第14讲 三角函数图像与性质教师
三角函数的图像与性质教案
三角函数的图像与性质优秀教案一、教学目标:1. 理解三角函数的定义,掌握正弦函数、余弦函数、正切函数的图像与性质。
2. 能够运用三角函数的图像与性质解决实际问题。
3. 提高学生的数学思维能力,培养学生的数学审美观念。
二、教学内容:1. 三角函数的定义与基本性质2. 正弦函数的图像与性质3. 余弦函数的图像与性质4. 正切函数的图像与性质5. 三角函数图像与性质的综合应用三、教学重点与难点:1. 重点:三角函数的定义,正弦函数、余弦函数、正切函数的图像与性质。
2. 难点:三角函数图像与性质的综合应用。
四、教学方法:1. 采用问题驱动法,引导学生探索三角函数的图像与性质。
2. 利用多媒体课件,展示三角函数的图像,增强学生的直观感受。
3. 结合实际例子,让学生学会运用三角函数的图像与性质解决实际问题。
4. 开展小组讨论,培养学生的合作与交流能力。
五、教学过程:1. 导入:通过复习初中阶段学习的三角函数知识,引导学生进入本节课的学习。
2. 三角函数的定义与基本性质:讲解三角函数的定义,引导学生掌握三角函数的基本性质。
3. 正弦函数的图像与性质:利用多媒体课件展示正弦函数的图像,讲解正弦函数的性质。
4. 余弦函数的图像与性质:利用多媒体课件展示余弦函数的图像,讲解余弦函数的性质。
5. 正切函数的图像与性质:利用多媒体课件展示正切函数的图像,讲解正切函数的性质。
6. 三角函数图像与性质的综合应用:结合实际例子,讲解如何运用三角函数的图像与性质解决实际问题。
7. 课堂小结:对本节课的内容进行总结,强调重点知识点。
8. 课后作业:布置相关练习题,巩固所学知识。
9. 课后反思:教师对本节课的教学进行反思,总结经验教训。
10. 教学评价:对学生的学习情况进行评价,了解学生对三角函数图像与性质的掌握程度。
六、教学策略与资源:1. 教学策略:采用问题引导式教学,鼓励学生主动发现问题、解决问题。
利用数学软件或在线工具,让学生亲自动手绘制三角函数图像,加深对函数性质的理解。
高中数学教案:三角函数的性质与图像
高中数学教案:三角函数的性质与图像三角函数是高中数学中的重要内容,不仅在数学中有广泛的应用,而且在物理、工程等领域也起着重要的作用。
掌握三角函数的性质与图像对于学生来说至关重要。
本文将围绕三角函数的性质与图像展开讲解,分为两个部分进行说明。
一、三角函数的性质1. 周期性:正弦函数(sin)和余弦函数(cos)是周期性函数,周期为2π(或360°),即f(x+2π) = f(x)。
这意味着函数曲线在每个周期内会重复出现相同的形态。
2. 奇偶性:正弦函数是奇函数,即f(-x) = -f(x),而余弦函数是偶函数,即f(-x) = f(x)。
奇偶性可以通过图像上的对称关系进行判断。
3. 正交关系:正弦和余弦函数之间存在正交关系,即∫sin(x)cos(x)dx = 0。
这意味着两者之间不存在直接的线性相关性。
4. 单调递增与递减:根据定义域内正弦和余弦函数的增减特点可以得知,在某些区间内它们是单调递增或递减的。
5. 平移变换:改变函数的相位(shift)可以使得函数图像水平方向上发生移动,例如sin(x+π/2)与cos(x)的图像是一样的。
二、三角函数的图像1. 正弦函数的图像:正弦函数是一条连续波浪线,它在原点处取得最小值0,在每个周期内起伏变化。
其振幅决定了在y轴上最高点和最低点之间的距离,而周期决定了在x轴上一个完整波浪长度。
通过控制振幅和周期,可以改变正弦函数在坐标平面上的形态。
2. 余弦函数的图像:余弦函数类似于正弦函数,也是一条连续波浪线。
它与正弦函数之间存在相位差π/2,即cos(x)=sin(x+π/2),所以他们图像上只有水平方向发生了移动。
除此之外,余弦函数具有与正弦函数相似的性质和特点。
3. 正切函数的图像:正切函数(tan)是一个无界且周期为π(或180°)的曲线。
它在定义域内有无数个渐近线(垂直或水平),并且存在奇点(pi/2 + k*pi, k为整数),奇点处不能成立该点的函数值。
三角函数的图象与性质教案
三角函数的图象与性质教案一、教学目标1. 理解三角函数的定义和基本性质。
2. 学会绘制和分析三角函数的图象。
3. 掌握三角函数的周期性、奇偶性、单调性等性质。
4. 能够应用三角函数的性质解决问题。
二、教学内容1. 三角函数的定义和基本性质。
2. 三角函数的图象绘制方法。
3. 三角函数的周期性性质。
4. 三角函数的奇偶性性质。
5. 三角函数的单调性性质。
三、教学重点与难点1. 三角函数的定义和基本性质的理解。
2. 三角函数图象的绘制和分析。
3. 三角函数周期性、奇偶性、单调性的理解和应用。
四、教学方法1. 采用多媒体教学,展示三角函数的图象和性质。
2. 利用数学软件或图形计算器进行图象绘制和分析。
3. 引导学生通过观察、分析和归纳三角函数的性质。
4. 利用例题和练习题巩固所学知识。
五、教学安排1. 第一课时:三角函数的定义和基本性质。
2. 第二课时:三角函数的图象绘制方法。
3. 第三课时:三角函数的周期性性质。
4. 第四课时:三角函数的奇偶性性质。
5. 第五课时:三角函数的单调性性质。
六、教学目标1. 理解正弦函数、余弦函数的周期性。
2. 学会应用周期性解决实际问题。
3. 掌握正弦函数、余弦函数的相位变换。
七、教学内容1. 正弦函数、余弦函数的周期性。
2. 周期性在实际问题中的应用。
3. 正弦函数、余弦函数的相位变换。
八、教学重点与难点1. 周期性的理解和应用。
2. 相位变换的理解和应用。
九、教学方法1. 通过实例讲解周期性在实际问题中的应用。
2. 利用数学软件或图形计算器进行相位变换的演示。
