北航 航空发动机原理 期末考试知识点总结
北航航空发动机原理总结
北航航空发动机原理总结航空发动机作为航空器的心脏,对航空器的性能和安全起着举足轻重的作用。
北航作为中国航空工业的重要支柱,研制了众多优秀的航空发动机,为航空事业的发展做出了巨大贡献。
本文将对北航航空发动机的原理进行总结,以帮助读者更好地了解和学习航空发动机的工作原理。
一、航空发动机的分类航空发动机主要分为活塞发动机和涡轮发动机两大类。
活塞发动机是早期航空发动机的代表,其工作原理类似于内燃机,通过往复运动的活塞进行工作;涡轮发动机则是现代航空发动机的主流,其利用喷气推力来驱动飞机。
二、航空发动机的工作原理1. 活塞发动机的工作原理活塞发动机主要由气缸、活塞、曲轴、点火装置等组成。
其工作原理可以分为四个冷态工作过程,包括进气、压缩、燃烧和排气。
首先,气缸内的活塞从上往下运动,通过进气门吸入混合气;然后,活塞往上移动时将混合气压缩;接下来是燃烧过程,当活塞压缩到极限位置时,点火装置产生火花引燃混合气,形成爆震;最后,活塞再次向下运动,将燃烧产生的废气通过排气门排出气缸。
2. 涡轮发动机的工作原理涡轮发动机主要由压气机、燃烧室和涡轮三部分组成。
其工作原理可以分为压气机压缩气体、燃烧室燃烧和涡轮驱动压缩空气三个过程。
首先,进气口引入空气,经过压气机进行压缩。
接下来,压缩后的空气进入燃烧室,在燃烧室中与燃料混合燃烧,产生高温高压气体。
最后,高温高压气体作用于涡轮叶片,通过涡轮的驱动产生推力,推动飞机向前飞行。
三、北航航空发动机的创新北航航空发动机在航空发动机研制领域具有丰富的经验和优势,通过不断的创新,取得了多项重要成果。
1. 碳复合材料的应用北航航空发动机在发动机部件的制造中广泛应用了碳复合材料。
碳复合材料具有重量轻、强度高、耐腐蚀等优点,可以有效提高发动机的性能和寿命。
2. 先进的火箭燃料喷射技术北航航空发动机采用了先进的火箭燃料喷射技术,通过提高燃料的燃烧效率,提高发动机的推力和热效率,使飞机飞行更加安全和高效。
《航空发动机》知识点总结
1. 理想气体的定义是:分子本身只有质量而不占有体积,分子间不存在吸引力的气体。
2. 理想气体的状态方程式:pv = RT ,R 为气体常数3. 热力学第一定律的解析式 dp = du + pdv ,u 为空气内能,pv 为位能4. 热力发动机是一种连续不断地把热能转换为机械能的动力装置。
5.⎧⎧⎨⎪⎩⎪⎪⎧⎧⎪⎪⎪⎪⎧⎫⎪⎪⎪⎧⎨⎪⎪⎪−⎨⎬⎨⎪⎪⎪⎩⎪⎪⎪⎪⎪⎩⎭⎪⎩⎨⎪⎧⎪⎧⎪⎨⎨⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩⎩固体燃料火箭发动机火箭发动机液体燃料火箭发动机二行程 直列式活塞式吸气式四行程对列式增压式星型发动机冲压式航空发动机冲压式(无压气机) 脉动冲压式涡喷 空气喷气式涡扇 涡轮式(有压气机)涡轴 涡桨 6. 发动机的推力与每秒钟流过发动机的空气质量流量之比,叫做发动机的单位推力。
F s = F / q m7. 产生一牛(或十牛)推力每小时所消耗的燃油量,称为单位燃油消耗率。
sfc= 3600q mf / F8. 单转子涡喷发动机的站位规定及相应气流参数有:0站位:发动机的远前方,那里的气流参数为*0*00,,,,T p V T p o ;1站位:进气道的出口,压气机的进口,气流参数为*1*1111,,,,T p V T p ;2站位:压气机的出口,燃烧室的进口,气流参数为 *2*2222,,,,T p V T p ;3站位:燃烧室的出口,涡轮的进口,气流参数为*3*3333,,,,T p V T p ;4站位:涡轮的出口,喷管的进口,气流参数为*4*4444,,,,T p V T p ;5站位:喷管的出口,气流参数为*5*5555,,,,T p V T p ;---------------------------------------------------------------------9. 进气道对发动机性能的影响主要体现在:一,气流经过进气道的总压恢复系数影响流经发动机的空气流量,还影响循环的热效率;二,进气道本身的工作稳定性和出口气流流场是否均匀,前者会直接影响发动机的正常工作,后者会引起压气机效率下降甚至喘振;三,进气道对有效推力的影响,还包括1.超音速飞行时会有附加阻力2.进气道唇口的存在使外流急剧加速,可能引起气流分离或形成超音速区,使得外阻明显增加。
北航桂幸民航空发动机原理1期末
北航桂幸民航空发动机原理1期末桂幸民航空发动机原理桂幸民航空发动机原理涉及了一系列的物理原理,这些原理贯穿整个飞行过程,包括飞行器的起飞、爬升、俯冲、平飞、降落等。
其中,发动机原理在这种过程中扮演着至关重要的角色。
发动机原理归纳出以下几方面内容。
一、气动力学发动机原理要充分理解,就必须拥有充分的气动力学知识。
气动力学即是研究物体在流体中的运动的物理原理。
其自然的性质反映在运动的原理中,物体运动的方向及其运动的速度受到气体的定向速度、气压和密度的影响,其中密度是气体运动的决定因素。
二、机翼原理机翼原理是桂幸民航空发动机原理的重要组成部分,它们能够帮助整个飞机在空中稳定地行进。
机翼就像是一台蒸汽机的叶轮,机翼的弧度的变化可以改变飞机的方向,支撑飞行器的安全飞行。
三、质量均衡质量均衡是飞行过程中最重要的一环,它影响着飞行器的高度、位置和速度的变化,且决定着飞行中的加速度和减速度等。
这是一个非常复杂但重要的原理,它可以帮助飞行器实现平稳、精准飞行。
四、动力装置动力装置是桂幸民航空发动机原理中最重要的组成部分,它们帮助飞机向前和向上高速移动,以及如何以恒定的速度保持固定的转弯曲线。
发动机由发动机、燃料系统、喷射技术、叶片等部分组成,所有这些都相互作用,使飞机可以运行在全世界各地,以满足不同的飞行任务的需要。
五、物理原理物理原理体现在飞行器的运动过程中,当飞机处于新的速度和高度状态时,它就需要重新计算动力起源的概念,譬如。
动量定律、维摩提力矩定律、爱因斯坦定律等,然后再根据它们的组合原理,来调节发动机的动力输出,从而使飞行器安全飞行。
