3.2 函数的基本性质(答案版)
新教材必修第一册第三章3.2函数的基本性质(全套课件)
题型二 求函数的单调区间 【典例 2】 求下列函数的单调区间: (1)f(x)=x-1 1; (2)f(x)=|x2-3x+2|. [思路导引] (1)先求出函数的定义域,再利用定义求解;(2) 作出函数 y=x2-3x+2 的图象,再将 x 轴下方的图象翻折到 x 轴 上方,结合图象写出 f(x)的单调区间.
2.函数的单调区间 如果函数 y=f(x)在区间 D 上 单调递增 或 单调递减 ,
那么就说函数 y=f(x)在这一区间上具有(严格的)单调性,区间 D 叫做函数 y=f(x)的 单调区间.
温馨提示:(1)函数的单调性是对定义域内某个区间而言的,
它是函数的一个局部性质.
(2)函数 f(x)在定义域的某个区间 D 上单调,不一定在定义域 上单调.如 f(x)=x2 等.
[变式] (1)若本例(1)条件改为“函数 f(x)=x2-2(1-a)x+2 的单调递增区间为[4,+∞)”,其他条件不变,如何求解?
(2) 若 本 例 (2) 中 “ 定 义 域 ( - ∞ , + ∞)” 改 为 “ 定 义 域 ( - 1,1)”,其他条件不变,如何求解?
[解] (1)∵f(x)=x2-2(1-a)x+2=[x-(1-a)]2+2-(1- a)2,
题型三 函数单调性的应用 【典例 3】 (1)已知函数 f(x)=x2-2(1-a)x+2 在[4,+∞) 上是增函数,求实数 a 的取值范围. (2)已知 y=f(x)在定义域(-∞,+∞)上是减函数,且 f(1- a)<f(2a-1),求 a 的取值范围. [思路导引] 二次函数的单调性由开口方向及对称轴确定, 与函数值有关的不等式问题依据单调性转化为自变量的不等关 系.
数 M 满足:
①∀x∈I,都有 f(x)≤M
函数的基本性质练习(含答案)
函数的基本性质练习(含答案)基础训练A组1.若函数f(x)为偶函数,则f(-x)=f(x),代入函数f(x),得到:m-1)x^2+(m-2)x+(m^2-7m+12) = (m-1)(-x)^2+(m-2)(-x)+(m^2-7m+12)化简得到:(m-1)x^2+(m-2)x+(m^2-7m+12) = (m-1)x^2-(m-2)x+(m^2-7m+12)移项得到:4x=0,因此m=2,选B。
2.偶函数在[-∞,-1]上是增函数,说明在[1,+∞)上也是增函数,因此f(-3/2)<f(-1)<f(2),选A。
3.因为f(x)是奇函数,所以在[-7,-3]上也是增函数,最小值为-5,因此选A。
4.F(x) = f(x) - f(-x),代入f(-x)得到:F(x) = f(x) - (-f(x)) = 2f(x)因此F(x)是偶函数,选B。
5.对于y=x,有y'=1>0,在(0,1)上是增函数,选A。
6.化简得到f(x)=-x^2+x,因此在[0,1]上是减函数,但f(-x)=-f(x),因此是奇函数,选B。
填空题1.因为f(x)是奇函数,所以f(0)=0,不等式化简得到f(x)<0,解为(-5,0)U(0,5)。
2.值域为(-∞,+∞),因为2x+x+1可以取到任意大的值。
3.y=x+1,因此值域为(1,2]。
4.f(x)的导数为2(k-2)x+(k-1),当x(k-1)/(2(k-2))时导数小于0,因此f(x)的递减区间为(-∞,-(k-1)/(2(k-2)))U((k-1)/(2(k-2)),+∞)。
5.命题(1)和(2)正确,命题(3)和(4)错误,因此正确的命题个数为2.解答题1.一次函数y=kx+b的单调性取决于k的符号,当k>0时单调递增,当k0时单调递减,当k0时开口向上,单调递增,当a<0时开口向下,单调递减。
2.因为定义域为(-1,1),所以f'(x)=2x-1<0当x<1/2时,f(x)单调递减,因此f(x)在(-1/2,1/2)上取得最大值,最小值为f(1)=3.x0时,f(x)为正数。
高中数学第三章函数的概念与性质3.2函数的基本性质3.2.2第1课时奇偶性的概念a高一第一册数学
C.关于原点对称
D.关于直线 y=x 对称
解析:因为 f(-x)=(-x)4=x4=f(x),所以 f(x)是偶函数,其图象关 于 y 轴对称.
答案:B
2021/12/6
第六页,共三十一页。
3.下列图象表示的函数具有奇偶性的是 ( )
A
B
2021/12/6
C
D
第七页,共三十一页。
解析:选项 A 中的函数图象关于原点或 y 轴均不对 称,故排除;选项 C,D 中的图象所表示函数的定义域不关 于原点对称,不具有奇偶性,故排除;选项 B 中的图象关 于 y 轴对称,其表示的函数是偶函数.故选 B.
第十页,共三十一页。
方法规律
判断函数奇偶性的方法 (1)定义法:
(2)图象法:即若函数的图象关于原点对称,则函数为 奇函数;若函数的图象关于 y 轴对称,则函数为偶函数.此 法多用在解选择题和填空题中.
2021/12/6
第十一页,共三十一页。
方法规律 (3)性质法: ①偶函数的和、差、积、商(分母不为零)仍为偶函数; ②奇函数的和、差仍为奇函数; ③奇(偶)数个奇函数的积、商(分母不为零)为奇(偶)函数; ④一个奇函数与一个偶函数的积为奇函数. 注:对于分段函数奇偶性的判断方法是对每一段定义域 内的任意自变量 x,检验 f(-x)与 f(x)的关系.
高中数学 第三章 函数概念与性质 3.2 函数的基本性质 3.2.2 第1课时 函数奇偶性的概念精品
第1课时 函数奇偶性的概念必备知识基础练知识点一函数奇偶性的判断1.判断下列函数的奇偶性: (1)f (x )=2-|x |;(2)f (x )=x 2-1+1-x 2; (3)f (x )=xx -1;(4)f (x )=⎩⎪⎨⎪⎧2x +1,x >0,-2x +1,x <0.知识点二奇偶函数的图象2.已知函数y =f (x )是偶函数,且图象与x 轴有四个交点,则方程f (x )=0的所有实根之和是( )A .4B .2C .1D .03.函数f (x )=4x3+x 3的图象( )A .关于y 轴对称B .关于直线y =x 对称C .关于坐标原点对称D .关于直线y =-x 对称知识点三利用函数的奇偶性求值4.若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________;5.若函数f (x )=x +1x +ax为奇函数,则a =________.6.已知f (x )=ax 5+bx 3+cx -8,且f (d )=10,则f (-d )=________.3.2.2 奇偶性第1课时函数奇偶性的概念必备知识基础练1.解析:(1)∵函数f(x)的定义域为R,关于原点对称,又f(-x)=2-|-x|=2-|x|=f(x),∴f(x)为偶函数.(2)∵函数f(x)的定义域为{-1,1},关于原点对称,且f(x)=0,又∵f(-x)=-f(x),f(-x)=f(x),∴f(x)既是奇函数又是偶函数.(3)∵函数f(x)的定义域为{x|x≠1},不关于原点对称,∴f(x)是非奇非偶函数.(4)f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称.当x>0时,-x<0,f(-x)=1-(-2x)=1+2x=f(x);当x<0时,-x>0,f(-x)=1+(-2x)=1-2x=f(x).综上可知,对于x∈(-∞,0)∪(0,+∞),都有f(-x)=f(x),f(x)为偶函数.2.解析:因为f(x)是偶函数,且图象与x轴有四个交点,所以这四个交点每组两个关于y轴一定是对称的,故所有实根之和为0.选D.答案:D3.解析:∵f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f(-x)=-4x3-x 3=-f (x ),∴f (x )是奇函数,图象关于原点对称.答案:C4.解析:∵函数f (x )在[a -1,2a ]上是偶函数, ∴a -1+2a =0,得a =13.又f (-x )=f (x ),即13x 2-bx +1+b =13x 2+bx +1+b对x ∈⎣⎢⎡⎦⎥⎤-23,23均成立,∴b =0. 答案:135.解析:∵f (x )为奇函数,∴f (-x )=-f (x ), 即-x +1-x +a-x=-x +1x +ax.显然x ≠0,整理得x 2-(a +1)x +a =x 2+(a +1)x +a , 故a +1=0,得a =-1. 答案:-16.解析:令g (x )=ax 5+bx 3+cx ,则g (x )为奇函数.f (d )=g (d )-8=10,∴g (d )=18, f (-d )=g (-d )-8=-g (d )-8=-26.答案:-26关键能力综合练1.解析:A 、D 两项,函数均为偶函数,B 项中函数为非奇非偶,而C 项中函数为奇函数.答案:C2.解析:∵函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f (-x )=-1x +x =-f (x ),∴f (x )=1x-x 是奇函数,所以f (x )的图象关于原点对称,故选C.答案:C3.解析:由f (x )=x 5+ax 3+bx -2,得f (x )+2=x 5+ax 3+bx . 令G (x )=x 5+ax 3+bx =f (x )+2, ∵G (-x )=(-x )5+a (-x )3+b (-x ) =-(x 5+ax 3+bx )=-G (x ), ∴G (x )是奇函数.∴G (-3)=-G (3), 即f (-3)+2=-f (3)-2,又f (-3)=10, ∴f (3)=-f (-3)-4=-10-4=-14. 答案:D4.解析:∵f (x )=ax 2+bx +c (c ≠0)是偶函数,∴b =0, ∴g (x )=ax 3+cx ,∴g (-x )=-g (x ),∴g (x )是奇函数,故选A. 答案:A5.解析:F (-x )=f (-x )+f (x )=F (x ). 又x ∈(-a ,a )关于原点对称,∴F (x )是偶函数. 答案:B6.解析:∵函数f (x )是定义在R 上的偶函数,∴f (-2)=f (2)=2-2=0,f (0)=0+1=1.∴f [f (-2)]=f (0)=1.故选A.答案:A7.解析:∵f (x )是定义在R 上的奇函数,∴f (-x )=-f (x )且f (0)=0,∴f (-2)=-f (2)=-5,∴f (-2)+f (0)=-5.答案:-58.解析:依题意有⎩⎪⎨⎪⎧4-x 2≥0,2-|x +2|≠0,解得-2≤x ≤2且x ≠0,∴f (x )的定义域为[-2,0)∪(0,2].∵f (x )=4-x 22-|x +2|=4-x 2-x =-4-x2x ,定义域关于原点对称,∴f (-x )=4-x2x=-f (x ),∴f (x )为奇函数. 答案:[-2,0)∪(0,2] 奇9.解析:在f (x )-g (x )=x 3+x 2+1中,令x =-1,得f (-1)-g (-1)=1,又f (x ),g(x)分别是定义在R上的偶函数和奇函数,所以f(1)+g(1)=1.答案:110.解析:(1)f(x)=1x-1的定义域是(-∞,1)∪(1,+∞),不关于原点对称,所以f(x)为非奇非偶函数.(2)f(x)=-3x2+1的定义域是R,f(-x)=f(x),所以f(x)为偶函数.(3)f(x)=1-x·1+x|x+2|-2的定义域是[-1,0)∪(0,1],所以f(x)的解析式可化简为f(x)=1-x·1+xx,满足f(-x)=-f(x),所以f(x)是奇函数.(4)函数的定义域为R.当x>0时,-x<0,则f(-x)=-(-x)+1=x+1=f(x);当x=0时,f(-x)=f(x)=1;当x<0时,-x>0,f(-x)=-x+1=f(x).综上,对任意x∈R,都有f(-x)=f(x),所以f(x)为偶函数.学科素养升级练1.解析:A正确;B错误,仅两个特殊的函数值相等不足以确定函数的奇偶性,需要满足“任意”;C正确;D错误,反例:f(x)=0满足条件,该函数既是奇函数,又是偶函数.答案:AC2.解析:∵函数f(x)和g(x)分别是R上的偶函数和奇函数,∴f(-x)=f(x),g(-x)=-g(x).对于选项A,|f(-x)|-g(-x)=|f(x)|+g(x)≠±(|f(x)|-g(x)),故其不具有奇偶性;对于选项B,f(-x)-|g(-x)|=f(x)-|g(x)|,故函数为偶函数;对于选项C,|f(-x)|+g(-x)=|f(x)|-g(x)≠±(|f(x)|+g(x)),故其不具有奇偶性;对于选项D,f(-x)+|g(-x)|=f(x)+|g(x)|,故函数为偶函数.综上,选D.答案:D3.解析:(1)证明:由已知f(x+y)=f(x)+f(y),令y=-x得f(0)=f(x)+f(-x),令x=y=0得f(0)=2f(0),所以f(0)=0.所以f(x)+f(-x)=0,即f(-x)=-f(x),故f(x)是奇函数.(2)因为f(x)为奇函数.所以f(-3)=-f(3)=a,所以f(3)=-a.又f(12)=f(6)+f(6)=2f(3)+2f(3)=4f(3),所以f(12)=-4a.。