3. 引导学生通过观察、分析和归纳正弦函数、余弦函数的周期性和相位变换。
十、教学安排1. 第六课时:正弦函数、余弦函数的周期性。
2. 第七课时:周期性在实际问题中的应用。
3. 第八课时:正弦函数、余弦函数的相位变换。
十一、教学目标1. 理解正切函数的图象和性质。
2. 学会应用正切函数解决实际问题。
3. 掌握正切函数的周期性和奇偶性。
三角函数图像与性质教案
三角函数图像与性质教案教案标题:三角函数图像与性质教学目标:1. 理解正弦、余弦和正切函数的图像特征及其性质。
2. 掌握正弦、余弦和正切函数的周期、幅值、相位差等重要概念。
3. 通过观察和比较,能够分析并绘制三角函数的图像。
4. 能够应用三角函数的图像及其性质解决与实际问题相关的数学计算。
教学准备:1. 投影仪/白板/黑板2. 教学课件或绘图工具3. 学生练习册、作业册等教辅材料4. 相关练习题、实例和应用题教学过程:一、引入活动1. 导入:通过展示一个周期性的波动图像,引导学生思考这些图像有何特点,有何规律,并讨论这些波动图像与数学中的三角函数的关系。
二、知识讲解和图像分析1. 介绍正弦函数的定义和基本性质,包括周期、对称轴、最大值、最小值等。
2. 展示正弦函数的图像,解读图像上各个要素与函数的关系,并解释这些要素的具体含义。
3. 引导学生分析正弦函数图像上的特征及其性质,包括振幅、相位差等概念的引入和解释。
4. 教授余弦函数和正切函数的定义和性质,并展示它们的图像,让学生观察和比较三种函数图像的异同。
三、示例演练1. 给予学生一定数量的练习题,要求他们根据所学知识分析和绘制三角函数的图像。
2. 引导学生通过比较不同函数的图像,发现它们之间的关系和规律,并总结出三角函数图像的一般特点。
四、应用拓展1. 给予学生一些实际问题和应用题,要求他们能够利用所学的三角函数图像及其性质解决这些问题。
2. 引导学生通过数学模型的建立和函数图像的分析,将实际问题转化为数学计算,并得出正确的答案。
五、总结和评价1. 对所学知识进行小结和归纳,强调三角函数图像与性质在数学中的重要性和应用价值。
2. 提出问题和讨论,让学生根据所学知识回答和解决,以检验他们的学习效果。
六、作业布置1. 布置适量的课后作业,包括练习题和思考题,以巩固和拓展所学知识。
2. 鼓励学生自主学习,寻找更多与三角函数图像及其性质相关的应用领域。
三角函数的图象与性质教案
三角函数的图象与性质教案一、教学目标:1. 理解三角函数的定义,掌握正弦函数、余弦函数、正切函数的图象和性质。
2. 学会利用三角函数图象和性质解决实际问题。
3. 培养学生的数学思维能力和图形感知能力。
二、教学内容:1. 三角函数的定义及基本概念。
2. 正弦函数、余弦函数、正切函数的图象和性质。
3. 三角函数在实际问题中的应用。
三、教学重点与难点:1. 重点:三角函数的定义,正弦函数、余弦函数、正切函数的图象和性质。
2. 难点:三角函数图象和性质的灵活运用。
四、教学方法与手段:1. 采用讲解、演示、练习、讨论等多种教学方法。
2. 使用多媒体课件辅助教学,增强学生对图象的直观感受。
五、教学过程:1. 导入新课:回顾初中阶段学习的三角函数知识,引出本节课的主题——三角函数的图象与性质。
3. 练习与讨论:布置适量练习题,让学生巩固所学知识,并进行小组讨论,分享解题心得。
4. 实际问题解决:选取几个实际问题,让学生运用三角函数图象和性质进行解答,提高学生的应用能力。
6. 布置作业:布置适量作业,巩固所学知识,提高学生的自主学习能力。
附:教学课件及练习题(略)六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。
2. 练习题评价:通过学生完成的练习题,评估学生对三角函数图象和性质的理解程度。
3. 小组讨论评价:评价学生在小组讨论中的表现,包括合作态度、交流能力、分享精神等。
4. 实际问题解决评价:评估学生在解决实际问题时,运用三角函数图象和性质的准确性及灵活性。
七、教学拓展:1. 引导学生研究三角函数图象的变换规律,如平移、缩放等。
2. 介绍三角函数在工程、物理等领域的应用,拓宽学生的知识视野。
3. 鼓励学生探索三角函数与数列、几何等学科的联系,提高学生的综合运用能力。
八、教学反思:1. 反思教学目标的设定,是否符合学生的实际需求。
2. 反思教学内容的选择,是否适合学生的认知水平。
三角函数的图像与性质教案
三角函数的图像与性质教案一、教学目标:1. 理解三角函数的定义和基本概念。
2. 学会绘制和分析三角函数的图像。
3. 掌握三角函数的性质,并能应用于实际问题。
二、教学重点:1. 三角函数的定义和图像。
2. 三角函数的性质。
三、教学难点:1. 三角函数图像的绘制和分析。
2. 理解和应用三角函数的性质。
四、教学准备:1. 教学课件或黑板。
2. 三角函数图像的示例。
3. 练习题和解答。
五、教学过程:1. 引入:通过生活中的实例,如温度、声音等,引入三角函数的概念,激发学生的兴趣。
2. 讲解:讲解三角函数的定义和基本概念,引导学生理解三角函数的周期性和奇偶性。
3. 演示:使用课件或黑板,展示三角函数的图像,让学生观察和分析图像的形状和特点。
4. 练习:让学生绘制一些简单的三角函数图像,并分析其性质。
5. 讲解:讲解三角函数的性质,如单调性、奇偶性、周期性等,引导学生理解和应用。
6. 练习:让学生解决一些实际问题,运用三角函数的性质进行计算和分析。
7. 总结:对本节课的内容进行总结,强调三角函数的图像和性质的重要性。
8. 作业:布置一些练习题,让学生巩固所学内容。
六、教学反思:本节课通过实例引入三角函数的概念,激发学生的兴趣。
通过讲解和演示,让学生理解和掌握三角函数的图像和性质。
通过练习和实际问题解决,让学生应用所学知识。
