3.(练习题30)假设2(1)1()f x xf x -+=,那么()f x =234x x x --+ . 4.(练习题30)在ABC ∆中,D 在BC 上,:3:2BD DC =,E 在AD 上,:5:6AE ED =,延长BE 交AC 于F ,那么:BE EF = 9:2 .5.(练习题30)数列{}n a 满足211,2n n n a p a a a +==+,那么通项n a = 12(1)1n p -+- .6.(练习题30)集合{1,2,3,4,5,6},{6,7,8,9}A B ==,从A 中选3个元素,B 中选2个元素,能够组成 90 个有5个元素的新集合.三、(练习题30)(此题总分值23分)M 是抛物线22y px =的动弦AB 上的点,O 为坐标原点,,OA OB OM AB ⊥⊥,求点M 的轨迹方程.222()(0)x p y p x -+=≠四、(练习题30)(此题总分值24分)黑板上写着11和13这两个数,现在从事如下操作:(1)将某个数重写一遍;(2)将两数相加,写上和数.试证实:①119这个数永远不会出现在黑板上;②任何大于119的自然数均可经过有限次操作在黑板上出现.五、(练习题30)(此题总分值25分)20,()1m f x x m ≥=++,求证:对一切12,,,n x x x R +∈.均有212)()()()n n n f x f x f x f x ≤等号当且仅当12n x x x ===时成立.第二试一、(练习题30)(此题总分值50分)ABCD ∆为任意凸四边形,分别以,AD BC 为边在四边形外作正ADH ∆和正BCF ∆;以,AB CD 为底边在四边形作顶角为1200的等腰三角形ABE ∆和CDG ∆.求证:FH EG ⊥,且FH =.二、(练习题30)(此题总分值50分) 假设干个同学参加数学竞赛,其中任何(3)m m ≥个同学都有唯一的公共朋友〔当甲是乙的朋友时,乙也是甲的朋友〕,问有多少同学参加数学竞赛.三、(练习题30)(此题总分值50分)α是个循环小数,()k f m 表示α的小数点后第k 位开始,连续m 位上的数字之积,证实存在自然数,p q ,对任意的,s t 均有11[()][()]s t p q f s f t .。
数学奥林匹克高中训练题(附答案)
数学奥林匹克高中训练题_46学校:___________姓名:___________班级:___________考号:___________一、单选题二、填空题三、解答题13.在△ABC 中,实数x 满足2222sec x csc A csc B csc C =++,求证:的定圆P 的圆心上一动点,Q 与P 相外切,Q 交l 于N 两点.对于任意直径使得△MAN 求△MAN 的度数..设函数f(x)、g(x)定义为()f x ()()11?2000,n f a b ==,2000的最小正.上的O 与其他三边都相切,)0nn i i x b x ==∑的所有根的平方的相反数是f(x)=0的全部根.求证:参考答案:【详解】0,4a π⎛∈ ⎝()tanacota <)(cotatana <34t t <<.【详解】1 022≤3.3arccot arc≤1 arccos2,a b a ≥∴(222a x a +1,?4y 又≥∴22 4.x y ∴+≤满足22x y +≤其面积为1··3π3((0011821122sina sin a b a β<<≤<=-即()26a -【详解】(a b c ++项,但(a )nc +的展开式中不同的项数为)(nd a ⎡+=⎣=AB AC∴⊥SD BC∴⊥面BC于是SA与2.当两条较长棱相邻时,不妨设2sec x csc=2∴=tan x2=+cot A(cotA cotB=+60【详解】以l为r,h).△Q2222rh r k r +3,tan MAN ∠223r k r r nhr +-=)223nh k r r -=±+-两边平方,得2m 对于任意实数r≥1223,m k =-另一方面,用数学归纳法可证明:()281n n a b +>当n=1时,()31223181128n n a b a b +>=>.假设式(1)在n=k 时成立,即28k k a b +>.当n=k+1时,()()2883112121282000820008k k k k k b ba b b k k a b +++=>=>⨯>⨯=. 所以,式(1)对所有n 成立.由式(1)得1998199820008b b a ≤<.1998m ∴>.综上所述,m=1999.16.2或7【详解】1当p=7m -5(m 为自然数,下同)时,()123721p p m =+=-.