Gambit中写风机tur文件的步骤
Gambit使用说明(中文版一系列)4GAMBIT菜单命令
4.GAMBIT菜单命令本章的以下部分将阐述上面这些主菜单命令的功能和用法。
注意,在以下章节中的多数定义窗口中将包括和两个按钮。
除非特别说明,这两个按钮的功能如下:Accept——执行与该窗口相关的操作。
Close——关闭该窗口而不执行相关操作。
4.1File命令4.1.1 New当用户从File菜单中选择了New,GAMBIT打开Create New Session窗口。
Create New Session窗口允许用户建立和命名一个新进程。
要创建一个新的进程,用户必须指定如下项目:进程标识保存选项另外,除了上述两项,GAMBIT也允许用户设定进程的标题。
进程标识包含与该新进程相关联的GAMBIT数据文件的基本名称。
(有关数据文件的内容和格式的说明,请参阅本向导的第二章。
)保存选项决定GAMBIT在建立新进程之前是否保存现有进程的数据。
进程标题包含了该进程的一般说明。
定义进程标识进程标识可以由任意的字母组合和/或GAMBIT所运行的系统环境下允许的有效文件名中所包含的符号组成。
GAMBIT默认的进程标识为"model1"。
设定保存选项当用户建立一个新进程时,将删除与当前进程相关的所有数据。
为了在建立新的进程之前保存当前进程的相关数据,必须选中Create New Session窗口中的Save current session选项。
设定进程标题进程标题包含该进程的一般描述。
他可以由长度不超过80个字符的任意字母组合和/或符号组合而成。
运用Create New Session窗口Create New Session窗口(如下图)使用户可以创建一个新的GAMBIT进程。
要打开Create New Session窗口,只要从主菜单条的File菜单中选择New即可。
窗口中包括以下详细说明:ID:设定新进程的标识Title:设定新进程的标题,长度不超过80字符Save current session 设定在创建新进程时保存当前进程的所有数据。
GAMBIT操作方法、Fluent操作方法
附录1:GAMBIT 建模操作方法利用GAMBIT 建立计算几何模型1. 启动GAMBIT :点击GAMBIT 图标后出现图附1-1文件操作窗口,需要在Working Directory 内填入文件夹地址,在Session ID 内填入文件名,然后点击Run ,进入GAMBIT 的主控制窗体如图附1-2所示。
比如,文件夹名称(需预先将名称设置好)为D:\heatexamp\chant2-1,文件名称为examp1,点击Run 按钮完成。
出现GAMBIT 主控制画面如图附1-2。
(注意GAMBIT 的文件操作中无法采用中文子目录) 主控制窗体有工作区、文件操作菜单区、操作命令图标区、全局控制区、命令反馈区和操作图标功能说明区等组成。
工作区提供操作后的图象显示,有坐标指示。
文件操作菜单提供文件的存取、打印、求解方法等功能。
操作命令图标区提供建模过程中的各种操作图标,共有4种主工具单选选择按钮,见图附1-2中右上方的Operation 区域。
2.求解工具:如果是新项目,在文件菜单区点击Solver ,确定求解工具为FLUENT5/6。
3. 建模坐标系统:选择工具命令按钮(Tools Command Buttoen ),确定所建模型的坐标系统,有5个可选项目,见图附1-3。
其中第一个按钮为坐标系选择按钮,选取该钮后,出现图附1-4所示坐标系统按钮组,其默认按钮为第一个,在该按钮下出现图附1-5的坐标系创建窗户。
在Type 栏中有三种选择,分别是直角坐标、柱坐标和球坐标系统。
对于创建二维直角坐标,直接点击按钮,其二维坐标创建窗户见图附1-6。
在默认条件下可以逐步输入XY 平面上几何坐标系统X 和Y 的最大值、最小值及相临两条网格线之间的间隔值,用Update 钮确定。
注意在Options 栏目中的Snap 选项取选中。
为几何建模确定坐标位置的基准图。
例:创建一个x 方向为8,y 方向为1的区域,其操作过程如下: 在图附1-6中按顺序选定Visibility 项(为红色),Plane 项中XY 单选按钮(为红色)。
各种格式的模型与gambit接口教程
各种格式的模型与gambit接口教程1.ProE实体倒入:在proe中export成step文件,之后在gambit中import注:ProE中点选保存副本图标,选择以STL格式保存副本。
参见附图。
注意,实体必须画在几何空间中第一象限。
(即实体上所有点的X、Y、Z坐标都为正)附件为一个可用的STL格式文件,你可以试试导入GAMBIT。
2. UG和PRO/E中的风机import到gambit中Ug或pro/e中生成了几何模型可以以很多种形式导入gambit,如step igs stl等。