总之,桂幸民航空发动机原理包括气动力学、机翼原理、质量均衡、动力装置和物理原理等多种内容,它们分别从不同的方面体现在飞行过程中,彼此巧妙的结合使飞行变得稳定和安全,满足了航行的目的,有效的把握这些原理,能够使飞行空中的奇迹变得更加美妙,此外,有效的理解这些原理,也使飞行安全受到保证。
北航 航空发动机原理总结
– 三种工作状态
临界、超临界、亚临界
取决于喷管压比与临界压比的关系 临界、亚临界:完全膨胀
超临界:不完全膨胀
– 出口气流所能达到的最大速度
C9max=当地音速=f(排气总温)
收敛-扩张型
– 几何固定的收-扩喷管有三种工作状态
完全膨胀、不完全膨胀、过度膨胀
取决于喷管压比和面积比
总 结
进气道和尾喷管工作原理 各种类型发动机基本工作原理
发动机设计点性能
各部件共同工作及控制规律 发动机非设计点性能(特性)
进气道工作原理及特性
功能、设计要求及分类
亚音进气道
– 三种流谱(0<<) – 结构形式
超音进气道
– 气动设计原理(多波系结构) – 三种结构形式(内压、外压、混压) – 外压式超音速进气道的特性
Tt4
Tt2
控制规律的 制定将决定 最终所获得 的发动机性 能,因此控 制规律的设 计至关重要
n2
低速
Tt4 Tt2
高速
n1
发动机稳态特性
发动机典型工作状态
节流特性(油门特性、转速特性)
– 定义 – 典型曲线及参数变化原因 – 防喘措施的防喘机理及其对特性的影响
速度特性
– – – – 典型喷气式发动机速度特性曲线及参数变化原因 不同设计参数特性 不同控制规律 不同类型发动机速度特性(涡喷、涡扇、复燃加 力发动机、涡桨、涡轴)的特点及其适应范围
由涵道比定义和流量连续条件
– 涵道比将随飞行条件、转子转速的变化而变化
发动机流通能力变化使进气道的工作状态受到影响
– 亚音进气道(三种流普) – 超音进气道(三种工作状态)
飞行学院《航空发动机原理与构造》复习
飞行学院《航空发动机原理与构造》复习资料第一部分:航空发动机构造一、单项选择题(每题 2 分)1. 涡喷涡扇涡桨涡轴发动机中,耗油率或当量耗油率的关系是(A )2. A. sfc涡喷>sfc涡扇>sfc涡桨>sfc涡轴B. sfc涡扇>sfc涡桨>sfc涡轴>sfc涡喷3. C. sfc涡桨>sfc涡轴>sfc涡喷>sfc涡扇D. sfc涡轴>sfc涡喷>sfc涡扇>sfc涡桨4. 发动机转子卸荷措施的目的是(B )。
5. A .减少发动机转子负荷,降低了发动机推力,以提高发动机运行可靠性6. B .减少发动机转子轴向力,减少止推轴承数量,提高转子工作可靠性7. C.减少发动机转子负荷,提高发动机推力8. D .减少发动机转子负荷,降低转子应力水平,提高转子结构强度9. 涡扇发动机中,忽略附件传动功率,涡轮转子与压气机转子扭矩之间的关系是(D)10. A . M涡轮〉—M压气机 B . M涡轮V—M压气机11. C. M涡轮=M压气机 D . M涡轮=—M压气机12. 压气机转子结构中,加强盘式转子是为了(B)。
13. A .加强转子强度,提高转子可靠性14. B .加强转子刚度,提高转子运行稳定性15. C .加强转子冷却效果,降低温度应力16. D .加强转子流通能力,提高压气机效率17. 压气机转子结构中(B)。
18. A .鼓式转子的强度〉盘式转子的强度19. B .鼓式转子的强度V盘式转子的强度20. C.鼓式转子的强度二盘式转子的强度21. D .鼓式转子与盘式转子强度比较关系不确定22. 压气机转子结构中的刚度(A)23. A .盘鼓混合式转子〉盘式转子24. B .盘鼓混合式转子V盘式转子25. C.盘鼓混合式转子二盘式转子26. D .盘鼓混合式与盘式转子刚度大小关系不确定压气机静子机匣上放气机构的放气窗口通常位于( A )A •静子叶片处B •转子叶片处C •静子叶片与转子叶片之间D •转子叶片与静子叶片之间压气机转子工作叶片的榫头结构承载能力(D)A •燕尾形〉枞树形〉销钉式B •燕尾形〉销钉式〉枞树形C •销钉式〉枞树形〉燕尾形D •枞树形〉燕尾形〉销钉式燃烧室的燃油喷嘴结构中,稳定工作范围(A)A .蒸发式喷嘴>离心式喷嘴B .蒸发式喷嘴V离心式喷嘴C.蒸发式喷嘴=离心式喷嘴D .蒸发式喷嘴与离心式喷嘴比较关系不能确定燃烧室火焰简上的轴向力(A)A .向前B .向后C.近似为零 D .方向不定为减少热应力,燃气涡轮发动机燃烧室火焰筒通常采用(B)结构A.无约束B. 欠静定约束C.静定约束D. 超静定约束涡轮转子工作叶片的榫头大多采用(C)结构。
航发原理总结
航发原理总结一、引言航空发动机是飞机的核心动力装置,能够将燃料燃烧产生的热能转化为推力,推动飞机在空中飞行。
航发原理作为航空工程的基础,是飞行器安全可靠性的重要保障。
本文旨在对航发原理进行总结,介绍其基本构造和工作原理。
二、航发结构航空发动机由气源系统、燃油系统、点火系统、润滑系统和机体附件等部分构成。
1. 气源系统气源系统主要由进气道、压气机和燃烧室组成。
进气道负责将空气引入航发,经过压气机的压缩作用,提高气体压力和温度,使混合气更容易燃烧。
2. 燃油系统燃油系统负责将燃油输送到燃烧室,以供燃烧产生能量。
燃油系统由燃油泵、燃油喷嘴和燃油控制系统组成。
燃油泵负责将燃油从燃油箱抽取,并以一定的压力送入燃烧室。
燃油喷嘴将燃油雾化喷入燃烧室,与空气混合燃烧。
3. 点火系统点火系统负责在燃烧室中点燃燃油与空气的混合物。
点火系统包括点火塞、高压变压器和点火线圈等部件。
当点火塞接收到高压电流时,产生火花,引燃燃料,从而启动发动机。
4. 润滑系统润滑系统用于减少航发内部零部件之间的摩擦和磨损,提高发动机的运行效率和寿命。
润滑系统由润滑油泵、润滑油箱和润滑油滤清器等组成。
5. 机体附件机体附件包括空气起动器、发动机控制装置和辅助动力装置等,对航发的控制和运行起到重要作用。
三、航发工作原理航空发动机的工作原理可以总结为四个过程:进气、压缩、燃烧和喷气。
1. 进气过程进气过程是指空气通过进气道进入航发的过程。
进气道具有一定的导向和增压功能,将外界空气引导进入压气机。
由于航发运行时需要大量空气参与燃烧,进气道在设计时要保证足够的空间和气体流动性,以提供所需的气体供应。
2. 压缩过程压缩过程是指压气机将进气空气进行压缩,提高气体压力和温度的过程。