当m >1时,1p 为合数.当m=1时,p=2.此时123456711,19,29,31,101p p p p p p ======,均为质数,所以p 可为2.2当p=7m -6时,()243743p p m =+=-.当m=1时,p=1与p 为质数相矛盾.当m>1时,2p 为合数.3当p=7m -3时,()383783p p m =+=-为合数.4当p=7m -2时,()41637165p p m =-=-为合数.5当p=7m -4时,()5323373223p p m =-=-为合数.6当p=7m -1时,()6642776413p p m =-=-为合数.7 当p=7m 时,因p 为质数,则p=7.当p=7时,1234561731,59,109,191,421p p p p p p ======,均为质数.AB AD =即OA OB +1sina sin ∴+11sin sin a +sin 2αβ+2cos α⎛∴ ⎝4sin sin 2a ⋅202β+<22αϕ+∴即2αϕ+亦即BAD ∠则AB//CD。
数学奥林匹克高中训练题
≥ 丁 一 + 一 广 + 一 + 一 ≥ ■ 一 筹 Y ‘
≥
1 6
≥
1 6
4
故( m, n , P , q )
:
( 9 , 4, 2 , 2 ) , ( 6 , 5 , 2 , 2 ) , ( 4, 3 , 3 , 2 ) .
; / 6 时 上 式 当且仅当 m= n p q 4 、 / 6
f 1 与 椭 圆交 于 A、 B两 点 , Z :与椭 圆交 于 C、 D 两点. 若t : T A B C D 满足 A C上 A B, 且该 椭 圆 的
r r
在 ∈ 【 0 , 詈 ] 有 最 大 值 2 . 求 实 数 m 的 值
三、 ( 5 0分) 设所有满足 下列 条件 的正整数 个数为 Ⅳ:
7 . 已知两条斜率为 l 的直线 f 。 、 z : 分别
过 椭 圆x + =1 ( 0>b> 0 ) 的 两个 焦 点 , 且
a D
外心 . 证明: O ME= 9 0 。 .
二、 ( 4 0分 ) 已知 函数
) = 3 ( s i n +c o s ) + e( r s i n + C O S )
,
( 2 ) 注意到 ,
等号成 立.
=
( ・ 一 ) ( 一 ) ( , 一 古 ) ( 一 寺 )
故( m+ n + p + q =
( 陈 迁
.
侯 国玺 湖 北 省 浠 水县 余 堰
中学 . 4 3 8 2 0 0 )
2 0 1 3年第 2期
41
中 等 数 学
熬蟹
中 图分 类 号 : G 4 2 4 . 7 9
数学奥林匹克高中训练题100
合{1 ,2 , …, n}的不同子集 ,满足下列条件 :
(i) i ∈Ai 且 Card ( Ai ) ≥3 , i = 1 ,2 , …, n ;
(ii) i ∈Aj 的充要条件是 j ∈ Ai ( i ≠j ,
i 、j = 1 ,2 , …, n) .
试回答下列问题 :
n
∑ (1) 求 Card ( Ai ) ; i =1
(A) 0 < a < b
(B) a < 0 < b
(C) a < b < 0
(D)
a<
1 2
<
b
2. 已知不等式 22x + a2 x + b ≥0 解的最
小值为 2. 则 a 的取值范围是 ( ) .
(A) ( - ∞,0)
(B) [ 0 , + ∞)
(C) [ 2 , + ∞)
(D) [ - 4 , + ∞)
>
sin (α+β) sinα·sin β
-
2sin (α+β) ·cos(αsin 2α·sin 2β
β)
=
2sin (α+β)
[2cos α·cos sin 2α·sin
β2β
cos (α-
β)
]
=
2sin
(α+ sin
β) ·cos 2α·sin
(α+β) 2β
> 0.
5. B. 由韦达定理得 α+β= - p ,αβ= q. 则 m = (α+β) 2 + 4αβ= 2 (α+β) 2 - (α- β) 2 . 又| α+β| ≤| α| + | β| ≤1 , | α- β| ≤| α| + | β| ≤1 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学奥林匹克高中训练题(30)
第一试
一、选择题(本题满分 36分,每小题6分)
1. (训练题37) a 是由1998个9组成的1998位数,b 是由1998个8组成的1998位数,则a b 的各位 数字之和为(C ).