函数的基本性质知识点及习题(附答案)
函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
《函数的基本性质(函数的奇偶性、对称性、周期性)灵活应用》
备战高考数学“棘手”问题培优专题讲座---函数的基本性质(函数的奇偶性、对称性、周期性)灵活应用一.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)即可.(2)应用:根据函数的周期性,可以由函数的局部性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期.函数y=f(x)满足:(1)若f(x+a)=f(x-a),则函数的周期为2a;(2)若f(x+a)=-f(x),则函数的周期为2a;(3)若f(x+a)=-1f(x),则函数的周期为2a;(4)若f(x+a)=1f(x),则函数的周期为2a;(5)若函数f(x)关于直线x=a与x=b对称,那么函数f(x)的周期为2|b-a|;(6)若函数f(x)关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期是2|b-a|;(7)若函数f(x)关于直线x=a对称,又关于点(b,0)对称,则函数f(x)的周期是4|b-a|;(8)若函数f(x)是偶函数,其图象关于直线x=a对称,则其周期为2a;(9)若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a.【方法点拨】1.函数奇偶性、对称性间关系:(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称;一般的,若对于R上的任意x都有f(a-x)=f(a+x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数y=f(x+a)是奇函数,即f(-x+a)+f(x+a)=0,则函数y =f (x )关于点(a ,0)中心对称;一般的,若对于R 上的任意x 都有f (-x +a )+f (x +a )=2b , 则y =f (x )的图象关于点(a ,b )中心对称.2. 函数对称性、周期性间关系:若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍, 为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍. (注:如果遇到抽象函数给出类似性质,可以联想y =sin x ,y =cos x 的对称轴、对称中心和周期之间的关系)3. 善于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化. 【典型题示例】例1.已知函数f (x )对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间[-3,5]内的所有根之和为________.【分析】由f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x 对任意的x ∈R 恒成立,得f (x )关于直线x =12对称,由函数f (x +1)是奇函数,f (x )关于点(1,0)中心对称,根据函数对称性、周期性间关系,知函数f (x )的周期为2,作出函数f (x )的图象即可.【解析】因为函数f (x +1)是奇函数,所以f (-x +1)=-f (x +1),又因为f ⎝ ⎛⎭⎪⎫12+x = f ⎝ ⎛⎭⎪⎫12-x ,所以f (1-x )=f (x ),所以f (x +1)=-f (x ),即f (x +2)=-f (x +1)=f (x ), 所以 函数f (x )的周期为2,且图象关于直线x =12对称.作出函数f (x )的图象如图所示,由图象可得f (x )=-12在区间[-3,5]内有8个零点,且所有根之和为12×2×4=4.【答案】4 二、典型例题1.奇偶性与周期性的综合问题1.已知偶函数y =f (x )(x ∈R)在区间[-1,0]上单调递增,且满足f (1-x )+f (1+x )=0,给出下列判断:①f (5)=0; ②f (x )在[1,2]上是减函数; ③函数f (x )没有最小值; ④函数f (x )在x =0处取得最大值; ⑤f (x )的图象关于直线x =1对称. 其中正确的序号是________.解:因为f (1-x )+f (1+x )=0,所以f (1+x )=-f (1-x )=-f (x -1),所以f (2+x )=-f (x ),所以f (x +4)=f (x ),即函数f (x )是周期为4的周期函数.由题意知,函数y =f (x )(x ∈R)关于点(1,0)对称,画出满足条件的图象如图所示,结合图象可知①②④正确.答案:①②④2. 已知定义在R 上的偶函数()f x 满足:当(]1,0x ∈-时,()2x f x =,且()1f x +的图像关于原点对称,则20192f ⎛⎫= ⎪⎝⎭( )A .2B C .2-D .【解题思路】根据偶函数及()1f x +的图像关于原点对称可知,函数的周期;根据周期性及()1f x +为奇函数,可得20192f ⎛⎫⎪⎝⎭的值.解:由题可知函数()f x 的图像关于直线0x =和点()1,0对称,所以函数()f x 的周期为4,则12201933114252222222f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+==-=--=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 答案:C3.已知定义在R 上的函数f (x )满足f (x -1)=f (x +1),且当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎫1-2e x +1,则( )A .f (-3)<f (2)<f ⎝⎛⎭⎫52B .f ⎝⎛⎭⎫52<f (-3)<f (2)C .f (2)<f (-3)<f ⎝⎛⎭⎫52D .f (2)<f ⎝⎛⎭⎫52<f (-3) 解: ∵f (x -1)=f (x +1),则函数f (x )的周期T =2.当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎫1-2e x +1=x ·e x-1e x +1,则f (-x )=-x ·e -x -1e -x +1=-x ·1-e x 1+e x =x ·e x -1e x +1=f (x ),则函数f (x )为偶函数,因此f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12,f (-3)=f (-1)=f (1),f (2)=f (0). 当0 ≤x ≤1时,函数y =x 与y =1-2e x +1均为增函数且都不小于0, 所以f (x )=x ⎝⎛⎭⎫1-2e x +1在区间[0,1]上是增函数,∴f (1)>f ⎝⎛⎭⎫12>f (0),即f (-3)>f ⎝⎛⎭⎫52>f (2). 答案:D4.(2018年全国2卷)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.【答案】C点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.5. 已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x -1,则f ⎝⎛⎭⎫2 0192=( )A.3+1B.3-1 C .-3-1D .-3+1解:由题可知f (x +2)=f (x )=-f (-x ),所以f ⎝⎛⎭⎫2 0192=f ⎝⎛⎭⎫1 008+32=f ⎝⎛⎭⎫32=-f ⎝⎛⎭⎫-32=-f ⎝⎛⎭⎫12. 又当x ∈(0,1)时,f (x )=3x -1,所以f ⎝⎛⎭⎫12=3-1,则f ⎝⎛⎭⎫2 0192=-f ⎝⎛⎭⎫12=-3+1. 答案:D奇偶性与周期性综合问题的解题策略函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.6. 已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为______ 解:∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1, ∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4. 答案:(-1,4)7. 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 解:∵f (x )的周期为2,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12, 又∵当-1≤x <0时,f (x )=-4x 2+2, ∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:18. 若函数f (x )(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 解:由于函数f (x )是周期为4的奇函数,所以f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫2×4-34+f ⎝⎛⎭⎫2×4-76=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76 =-316+sin π6=516.答案:5169.已知f (x )是定义在R 上的偶函数,且f (x +2)=-f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=________.解:由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=-[-f (x )]=f (x ),所以函数f (x )的周期为4,∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5)=2.5. 