压气机通过在转子内迅速旋转的转子叶片,将进气气体进行反复压缩,提高气体的密度和温度。
3. 燃烧过程燃烧过程是指燃料在燃烧室中与压缩空气混合并燃烧的过程。
燃烧室内通过控制燃油的喷射速度和角度,使得燃油与空气充分混合,然后点火点燃。
北航 航空发动机原理 期末考试知识点总结
分排:外涵道
内涵道:
混排:
实际热力循环分析: 热力循环组成(P-V 图、T-S 图) 循环功=f(增温比、增压比、部件效率…),与循环增温比成正比,与部件效率成正比,存在 有最佳增压比πopt(循环功最大) ; 循环热效率=f(增温比、增压比、部件效率…),与循环增温比成正比,与部件效率成正比,
存在有最经济增压比(耗油率最低) 。
结尾正激波被推出口外
?防止喘振
特性:
尾喷管:
功能、设计要求及分类
燃气膨胀加速,气流高速排出产生反作用力推力; 调节喷管临界截面积,改变发动机工作状态; 推力换向。 流动损失小
尽可能完全膨胀 排气方向尽可能沿所希望的方向 根据需要,调节截面积尺寸 噪音低 纯收敛型 收敛--扩张型 塞式 引射 推力矢量 带反推 收敛形 收敛--扩张形
-
压气机与涡轮物理转速相等 压力平衡
发动机各部件共同工作的结果共同工作方程, 将共同工作方程表示在压气机特性图上可获 得共同工作线 共同工作线的讨论: – 共同工作线的物理意义: 发动机的工作线,飞行条件变化、外界大气条件变化、发动机转子 转速变化将引起共同工作点在工作线上移动 – 工作线位置受 A8 调节的影响: 单轴涡喷(调小 A8 则共同工作线移向喘振边界) 双轴涡喷( A8 变化不影响高压转子共同工作线,调小 A8 对低压共 同工作线的影响与单轴发动机相反) – 当工作点向左下移动时,压气机喘振欲度减小,因此必须采取防喘措施 – 几何参数不可调节时, 采用不同控制规律不会对发动机共同工作线位置产生 影响,但共同工作点将随不同控制规律而不同,因而导致发动机性能不同 双转子发动机自动防喘机理:
– 机械能推进功率 – 动能形式损失(余速损失) 发动机-总效率:
最新级《航空发动机原理》期末考试复习
《航空发动机原理》复习一、单项选择题(共20题每题2分共40分)1.以下哪个是衡量发动机经济性的性能参数( A )。
A EPRB FFC SFCD EGT2.涡轮风扇发动机的涵道比是( D )。
A流过发动机的空气流量与流过内涵道的空气流量之比B流过发动机的空气流量与流过外涵的空气流量之比C流过内涵道的空气流量与流过外涵道的空气流量之比D流过外涵道的空气流量与流过内涵道的空气流量之比3.高涵道比涡扇发动机是指涵道比大于等于( C ).A 2B 3C 4D 54.涵道比为4的燃气涡轮风扇发动机外涵产生的推力约占总(C )。
A20% B40% C80% D90%5.涡桨发动机的喷管产生的推力约占总推力的( B )A.85-90%B.10-15%C.25%D. 06.涡桨发动机使用减速器的主要优点是:( C )A能够增加螺旋桨转速而不增加发动机转速B螺旋桨的直径和桨叶面积可以增加C可以提高发动机转速而增大发动机的功率输出又能使螺旋桨保持在较低转速而效率较高D在增大螺旋桨转速情况下,能增大发动机转速7.双转子发动机高压转子转速N2与低压转子转速Nl之间有( C )A N2<NlB N2=NlC N2>Nl D设计者确定哪个大8.亚音速进气道是一个( A )的管道。
A扩张形B收敛形 C先收敛后扩张形 D圆柱形9.亚音速进气道的气流通道面积是( D )的。
A扩张形 B收敛形 C先收敛后扩张形 D先扩张后收敛形10.气流流过亚音速进气道时,( D )。
A速度增加,温度和压力减小 B速度增加,压力增加,温度不变C速度增加,压力减小,温度增加 D速度减小,压力和温度增加11.在离心式压气机里两个起扩压作用的部件是( D )。
A涡轮与压气机B压气机与歧管C叶片与膨胀器D叶轮与扩压器12.轴流式压气机的一级由( C )组成。
A转子和静子 B扩压器和导气管 C工作叶轮和整流环 D工作叶轮和导向器13. 空气流过压气机工作叶轮时, 气流的( C )。
北航发动机原理总结--经典版
与飞行马赫数和发动机工作状态相关 3\超音速进气道 腹部,两侧\头部\翼根 激波性质:略 超音速进气道设计原则:多波系结构首先利用总压损失 较小的多道斜激波将高速超音速流滞止为低速超音速 流,再利用一道较弱的正激波将低速超音速流滞止为亚 音速流 目的:减小由于激波造成的总压损失
dA dV 2 (M a 1) A V
移,超音速溢流阻力 增大,高超音速飞行 时,激波系交点后 移,激波损失加大, 2、 正激波: 临界状态 正激波位于吼道超 临 界 状 态 正 激 波位于吼 道之后产 生嗡鸣, 总压损失加大亚临界状态正激波位于吼道之前亚音 速溢流阻力增强 调节方法:轴对称进气道:移动中心椎体 二元进气道:调节楔角板角度、外罩角度、放气门、 辅助进气门 第二节、燃烧室
1 2 1 (V9 V0 2 ) (V9 V0 ) *V0 (V9 V0 ) 2 余速损失 2 2
四、总效率
p1* i p0* ,σi 总压恢复系数
2、亚声速进气道 皮托管式,安装在尾部或短舱
0
F sV 0 q0
th p
K
* p0 A0 q(0 )
T0*
Fs 2W V0 2 V0 2CpT0 (e 1)( 1) V02 V0 e q0 CpT0 ( e)
T3 T , e
0
1
提
3600CpT0 sfc b H u
2CpT0 (e 1)( 1) V02 V0 e
e
产生推力
(V9 - V0)
p
FsV0 F / qmf V0 (V9 V0 ) *V0 2V0 2 2 2 2 V9 V0 V9 V0 W V9 V0 2 2 2 V9 / V0 1
北航-发动机原理(总结)
各部件共同工作
共同工作线的由来及意义 飞行条件变化引起共同工作点在工作线 上移动 A8变化对共同工作线位置的影响 双转子发动机自动防喘机理 复燃加力发动机的A8必须可调 与进气道的共同工作
调节规律
调节规律
– What? why? – 常用调节规律
n=const,
பைடு நூலகம்
A8=const T3*=const, A8=const n=const, T3*=const
设计参数
设计参数选择