整个教学过程中,注意引导学生主动参与,培养学生的动手能力和思维能力。
作业的布置有助于巩固所学内容。
总体来说,本节课达到了预期的教学目标。
六、教学目标:1. 能够运用三角函数的性质解决简单的三角方程和不等式问题。
2. 理解正弦、余弦和正切函数的图像是如何由基础函数通过平移、伸缩等变换得到的。
3. 能够分析实际问题,选择合适的三角函数模型进行求解。
七、教学重点:1. 三角函数图像的变换规律。
2. 三角方程和不等式的求解方法。
八、教学难点:1. 理解三角函数图像的变换规律及其对函数性质的影响。
2. 解决实际问题中三角函数的应用。
三角函数的图像和性质教学课件
图像变化
当角度增加时,余 弦函数的值会减小, 图像会向中心靠拢; 当角度减小时,余 弦函数的值会增加, 图像会向外扩展。
图像周期
余弦函数的图像具 有周期性,周期为 360度。在一个周 期内,图像会重复 出现。
正切函数的图像
图像形状
01 正切函数的图像在直角坐标系中呈现出周期性和无界性,其形状类似于波浪线。
调性。
PART 04
三角函数的应用
在几何学中的应用
三角函数在几何学中有着广泛的应用, 例如在计算角度、长度、面积等方面。
三角函数可以帮助我们理解几何图形的 性质,例如在研究圆、椭圆、抛物线等 方面。
三角函数还可以用于解决一些几何问题, 例如在计算最短路径、最大面积等方面。
在物理学中 的应用
交流电
三角函数的基本性质
周期性
三角函数(如正弦函数和 余弦函数)具有明显的周 期性,这意味着它们的图 像会重复出现。
振幅和相位
振幅和相位是描述三角函 数的重要参数。振幅决定 了图像的最高点和最低点, 而相位决定了图像在垂直 方向上的位置。
奇偶性
三角函数中的正弦函数和 余弦函数具有不同的奇偶 性。正弦函数是奇函数, 而余弦函数是偶函数。
图像变化规律
02 正切函数的图像随着角度的变化而呈现周期性的变化,其变化规律是每隔180度重复一次。
图像与x轴交点
03 正切函数的图像与x轴的交点是无穷多个,且分布不均,主要集中在x轴的两侧。
其他三角函数的图像
正切函数图像在直角坐标系中呈现 出周期性和无界性,是三角函数中 较为特殊的一种。
余切函数图像与正切函数图像互为 反函数,在直角坐标系中呈现出对 称性和周期性。
工程学
在工程学中,三角函数可以用于解决各种实际问题,如结 构工程中的应力分析、机械工程中的振动分析等。
高中数学教案《三角函数的图像与性质》
教学计划:《三角函数的图像与性质》一、教学目标1.知识与技能:学生能够掌握正弦、余弦、正切函数的基本图像及其关键特征(如周期、振幅、相位等);理解并应用三角函数的奇偶性、单调性、最值等性质。
2.过程与方法:通过绘制函数图像、观察分析、归纳总结等过程,培养学生直观感知、逻辑推理和数学抽象能力;学会运用数形结合的方法解决三角函数问题。
3.情感态度与价值观:激发学生对数学的兴趣,培养探索精神和严谨的科学态度;通过团队合作和交流分享,增强学生的集体意识和协作能力。
二、教学重点和难点●教学重点:正弦、余弦、正切函数的基本图像及性质;数形结合思想在三角函数中的应用。
●教学难点:理解并掌握三角函数图像的变换规律(如平移、伸缩、对称等);运用三角函数的性质解决实际问题。
三、教学过程1. 引入新课(约5分钟)●生活实例:通过展示海浪波动、音乐波形等自然现象或人工制品中的周期性变化,引导学生思考这些现象与三角函数的关系,引出三角函数图像的重要性。
●复习旧知:简要回顾三角函数(正弦、余弦、正切)的定义和基础性质,为后续学习做好铺垫。
●提出问题:提出探究性问题,如“正弦函数的图像是什么样的?它有哪些基本性质?”激发学生的好奇心和探索欲。
2. 讲授新知(约15分钟)●图像绘制:利用多媒体演示或指导学生动手绘制正弦、余弦、正切函数的图像,强调图像的连续性、周期性等特点。
●性质讲解:结合图像,详细讲解三角函数的振幅、周期、相位等关键特征,以及奇偶性、单调性、最值等性质。
●对比分析:引导学生对比正弦、余弦、正切函数图像的差异,理解它们各自的特点和相互之间的关系。
3. 图像变换(约10分钟)●理论讲解:介绍三角函数图像的平移、伸缩、对称等变换规律,结合具体例子说明变换后的图像特征。
●实践操作:组织学生分组进行实践操作,尝试通过改变参数来绘制变换后的三角函数图像,并观察分析变化规律。
●总结归纳:引导学生总结归纳三角函数图像变换的一般规律和方法,形成系统的知识体系。
三角函数的图象与性质教案
三角函数的图象与性质教案一、教学目标:1. 让学生理解三角函数的定义和基本概念,掌握正弦函数、余弦函数和正切函数的图象和性质。
2. 培养学生运用数形结合的思想方法研究三角函数的图象与性质。
3. 培养学生的逻辑思维能力和数学审美能力。
二、教学重点与难点:1. 教学重点:三角函数的图象与性质。
2. 教学难点:正弦函数、余弦函数和正切函数的图象与性质的推导和应用。
三、教学方法与手段:1. 教学方法:采用讲练结合、师生互动、分组讨论等教学方法。
2. 教学手段:利用多媒体课件、黑板、粉笔等教学工具。
四、教学过程:1. 导入新课:通过复习三角函数的定义和基本概念,引导学生关注三角函数的图象与性质。
2. 讲解与示范:讲解正弦函数、余弦函数和正切函数的图象与性质,并通过多媒体课件展示图象,让学生直观地感受三角函数的性质。
五、课后作业:1. 绘制正弦函数、余弦函数和正切函数的图象,并分析它们的性质。
2. 练习题:选择适当的函数,分析它们的图象与性质,解决实际问题。
3. 思考题:探讨三角函数图象与性质的内在联系,提出自己的见解。
六、教学评价:1. 通过课堂讲解、练习和课后作业,评价学生对三角函数图象与性质的理解和掌握程度。
2. 观察学生在课堂讨论和练习中的表现,评估他们的逻辑思维能力和数学审美能力。