答案:2.510.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=________. 解:由f (x )是R 上周期为5的奇函数知f (3)=f (-2)=-f (2)=-2,f (4)=f (-1)=-f (1)=-1, ∴f (3)-f (4)=-1.答案:-111.已知定义在R 上的函数f (x )满足f (2)=15,且对任意的x 都有f (x +3)=-1f (x ),则f (8)=________;f (2 015)=________. 解:由f (x +3)=-1f (x ),得f (x +6)=-1f (x +3)=f (x ), 故函数f (x )是周期为6的周期函数.故f (8)=f (2)=15,f (2 015)=f (6×335+5)=f (5)=-1f (2)=-115=-5.答案:15;-513.奇函数f (x )的周期为4,且x ∈[0,2],f (x )=2x -x 2,则f (2 018)+f (2 019)+f (2 020)的值为________.解:函数f (x )是奇函数,则f (0)=0,由f (x )=2x -x 2,x ∈[0,2]知f (1)=1,f (2)=0,又f (x )的周期为4,所以f (2 018)+f (2 019)+f (2 020)=f (2)+f (3)+f (0)=f (3)=f (-1)=-f (1)=-1. 答案:-114.已知函数f (x )是周期为2的奇函数,当x ∈[0,1)时,f (x )=lg(x +1),则f ⎝⎛⎭⎫2 0165+lg 18=________.解:由函数f (x )是周期为2的奇函数得f ⎝⎛⎭⎫2 0165=f ⎝⎛⎭⎫65=f ⎝⎛⎭⎫-45=-f ⎝⎛⎭⎫45, 又当x ∈[0,1)时,f (x )=lg(x +1), 所以f ⎝⎛⎭⎫2 0165=-f ⎝⎛⎭⎫45=-lg 95=lg 59, 故f ⎝⎛⎭⎫2 0165+lg 18=lg 59+lg 18=lg 10=1. 答案:115.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1.则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 解析:依题意知:函数f (x )为奇函数且周期为2,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 答案: 216.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R.若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.解:因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1, 即3a +2b =-2.① 由f (-1)=f (1),得-a +1=b +22, 即b =-2a .② 由①②得a =2,b =-4,从而a +3b =-10. 答案:-1017.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为________.解:因为当0≤x <2时,f (x )=x 3-x ,又f (x )是R 上最小正周期为2的周期函数,且f (0)=0,所以f (6)=f (4)=f (2)=f (0)=0.又f (1)=0,所以f (3)=f (5)=0.故函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为7. 答案:718.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=2x ,则有 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数; ③函数f (x )的最大值是1,最小值是0.其中所有正确命题的序号是________.解:在f (x +1)=f (x -1)中,令x -1=t ,则有f (t +2)=f (t ),因此2是函数f (x )的周期,故①正确;当x ∈[0,1]时,f (x )=2x 是增函数,根据函数的奇偶性知,f (x )在[-1,0]上是减函数,根据函数的周期性知, 函数f (x )在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f (x )在[0,2]上的最大值f (x )max =f (1)=2,f (x )的最小值f (x )min =f (0)=f (2)=20=1, 且f (x )是周期为2的周期函数.∴f (x )的最大值是2,最小值是1,故③错误. 答案:①②1. 已知定义在R 上的奇函数f (x )满足f (x +1)=-f (x ),且在[0,1)上单调递增,记a =f ⎝⎛⎭⎫12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.a >b =c B.b >a =c C.b >c >a D.a >c >b解:依题意得,f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的函数,f (2)=f (0)=0,又f (3)=-f (2)=0,且f (x )在[0,1)上是增函数, 于是有f ⎝⎛⎭⎫12>f (0)=f (2)=f (3),即a >b =c . 答案:A2.奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2解:设g (x )=f (x +1),∵f (x +1)为偶函数,则g (-x )=g (x ),即f (-x +1)=f (x +1),∵f (x )是奇函数,∴f (-x +1)=f (x +1)=-f (x -1), 即f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ), 则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A.3. 已知函数f (x )是定义域为R 的偶函数,且f (x +1)=1f (x ),若f (x )在[-1,0]上是减函数, 那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数 解:由题意知f (x +2)=1f (x +1)=f (x ),所以f (x )的周期为2, 又函数f (x )是定义域为R 的偶函数,且f (x )在[-1,0]上是减函数, 则f (x )在[0,1]上是增函数,所以f (x )在[2,3]上是增函数.选A7.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12解:∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π,又∵当0≤x <π时,f (x )=0, ∴f ⎝⎛⎭⎫5π6=0,∴f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12. 故选A. 8.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2 014)=( )A .0B .-4C .-8D .-16解:由题可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f(x+12)=f[(x+6)+6]=-f(x+6)=f(x),∴函数f(x)的周期T=12.把y=f(x-1)的图象向左平移1个单位得y=f(x-1+1)=f(x)的图象,关于点(0,0)对称,因此函数f(x)为奇函数,∴f(2 014)=f(167×12+10)=f(10)=f(10-12)=f(-2)=-f(2)=-4,故选B.9.已知f(x)是定义在R上的偶函数,且对任意x∈R,都有f(x+4)=f(x)+f(2),则f(2 014)等于( )A.0B.3C.4D.6解:依题意,得f(-2+4)=f(-2)+f(2)=f(2),即2f(2)=f(2),f(2)=0,f(x+4)=f(x),f(x)是以4为周期的周期函数,又2014=4×503+2,所以f(2014)=f(2)=0.故选A.答案:A11.奇函数f(x)的定义域为R. 若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.-2 B.-1 C.0 D.1解:因为f(x)为R上的奇函数,所以f(-x)=-f(x),f(0)=0.因为f(x+2)为偶函数,所以f(x+2)=f(-x+2),所以f(x+4)=f(-x)=-f(x),所以f(x+8)=f(x),即函数f(x)的周期为8,故f(8)+f(9)=f(0)+f(1)=1. 故选D12.f(x)是R上的偶函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x2,则函数y=f(x)-|log5x|的零点个数为( )A.4 B.5 C.8 D.10解:由零点的定义可得f(x)=|log5x|,两个函数图象如图,总共有5个交点,所以共有5个零点。
高中数学新教材人教A版必修第一册学案:3.2函数的基本性质Word版含答案
【新教材】3.2.1 单调性与最大(小)值(人教A版)1、理解增函数、减函数的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.重点:1、函数单调性的定义及单调性判断和证明;2、利用函数单调性或图像求最值.难点:根据定义证明函数单调性.一、预习导入阅读课本76-80页,填写。
1.增函数、减函数的定义2、单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)________,区间D叫做y=f(x)的________.[点睛] 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“,”连接.如函数y=1x在(-∞,0),(0,+∞)上单调递减,却不能表述为:函数y=1x在(-∞,0)∪(0,+∞)上单调递减.3、函数的最大(小)值1.判断(正确的打“√”,错误的打“×”)(1)所有的函数在其定义域上都具有单调性.( )(2)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”.( )(3)任何函数都有最大值或最小值.( )(4)函数的最小值一定比最大值小.( )2.函数y=f(x)的图象如图所示,其增区间是( )A.[-4,4] B.[-4,-3],[1,4]C.[-3,1] D.[-3,4]3.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( )A .-1,0B .0,2C .-1,2 D.12,2 4.下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( )A .f (x )=x 2B .f (x )=1xC .f (x )=|x |D .f (x )=2x +15.函数f (x )=2x,x ∈[2,4],则f (x )的最大值为______;最小值为________. 题型一 利用图象确定函数的单调区间例1求下列函数的单调区间,并指出其在单调区间上是增函数还是减函数:(1)y=3x-2;(2)y=-1x . 跟踪训练一1. 