– 增压比 – 涡轮前温度 – 加力温度 – 涵道比 – 风扇增压比
各部件共同工作
共同工作条件
– 流量连续
流通能力正比于增压比,反比于加热比; T3*/T1*等值线物理意义 膨胀比与A8的关系 复燃加力发动机A8必须可调
– 功率平衡
压气机功与涡轮前温度和膨胀比的关系
三种工作状态(取决于喷管压比与临界压比的
关系)
– 收敛-扩张型
三种工作状态(取决于喷管压比和面积比) 面积比必须可以调节。
基本工作原理及热力循环
性能指标
– 推力(单位推力、推重比)、耗油率 – 定义、单位、计算公式
能量转换及效率
– 热效率 – 推进效率 – 总效率
基本工作原理
基本工作原理
特
性
过渡过程
– 加速过程
加速性 提高加速性措施及受到的限制
– 起动过程
地面起动(外动力源,分三个阶段) 空中起动
– 涡喷发动机 – 复燃加力发动机 – 涡扇发动机 – 涡桨、涡轴
热力循环
热力循环分析
航空发动机原理复习题.pdf
航空发动机原理复习题.pdf发动机原理部分进气道1.进气道的功用:在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机;2.涡轮发动机进气道功能冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。
提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力3.进气道类型:亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。
影响进气道冲压比的因素:流动损失、飞行速度、大气温度。
5.空气流量:单位时间流入进气道的空气质量称为空气流量。
影响因素:大气密度, 飞行速度、压气机的转速压气机6.压气机功用:对流过它的空气进行压缩,提高空气的压力。
供给发动机工作时所需要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。
7.压气机分类及其原理、特点和应用(1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动.(2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动.(3)混合式压气机:8.阻尼台和宽叶片功用阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。
宽弦叶片:大大改善叶片减振特性。
与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。
9.压气机喘振:是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。
10.喘振的表现:发动机声音由尖锐转为低沉,出现强烈机械振动.压气机出口压力和流量大幅度波动,出现发动机熄火.发动机进口处有明显的气流吞吐现象,并伴有放炮声.11.造成喘振的原因气流攻角过大,使气流在大多数叶片的叶背处发生分离。
燃烧室12.燃烧室的功用及有几种基本类型功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。
北航-发动机原理45讲综述
? 表示发动机作为(热机+推进器)的效率 ? 描述发动机经济性指标,总效率? 0.2~0.3。 ? 总效率与耗油率的关系
FV
? ? s0
0
q
0
sfc ? 3600 f F
s
q ? fH
0
u
3600 V 3600 a M
??
0?
0 a0
0 H sfc
H sfc
u
u
? 当飞行速度一定时,总效率与耗油率成反比; ? 当飞行速度变化时,只能用总效率表示经济性; ? 当飞行速度为零时,只能用耗油率表示经济性。
5.5
J79-GE-17 六十 13.4 1260
~
4.63
F404-GE- 八十 25 1589 0.34 7.24 400 AL-31 ? 八十 23.8 1665 0.6 8.17
EJ200
九十YF120
九十 25~28 ~2000 ~0.2 ~10
二、发动机/飞机一体化设计概念
– 循环功、热效率与循环增压比、加热比的关系
? 三个效率(? th、? p、? 0 )的定义、能量转 换、损失
? 发动机的发展方向
– 为提高发动机推重比(单位推力),提高 T3*; – 为降低耗油率,提高增压比。
? 思考题
–发动机推力与有效推力存在有什么区别 ?有效推力公 式中的三项阻力与哪些因素有关 ?内推力大小与哪些 因素有关?
对涡喷发动机
循环功=机械能 :
W=(V
2 9
-
V02)/2
热效率: ? 增压比 ?
?? th
? 1?
V2 ? V2
9
0
2
q 0
1
? ?1
航空发动机原理与构造知识点总结
航空发动机原理1 概论航空动力装置的功能是为航空器提供动力,推进航空器前进,所以航空动力装置也称为航空推进系统。
它主要包括航空发动机,以及为保证其正常工作所必需的系统和附件,如燃油系统、滑油系统、起动系统和防火系统等,通常简称为航空发动机。
1.1航空燃气涡轮发动机的基本类型目前航空燃气涡轮发动机有五种基本类型:涡轮喷气发动机、涡轮螺桨发动机、涡轮风扇发动机、涡轮轴发动机和供垂直/短距离飞机用的发动机。
涡轮喷气发动机简称涡喷发动机(WP)。
从结构上讲,它由压气机、燃烧室、燃气涡轮和尾喷管四个主要部件组成(见图1-1),其特点是:涡轮只带动压气机压缩空气,发动机的全部推力来自高速喷出的燃起流所产生的反作用力。
涡轮喷气发动机经济性差高温、高速燃气由尾喷管排出,能量损失大,因此经济性差。
图1-1 涡轮喷气发动机涡轮螺桨发动机简称涡桨发动机(WJ)。
在这类发动机中,涡轮除带动压气机供给发动机所需的空气外,还带动螺桨,产生飞机前进的拉力。
由尾喷管喷出的燃起流所产生的推力只占飞机前进力的很少一部分(10%)。
从结构上讲,这类发动机还多一个部件——减速器。
涡轮风扇发动机简称涡扇发动机(WS),又称内外涵发动机。
它是介于涡喷和涡桨之间的一种发动机。