3. 收集学生对思考题的解答,评价他们的思考深度和创新能力。
七、教学反思:1. 反思本节课的教学内容和方法,评估学生对新知识的接受程度。
2. 思考如何改进教学手段,提高课堂教学效果。
3. 探讨如何引导学生将所学知识应用于实际问题,提高学生的应用能力。
八、教学拓展:1. 介绍三角函数在实际生活中的应用,如测量、信号处理等。
2. 引入高级三角函数的概念,如双曲函数、反三角函数等。
3. 探讨三角函数与其他数学领域的联系,如微积分、线性代数等。
九、教学资源:1. 多媒体课件:三角函数图象与性质的动态展示。
2. 练习题库:涵盖各种难度的练习题。
(完整版)三角函数的图像和性质教案
课 题 三角函数的图像和性质学情分析三角函数的图象与性质是三角函数的重要内容,学生刚刚刚学到,对好多概念不很清楚,理解也不够透彻,需要及时加强巩固。
教学目标与 考点分析1.掌握三角函数的图象及其性质在图象交换中的应用;2.掌握三角函数的图象及其性质在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中的应用.教学重点 三角函数图象与性质的应用是本节课的重点。
教学方法 导入法、讲授法、归纳总结法学习内容与过程基础梳理1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质函数 性质y =sin x y =cos x y =tan x定义域 R R{x |x ≠k π+错误!,k ∈Z }图象值域 [-1,1] [-1,1] R1、已知函数)33sin()(π+=x x f(1)判断函数的奇偶性;(2)判断函数的对称性.2、设函数)0)(2sin()(<<-+=ϕπϕx x f 的图象的一条对称轴是直线8π=x ,则=ϕ______.学生对本次课的小结及评价1、本次课你学到了什么知识2、你对老师下次上课的建议⊙ 特别满意 ⊙ 满意 ⊙ 一般 ⊙ 差 学生签字:课后练习:(具体见附件)课后小结教师签字:审阅签字: 时 间:教务主任签字: 时 间:龙文教育教务处。
三角函数的图像与性质教案
三角函数的图像与性质优秀教案一、教学目标1. 知识与技能:(1)了解正弦函数、余弦函数、正切函数的图像和性质;(2)学会分析三角函数图像的变化规律;(3)能够运用三角函数的性质解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳三角函数图像的特性;(2)利用数形结合的方法,研究三角函数的性质;(3)培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对三角函数的兴趣,培养学习的积极性;(2)引导学生感受数学的美丽和实用性,提高学生的数学素养;(3)培养学生合作、探究的精神。
二、教学重点与难点1. 教学重点:(1)掌握正弦函数、余弦函数、正切函数的图像和性质;(2)能够运用三角函数的性质解决实际问题。
2. 教学难点:(1)三角函数图像的变换规律;(2)三角函数性质的深入理解。
三、教学方法与手段1. 教学方法:(1)采用问题驱动法,引导学生探究三角函数的图像与性质;(2)运用数形结合的方法,帮助学生直观地理解三角函数的性质;(3)采用小组合作、讨论的方式,培养学生的团队合作能力。
2. 教学手段:(1)利用多媒体课件,展示三角函数的图像和性质;(2)利用数学软件,进行函数图像的动态演示;(3)提供充足的练习题,巩固所学知识。
四、教学内容与步骤1. 导入新课:(1)复习已知三角函数的图像和性质;(2)引出本节课要学习的内容:三角函数的图像与性质。
2. 探究正弦函数的图像与性质:(1)展示正弦函数的图像;(2)引导学生观察、分析正弦函数的性质;3. 探究余弦函数的图像与性质:(1)展示余弦函数的图像;(2)引导学生观察、分析余弦函数的性质;4. 探究正切函数的图像与性质:(1)展示正切函数的图像;(2)引导学生观察、分析正切函数的性质;五、课堂练习与拓展1. 课堂练习:(1)根据给定的函数式,绘制函数图像;(2)根据函数图像,分析函数的性质;(3)解决实际问题,运用三角函数的性质。
三角函数的图象与性质教案
三角函数的图象与性质教案一、教学目标知识与技能:1. 理解三角函数的定义和基本性质。
2. 学会绘制三角函数的图象。
3. 掌握三角函数的图象与性质之间的关系。
过程与方法:1. 通过观察和分析,培养学生的抽象思维能力。
2. 利用数形结合的方法,引导学生探索三角函数的图象与性质。
情感态度与价值观:1. 激发学生对数学的兴趣和好奇心。
2. 培养学生的团队合作意识和沟通能力。
二、教学重点与难点重点:1. 三角函数的定义和基本性质。
2. 三角函数的图象绘制方法。
难点:1. 理解三角函数的图象与性质之间的关系。
2. 灵活运用三角函数的性质解决问题。
三、教学准备教师准备:1. 三角函数的图象与性质的相关知识资料。
2. 教学课件或黑板。
学生准备:1. 笔记本和文具。
2. 对数学有一定的兴趣和好奇心。
四、教学过程1. 导入:a. 引导学生回顾初中阶段学习的三角函数知识。
b. 提问:你们对三角函数的图象和性质有什么了解?2. 知识讲解:a. 讲解三角函数的定义和基本性质。
b. 通过示例,展示三角函数的图象绘制方法。
3. 课堂练习:a. 布置练习题,让学生独立完成。
b. 选取部分学生的作业进行讲解和评价。
b. 布置作业:绘制几个常见三角函数的图象,并分析其性质。
五、教学反思本节课通过引导学生观察和分析三角函数的图象,让学生更好地理解和掌握三角函数的性质。
在教学过程中,注意关注学生的学习情况,及时进行讲解和指导。
在课堂练习环节,鼓励学生独立思考,培养学生的解决问题的能力。