已知x ∈R,函数f(x)=x|x-2|,试画出y=f(x)的图象,并结合图象写出函数的单调区间.题型二 利用函数的图象求函数的最值例2 已知函数y=-|x-1|+2,画出函数的图象,确定函数的最值情况,并写出值域.跟踪训练二1.已知函数f(x)={1x ,0<x<1,x,1≤x ≤2.(1)画出f(x)的图象;(2)利用图象写出该函数的最大值和最小值.题型三 证明函数的单调性 例3 求证:函数f(x)=x+1x 在区间(0,1)内为减函数. 跟踪训练三1.求证:函数f(x)=21x在(0,+∞)上是减函数,在(-∞,0)上是增函数. 题型四 利用函数的单调性求最值例4 已知函数f(x)=x+ 4x .(1)判断f(x)在区间[1,2]上的单调性;(2)根据f(x)的单调性求出f(x)在区间[1,2]上的最值.跟踪训练四1.已知函数f(x)=6x−1(x∈[2,6],)求函数的最大值和最小值.题型五函数单调性的应用例5已知函数f(x)在区间(0,+∞)上是减函数,试比较f(a2-a+1)与f34⎛⎫⎪⎝⎭的大小.跟踪训练五1.已知g(x)是定义在[-2,2]上的增函数,且g(t)>g(1-3t),求t的取值范围.题型六单调性最值的实际应用例6“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h(单位:m)与时间t(单位:s)之间的关系为h(t)=-4.9t2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)?跟踪训练六1. 某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3 600元时,能租出多少辆?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?1.f(x)对任意两个不相等的实数a,b,总有f(a)−f(b)a−b>0,则必有( )A.函数f(x)先增后减 B.函数f(x)先减后增C.函数f(x)是R上的增函数 D.函数f(x)是R上的减函数2.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)的最小值为-2,则f(x)的最大值为( )A.-1 B.0C.1 D.23.已知函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,则实数k的取值范围是( ) A.[160,+∞) B.(-∞,40]C.(-∞,40]∪[160,+∞) D.(-∞,20]∪[80,+∞)4.若函数y=f(x)的定义域为R,且为增函数,f (1-a)<f(2a-1),则a的取值范围是。
高中数学必修一 《3 2 函数的基本性质》获奖说课导学案
3.2.1 函数的单调性与最大(小)值1.理解增函数、减函数、单调区间、单调性概念;2.掌握增(减)函数的证明与判断;3.能利用单调性求函数的最大(小)值;4.学会运用函数图象理解和研究函数的性质。
1.教学重点:函数单调性的概念,函数的最值;2.教学难点:证明函数的单调性,求函数的最值。
1、增函数与减函数的定义:一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有 ,那么就说函数f (x )在区间D 上是增函数。
一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有 ,那么就说函数f (x )在区间D 上是减函数2.函数的单调性与单调区间如果函数y =f (x )在区间D 上是 ,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的 。
3.函数的最大(小)值一般地,设函数y =f(x)的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有f(x) M ,存在x 0∈I ,使得 =M 。
称M 是函数y =f(x)的最大值。
一般地,设函数y =f(x)的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有f(x) M ,存在x 0∈I ,使得 =M 。
称M 是函数y =f(x)的最小值。
一、探索新知探究一 单调性1、思考:如何利用函数解析式2)(x x f 描述“随着x 的增大,相应的f(x)随着增大?”2、你能类似地描述2)(x x f =在区间)0,(-∞上是减函数吗?3、思考:函数||)(x x f =,2)(x x f -=各有怎样的单调性 ?吗?该区间上一定是增函数在那么函数且满足在定义域的某区间上、思考:函数)(),()(,,存在)(4212121x f y x f x f x x x x x f y =<<=5、思考:函数的单调性是对定义域内某个区间而言的,你能举出在整个定义域内是单调递增的函数例子吗?你能举出在定义域内的某些区间单调递增但在另一些区间上单调递减的函数例子吗?牛刀小试:1、如图是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每一个单调区间上,f(x)是增函数还是减函数。
函数的基本性质(单调性、奇偶性、周期性)(含答案)
函数的基本性质一、知识点1.对函数单调性的理解(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域;(2) 一些单调性的判断规则:①若f (x)与g(x)在定义域内都是增函数(减函数),那么f (x) + g(x)在其公共定义域内是增函数(减函数)即“同加异减”减时和第一个单调性相同。
②复合函数的单调性规则是“同增异减”。
2.函数的奇偶性的定义:(1)对于函数f (x)的定义域内任意一个x,都有f (-x) = —f (x),则称f (x)为.奇函数的图象关于对称。
(2)对于函数f (x)的定义域内任意一个x,都有f (-x) = f (x),则称f (x)为.偶函数的图象关于对称。
(3)通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。
3.奇偶函数图象的对称性(1)若y = f (a + x)是偶函数,则 f (a + x) = f (a - x) o f (2a - x) = f (x) o f (x)的图象关于直线x= a对称;(2)若y = f (b + x)是偶函数,则 f (b - x) = - f (b + x) o f (2b - x) = - f (x) o f (x)的图象关于点(b,0)中心对称;4.若函数满足f Q + a)= f Q),则函数的周期为T=a。
二、例题讲解1.下列函数中,既是偶函数,又是在区间(0,+ 8)上单调递减的函数是()A. y = 2|x|B. y = x3C. y = -x2+1D. y=cosx【答案】C【解析】试题分析:偶函数需满足f (-x) = f (x),由此验证可知A,C,D都是偶函数,但要满足在区间(0,+ 8) 上单调递减,验证可知只有C符合.考点:偶函数的判断,函数的单调性.2. f (x) = x2-2x + 4的单调减区间是.【答案】(fl) 【解析】试题分析:将函数进行配方得/(,) =,2—2x + 4 = (x —1)2+3,又称轴为x = l,函数图象开口向上,所 以函数的单调减区间为(-8,1) . 考点:二次函数的单调性.3 .函数y = log (%2 +2% —3)的单调递减区间为()2A. (— °°, —3)B. (— °°, — 1)C. (1, +°°)D. ( — 3, — 1) 【答案】A 【解析】试题分析:由x2 + 2x —3>0,得%<—3或x>l, .♦./(%)的定义域为(―8,—3)U(L+8).y = log (%2 + 2% —3)可看作由 y = log 沈和 M = %2 + 2% — 3 复合而成的,u - X2 +2x-3 = (x +1)2 -4 2 2在(—8,—3)上递减,在(1,+8)上递增,又y = log "在定义域内单调递增,.・.y = log (%2+2%-3)在2 2(—8,—3)上递减,在(1,+8)上递增,所以y = log (%2+ 2% —3)的单调递减区间是(―叫—3),故选A.2考点:复合函数的单调性.4 .已知丁 = %2+2(〃 — 2)% + 5在区间(4,+8)上是增函数,则a 的范围是( )【答案】B 【解析】试题分析:函数y = %2+2(〃-2)% + 5的图像是开口向上以x = 2-a 为对称轴的抛物线,因为函数在区 间(4,+8)上是增函数,所以2 —a V 4,解得“之―2 ,故A 正确。
3.2--3.2.1--第一课时-函数的单调性公开课
[做一做]
1.下列命题中真命题的个数为
()
①定义在(a,b)上的函数 f(x),如果∃x1,x2∈(a,b),当 x1<x2 时,有 f(x1)<f(x2),那么 f(x)在(a,b)上单调递增; ②如果函数 f(x)在区间 I1 上单调递减,在区间 I2 上也单调递 减,那么 f(x)在区间 I1 和 I2 上就一定是减函数; ③∀x1,x2∈(a,b),且 x1≠x2,当fxx11--fx2x2<0 时,f(x)在 (a,b)上单调递减;
复合函数y=f(g(x))的单调性 [问题探究]
[典例] 已知函数f(x)=x-2 1,x∈[2,6]. (1)判断此函数在x∈[2,6]上的单调性; (2)根据(1)的判断过程,归纳出解题步骤.
[解] (1)函数f(x)=x-2 1可分解为函数y=u2和函数u=x-1.
[母题探究] 1.(变条件)若本例(1)的函数f(x)的单调增区间为(-∞,3],
求a的值.
解:由题意知-a-1=3,即a=-4. 2.(变条件)若本例(1)的函数f(x)在(1,2)上是单调函数,求a
的取值范围. 解:由题意可以a的取值范围为(-∞,-3]∪[-2,+∞).
意”;由 f(x)=1x,可知②是假命题;
∵fxx11- -fx2x2<0 等价于[f(x1)-f(x2)]·(x1-x2)<0,而此式又等价于
fx1-fx2>0, x1-x2<0
或
fx1-fx2<0, x1-x2>0,
即 fx1>fx2, x1<x2
或
fx1<fx2, x1>x2,
∴f(x)在(a,b)上单调递减,③是真命题,同理可
高一数学《函数的基本性质》知识点及对应练习(详细答案)
函数的基本性质一、函数的有关概念1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.概念重点疑点:对于定义域中任何x ,都有唯一确定的y=f (x )与x 相对应。
即在直角坐标系中的图像,对于任意一条x=a (a 是函数的定义域)的直线与函数y=f (x )只有一个交点;例1、下列对应关系中,x 为定义域,y 为值域,不是函数的是()A.y=x 2+x3 B.y= C.|y|=x D.y=8x 解:对于|y|=x ,对于任意非零x ,都有两个y 与x 对应,所以|y|=x 不是函数。
图像如下图,x=2的直线与|y|=x 的图像有两个交点。
故答案选C 例2、下列图象中表示函数图象的是()(A ) (B) (C ) (D)解析:对于任意x=a 的直线,只有C 选项的图形与x=a 的直线只有一个交点,即对于定义域中任何x ,都有唯一确定的y=f (x )与x 相对应。
故选C 。
x y 0 x y 0 x y 0xy注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式.定义域补充:能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于 1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义.(注意:求出不等式组的解集即为函数的定义域。