它由两个同心圆筒的内涵道和外涵道组成,在内涵道中装有涡喷发动机的部件——压气机、燃烧室和涡轮,在外涵道中装有由内涵转子带动的风扇(见图1-2)。
发动机的推力是内、外涵道气流反作用力的总和。
- 2 -外、内涵道空气流量之比称为流量比,又称涵道比。
涡扇发动机的优点是,推力大了,排出的能量小了,耗油率低。
图 1-2 涡轮风扇发动机若在涡桨发动机中,发动机输出轴不带动螺桨,而用来输出功率,例如带动直升机的旋翼、舰艇的推进器、或地面的发电机和油泵等,则这种燃气涡轮发动机称为涡轮轴发动机,简称涡轴发动机(WZ)。
1.2 航空燃气涡轮发动机性能指标涡轮发动机和涡扇发动机都是将燃气发生器的可用功用于增加流过发动机气流的动能并产生反作用推力。
航空发动机原理总复习
1•影响化学反应速度的因素主要有浓度、温度、压力和活化能。
2.航空煤油的燃烧时间由蒸发时间、气相扩散混合时间、化学反应时间组成。
3.航空发动机常见的雾化喷嘴有采用压力雾化的直射式喷嘴和离心式喷嘴:采用介质气动力雾化的气动雾化式喷嘴:采用加热蒸发雾化的蒸发管式喷嘴以及采用轴旋转的离心力雾化的甩油盘式喷嘴。
4.燃烧室的压力损失可以分为流阻损失和热阻损失。
5.燃烧室主燃区的作用是稳左燃烧。
补燃区的作用是补充燃烧,消除热离解,提髙燃烧效率。
掺混区的作用是掺混降温。
6.对于航空煤油,正好完全燃烧的混合气的当量比等于1.0,余气系数等于1.0,油气比等于0.068 °7.稳泄燃烧时,为了提髙航空煤油的燃烧速度,最关键的措施是燃油的雾化。
8.在高温低压条件下必须要考虑燃饶产物的热离解。
9.航空燃气轮机燃饶室中煤油在空气中的燃烧是气液两相扩散燃烧。
10.防止火焰简烧蚀的措施是设置孔缝的气膜冷却。
11•保证燃饶室稳従燃烧采取的最重要的流动控制措施是产生回流区。
12.扩散燃烧的特点是燃烧过程取决于流体动力因素即混合时间T m,此时化学反应时间T人<Tm,燃料燃烧的全部时间J由混合时间丫皿决定。
13.动力燃饶的特点是燃烧过程取决于化学动力因素即化学反应时间T “此时混合时间T m« J,燃料燃烧的全部时间J由化学反应时间T「决定。
14.影响化学反应速度的因素有反应物浓度、压力、温度和活化能。
15.发动机在慢车状态下排气污染物主要为CO和HC,在起飞状态下为NOx和烟粒。
19.燃烧室的基本工作要求有燃烧完全、燃烧稳左、点火可靠、压力损失小、出口温度场符合要求、尺寸小重量轻、排气污染少、寿命长。
20.燃烧室中气流流动过程包括:燃饶区中气流流动过程的组织:混合区中二股掺冷空气与高温燃气掺混过程的组织;火焰筒壁冷却过程的组织。
21.燃烧室中采取的措施有:采用扩压器,使气流减速增压:采用火焰筒使气流“分流”:采用火焰稳定器,使燃烧区中形成特殊形态的气流结构(回流区)。
航空发动机原理知识点精讲
航发原理1、燃气涡轮发动机工作原理1.1、航空发动机概述活塞、涡喷、涡扇、涡轴、涡桨、桨扇,短距离垂直起降动力装置。
1.2、燃气涡轮发动机的工作原理空气连续不断地被吸入压气机,并在其中压缩增压后,进入燃烧室中喷油燃烧成为高温高压燃气,再进入涡轮中膨胀做功。
燃烧的膨胀功必然大于空气在压气机中被压缩所需要的压缩功,使得有部分富余功可以被利用。
燃气涡轮发动机的膨胀功可以分为两部分:一部分膨胀功通过传动轴传给压气机,用以压缩吸入燃气涡轮发动机的空气;另一部分膨胀功则对外输出,作为飞机、舰船、车辆或发电机等的动力装置。
1.3、喷气发动机热力循环(P123)涡喷发动机的理想循环:(p-v 、压力-比体积)等熵压缩:进气道、压气机(0、2、3,特征截面)等压加热:燃烧室(3、4)等熵膨胀:涡轮、喷管(4、5、9)等压放热:大气环境(9、0)(P125)理想循环功L id =q 1−q 2=C p (T t4−T t3)−C p (T 9−T 0)=C p T 0(e −1)(∆e −1)T t4T 0=∆ 加热比 (P t3P 0)k−1k =e P t3P 0=π 总增压比 加热比增加,理想循环功增加。
总增压比为1,理想循环功为0;总增压比为最大,理想循环功为0;存在使理想循环功最大的最佳增压比πopt 。
从物理意义分析,影响理想循环功L id 的是加热量q 1和热效率两个因素。
当π从1.0开始增加时,热效率急剧增加,使L id 增加,一直达到其最大值;此后π继续增加则q 1的减小起了主导作用,使L id 下降。
e opt =√∆πopt =∆k2(k−1)L id =C p T 0(√∆−1)2ηti =1−1πk−1k 只与总增压比有关对应于有效功最大值的最佳增压比πopt 远小于对应于最大热效率的增压比πopt ′。
1.4、喷气发动机的推力(P13)F eff =F −X d −X p −X fX d :进气道附加阻力X p :短舱压差阻力X f:摩擦阻力F=W9c9+(p9−p0)A9−W a c0 1.5、涡喷发动机的总效率、热效率及推进效率η0=ηtηpηp=21+c9c0=推进功循环有效功遗留在空中的动能损失,称为离速损失,排气速度和飞行速度差别越大,动能损失越多。
航空发动机基本知识点
航空发动机基本知识点一、基础知识1. 力学分为静力学、运动学、动力学。
2. 力是不能离开物体而独立存在的。
3. 力的作用效果有力的大小、方向、作用点三个要素确定。
4. 常见的力:弹性力、摩擦力、重力。
5. 静摩擦系数由相互接触的物体材料和表面情况决定;最大静摩擦力的大小和正压力的大小成正比;静摩擦力与外力大小相等、方向相反。
6. 滑动摩擦力和正压力成正比;滑动摩擦力的方向永远与相对滑动的方向相反;对于给定的一对接触面来说,滑动摩擦系数稍小于静摩擦系数。
7. 牛顿第三定律:如果一物体以一力作用于另一物体上,那么另一物体一定同时以大小相等、方向相反、在同一直线上的力作用于该物体。
8. 表示力的转动效果的物理量叫做力矩。
9. 规定使物体作逆时针转动的力矩为正,作顺时针转动的力矩为负力矩。
10.作用于同一物体上的一对大小相等、方向相反但不在同一直线上的力叫做力偶。
11.力偶只能是物体发生转动,而不能是物体发生移动。
12.力偶对任意转轴的合力矩是一恒量,它等于力偶的任一力与力偶臂的乘积——力偶矩。