通过本节课的学习,学生对三角函数的图象与性质有了更深入的了解,为后续的学习奠定了基础。
六、教学活动设计1. 小组合作:学生分组,每组选择一个三角函数进行研究,绘制图象,并分析其性质。
2. 分享与讨论:每组学生向全班展示他们的研究成果,其他学生和教师提出问题和意见,进行讨论和交流。
七、教学评价1. 课堂参与度:观察学生在课堂上的参与程度,包括提问、回答问题、小组合作等。
三角函数的图像与性质优秀教案
三角函数图像与性质复习教案目标:1、掌握五点画图法,会画正余弦、正切函数图象以及相关的三角函数图象及性质。
2、深刻理解函数的定义和正弦、余弦、正切函数的周期性。
重点:五点作图法画正余弦函数图象,及正余弦函数的性质,及一般函数)sin(ϕω+=x A y 的图象。
难点:一般函数)sin(ϕω+=x A y 的图象与性质。
【教案内容】1、引入:有个从未管过自己孩子的统计学家,在一个星期六下午妻子要外出买东西时,勉强答应照看一下4个年幼好动的孩子。
当妻子回家时,他交给妻子一张纸条,上写:“擦眼泪11次;系鞋带15次;给每个孩子吹玩具气球各5次,每个气球的平均寿命10秒钟;警告孩子不要横穿马路26次;孩子坚持要穿过马路26次;我还想再过这样的星期六0次。
”2、三角函数知识体系及回忆正余弦函数的概念和周期函数: 正弦函数: 余弦函数: 周期函数:注意:最小正周期:一般函数)sin(ϕω+=x A y 中:A 表示 ,ω表示及频率: ,相位: 。
正切函数:3、三角函数的图象:值域:tan ;tan .2222x x x x x x ππππ<→→+∞>-→-→-∞当且时,当且时,单调性:对每一个k Z ∈,在开区间(,)22k k ππππ-+内,函数单调递增.对称性:对称中心:(,0)()2k k Z π∈,无对称轴。
五点作图法的步骤:(由诱导公式画出余弦函数的图象)【例题讲解】例1 画出下列函数的简图(1)1sin y x =+[0,2]x π∈(2)cos y x =-[0,2]x π∈ (3)2sin y x =[0,2]x π∈例2 (1)方程lg sin x x =解得个数为( )A. 0B. 1C. 2D. 3 (2)3[,]22x ππ∈-解不等式3sin 2x ≥-4([,])33x ππ∈-例3已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域。
三角函数的图像与性质 教案
三角函数的图像与性质教案三角函数的图象与性质教学目标:1.掌握正弦函数、余弦函数、正切函数、余切函数的性质,以及如何用它们研究复合函数的性质。
2.熟悉正弦函数、余弦函数、正切函数、余切函数的图象形状。
3.理解图象平移变换、伸缩变换的意义,并能使用这两种变换研究函数图象的变化。
重点难点:重点是通过复,能够运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,需要重点明确。
难点是在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这增加了问题的综合性和难度。
教学过程:三角函数的图象与性质是三角函数的核心问题,需要熟练、准确地掌握。
特别是三角函数的周期性,反映了三角函数的特点。
在复“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用,这样才能把性质理解透彻。
一、三角函数性质的分析1.三角函数的定义域正弦函数、余弦函数、正切函数的定义域是全体实数,但是余切函数的定义域是x≠kπ(k∈Z)。
函数y=secx、y=cscx的定义域分别与y=tanx、y=cotx相同。
例如,求函数f(x)=sin(2x+π/3)的定义域,可以通过解2x+π/3的定义域,即x∈(-∞,+∞)得到f(x)的定义域为(-∞,+∞)。
2.三角函数的值域正弦函数、余弦函数的值域是[-1,1],而正切函数的值域是全体实数,但是余切函数的值域是x≠kπ(k∈Z)。
对于复合三角函数的值域问题,需要注意三角函数本身的特点,特别是经常需要先进行三角变换再求值域。
例如,对于函数f(x)=sin(2x+π/3),先对2x+π/3进行反三角函数变换,得到x=arcsin[(y-π/3)/2],然后再根据arcsin函数的定义域和值域得到f(x)的值域。
总之,需要熟记常用的一些函数的定义域和值域,以便在解题时能够快速准确地判断。
2.设 $\theta$ 是第二象限角,则必有 $\cos\theta0$,因此选项 B 正确。
三角函数图像与性质教案.docx
三角函数的性质与图像一、教学内容分析近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是本章复习的重点。
在复习时要充分运用数形结合的思想,把图象与性质结合起来,即利用图象的直观性得出函数的性质,能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法。
二、学情分析对于函数性质的研究,学生已经有些经验.其中,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想的应用.三、教学目标1、知识与技能:(1)“五点法”画函数y Asin( x )的图像 .(2).图像变换规律 .( 3).函数y Asin( x) B(其中 A0,图像性质及常见问题0)处理方法2、过程与方法:培养学生应用所学知识解决问题的能力,独立思考能力,规范解题的标准。
3、情感态度与价值观:培养学生全面的分析问题和认真的学习态度,渗透辩证唯物主义思想。