(新教材学案)第3章3.23.2.1第1课时函数的单调性含答案
3.2函数的基本性质3.2.1单调性与最大(小)值第1课时函数的单调性学习任务核心素养1.理解函数的单调性及其几何意义,能运用函数图象理解和研究函数的单调性.(重点、难点)2.会用函数单调性的定义判断(或证明)一些函数的单调性.(难点)3.会求一些具体函数的单调区间.(重点)1.借助单调性的证明,培养逻辑推理素养.2.利用求单调区间及应用单调性解题,培养直观想象和数学运算素养.德国心理学家艾宾浩斯曾经对记忆保持量进行了系统的实验研究,并给出了类似下图所示的记忆规律.如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则不难看出,图中,y是x的函数,记这个函数为y=f(x).这个函数反映出记忆具有什么规律?我们用数学语言如何描述该规律?知识点1增函数与减函数的定义函数增函数减函数图示条件设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当x1<x2时,都有f(x1)<f(x2)都有f(x1)>f(x2) 结论f(x)在区间D上单调递增f(x)在区间D上单调递减在增函数和减函数定义中,能否把“任意x1,x2∈I”改为“存在x1,x2∈I”?举例说明.[提示]不能.如对于函数y=-x2,存在-4<2,且-(-4)2<-22,但y=-x2不是增函数.增减函数定义中x1,x2的三个特征(1)任意性,即“任意取x1,x2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x1<x2;(3)属于同一个单调区间.1.思考辨析(正确的画“√”,错误的画“×”)(1)所有的函数在定义域上都具有单调性.()(2)若函数y=f(x)在定义域上有f(1)<f(2),则该函数是单调递增函数.()(3)若f(x)为R上的减函数,则f(0)>f(1).()[答案](1)×(2)×(3)√知识点2函数的单调性与单调区间如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.对函数单调性的理解(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开.(2)单调区间D⊆定义域I.(3)遵循最优原则,单调区间应尽可能大.2.函数y=f(x)的图象如图所示,其单调递增区间是()A.[-4,4]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4]C [由图可知,函数y =f (x )的单调递增区间为[-3,1],选C.]3.函数y =1x 的单调递减区间是________.(-∞,0)和(0,+∞) [结合y =1x 的图象可知,y =1x 的递减区间是(-∞,0)和(0,+∞).]类型1 函数单调性的判定与证明【例1】 (对接教材P 79例题)证明函数f (x )=x +1x 在区间(0,1)上是单调递减. [证明] 设x 1,x 2是区间(0,1)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-1x 1x 2=(x 1-x 2)(-1+x 1x 2)x 1x 2∵0<x 1<x 2<1,∴x 1-x 2<0,0<x 1x 2<1,则-1+x 1x 2<0, ∴(x 1-x 2)(-1+x 1x 2)x 1x 2>0,即f (x 1)>f (x 2),∴f (x )=x +1x 在区间(0,1)上是单调递减.利用定义证明函数单调性的步骤(1)取值:设x 1,x 2是该区间内的任意两个值,且x 1<x 2.(2)作差变形:作差f (x 1)-f (x 2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.(3)定号:确定f(x1)-f(x2)的符号.(4)结论:根据f(x1)-f(x2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.[跟进训练]1.试用函数单调性的定义证明:f(x)=2xx-1在区间(1,+∞)上单调递减.[证明]f(x)=2+2x-1,设x1>x2>1,则f(x1)-f(x2)=2x1-1-2x2-1=2(x2-x1)(x1-1)(x2-1),因为x1>x2>1,所以x2-x1<0,x1-1>0,x2-1>0,所以f(x1)<f(x2),所以f(x)在区间(1,+∞)上单调递减.类型2求函数的单调区间【例2】求下列函数的单调区间,并指出该函数的单调性.(1)f(x)=-1x;(2)f(x)=⎩⎨⎧2x+1,x≥1,5-x,x<1;(3)f(x)=-x2+2|x|+3.[解](1)函数f(x)=-1x的单调区间为(-∞,0),(0,+∞),其在(-∞,0),(0,+∞)上都是单调递增的.(2)当x≥1时,f(x)是增函数,当x<1时,f(x)是减函数,所以f(x)的单调区间为(-∞,1),[1,+∞),并且函数f(x)在区间(-∞,1)上是单调递减,在[1,+∞)上单调递增.(3)因为f (x )=-x 2+2|x |+3=⎩⎨⎧-x 2+2x +3,x ≥0,-x 2-2x +3,x <0.根据解析式可作出函数的图象如图所示,由图象可知, 函数f (x )的单调区间为(-∞,-1],(-1,0),[0,1),[1,+∞).f (x )在区间(-∞,-1],[0,1)上单调递增,在区间(-1,0),[1,+∞)上单调递减.求函数单调区间的方法(1)利用基本初等函数的单调性,如本例(1)和(2),其中分段函数的单调区间要根据函数的自变量的取值范围分段求解.(2)利用函数的图象,如本例(3).提醒:若所求出函数的单调增区间或单调减区间不唯一,函数的单调区间之间要用“,”隔开,如本例(3).[跟进训练]2.(1)根据如图所示,写出函数在每一单调区间上函数的单调性;(2)写出y =|x 2-2x -3|的单调区间.[解] (1)函数在[-1,0],[2,4]上单调递减,在[0,2],[4,5]上单调递增. (2)先画出f (x )=⎩⎨⎧x 2-2x -3,x <-1或x >3,-(x 2-2x -3),-1≤x ≤3的图象,如图.所以y=|x2-2x-3|的减区间为(-∞,-1],[1,3];增区间为[-1,1],[3,+∞).类型3函数单调性的应用【例3】(1)若函数f(x)=-x2-2(a+1)x+3在区间(-∞,3]上单调递增,则实数a的取值范围是________.(2)已知函数y=f(x)是(-∞,+∞)上的增函数,且f(2x-3)>f(5x-6),则实数x的取值范围为________.(1)决定二次函数单调性的因素有哪些?由此思考该因素与区间(-∞,3]存在怎样的数量关系?(2)若f(x)是定义域上的单调函数,且f(a)>f(b),由此我们能得出变量a,b 的大小关系吗,同样思考如何得出该例(2)中变量2x-3与5x-6的大小关系?(1)(-∞,-4](2)(-∞,1)[(1)∵f(x)=-x2-2(a+1)x+3的开口向下,要使f(x)在区间(-∞,3]上单调递增,只需-(a+1)≥3,即a≤-4.∴实数a的取值范围为(-∞,-4].(2)∵f(x)在(-∞,+∞)上是增函数,且f(2x-3)>f(5x-6),∴2x-3>5x-6,即x<1.∴实数x的取值范围为(-∞,1).]若本例(2)的函数f(x)在区间(0,+∞)上单调递减,求x的取值范围.[解]由题意可知,⎩⎨⎧2x -3>0,5x -6>0,2x -3<5x -6,解得x >32.∴x 的取值范围为⎝ ⎛⎭⎪⎫32,+∞.函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.[跟进训练]3.(1)若f (x )在R 上是减函数,则f (-1)与f (a 2+1)之间有( ) A .f (-1)≥f (a 2+1) B .f (-1)>f (a 2+1) C .f (-1)≤f (a 2+1)D .f (-1)<f (a 2+1)(2)若f (x )是在区间[0,+∞)上单调递增,则不等式f (x )<f (-2x +8)的解集是________.(1)B (2)⎣⎢⎡⎭⎪⎫0,83 [(1)∵a 2+1>-1,且f (x )为R 上的减函数,∴f (a 2+1)<f (-1).故选B.(2)∵f (x )是定义在区间[0,+∞)上单调递增,且f (x )<f (-2x +8),∴⎩⎨⎧x ≥0,-2x +8≥0,x <-2x +8,解得⎩⎪⎨⎪⎧x ≥0,x ≤4,x <83,即0≤x <83,所以不等式的解集为⎣⎢⎡⎭⎪⎫0,83.]1.(多选)如图是定义在区间[-5,5]上的函数y =f (x ),则下列关于函数f (x )的说法正确的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上没有单调性ABD [由题图可知,f (x )在区间[-3,1],[4,5]上单调递减,单调区间不可以用并集“∪”连接,故C 错误,其余选项均正确.]2.下列函数中,在区间(0,+∞)上单调递减的是( ) A .y =-1x B .y =x C .y =x 2D .y =1-xD [函数y =1-x 在区间(0,+∞)上单调递减,其余函数在(0,+∞)上单调递增,故选D.]3.如果函数f (x )=x 2-2bx +2在区间[3,+∞)上单调递增,则b 的取值范围为( )A .b =3B .b ≥3C .b ≤3D .b ≠3C [函数f (x )=x 2-2bx +2的图象是开口向上,且以直线x =b 为对称轴的抛物线,若函数f (x )=x 2-2bx +2在区间[3,+∞)上单调递增,则b ≤3,故选C.] 4.若y =(2k -1)x +b 是R 上的减函数,则实数k 的取值范围为________. ⎝⎛⎭⎪⎫-∞,12 [由2k -1<0得k <12.] 5.已知f (x )是定义在R 上的增函数,且f (x 2-2)<f (-x ),则x 的取值范围是________.(-2,1) [∵f (x )是定义在R 上的增函数,且f (x 2-2)<f (-x ), ∴x 2-2<-x ,即x2+x-2<0,解得-2<x<1.∴x的取值范围是(-2,1).]回顾本节知识,自我完成以下问题:1.若x1,x2是区间D上任意实数,且(x1-x2)(f(x1)-f(x2))>0,能否判定f(x)在D上的单调性?[提示]能,增函数.2.到目前为止,判定函数单调性的方式有哪些?[提示]定义法、图象法和基本初等函数法.3.证明一个函数的单调性常有哪些步骤?[提示]一般遵循:设元、作差、变形、判号和下结论.4.在应用函数单调性解题时应注意什么?[提示]已知函数单调性求参数的范围时,要树立两种意识:一是等价转化意识,如f(x)在D上递增,则f(x1)<f(x2)⇔x1<x2.二是数形结合意识,如处理一(二)次函数及反比例函数中的含参数的范围问题.。
1.3.2 函数的基本性质—奇偶性习题训练A(附答案)