13.力偶矩和一个单力所产生的力矩不同,力偶矩与矩心的位置无关,单力对不同的矩心的力矩是不同的;力偶矩的正负号规定与力矩相同;力偶矩单位:牛顿*米或千克*米。
14.质量均匀分布而且形状规则的物体重心与其几何对称中心重合。
15.物体平衡的条件;作用力的合力等于零,同时合力矩也等于零。
16.牛顿第一定律:任何物体,如果没有受到其他物体的作用或受到的合力为零,这个物体就保持自己的静止状态或匀速直线运动状态不变。
这种状态性质叫惯性,即惯性定律。
17.表示物体所含物质多少的物理量叫质量,质量是物体惯性大小的度量。
18.牛顿第二定律:物体受到外力作用时,物体得到的加速度的大小和合外力的大小成正比,和物体的质量成反比,加速度方向和合外力方向相同。
19.基本量的单位市基本单位,导出量的单位是导出单位。
国际单位制中,长度L、质量M、时间T作为力学的基本量,其基本单位为‘米’‘千克’‘秒’。
航空发动机原理的一些重点
航空发动机原理的一些重点1.涵道比:外涵道与内涵道空气流量的比值2.增压比:压气机出口静压与周围大气压力之比3.加热比:燃烧室出口温度与外界大气温度之比4.热效率:加入每千克空气的热量中所产生的可用功与所加热量之比5.比功:单位质量空气所做的功6.最佳增压比:使比功达极大值的增压比7.最经济增压比:使热效率达极大值的增压比8.有效推力:从计算推力中扣除附加阻力,波阻,外表摩擦阻力后得到的发动机实际推力9.单位燃油消耗率:每小时产生1N推力所消耗的燃油量10.总效率:加入发动机的燃料完全燃烧所放出的热量转变为推进功的量11.攻角:流入叶栅的气流方向与叶型中弧线前缘切线之间的夹角12.喘振裕度:压气机的工作点与喘振边界线之间的距离值13.巡航状态调节规律;在一定的飞行状态下,发动机从最大工作状态减小推力的循环规律14.发动机压比:涡轮后压力与压气机进口压力之比15.对转涡轮:使高低压涡轮相反旋转而省去低压涡轮导向器16.燃气发生器:各类燃气轮机的热机部分,包括压气机,燃烧室,带动压气机的那一部分涡轮17.旋转失速:在地面观察时,失速区附着在压气机工作轮上以较低转速,相同方向旋转运动18.转速悬挂:由于燃油增加过猛使发动机转速停滞在某一转速上无法上升的现象19.复燃加力:在涡轮后面再喷入燃油进行燃烧20.功分配系数:传给外涵可用功与全部可用功之比1. 理想燃气轮机循环的3个结论答:①热效率只与增压比有关,随增压比增大而单调增加②在加热比一定的条件下,存在最佳增压比。
最佳增压比随加热比的增加而增大③在增压比相同的条件下,比功随加热比增大而增加2. 实际燃气轮机循环的4个结论答:①热效率与增压比,加热比都有关②存在最经济增压比③在加热比一定的条件下,存在最佳增压比。
实际循环增压比小于理想循环增压比。
各增压比下,实际循环比功都小于理想循环比功④加热比越大,热效率越大,最佳增压比和最经济增压比也越高3.双轴发动机的优点答:①与相同增压比单轴发动机相比,压气机在更广阔的转速相似参数范围内稳定工作,可防止压气机喘振②在低转速工作时耗油率更低③加速性良好④与同样参数单轴发动机相比,可采用功率较小的起动机3. 发动机加力方法及其应用特点答:①喷射液体加力:需消耗大量的水,一般用于飞机在较高大气温度或高海拔机场起飞②复燃加力:应用于高速飞行,如军用歼击机的发动机上③复燃喷水加力4. 外压式,内压式,混合式,超声速区别及优缺点?答:①外压式:进气道口外具有尖锥或尖劈,进气道口内为扩张形通道。
级《航空发动机原理》期末考试复习
《航空发动机原理》复习一、单项选择题(共20题每题2分共40分)1.以下哪个是衡量发动机经济性的性能参数( A )。
A EPR ?B FF? ?C SFCD EGT2.涡轮风扇发动机的涵道比是(? D? )。
? ?A流过发动机的空气流量与流过内涵道的空气流量之比?B流过发动机的空气流量与流过外涵的空气流量之比? ?C流过内涵道的空气流量与流过外涵道的空气流量之比? ?D流过外涵道的空气流量与流过内涵道的空气流量之比?3.高涵道比涡扇发动机是指涵道比大于等于( C ).A 2? ?B 3? ?C 4?D 5 ? ?4.涵道比为4的燃气涡轮风扇发动机外涵产生的推力约占总(C )。
? ?A20%? ? B40%? ? C80%? ? D90%?5.涡桨发动机的喷管产生的推力约占总推力的( B )A.85-90%B.10-15%C.25%D. 06.涡桨发动机使用减速器的主要优点是:( C )A能够增加螺旋桨转速而不增加发动机转速B螺旋桨的直径和桨叶面积可以增加C可以提高发动机转速而增大发动机的功率输出又能使螺旋桨保持在较低转速而效率较高D在增大螺旋桨转速情况下,能增大发动机转速7.双转子发动机高压转子转速N2与低压转子转速Nl之间有( C )A N2<NlB N2=NlC N2>Nl D设计者确定哪个大?8.亚音速进气道是一个( A? )的管道。
? ?A扩张形? ?B收敛形? ? C先收敛后扩张形? ? D圆柱形?9.亚音速进气道的气流通道面积是(? D? )的。
? ?A扩张形? ? B收敛形? ? C先收敛后扩张形? D先扩张后收敛形10.气流流过亚音速进气道时,(?D? )。
? ?A速度增加,温度和压力减小? B速度增加,压力增加,温度不变?C速度增加,压力减小,温度增加? ? D速度减小,压力和温度增加?11.在离心式压气机里两个起扩压作用的部件是( D )。
A涡轮与压气机B压气机与歧管C叶片与膨胀器D叶轮与扩压器12.轴流式压气机的一级由(?C )组成。
发动机原理考试必备要点
第一章一、名词解释1.理论循环:将发动机的实际循环进行若干简化,使其既近似于所讨论的实际循环,而又简化了实际循环变化纷繁的物理、化学过程,从而提出一种便于作定量分析的假想循环。
2.示功图:记录相对于不同活塞位置或不同曲轴转角时气缸内工质压力的变化,有V p -示功图或ϕ-p 示功图两种。
示功图是研究实际循环的依据,一般是由专门示功器在发动机运转条件下直接测出。
3.指示指标:指示指标是以工质对活塞做功为基础的性能指标,主要是衡量发动机工作过程的好坏。
4.有效指标:有效指标是以发动机输出轴上所得到的功率为基础的性能指标。
主要是考虑到发动机自身所消耗的机械能,用来综合评价发动机整机性能的。
5.指示热效率:是实际循环指示功与所消耗的燃料热量之比值。