教学重点:围绕三角函数图像变换、五点作图求函数解析式.教学难点、关键:图像变换中的左右平移变换中平移量的确定.教学方法:启发、引导、研讨相结合教学手段:结合学生复习情况,使用多媒体课件,提高教学的效率教学课时:一课时四、知识梳理1、用“五点法”画y A sin( x) 一个周期的简图时,要找出五个关键点。
2、三角函数图像的变化规律。
画出函数y sin x 图像向左(右)平移个单位横坐标变为原来的倍画出函数 y sin( x) 图像画出函数 y sin( x) 图像纵坐标变为原来的倍画出函数 y Asin( x向左(右)平移个单位) 图像画出函数 y sin( x) 图像画出函数 y sin x 图像纵坐标变为原来的倍横坐标变为原来的倍画出函数 y A sin( x) 图像画出函数 y sin x 图像3、函数 y Asin(x) 的物理意义。
三角函数的图像和性质教案
三角函数的图像和性质教案阳光教育的课题是三角函数的图像和性质。
这是一个重要的内容,但学生可能还不太清楚其中的概念和理解。
因此,需要及时巩固这些知识。
教学目标是掌握三角函数的图像及其性质在图像交换中的应用,并在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中应用这些知识。
教学重点是三角函数图像与性质的应用。
教学方法包括导入法、讲授法和归纳总结法。
在基础梳理部分,学生需要掌握“五点法”描图。
对于y=sin x和y=cos x的图像,在[0,2π]上的五个关键点的坐标应该知道。
此外,学生还需要了解三角函数的图像和性质,包括函数、性质、定义域、值域、图像、对称轴、对称中心、周期、单调性和奇偶性。
这些知识将有助于学生更好地理解三角函数的图像和性质。
在教学重点部分,学生需要掌握三角函数图像与性质的应用。
这包括如何求解三角函数的值域(最值),以及如何在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中应用这些知识。
为此,教师可以采用三种方法:利用sin x、cos x的有界性;将复杂的函数化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域;利用奇偶性来简化函数形式。
最后,教师应该鼓励学生在课后进行练,巩固所学知识。
只有通过不断地练,才能真正掌握三角函数的图像和性质。
换元法是解决三角函数问题的一种常用方法。
通过把sinx 或cosx看作一个整体,可以将其化为求函数在区间上的值域问题。
例如,对于函数y=cos(x+π/3),可以将cos(x+π/3)看作cos(x)的平移,因此其最小正周期与cosx相同,即2π。
另外,对于函数y=tan(-x),其定义域为R\{(2k+1)π/2 | k∈Z},即除去所有奇数个π/2的点。
下面来看几个例题。
对于函数y=sin(-x),其周期为π,因为sin(-x)与sinx的图像关于y轴对称。
对于函数y=tan(3x-π/2),可以将其化为y=tan3x的平移,因此其最小正周期为2π/3.当求解三角函数的定义域和值域时,常常需要借助三角函数线或三角函数图像来解决。
三角函数的图像与性质教案
三角函数的图像与性质教案一、教学目标:1. 理解三角函数的定义和基本概念。
2. 学会绘制三角函数的图像。
3. 掌握三角函数的性质,并能应用于实际问题。
二、教学内容:1. 三角函数的定义与基本概念正弦函数(sin)余弦函数(cos)正切函数(tan)余切函数(cot)正割函数(sec)余割函数(csc)2. 三角函数的图像正弦函数的图像余弦函数的图像正切函数的图像其他三角函数的图像3. 三角函数的性质周期性奇偶性单调性极值三、教学方法:1. 采用讲解法,讲解三角函数的定义、图像和性质。
2. 利用数形结合法,引导学生通过观察图像来理解函数的性质。
3. 运用实例分析法,让学生通过实际问题来应用三角函数的性质。
四、教学步骤:1. 引入三角函数的概念,讲解三角函数的定义和基本性质。
2. 利用计算机软件或板书,绘制三角函数的图像,让学生观察和理解函数的图像。
3. 通过示例,讲解三角函数的性质,引导学生掌握如何判断函数的周期性、奇偶性、单调性和极值。
4. 布置练习题,让学生巩固所学内容,并能够应用三角函数的性质解决实际问题。
五、教学评价:1. 课堂讲解的清晰度和连贯性。
2. 学生对三角函数定义和基本概念的掌握程度。
3. 学生能够正确绘制三角函数的图像。
4. 学生能够运用三角函数的性质解决实际问题。
六、教学拓展:1. 探索三角函数的复合函数图像和性质。
2. 研究三角函数在科学和工程中的应用。
3. 引入三角恒等式,让学生了解三角函数之间的关系。
七、教学活动:1. 组织小组讨论,让学生共同探讨三角函数的性质和图像。
2. 开展数学竞赛,激发学生学习三角函数的兴趣。
3. 安排实地考察,让学生观察和理解三角函数在现实世界中的应用。
八、教学资源:1. 利用计算机软件,如GeoGebra或Matplotlib,绘制三角函数的图像。
2. 提供三角函数的图像和性质的参考资料,供学生自主学习。
3. 利用互联网资源,寻找实际问题,让学生应用三角函数的性质解决。
三角函数的图象与性质总课时教案
三角函数的图象与性质总课时教案一、教学目标:1. 理解三角函数的图象和性质,掌握正弦函数、余弦函数和正切函数的图象和性质。
2. 能够运用三角函数的图象和性质解决实际问题,提高解决问题的能力。
3. 培养学生的数学思维能力和图形感知能力,提高学生的数学素养。
二、教学内容:1. 三角函数的图象和性质的基本概念。
2. 正弦函数的图象和性质。
3. 余弦函数的图象和性质。
4. 正切函数的图象和性质。
5. 三角函数图象和性质的应用。
三、教学重点与难点:1. 重点:三角函数的图象和性质的掌握。