1.3.2 函数的基本性质—奇偶性习题训练A(附答案) 一、选择题1.(2012~2013山东冠县武训中学月考试题)下列函数中是偶函数的是( )A .y =x 4-3B .y =x 2 x ∈(-3,3]C .y =-3x D .y =2(x -1)2+1[答案] A2.下列命题中错误的是( )①图象关于原点成中心对称的函数一定为奇函数; ②奇函数的图象一定过原点; ③偶函数的图象与y 轴一定相交; ④图象关于y 轴对称的函数一定为偶函数. A .①② B .③④ C .①④ D .②③[答案] D[解析] f (x )=1x 为奇函数,其图象不过原点,故②错;y =⎩⎪⎨⎪⎧x -1 x ≥1-x -1 x ≤-1为偶函数,其图象与y 轴不相交,故③错. 3.如果奇函数f (x )在(0,+∞)上是增函数,则f (x )在(-∞,0)上( )A .减函数B .增函数C .既可能是减函数也可能是增函数D .不一定具有单调性4.若f(x)=ax2+bx+c(c≠0)是偶函数,则g(x)=ax3+bx2+cx()A.是奇函数但不是偶函数B.是偶函数但不是奇函数C.既是奇函数又是偶函数D.既非奇函数又非偶函数[答案] A[解析]∵f(-x)=f(x),∴a(-x)2-bx+c=ax2+bx+c对x∈R恒成立.∴b=0.∴g(x)=ax3+cx.∴g(-x)=-g(x).5.(2012~2013沧一中月考试题)函数f(x)是R上的偶函数,且在[0,+∞)上是增函数,则下列各式成立的是()A.f(-2)>f(0)>f(1) B.f(-2)>f(1)>f(0)C.f(1)>f(0)>f(-2) D.f(1)>f(-2)>f(0)[答案] B[解析]∵f(-2)=f(2),且f(x)在[0,+∞)上是增函数,2>1>0,∴f(2)>f(1)>f(0).∴f(-2)>f(1)>f(0).6.设f(x)在[-2,-1]上为减函数,最小值为3,且f(x)为偶函数,则f(x)在[1,2]上()A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为3[解析] ∵f (x )在[-2,-1]上为减函数,最小值为3,∴f (-1)=3,又∵f (x )为偶函数,∴f (x )在[1,2]上为增函数,且最小值为f (1)=f (-1)=3.7.已知f (x )=x 7+ax 5+bx -5,且f (-3)=5,则f (3)=( ) A .-15 B .15 C .10 D .-10[答案] A[解析] 解法1:f (-3)=(-3)7+a (-3)5+(-3)b -5=-(37+a ·35+3b -5)-10=-f (3)-10=5,∴f (3)=-15.解法2:设g (x )=x 7+ax 5+bx ,则g (x )为奇函数, ∵f (-3)=g (-3)-5=-g (3)-5=5, ∴g (3)=-10,∴f (3)=g (3)-5=-15.8.(09·辽宁文)已知偶函数f (x )在区间[0,+∞)单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 [答案] A[解析] 由题意得|2x -1|<13⇒-13<2x -1<13 ⇒23<2x <43⇒13<x <23,∴选A. 二、填空题9.(2012·全国高考数学安徽卷)函数f (x )=(x +a )(x -4)为偶函数,则实数a =________.[答案] 4[解析] 由函数f (x )为偶函数得f (a )=f (-a )即(a +a )(a -4)=(-a +a )(-a -4)所以a =4或a =0,而a =0时f (x )=x 2-4x 不是偶函数,因此a =4.[考点定位] 本题考查函数奇偶性的应用.若已知一个函数为偶函数,则应有其定义域关于原点对称10.(2012~2013连云港高一月考)若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________.[答案] 13 0[解析] 因为偶函数的定义域关于坐标原点对称,所以a -1=-2a ,解得a =13.所以函数f (x )=13x 2+bx +b +1,为二次函数,结合偶函数图象的特点,易得b =0.11.(2012~2013山东泗水一中月考试题)函数f (x )在R 上为奇函数,且当x ∈(-∞,0]时,f (x )=x (x -1),则当x ∈(0,+∞)时,f (x )=________.[答案] -x (x +1)12.(2012~2013河南安阳一中月考试题)若函数f (x )=(x +a )(bx +2a )(常数a ,b )是偶函数,因它的值域为(-∞,4]则该函数的解析式f (x )=________.[答案] -2x 2+4[解析] 由于f (x )=(x +a )(bx +2a )=bx 2+(ab +2a )x +2a 2, 所以f (-x )=bx 2-(ab +2a )x +2a 2,∴ab +2a =0,∴a =0或b =-2. 又f (x )最大值4.所以b =-2, 且f (0)=2a 2=4,∴a =±2, ∴f (x )=-2x 2+4. 三、解答题13.判断下列函数的奇偶性. (1)f (x )=x 2+1x 2.(2)f (x )=⎩⎪⎨⎪⎧1 x 是有理数-1 x 是无理数.(3)f (x )=|2x +1|-|2x -1|.(4)f (x )=⎩⎪⎨⎪⎧x (x -2) x ≥0-x (x +2) x <0.[解析] (1)偶函数.∵f (-x )=(-x )2+1(-x )2=x 2+1x 2=f (x ),∴f (x )为偶函数.(2)为偶函数.∵x ∈Q 时,-x ∈Q , ∴f (-x )=1=f (x ).同理,x 为无理数时,-x 也为无理数. ∴f (-x )=-1=f (x ),∴f (x )为偶函数. (3)奇函数.∵f (-x )=|-2x +1|-|-2x -1| =|2x -1|-|2x +1|=-f (x ), ∴f (x )为奇函数.(4)画出其图象如图,可见f (x )为奇函数.14.已知f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+x -2,求f (x ),g (x )的表达式.[解析] f (-x )+g (-x )=x 2-x -2,由f (x )是偶函数,g (x )是奇函数得,f (x )-g (x )=x 2-x -2又f (x )+g (x )=x 2+x -2,两式联立得: f (x )=x 2-2,g (x )=x .15.函数f (x )=ax +b1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25,求函数f (x )的解析式.[解析] 因为f (x )是奇函数且定义域为(-1,1),所以f (0)=0,即b =0. 又f ⎝ ⎛⎭⎪⎫12=25,所以12a 1+⎝ ⎛⎭⎪⎫122=25,所以a =1,所以f (x )=x1+x 2.16.f (x )是奇函数,当x ≥0时,f (x )的图象是经过点(3,-6),顶点为(1,2)的抛物线的一部分,求f (x )的解析式,并画出其图象.[解析] 设x ≥0时,f (x )=a (x -1)2+2, ∵过(3,-6)点,∴a (3-1)2+2=-6,∴a =-2.即f (x )=-2(x -1)2+2. 当x <0时,-x >0,f (-x )=-2(-x -1)2+2=-2(x +1)2+2, ∵f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=2(x +1)2-2,即f (x )=⎩⎪⎨⎪⎧-2(x -1)2+2 (x ≥0)2(x +1)2-2 (x <0), 其图象如图所示.。
函数的基本性质(奇偶性、单调性、周期性、对称性)
函数的性质(奇偶性、单调性、周期性、对称性)“定义域优先”的思想是研究函数的前提,在求值域、奇偶性、单调性、周期性、换元时易忽略定义域,所以必须先考虑函数的定义域,离开函数的定义域去研究函数的性质没有任何意义。
1. 奇偶性奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数; ②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇; ③f(-x)÷f(x)=1是偶;f(x)÷f(-x)=-1为奇函数. (1)若定义域关于原点对称(2)若定义域不关于原点对称 非奇非偶 例如:3x y =在)1,1[-上不是奇函数 常用性质:1.0)(=x f 是既奇又偶函数;2.奇函数若在0=x 处有定义,则必有0)0(=f ; 3.偶函数满足)()()(x f x f x f =-=;4.奇函数图象关于原点对称,偶函数图象关于y 轴对称;5.0)(=x f 除外的所有函数的奇偶性满足:(1)奇函数±奇函数=奇函数 偶函数±偶函数=偶函数 奇函数±偶函数=非奇非偶(2) 奇函数×奇函数=偶函数 偶函数×偶函数=偶函数 奇函数×偶函数=奇函数6.任何函数)(x f 可以写成一个奇函数2)()()(x f x f x --=ϕ和一个偶函数2)()()(x f x f x -+=ψ的和。
2. 单调性 定义:函数定义域为A ,区间,若对任意且①总有则称在区间M 上单调递增②总有则称在区间M 上单调递减应用:(一)常用定义法来证明一个函数的单调性一般步骤:(1)设值(2)作差(3)变形(4)定号(5)结论 (二)求函数的单调区间定义法、图象法、复合函数法、导数法(以后学) 注:常用结论(1) 奇函数在对称区间上的单调性相同 (2) 偶函数在对称区间上的单调性相反 (3) 复合函数单调性-------同增异减3. 周期性(1)一般地对于函数,若存在一个不为0的常数T ,使得一切值时总有,那么叫做周期函数,T 叫做周期,kT (T 的整数倍)也是它的周期(2)如果周期函数在所有周期中存在一个最小正数,就把这个最小正数叫最小正周期。
3.2.1函数的性质-最大(小)值-课件(人教版)
函数 = ()的最大值可用“ ”或“() ”来表示.
一般地,设函数y = f(x)的定义域为I,如果存在实数M满足:
(1)∀x ∈ I,都有f(x) ≥ M;
(2)∃x0 ∈ I,使得f(x0 ) = M.
那么,我们则称M是函数y = f(x)的最小值.
简称增区间.
简称减区间.
(2)用证明函数的单调性
(1)取值;
定义法
(2)作差;
(3)定号;
(4)下结论.
数形结合证明函数单调性
(3)函数的最大(小)值
一般地,设函数 = ()的定义域为,如果存在实数满足:
(1)∀ ∈ ,都有() ≤ ;
(2)∃0 ∈ ,使得(0 ) = .
最小值!
.
课本P81 练习
1
f ( x)
x ,求函数在区间 [2,6] 上的最大值和最小值.
3.已知函数
1
2
【答案】 f ( x)max , f ( x) min
1
.
6
【解析】首先证明函数在给定的区间上的单调性,即可得到函数的最值.
【详解】解: x1 , x2 [2, 6] ,且 x1 x2 ,则 f x1 f x2
课堂例题
例4 “菊花”烟花是最壮观的烟花之一. 制造时一般是期望在它到达最高
点时爆裂. 如果烟花距地面的高度h(单位: m)与时间t单位: s) 之间的关系
为ℎ() = −4.92 + 14.7 + 18,那么烟花冲出后什么时候是它爆裂的最佳
时刻?这时距地面的高度是多少(精确到1m)?
解:画出函数ℎ()=-4.92+14.7+18的图象(图3.24).显然,函数图象的顶点就是烟花上升的最高点,顶
高中数学 第三章 函数概念与性质 3.2 函数的基本性质 3.2.2 第2课时 函数奇偶性的应用精品