6.有效热效率:是实际循环有效功与所消耗的燃料热量之比值。
7.升功率:在标定工况下,发动机单位气缸工作容积所发出的有效功率。
8.比质量:发动机的净质量m 与它所发出的额定功率e P 之比。
9.发动机强化系数:发动机平均有效压力me p 与活塞平均速度m v 的乘积称为强化系数,是评价发动机强化程度的指标。
10.机械效率:机械效率是有效功率与指示功率的比值。
是为了比较各种不同的发动机机械损失所占比例的大小,引入机械效率的概念。
11.发动机热平衡:发动机的热平衡,就是给出燃料的总发热量转换为有效功和其他各项热损失的分配比例。
从这些热量分配中,可以了解到热损失的情况,以作为判断发动机零件的热负荷和设计冷却系统的依据,并为改善发动机的性能指标指明了方向。
三、思考题1.什么是发动机的理论循环?什么是发动机的实际循环?答题要点发动机的理论循环是将发动机的实际循环进行若干简化,使其既近似于所讨论的实际循环,而又简化了实际循环变化纷繁的物理、化学过程,从而提出一种便于作定量分析的假想循环。
发动机的实际循环是由进气、压缩、燃烧、膨胀和排气五个过程所组成,较之理论循环复杂得多,存在必不可免的许多损失,它不可能达到理论循环那样高的循环效率。
航空发动机期末复习习题汇总
一、填空题(请把正确答案写在试卷有下划线的空格处)容易题目1.推力是发动机所有部件上气体轴向力的代数和。
2.航空涡轮发动机的五大部件为进气装置;压气机;燃烧室;涡轮和排气装置;其中“三大核心”部件为:压气机;燃烧室和涡轮。
3.压气机的作用提高空气压力,分成轴流式、离心式和组合式三种4.离心式压气机的组成:离心式叶轮,叶片式扩压器,压气机机匣5.压气机增压比的定义是压气机出口压力与进口压力的比值,反映了气流在压气机内压力提高的程度。
6.压气机由转子和静子等组成,静子包括机匣和整流器7.压气机转子可分为鼓式、盘式和鼓盘式。
8.转子(工作)叶片的部分组成:叶身、榫头、中间叶根8.压气机的盘式转子可分为盘式和加强盘式。
9.压气机叶片的榫头联结形式有销钉式榫头;燕尾式榫头;和枞树形榫头。
10.压气机转子叶片通过燕尾形榫头与轮盘上燕尾形榫槽连接在轮盘。
11压气机静子的固定形式燕尾形榫头;柱形榫头和焊接在中间环或者机匣上。
12压气机进口整流罩的功用是减小流动损失。
13.压气机进口整流罩做成双层的目的是通加温热空气14.轴流式压气机转子的组成盘;鼓(轴)和叶片。
15.压气机进口可变弯度导流叶片(或可调整流叶片)的作用是防止压气机喘振。
16.压气机是安装放气带或者放气活门的作用是防止压气机喘振17.采用双转子压气机的作用是防止压气机喘振。
18压气机机匣的基本结构形式:整体式、分半式、分段式。
19压气机机匣的功用:提高压气机效率;承受和传递的负载;包容能力20整流叶片与机匣联接的三种基本方法:榫头联接;焊接;环21.多级轴流式压气机由前向后,转子叶片的长度的变化规律是逐渐缩短。
22.轴流式压气机叶栅通道形状是扩散形。
23.轴流式压气机级是由工作叶轮和整流环组成的。
24.在轴流式压气机的工作叶轮内,气流相对速度减小,压力、密度增加。
25.在轴流式压气机的整流环内,气流绝对速度减小,压力增加。
26.叶冠的作用:①可减少径向漏气而提高涡轮效率;②可抑制振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发动机稳定状态各部件共同工作
各部件共同工作条件(相互制约) : – 流量连续(质量流量平衡) 压气机~涡轮Tt4/Tt2 等值线及物理意义: – 流通能力正比于增压比,反比于增温比 涡轮~尾喷管膨胀比与几何通道面积的关系: – 对于涡喷和分排涡扇发动机,当几何不可调节且涡轮、尾喷 管均处于临界或超临界状态时,涡轮膨胀比不变
出现有分离的过度膨胀, 喷管内出现正激波,推力损失严重 不允许喷管进入这种工作状态。
取决于喷管压比和面积比 为减小损失,面积比(A9/A8)应设计成可调节,且与喷管可用膨胀比成正比
发动机基本工作原理及热力循环
不同类型发动机的组成、工作过程 涡喷:进气道,压气机,燃烧室,涡轮,尾喷管 由进气道进气压气机增压燃烧室加热涡轮中膨胀作功带动压气机尾喷管中 膨胀加速高速排出体外 涡扇:进气道,风扇,压气机,燃烧室,涡轮, (混合器) ,尾喷管 分排工作过程: 进气道进气风扇增压气流分为两股 内涵气流压气机增压燃烧室加热涡轮膨胀作功带动风扇和压气机 内涵尾喷管膨胀加速排气到体外 外涵气流外涵道外涵尾喷管膨胀加速排气到体外 混排工作过程: 进气道进气风扇增压气流分为两股 内涵气流压气机增压燃烧室加热涡轮膨胀作功带动风扇和压气机 进入混合器 外涵气流外涵道进入混合器 两股气流在混合器中掺混尾喷管膨胀加速排气到体外 涡轮螺桨发动机:进气道,压气机,燃烧室,涡轮,螺旋桨,尾喷管 进气道进气压气机增压燃烧室加热涡轮膨胀作功带动压气机和螺旋桨尾喷 管膨胀加速排气到体外 涡轮轴发动机:进气道,压气机,燃烧室,涡轮,旋翼,尾喷管 进气道进气压气机增压燃烧室加热涡轮膨胀作功带动压气机和直升机旋 翼尾喷管减速扩压?排气到体外 推力的产生及计算公式 基本原理:流经发动机的气流受到力的作用产生加速度,气流必定产生一个大小相等、方向 相反的反作用力作用于发动机 涡喷: 对于亚音速飞机,由于发动机对气流扰动较小,可以近似认为: Feff F 对于超音速飞机在超音速飞行时激波的出现 发动机安装位置的影响因素 Fef f F 三项损失不容忽视(附加,压差,摩擦阻力)
– 机械能推进功率 – 动能形式损失(余速损失) 发动机-总效率:
合完全燃烧所释放的热能之比。
,单位工质产生的推进功与单位工质与燃料混
3600c0 3600a0 M a 0 H f sfc H f sfc
– 总效率与耗油率的关系:0
– 提高热效率(发动机热力循环) – 提高推进效率(质量附加原理) :在发动机可用循环功一定的前提下,
设计值时,斜激波波角发生变化,斜激波交点不再位于唇口 当飞行 M0< M0d 的低超音速飞行时,波角增加,激波交点前移不贴口,产生超声速溢流,外流 阻力加大 当飞行 M0> M0d 的高超音速飞行时,波角减小,激波交点后移进入口内,经激波总压损失加大