2. 难点:正弦函数、余弦函数和正切函数的图象和性质的推导和应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究三角函数的图象和性质。
2. 利用多媒体技术,展示三角函数的图象,增强学生的直观感受。
3. 注重个体差异,鼓励学生提问和发表自己的观点,提高学生的参与度。
五、教学过程:1. 导入:通过复习初中阶段学习的三角函数的知识,引导学生进入本节课的学习。
2. 新课导入:介绍三角函数的图象和性质的基本概念,引导学生了解三角函数图象和性质的重要性。
3. 案例分析:讲解正弦函数的图象和性质,让学生通过观察图象和分析性质,理解正弦函数的特点。
4. 小组讨论:让学生分组讨论余弦函数和正切函数的图象和性质,引导学生通过合作学习,共同探索知识。
5. 总结提升:对正弦函数、余弦函数和正切函数的图象和性质进行总结,让学生形成系统的知识结构。
6. 课堂练习:布置一些有关三角函数图象和性质的练习题,让学生巩固所学知识。
7. 课后作业:布置一些有关的课后作业,让学生进一步巩固三角函数的图象和性质。
六、教学拓展:1. 引导学生探索三角函数图象的变换规律,如平移、缩放等。
2. 介绍数学软件或工具在研究三角函数图象和性质中的应用,如利用Desmos、GeoGebra等软件绘制三角函数图象。
七、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问和回答问题的积极性等。
三角函数的图像与性质教学设计
三角函数的图像与性质教学设计一、教学目标:1. 理解正弦函数、余弦函数和正切函数的定义及其图像特点;2. 掌握在不同角度范围内,三角函数图像的变化规律;3. 理解三角函数的周期性和对称性;4. 能够利用三角函数的图像性质解决实际问题。
二、教学内容:1. 正弦函数的定义及其图像性质;2. 余弦函数的定义及其图像性质;3. 正切函数的定义及其图像性质;4. 三角函数的周期性和对称性;5. 利用三角函数图像性质解决实际问题。
三、教学过程:导入(5分钟):通过提问方式引入三角函数的概念,了解学生对该概念的初步认知,引发学生的兴趣。
展示(10分钟):利用投影仪或白板展示正弦函数、余弦函数和正切函数的图像,并让学生观察和比较它们的相似之处和不同之处。
讲解(15分钟):详细讲解正弦函数、余弦函数和正切函数的定义及其图像性质,包括振幅、周期、对称轴和图像的递增递减部分。
练习(15分钟):让学生根据所学知识练习画出给定角度范围内正弦函数、余弦函数和正切函数的图像,并理解图像的变化规律。
巩固(10分钟):出示几道简单的应用题,让学生运用三角函数的图像性质解决实际问题,如寻找某一角度对应的函数值、计算两角间的夹角等。
拓展(10分钟):引导学生思考更广泛的问题,如三角函数的图像在平面几何中的应用,如何利用三角函数的图像找出最值、极值点等。
总结(5分钟):对本次课所学内容进行总结,强调三角函数图像与性质之间的联系,并解答学生的疑问。
四、教学方法与手段:1. 演示法:通过投影仪或白板展示三角函数的图像,帮助学生直观地理解三角函数的性质;2. 解答法:通过解答学生在练习和应用过程中遇到的问题,加深学生对三角函数图像与性质的理解;3. 探究法:通过引导学生思考更广泛的问题,培养学生的创新思维能力。
五、教学评价与反思:在教学过程中,教师可以通过观察学生的学习情况和教学效果,以及布置的相关作业,来评价学生对三角函数图像与性质的掌握程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0,π 2
时,2x-π∈
-π,5π 66
,由函数图象知,
6
更多资料下载请加 QQ 群安老师高一玩转数学研讨群,群号 1036995874,
玩转数学
高一同步系列
安老师培优课堂
f(x)=sin
2x-π 6
∈
sin
-π 6
,sin
π 2
=
-1,1 2
.
所以 f(x)在
0,π 2
上的最大值和最小值分别为 1,-1.
(2)y=lg( 3-tan x).
sin x>0,
sin x>0,
解 (1)由题意,得 x 满足不等式组
即
作出 y=sin x 的图象,如图所示.
16-x2≥0,
-4≤x≤4,
结合图象可得 x∈[-4,-π)∪(0,π).
(2)因为 3-tan x>0,所以 tan x< 3.又因为当 tan x= 3时,x=π+kπ(k∈Z), 3
=3sin
x+π 2
=3cos
x.
所以 f(x)=3cos x.
题型五 由图象求函数 y=Asin(ωx+φ)的解析式
A>0,ω>0,|φ|<π
例 6 如图是函数 y=Asin(ωx+φ)
2 的图象,求 A,ω,φ的值,并确定其函数解析式.
解
方法一
(逐一定参法)由图象知,振幅
A=3,又
T=5π-
-π 6
-π+kπ,π+kπ
2
2
(k∈Z)上是增函数,∴-π+kπ<2x-π<π+kπ,k∈Z,
2
32
即- π +kπ<x<5π+kπ,k∈Z.∴函数 y=tan
2x-π
- π +kπ,5π+kπ
3 的单调递增区间是 12 2 12 2 (k∈Z).
12 2 12 2
题型三 三角函数的周期性对称性和奇偶性
2x+2π
| 根据正切函数图象,得
kπ-π<x<kπ+π(k∈Z),所以函数的定义域是
x
kπ-π<x<kπ+π,k∈Z
2
3
.
2
3
例 2 求下列函数的最大值和最小值和值域.
2x-π
0,π
(1)f(x)=sin 6 ,x∈ 2 ;
π,5π (2)f(x)=-2cos2x+2sin x+3,x∈ 6 6 .
解
(1)当 x∈
∴f(0)=2cos
2π-2φ 3
=0.∴2π-2φ=kπ+π,k∈Z,解得φ= π -kπ(k∈Z).
3
2
12 2
令 k=0,得φ= π .∴φ的最小正值是 π .