第2课时函数奇偶性的应用f (x )<0的解集用区间表示为________.8.如果定义在(-∞,0)∪(0,+∞)上的奇函数f (x )在(0,+∞)内是减函数,又有f (3)=0,则x ·f (x )<0的解集为________.9.(探究题)已知函数f (x )=px 2+2q -3x 是奇函数,且f (2)=-53,则函数f (x )的解析式f (x )=________.三、解答题10.(易错题)已知函数y =f (x )在定义域[-1,1]上是奇函数,又是减函数,若f (1-a 2)+f (1-a )<0,某某数a 的取值X 围.学科素养升级练1.(多选题)已知函数f (x )=x 2-2x -3,则下列结论正确的是( ) A .函数f (x )的最小值为-4 B .函数f (x )在(0,+∞)上单调递增 C .函数f (|x |)为偶函数D .若方程f (|x -1|)=a 在R 上有4个不等实根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=4 2.已知定义在R 上的函数f (x )满足f (1-x )=f (1+x ),且f (x )在[1,+∞)上为单调减函数,则当x =________时,f (x )取得最大值;若不等式f (0)<f (m )成立,则m 的取值X 围是________.3.(学科素养-数学抽象)设f (x )是定义在R 上的奇函数,且对任意a ,b ∈R ,当a +b ≠0时,都有f a +f ba +b>0.(1)若a >b ,试比较f (a )与f (b )的大小关系; (2)若f (1+m )+f (3-2m )≥0,某某数m 的取值X 围.第2课时 函数奇偶性的应用必备知识基础练1.解析:设x <0,则-x >0.∴f (-x )=x +1,又函数f (x )是奇函数. ∴f (-x )=-f (x )=x +1, ∴f (x )=-x -1(x <0). 答案:B2.解析:当x >0时,-x <0,∴f (-x )=-x +1, 又f (x )为偶函数,∴f (x )=-x +1. 答案:-x +13.解析:∵f (x )为奇函数,且在[0,+∞)上是减函数,∴f (x )在(-∞,0)上是减函数,∴f (x )在(-∞,+∞)上为减函数,又-2<2,∴f (-2)>f (2),故选C.答案:C4.解析:由于f (x )为偶函数,且在[0,+∞)上单调递增,则不等式f (2x -1)<f ⎝ ⎛⎭⎪⎫13,即-13<2x -1<13,解得13<x <23.答案:A5.解析:因为奇函数f (x )在[2,5]上有最小值6,所以可设a ∈[2,5],有f (a )=6.由奇函数的性质,f (x )在[-5,-2]上必有最大值,且最大值为f (-a )=-f (a )=-6.答案:C6.解析:∵f (2)=0,f (x -1)>0,∴f (x -1)>f (2). 又∵f (x )是偶函数,且在[0,+∞)上单调递减, ∴f (|x -1|)>f (2),∴|x -1|<2,∴-2<x -1<2,∴-1<x <3, ∴x ∈(-1,3). 答案:(-1,3)关键能力综合练1.解析:A 中函数不具有奇偶性;B 中函数在定义域内为减函数;C 中函数在定义域内不具有单调性.故选D.答案:D2.解析:∵f (-x )=-f (x ),∴f (x )·f (-x )=-f 2(x )≤0. 答案:C3.解析:由x ≥0时,f (x )=x 2-2x ,f (x )是定义在R 上的奇函数得,当x <0时,-x >0,f (x )=-f (-x )=-(x 2+2x )=x (-x -2).∴f (x )=⎩⎪⎨⎪⎧xx -2,x ≥0,x -x -2,x <0,即f (x )=x (|x |-2).答案:D4.解析:因为函数为偶函数,所以a +2=0,a =-2,即该函数f (x )=-2x 2+1,所以函数f (x )在(-∞,0]上单调递增.答案:A5.解析:∵f (x )在R 上为奇函数,∴f (2-a )+f (4-a )<0转化为f (2-a )<-f (4-a )=f (a -4). 又f (x )在R 上单调递减, ∴2-a >a -4,得a <3. 答案:B6.解析:∵f (x )是R 上的偶函数, ∴f (-2)=f (2),f (-π)=f (π),又f (x )在[0,+∞)上单调递增,且2<3<π, ∴f (π)>f (3)>f (2),即f (-π)>f (3)>f (-2). 答案:A7.解析:由f (x )在[0,6]上的图象知,满足f (x )<0的不等式的解集为(0,3).又f (x )为奇函数,图象关于原点对称,所以在[-6,0)上,不等式f (x )<0的解集为[-6,-3).综上可知,不等式f (x )<0的解集为[-6,-3)∪(0,3).答案:[-6,-3)∪(0,3) 8.解析:由题意可画出函数f (x )的草图.当x >0时,f (x )<0,所以x >3;当x <0时,f (x )>0,所以x <-3.综上x >3或x <-3.答案:{x |x <-3或x >3}9.解析:f (x )的定义域为⎝ ⎛⎭⎪⎫-∞,q 3∪⎝ ⎛⎭⎪⎫q 3,+∞,若f (x )是奇函数,则q3=0,得q =0.故f (x )=px 2+2-3x ,又f (2)=-53,得p ×4+2-6=-53,得p =2,因此f (x )=2x 2+2-3x =-2x 2+23x.答案:-2x 2+23x10.解析:由f (1-a 2)+f (1-a )<0, 得f (1-a 2)<-f (1-a ). ∵y =f (x )在[-1,1]上是奇函数,∴-f (1-a )=f (a -1),∴f (1-a 2)<f (a -1). 又f (x )在[-1,1]上单调递减, ∴⎩⎪⎨⎪⎧-1≤1-a 2≤1,-1≤1-a ≤1,1-a 2>a -1,解得⎩⎪⎨⎪⎧0≤a 2≤2,0≤a ≤2,-2<a <1.∴0≤a <1.∴a 的取值X 围是[0,1).学科素养升级练1.解析:二次函数f (x )在对称轴x =1处取得最小值,且最小值f (1)=-4,故选项A 正确;二次函数f (x )的对称轴为x =1,其在(0,+∞)上有增有减,故选项B 错误;由f (x )得,f (|x |)=|x |2-2|x |-3,显然f (|x |)为偶函数,故选项C 正确;令h (x )=f (|x -1|)=|x -1|2-2|x -1|-3,方程f (|x -1|)=a 的零点转化为y =h (x )与y =a 的交点,作出h (x )图象如图所示:图象关于x =1对称,当y =h (x )与y =a 有四个交点时,两两分别关于x =1对称,所以x 1+x 2+x 3+x 4=4,故选项D 正确.故选ACD.答案:ACD2.解析:由f (1-x )=f (1+x )知,f (x )的图象关于直线x =1对称,又f (x )在(1,+∞)上单调递减,则f (x )在(-∞,1]上单调递增,所以当x =1时f (x )取到最大值.由对称性可知f (0)=f (2),所以f (0)<f (m ),得0<m <2,即m 的取值X 围为(0,2).答案:1 (0,2)3.解析:(1)因为a >b ,所以a -b >0, 由题意得f a +f -ba -b>0,所以f (a )+f (-b )>0.又f (x )是定义在R 上的奇函数, 所以f (-b )=-f (b ),所以f (a )-f (b )>0,即f (a )>f (b ). (2)由(1)知f (x )为R 上的单调递增函数,因为f (1+m )+f (3-2m )≥0,所以f (1+m )≥-f (3-2m ), 即f (1+m )≥f (2m -3), 所以1+m ≥2m -3,所以m ≤4. 所以实数m 的取值X 围为(-∞,4].。
函数的基本性质老师版(部分含答案)
函数的基本性质函数的三个基本性质:单调性,奇偶性,周期性一、单调性1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。
2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。
(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。
)3.二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a ,当0>a 时函数)(x f 在对称轴a bx 2-=的左侧单调减小,右侧单调增加;当0<a 时函数)(x f 在对称轴a bx 2-=的左侧单调增加,右侧单调减小;例1:讨论函数322+-=ax x f(x)在(-2,2)内的单调性。
练习:讨论函数()2-21f x ax x =+在(-1,1)内的单调性。
4.证明方法和步骤:⑴设元:设21,x x 是给定区间上任意两个值,且21x x <;⑵作差:)()(21x f x f -;⑶变形:(如因式分解、配方等);⑷定号:即0)()(0)()(2121<->-x f x f x f x f 或;⑸根据定义下结论。
例2、判断函数1()x f x x +=在)0,(-∞上的单调性并加以证明.练习: 判断函数2()1x f x x +=-在(-∞,0)上的单调性并加以证明。
[例3] 求证函数f (x )=x +xa (a .,>0)在(0,a ]上是减函数,在[a ,+∞)上是增函数. 分析 利用定义证明,证明函数单调性的关键在于作差变形.证明 (1)设0<x 1<x 2≤a ,则f (x 1)-f (x 2)=x 1+1x a -x 2-2x a =(x 1-x 2)⎪⎪⎭⎫ ⎝⎛-211x x a . 因为0<x 1<x 2≤a ,所以x 1-x 2<0,0<x 1x 2<a .,所以\21x x a >1,所以211x x a -<0, 所以f (x 1)-f (x 2)>0,所以f (x 1)>f (x 2).所以f (x )在(0,\r(a .,)]上为减函数.(1) 设a ≤x 1<x 2,则f (x 1)-f (x 2)=(x 1-x 2) ⎪⎪⎭⎫ ⎝⎛-211x x a . 因为x 1-x 2<0,x 1x 2>a .,,所以\21x x a <1, 所以211x x a ->0,所以f (x 1)-f (x 2)<0.5.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表:以上规律还可总结为:“同向得增,异向得减”或“同增异减”。
函数的基本性质(含答案)
x+ ≥2 = (当且仅当x= 即x= 时取“=”).
∴当底边长为 m时造价最低,最低造价为(160 a+ a)元.
答案:y=12a(x+ )+ a(0,+∞) 160 a+ a
【课堂小练】
1.已知 是定义 上的奇函数,且 在 上是减函数.下列关系式中正确的是 ( )
A. B.
∴- ≤x≤ .
∴不等式的解集为{x|- ≤x≤ }.
(3)由-1≤x-c≤1,得-1+c≤x≤1+c,
∴P={x|-1+c≤x≤1+c}.
由-1≤x-c2≤1,得-1+c2≤x≤1+c2,
∴Q={x|-1+c2≤x≤1+c2}.
∵P∩Q= ,
∴1+c<-1+c2或-1+c>1+c2,
解得c>2或c<-1.
教师辅导讲义
年 级: 高一辅导科目: 数学 课时数:3
课 题
函数的基本性质
教学目的
通过综合的练习与巩固,是学生掌握对一些基本函数的性质进行研究的方法
教学容
【知识梳理】
函数的基本性质:奇偶性、单调性、周期性、函数的最值、函数的零点(周期性后面讲)
【典型例题分析】
例1、函数f(x)的定义域为R,且对任意x、y∈R,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2.
(1)证明f(x)是奇函数;
(2)证明f(x)在R上是减函数;
(3)求f(x)在区间[-3,3]上的最大值和最小值.
(1)证明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),∴f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),∴f(0)=0.从而有f(x)+f(-x)=0.