进气道出口反压变化(发动机在共同工作线上移动)影响结尾正激波位置三种不同工作状态:临界、超 临界、亚临界
,
NP 为推进功率
ä 总推力 F
性能指标(定义、单位、计算公式) 发动机主要指标:单位推力,耗油率,推重比,可靠性,隐身性,安全性,维护成本等。 涡喷、涡扇: 单位推力:每秒钟通过发动机的每公斤工质产生的推力; Fs = F / Wa,气流在喷管出口达完全膨胀时,即 P9=P0: Fs =C9 – C0;单位: N• s / kg; 推重比:: Fm = F / M (或 FG = F / G) M — 发动机质量( G — 发动机重量) 耗油率:发动机每工作 1 小时每产生 1 牛顿推力消耗的燃油量;
涡扇发动机将从热机中获取的有效能分配给了更多的工作介质, 参与产生推 力工质增多,因此推力增大,耗油率降低; “同参数”使涡扇发动机在相 同热效率条件下降低了排气速度,减小了余速损失,具有更高的推进效率, 因此提高了总效率,降低了耗油率。
理想热力循环分析
Lc ht 3 h0 Cp(Tt 3 T0 )
N B B C0
能量转换及效率(定义、能量损失形式) 热机-热效率:
燃烧所释放的热能之比。
,单位工质产生的可用循环功与单位工质与燃料混合完全 – 热能循环有效功 – 热焓形式损失(排热损失)
推进器-推进效率:推进功/有效功=推进功率/有效功率, p
2 ,单位工质 c9 1 c0
产生的推进功与单位工质产生的可用循环功之比。
;单位:kg /(N.Hr) 涡轴: 轴功率(单位轴功率) : N S mWg Lnet 功重比:发动机轴功率或当量功率与发动机重量之比;kg/kw 耗油率: sfc
3600W f Ns
涡桨: 轴功率(单位轴功率) :指有效功率?: NTe Wg LTe 螺桨功率: N B NTem 拉力: FB Nhomakorabea-
压气机与涡轮物理转速相等 压力平衡
发动机各部件共同工作的结果共同工作方程, 将共同工作方程表示在压气机特性图上可获 得共同工作线 共同工作线的讨论: – 共同工作线的物理意义: 发动机的工作线,飞行条件变化、外界大气条件变化、发动机转子 转速变化将引起共同工作点在工作线上移动 – 工作线位置受 A8 调节的影响: 单轴涡喷(调小 A8 则共同工作线移向喘振边界) 双轴涡喷( A8 变化不影响高压转子共同工作线,调小 A8 对低压共 同工作线的影响与单轴发动机相反) – 当工作点向左下移动时,压气机喘振欲度减小,因此必须采取防喘措施 – 几何参数不可调节时, 采用不同控制规律不会对发动机共同工作线位置产生 影响,但共同工作点将随不同控制规律而不同,因而导致发动机性能不同 双转子发动机自动防喘机理:
(还有使循环热效率最高的最佳增压比π′opt)
发动机设计点性能
设计参数值的选择对性能参数的影响及其原因: – 提高增压比设计值 存在最佳增压比(有效功最大) 、最经济增压比(耗油率最低) 提高增压比 (不利于提高单位推力和推重比、 有利于降低耗油率) – 提高涡轮前温度设计值 对于超音速用途:有利于提高单位推力、高推重比,但耗油率也 相应增加 对于亚声速用途: 有利于高涵道比设计 (增加推力、 降低耗油率) – 提高加力温度设计值 高单位推力,但同时付出高耗油率的代价 – 提高涵道比设计值 低单位推力、低耗油率 – 风扇增压比设计值 遵循最佳分配原则 (存在使耗油率最低的最佳风扇压比和最佳涵道
结尾正激波被推出口外
?防止喘振
特性:
尾喷管:
功能、设计要求及分类
燃气膨胀加速,气流高速排出产生反作用力推力; 调节喷管临界截面积,改变发动机工作状态; 推力换向。 流动损失小
尽可能完全膨胀 排气方向尽可能沿所希望的方向 根据需要,调节截面积尺寸 噪音低 纯收敛型 收敛--扩张型 塞式 引射 推力矢量 带反推 收敛形 收敛--扩张形
不加力涡喷发动机:
Lp ht 4 h 9 Cp(Tt 4 T )9
,
CpT0 (
k 1 k
1)
CpTt 4 (1
1
k 1 k
)
热力循环的组成(P-V 图、T-S 图) 理想循环功受循环增压比、循环增温比的影响
– 理想循环功与循环增温比成正比;存在有最佳增压比(使理想循环功最大) – 最佳增压比正比于循环增温比 理想循环热效率正比于循环增压比
分排:外涵道
内涵道:
混排:
实际热力循环分析: 热力循环组成(P-V 图、T-S 图) 循环功=f(增温比、增压比、部件效率…),与循环增温比成正比,与部件效率成正比,存在 有最佳增压比πopt(循环功最大) ; 循环热效率=f(增温比、增压比、部件效率…),与循环增温比成正比,与部件效率成正比,
存在有最经济增压比(耗油率最低) 。
按流路通道分类:
收敛型: 三种工作状态 临界、超临界、亚临界
收敛喷管按可用膨胀比πe 的大小划分三种工作状态 临界: πe =πe 临界 ,M9=1,p9=p0 亚临界: πe πe <πe 临界 ,M9<1,p9=p0 >πe 临界 ,M9=1,p9>p0 超临界:
取决于喷管压比与临界压比的关系 临界、亚临界:完全膨胀 超临界:不完全膨胀 出口气流所能达到的最大速度: C9max=当地音速=f(排气总温) (临界超临界时) 收敛-扩张型: 几何固定的收-扩喷管有三种工作状态: 完全膨胀、不完全膨胀、过度膨胀
– A8 越大,涡轮膨胀比越大
– 复燃加力发动机 A8 必须可调,以保证主机的工作状态不受 复燃加力燃烧室工作的影响 由涵道比定义和流量连续条件: – 涵道比将随飞行条件、转子转速的变化而变化(Tt2 增加,B
增加;转速降低,B 增加)
发动机流通能力变化使进气道的工作状态受到影响 – 亚音进气道(三种流普) – 超音进气道(三种工作状态) – 功率平衡(压气机与涡轮功率平衡) 压气机功与涡轮前温度和膨胀比的关系: – 当压气机功变化时,为维持功平衡,必须改变涡轮前温度或 涡轮膨胀比以维持功平衡关系,否则转速将发生变化
利用激波的性质,设计为多波系结构,即先利用损失小的斜激波,逐步将高超音流滞止为低超音 流,再利用一道弱的正激波将超音流滞止为亚音流 目的:减小因激波引起的总压损失 波系结构:若干斜激波结尾正激波
三种结构形式(内压、外压、混压) 外压式超音速进气道的特性