12
12
[玩转跟踪]
1.把函数 y=cos
x+4π 3 的图象向右平移φ个单位长度,正好关于 y 轴对称,求φ的最小正值.
x+4π-φ 解 由题意可知,平移后的函数为 y=cos 3 ,
[玩转跟踪] 1.函数 y=Asin(ωx+φ)的部分图象如图所示,则( )
2x-π A.y=2sin 6
2x-π B.y=2sin 3
x+π C.y=2sin 6
x+π D.y=2sin 3
答案 A
解析
由图可知,A=2,T=2
π- 3
-π 6
=π,所以ω=2.由五点作图法可知 2×π+φ=π,
3
2
.由
2kπ-π≤x-π≤2kπ(k∈Z),
23
得 4kπ-4π≤x≤4kπ+2π(k∈Z),∴函数 y=3cos
π-x 3 2 的单调递增区间为
3
3
4kπ-4π,4kπ+2π
3
3 (k∈Z).
[玩转跟踪]
π-x
1.求函数 y= log 1 cos 3 2 的单调递增区间.
2
x-π 解 根据复合函数“同增异减”的规律,即求函数 y=cos 2 3 的单调递减区间,同时 x 应使
玩转数学
高一同步系列
安老师培优课堂
第 14 讲 三角函数图像与性质
[玩前必备]
1.正弦函数、余弦函数、正切函数的图象与性质
函数
y=sin x
y=cos x
y=tanLeabharlann x图象定义域R
{x|x∈R 且 x≠π+
R
2
kπ,k∈Z}
值域
[-1,1]
[-1,1]
R
单调性
[-π+2kπ,π+
2
2
2kπ](k∈Z)上递增;
所以φ=-π,所以函数的解析式为
y=2sin
2x-π 6
,故选
A.
6
类型六 函数 y=Asin(ωx+φ)性质的应用
更多资料下载请加 QQ 群安老师高一玩转数学研讨群,群号 1036995874,
玩转数学
高一同步系列
安老师培优课堂
例7
A>0,ω>0,|φ|<π
π ,0
已知函数 y=Asin(ωx+φ)
π,5 3
,得 sin
2π+φ 3
=1,∴2π+φ=2kπ+π,k∈Z.
3
2
令 k=0,则φ=-π,∴y=5sin
2x-π 6
.
6
(2)∵函数的增区间满足 2kπ-π≤2x-π≤2kπ+π(k∈Z),∴2kπ-π≤2x≤2kπ+2π(k∈Z),
2
6
2
3
3
∴kπ-π≤x≤kπ+π(k∈Z).∴函数的增区间为
∴y=-t2+4t+1=-(t-2)2+5.∴当 t=-1,即 x=-π时,ymin=-4, 4
当 t=1,即 x=π时,ymax=4.故所求函数的值域为[-4,4]. 4
题型二 三角函数的单调性
π-x 例 3 求函数 y=3cos 3 2 的单调递增区间.
解
y=3cos
π-x 32
=3cos
x-π 23
cos
x-π 23
>0.∴2kπ≤x-π<2kπ+π(k∈Z).整理得
4kπ+2π≤x<4kπ+5π(k∈Z).
23
2
3
3
∴函数 y= log 1 cos
π-x 3 2 的单调递增区间是
4kπ+2π,4kπ+5π
3
3 (k∈Z).
2
2.求函数 y=tan
2x-π 3
的单调区间.
解
∵y=tan
x
在
x∈
[玩转跟踪]
1. 求函数 y= tan x+1+lg(1-tan x)的定义域.
tan x+1≥0,
解 由题意,得
即-1≤tan x<1.
1-tan x>0,
-π,π
-π,π
在 2 2 内,满足上述不等式的 x 的取值范围是 4 4 ,又 y=tan x 的周期为π,
所以函数的定义域是
kπ-π,kπ+π
6
6
-π,π 3.函数 y=-tan2x+4tan x+1,x∈ 4 4 的值域为____________.
更多资料下载请加 QQ 群安老师高一玩转数学研讨群,群号 1036995874,
玩转数学
高一同步系列
安老师培优课堂
答案 [-4,4]
解析 ∵-π≤x≤π,∴-1≤tan x≤1.令 tan x=t,则 t∈[-1,1], 44
ymax=1; x=π+2kπ(k∈Z)时, ymin=-1
奇偶性
奇函数
偶函数
奇函数
对称中心
(kπ,0)(k∈Z)
(π+kπ,0) 2
(k∈Z)
(kπ,0)(k∈Z) 2
对称轴 方程
x=π+kπ 2
(k∈Z)
x=kπ(k∈Z)
周期
2π
2π
π
2.五点法作 y=Asin(ωx+φ)一个周期内的简图
更多资料下载请加 QQ 群安老师高一玩转数学研讨群,群号 1036995874,
它是偶函数,因此,当 x=0 时,cos
4π-φ 3
取得最大值 1 或最小值-1,故4π-φ=2nπ或(2n+1)π
(n∈Z),
3
即4π-φ=kπ (k∈Z).∴φ=4π-kπ (k∈Z),当 k=1 时,φ取最小正值π.
3
3
3
2.已知函数
f(x)=sin
2ωx-π 3
(ω>0)的最小正周期为π,则函数
玩转数学
高一同步系列
安老师培优课堂
用“五点法”作图,就是令ωx+φ取下列 5 个特殊值:0, π, π, 3π, 2π,通过列表,计算五点的坐标,描点得 22
到图象. 3.三角函数图象变换
[玩转典例]
题型一 三角函数的定义域和值域
例 1 (1)求函数 f(x)=lg sin x+ 16-x2的定义域.
6
来的2倍,所得图象的解析式是 y=2sin
1x+π 23
,求 f(x)的解析式.
3
解
y=2sin
1x+π 23
纵坐标伸长到原来的3倍
―――――――――2―→y=3sin
1x+π 23
横坐标缩短到原来的1倍
―――――――――2―→
y=3sin
x+π 3
向左平移π个单位
――――6――→y=3sin
x+π+π 63
[π+2kπ,3π+
2
2
2kπ](k∈Z)上递减
[-π+2kπ,2kπ] (k∈Z)上递增; [2kπ,π+2kπ] (k∈Z)上递减
(-π+kπ,π+kπ)
2
2
(k∈Z)上递增
x=π+2kπ(k∈Z)时, 2
x=2kπ(k∈Z)时,