(A ) 19980
(B )19971
(C ) 17982
(D )17991
2
2. (训练题37)已知x • (0,2二),则方程3ctg x 8ctgx *3=0的所有根的和为(C ).
(A ) 3 -
(B ) 4 二
(C )5二 (D ) 6 ■:
3.(训练题37)已知三个正数a 、b 、c 之和为10,如果它们之中没有一个大于其余数的 2倍,那么abc
的最小值是(B ).
1
7 13 (A) 32
(B)31 -
(C)27 -
(D)7 -
4 9 16
4.(训练题37)已知X n 二丄[(2「3广* (2 -・一3门(n ,N) , X .为正整数,则 心981999的个位数字为 2
(B).
(A) 1
(B) 2
(C) 6
ABC
5.(训练题37)已知 ABC 中,lg tg ,lg tg , Ig tg
成等差数列,则 2 2 2
2 二 (A) 0 :: B
(B) 0 :: B
(C)
B -
6
3 3
3
6.(训练题37)一只小球放入一长方形容器内,且与共点的三个面相接触,小
球上有一点到这三个面的 距离分别是3cm , 3cm , 6cm ,则这只小球的半径(D ).
(A )只为3cm
(B )只为6cm
(C )只为9cm
、填空题(本题满分 54分,每小题9分)
1.(训练题37)已知1998n 11999!,则正整数n 的最大值为 55
2.(训练题37)已知L 0。
是正 ABC
的内切圆,L 01与L 0。
外切且与 ABC 的两边相切,…,L O n d
与L 0.外切且与AABC 两边相切(n ・N ) •那么,在 UABC 内所有这些可能的圆(包括 L 0。
,
11兀
0n (n ,N ))的面积之和与 ABC 的面积之比为
——:
3.(训练题37) P 是边长为2的正 ABC 所在平面上的一动点, 且PA 2 PB 2 PC 2 =16,则动点P 的轨迹为 以正 ABC 的中心为圆心,2为半径的圆 ________________ .
4. (训练题37)已知方程x 8y 8^ n (n ,N )有666组正整数解(x,y,z ).那么n 的最大值是 304 .
5. (训练题37)已知正四面体 ABCD 的六条棱的长分别为 4cm , 7cm , 20cm , 22cm , 28cm ,
(D)7
■ B 的取值范围是(B).
2 二 (D)
B - ~
3
(D )以上说法不对
xcm。
则[x ]的最小值为 8
2 2^
x —x 亠 a —- a ■■■■■ 0 的整数解恰好有两个,求 a 的取
x 2a 1
值范围?( 1 ::: a _ 2)
四、(训练题37)(本题满分20分)当x 为何实数时,y = x 2 -X• ;2(x • 3)2 • 2(x 2 -5)2有最小值, 最大值是多少? x = -2,1; y min = 9
五、(训练题37)(本题满分20分)已知函数f (x )在R •上有定义,且满足下列条件:① f (x )在R
•严格
亠
2
1 3
;②在 R 上恒有 f 2(x)f(f(x) 门二 f 3(1).
x
(1)求函数值f(1) ; (2)
(2)给出一个满足提设条件的函数 f (x ).
第二试
一、 (训练题37)(本题满分50分)已知如图,AD 是锐角 ABC 的角平分线,.BAC = , ADC 二'■,
且 cos : = cos 2 .求证 AD 2 = BD CD .
二、 (训练题37)(本题满分50分)求21999的末四位数.(4688)
三、 (训练题37)(本题满分50分)已知n 是正整数, m 是正奇数,a,b 是正常数,且 a b 1,函数
2n 丄
f (x, n )八 x m ax m -b .若实数 s,t 满足 f (s, n )二 f (t, n 1) = 0 求证:s :: t .
6 .(训练题37)已知对于每一个实数
x 和 y ,函数 f (x)满足 f (x) f ( y) = f (x y) xy .若
f (1) ,则满足f (n ) =1998的正整数对 (m, n)共有
16
个.
三、(训练题37)(本题满分20分)已知不等式组 1
递减,且f (x ) •二 x。