3.2函数的基本性质-2020-2021学年高一数学同步课堂帮帮帮(人教A版2019必修第一册)
第三章 函数的概念与性质3.2 函数的基本性质一、函数的单调性 1.增函数与减函数2.函数的单调区间如果函数y =f (x )在区间D 上是 ,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.【思考1】∀x 1,x 2∈D ,若(x 2-x 1)[f (x 2)-f (x 1)]>0或2121()()f x f x x x -->0,则y =f (x )在某个区间D 上是增函数吗?【思考2】函数y =1x在定义域上是减函数吗? 【特别提醒】函数的单调性定义中的x 1,x 2有以下3个特征:(1)任意性,即“任意取x 1,x 2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般; (2)有大小,通常规定x 1<x 2; (3)属于同一个单调区间.二、函数最大值与最小值最大值最小值条件设函数y =f (x )的定义域为I ,如果存在实数M 满足:∀x ∈I ,都有f (x ) Mf (x ) M∃x 0∈I ,使得f (x 0) M结论 M 是函数y =f (x )的最大值 M 是函数y =f (x )的最小值 几何意义f (x )图象上最高点的f (x )图象上最低点的【思考2】若函数y =f (x )在区间[a ,b ]上为增函数,则f (x )的最大值与最小值分别是多少? 【特别提醒】函数的最大(小)值与值域、单调性之间的关系(1)对一个函数来说,一定有值域,但不一定有最值,如函数y =1x .如果有最值,则最值一定是值域中的一个元素.(2)若函数f (x )在闭区间[a ,b ]上单调,则f (x )的最值必在区间端点处取得,即最大值是f (a )或f (b ),最小值是f (b )或f (a ). 三、函数的奇偶性奇偶性 偶函数奇函数条件 设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I 结论 f (-x )=f (x ) f (-x )=-f (x ) 图象特点关于 对称关于 对称000【思考2】如果奇函数在x =0处有定义,则其图象有什么特征? 【特别提醒】理解函数的奇偶性应关注三点(1)函数的单调性是函数的“局部”性质,而奇偶性是函数的“整体”性质,只有对其定义域内的每一个x ,都有f (-x )=-f (x )[或f (-x )=f (x )],才能说f (x )是奇(偶)函数.(2)函数y =f (x )是奇函数或偶函数的一个必不可少的条件:定义域关于原点对称.换言之,若所给函数的定义域不关于原点对称,则这个函数一定不具有奇偶性.例如,函数y =x 2在区间(-∞,+∞)上是偶函数,但在区间[-1,2]上却无奇偶性可言.(3)若f (-x )=-f (x ),且f (-x )=f (x ),则f (x )既是奇函数又是偶函数,既奇又偶的函数有且只有一类,即f (x )=0,x ∈D ,D 是关于原点对称的实数集.一、2.单调递增或单调递减 【思考1】若(x 2-x 1)[f (x 2)-f (x 1)]>0或2121()()f x f x x x -->0,则x 2-x 1与f (x 2)-f (x 1)同号,即x 2>x 1时,f (x 2)>f (x 1),所以f (x )在D 上为增函数. 【思考2】不是.y =1x 在(-∞,0)上递减,在(0,+∞)上也递减,但不能说y =1x在(-∞,0)∪(0,+∞)上递减.二、≤ ≥ = 纵坐标 纵坐标【思考1】不一定,只有定义域内存在一点x 0,使f (x 0)=M 时,M 才是函数的最大值,否则不是. 【思考2】最大值为f (b ),最小值为f (a ). 三、y 轴 原点【思考1】不一定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 函数的单调性: (1)增函数与减函数(2)函数的单调性(3)函数的单调区间如果函数)(x f y =在区间D 上是增函数或减函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做)(x f y =的单调区间。
(4)函数单调性的求法:定义法(取值、作差、变形、定好、结论)、图像法(画出函数图像,根据图像判断单调性)、性质法(主要针对一次函数、反比例、二次函数)。
常用结论: 1)复合函数单调性的确定法则--同增异减。
2)函数)(x f y =与函数)(-x f y =的单调性相反。
3)若函数)(x f 恒正或恒负时,函数)(x f y =与函数)(1x f y =的单调性相反。
4)在公共定义域内,增函数+增函数=增函数;增函数-减函数=增函数;减函数+减函数=减函数;减函数-增函数=函数的基本性质知识讲解减函数。
2. 函数的最大值与最小值(1)对一个函数来说,一定有值域,但不一定有最值,如函数y=1x 。
如果有最值,则最值一定是值域中的一个元素。
(2)若函数)(x f 在区间[]b a ,上单调,则)(x f 的最值必在区间端点处取得,即最大值是)()(b f a f 或,最小值是)()(a f b f 或3. 函数的奇偶性(1)奇偶函数的定义域关于原点对称.(2)奇函数的图象关于原点中心对称,偶函数的图象关于y 轴成轴对称.(3)若)(),()(),()(x f x f x f x f x f 则且=--=-既是奇函数又是偶函数,既奇又偶的函数有且只有一类,即,,0)(D x x f ∈=D 是关于原点对称的实数集。
(4)设f (x ),g (x )的定义域分别是D 1,D 2,那么它们在公共定义域上,满足:奇函数+奇函数=奇函数,奇函数×奇函数=偶函数,偶函数+偶函数=偶函数,奇函数×偶函数=奇函数.例1:函数322-+=x x y 的单调递减区间为( )A. (]3--,∞ B. (]1--,∞ C. [)∞+,1 D. []1-3-, [解析]函数32)(2-+=x x x f 的对称周为直线x=-1,由函数的图象可知该函数在区间(]1--,∞上是减函数,又因为该函数的定义域为(][)∞+⋃∞,,13--,所以该函数在区间(]3--,∞上是减函数,答案A 。
例2:已知)()(a x ax xx f ≠-=(1)若a=-2,求证:)(x f 在()2--,∞上单调递增。
(2)若a>0且)(x f 在()∞+,1上单调递减,求a 的取值范围。
【解析】(1)证明:任设)2)(2()(222)()(,2212122112121++-=+-+=--<<x x x x x x x x x f x f x x 则, ()上单调递增。
,在(2--)(),()(,0,0)2)(2212121∞∴<∴<->++x f x f x f x x x x(2)任设))(()(-)()(,1212122112121a x a x x x a a x x a x x x f x f x x ---=--=-<<则 10.10))(,0)(-)(,0,0212112≤<≤∴>-->∴>->a a a x a x x f x f x x a 综上所述恒成立,只需(要使例3:已知函数)(x f y =在定义域()11-,上是减函数,且)12()1(-<-a f a f ,求实数a 的取值范围。
【解析】由题知3201211121111-<<⎪⎩⎪⎨⎧->-<-<-<-<a a a a a ,解得。
即实数a 的取值范围是⎪⎭⎫⎝⎛320,。
例4:若函数⎩⎨⎧≤-+->-+-=0,)2(,0,1)12()(2x x b x x b x b x f 在R 上是增函数,则实数b 的取值范围是 。
【解析】∵函数)(x f 在R 上为增函数,∵在各段函数上均为增函数,同时在x=0处也要满足单调递增。
典型例题由⎪⎩⎪⎨⎧≥->->-)0(102012f b b b ,可得21<b ≤。
答案:21<b ≤一、选择题1. 若函数)(x f 在[a ,b]上是增函数,则对任意的x 1,x 2∵[a ,b](x 1≠x 2),下列结论不正确的是 ( )A.0)()(2121>--x x x f x fB.0)]()()[(2121>--x f x f x xC.)()()()(21b f x f x f a f <<<D.0)()(2121>--x f x f x x解析:由增函数的定义易知A,B,D 结论正确,故选C.2. 已知函数)(x f 在定义域[-2,3]上单调递增,则满足)12(-x f >)(x f 的x 的取值范围是 ( ) A .[-2,1]B .[-2,2]C .[1,2]D .(1,2]解析:依题意有-2≤x<2x -1≤3,解得1<x ≤2.故选D3. 下列函数()f x 中,满足对任意()12,0,x x ∈+∞,当x 1<x 2时,都有()()12f x f x >的是( ) A .()2f x x =B .()1f x x=C .()f x x =D .()21f x x =+解析:由12x x <时,()()12f x f x >,所以函数()f x 在()0,∞+上为减函数的函数.A 选项,2y x 在()0,∞+上为增函数,不符合题意.B 选项,1y x=在()0,∞+上为减函数,符合题意.C 选项,y x =在()0,∞+上为增函数,不符合题意.D 选项,()21f x x =+在()0,∞+上为增函数,不符合题意.故选B.同步练习4. 函数(21)y m x b =-+在R 上是减函数.则( )A .12m >B . 12m <C .12m >-D .12m <-解析:根据题意,函数(21)y m x b =-+在R 上是减函数,则有210m -<,解可得12m <, 5. 当0≤x ≤2时,a<-x 2+2x 恒成立,则实数a 的取值范围是( ) A .(-∞,1]B .(-∞,0]C .(-∞,0)D .(0,+∞)解析:令f (x )=-x 2+2x ,则f (x )=-x 2+2x=-(x -1)2+1。
又∵x ∵[0,2],∵f (x )min =f (0)=f (2)=0,∵a<0. 6. 函数()2112f x x x =++在[]2,3-上的最小值和最大值分别是( ) A .117,22 B .1,12C .171,2D .12,无最大值解析:由题意知,函数()f x 的对称轴为1x =-,在[]2,1--上,()f x 为减函数,在[]1,3-上,()f x 为增函数, 故当1x =-时,()f x 取得最小值,最小值为()112f -=;当3x =时,()f x 取得最大值,最大值为172.故选A 7. 若f (x )是奇函数,且在区间(0,+∞)上是增函数,又f (-3)=0,则f (x )<0的解集是( )A .{x |-3<x <0,或x >3}B .{x |x <-3,或0<x <3}C .{x |x <-3,或x >3}D .{x |-3<x <0,或0<x <3}答案:B8. (2020年新高考全国Ⅰ卷)若定义在R 的奇函数f (x )在(-∞,0)单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围( )A .[-1,1]∪[3,+∞)B .[-3,-1]∪[0,1]C .[-1,0]∪[1,+∞)D .[-1,0]∪[1,3]答案:D9. 函数223y x x =-+在闭区间[0,]m 上有最大值3,最小值为2, m 的取值范围是( )A .(,2]-∞B .[0,2]C .[1,2]D .[1,)+∞解析:作出函数()f x 的图象,如图所示,当1x =时,y 最小,最小值是2,当2x =时,3y =, 函数2()23=-+f x x x 在闭区间[0,]m 上上有最大值3,最小值2,则实数m 的取值范围是[1,2].故选:C.二、填空题1. 如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是 .解析:当a=0时,f (x )=2x -3在定义域R 上单调递增,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )图像的对称轴为直线x=a 1-,因为f (x )在(-∞,4)上单调递增,所以a<0且a 1-≥4,解得a 1-≤a<0.综上,实数a 的取值范围是]0,41[-. 2. 函数)(x f y =在(-2,2)上为增函数,且)1()2(+->m f m f ,则实数m 的取值范围是 .解析:由题意知⎪⎩⎪⎨⎧+-><+-<-<<-12212222m m m m ,解得131<<m3. 若函数f (x )=4x -1,则x ∈[3,5]的最大值为2,最小值为1.解析:f (x )=4x -1在区间[3,5]上为减函数,当x =3时,f (x )max =2,当x =5时,f (x )min =1. 4. 函数y =g (x )=2x -√x +1的定义域为[-1,+∞),值域为[-178,+∞).解析:因为x +1≥0,所以x ≥-1,所以函数的定义域为[-1,+∞).设√x +1=t (t ≥0),则x +1=t 2,即x =t 2-1, 所以y =2t 2-t -2=2(t -14)2-178,t ≥0,所以当t =14时,y min =-178,所以函数g (x )的值域为[-178,+∞).5. 若函数f (x )=(x +a )(bx +2a )(a ,b 是常数)是偶函数,值域为(-∞,4],则该函数的解析式为f (x )=-2x 2+4. 解析:由于f (x )=(x +a )(bx +2a )=bx 2+(ab +2a )·x +2a 2,所以f (-x )=bx 2-(ab +2a )x +2a 2, 由f (x )为偶函数,知f (x )=f (-x ).所以ab +2a =0,所以a =0或b =-2. 又因为f (x )有最大值4,所以b =-2,且f (0)=2a 2=4,所以f (x )=-2x 2+4.6. 若函数f (x )={x 2+2x,x ≥0,g(x),x <0为奇函数,则g (x ) =-x 2+2x ,f (g (-1))=-15.解析:当x <0时,-x >0.因为f (x )是奇函数,所以f (-x )=-f (x )=(-x )2-2x =x 2-2x ,所以f (x )=-x 2+2x ,即g (x )=-x 2+2x , 因此,f (g (-1))=f (-3)=-9-6=-15.三、解答题1.(2020浙江高一课时练习)已知112)(++=x x x f 。