3如何将cad导入到gambit中在AutoCAD中输出的sat格式文件,到了gambit里面输入时出错--ACIS error 3205:save file is from a later version of ACIS我用的是cad2004,这条出错信息搞得我一头雾水既然出错有编号3205,我可以在帮助文件里看到它的详细解释吗?A:file-->import-->acis...存sat格式的较低版,如8。
0版,11。
0版gambit不认识你可以采用较低的AutoCAD版本A:可以使用igs模式导入A:(1)Gambit只适用于创建简单的三维几何体,对于复杂形体而言,其绘图功能是远远不够的,这时Gambit允许我们引入一些其他软件创建的文件,常用的有Autocad创建的ASCI 形式的文件.sat。
CAD中创建的图形要输出为.sat文件,要满足一定的条件。
对于二维图形来说,它必须是一个region,也就是说要求是一个联通域。
对于三维图形而言,要求其是一个ASCI body。
(2)先把autoCAD对象构成实体,导出.sat文件,再在gambit导入,注意有版本高低问题4 fluent中的cas文件能变成gambit里的dbs文件Q:在我现在想将cas文件中的网格做修改,该怎么办?A:可以,import进来就能得到5.怎么在ansys中制作模型导入fluent?A:存成一个gambit可以识别的格式。
Gambit与Fluent的操作过程
2.4插装阀Gambit操作步骤
1、打开Gambit软件
2、点击Browse,出现下面情况,选择所绘制的图形所要保存的路径。
3、点击Run,软件打开。
4、在Gambit中绘制仿真图形(或者在CAD或Solidworks中绘制仿真图形,其保存的格式为igs、step)。
选择图标:
5、对所画的仿真图形进行网格化。
选择图标:
6、设置网格化好的图形的边界条件,选择图标:
7、保存设置好的图形文件,其格式为msh。
出现如下所示,(如是二维选中export2-D(X-Y)Mesh) 选择Accept。
8、选择EXIT退出Gambit。
选择YES
1、打开FLUENT软件
2、导入前处理器Gambit中网格化的仿真图形。
3、检查有没有最小体积有没有负体积。
(如出现负体积在迭代计算中会出错)
4、在FLUENT中默认状态下的单位是m(米),单位的转换。
5、流动液体的密度、动力粘度及边进出口压力或流动液体的速度的设置等。
、
6、对置的参数进行初始化,进行迭代计算。
7、迭代计算后的插装阀内部流场的压力云图、速度云图、速度矢量图。
GAMBIT操作方法、Fluent操作方法
附录1:GAMBIT 建模操作方法利用GAMBIT 建立计算几何模型1. 启动GAMBIT :点击GAMBIT 图标后出现图附1-1文件操作窗口,需要在Working Directory 内填入文件夹地址,在Session ID 内填入文件名,然后点击Run ,进入GAMBIT 的主控制窗体如图附1-2所示。
比如,文件夹名称(需预先将名称设置好)为D:\heatexamp\chant2-1,文件名称为examp1,点击Run 按钮完成。
出现GAMBIT 主控制画面如图附1-2。
(注意GAMBIT 的文件操作中无法采用中文子目录) 主控制窗体有工作区、文件操作菜单区、操作命令图标区、全局控制区、命令反馈区和操作图标功能说明区等组成。
工作区提供操作后的图象显示,有坐标指示。
文件操作菜单提供文件的存取、打印、求解方法等功能。
操作命令图标区提供建模过程中的各种操作图标,共有4种主工具单选选择按钮,见图附1-2中右上方的Operation 区域。
2.求解工具:如果是新项目,在文件菜单区点击Solver ,确定求解工具为FLUENT5/6。
3. 建模坐标系统:选择工具命令按钮(Tools Command Buttoen ),确定所建模型的坐标系统,有5个可选项目,见图附1-3。
其中第一个按钮为坐标系选择按钮,选取该钮后,出现图附1-4所示坐标系统按钮组,其默认按钮为第一个,在该按钮下出现图附1-5的坐标系创建窗户。
在Type 栏中有三种选择,分别是直角坐标、柱坐标和球坐标系统。
对于创建二维直角坐标,直接点击按钮,其二维坐标创建窗户见图附1-6。
在默认条件下可以逐步输入XY 平面上几何坐标系统X 和Y 的最大值、最小值及相临两条网格线之间的间隔值,用Update 钮确定。
注意在Options 栏目中的Snap 选项取选中。
为几何建模确定坐标位置的基准图。
例:创建一个x 方向为8,y 方向为1的区域,其操作过程如下: 在图附1-6中按顺序选定Visibility 项(为红色),Plane 项中XY 单选按钮(为红色)。
Fluent风机计算教程
离心风机数值计算教程西北工业大学航海学院编制1. 流场建模蜗壳部分流场建模(1)草绘蜗壳轮廓(2)拉伸草图,绘制流域(3)扣除叶轮部分(4)增加风机出口叶轮流场建模(1)拉伸草图(2)扣除叶轮电机和进风口(3)扣除叶片和叶轮盘(4)静态线框图保存(1)建立的三维模型需要保存成iges 、step或X-T等三维模型通用格式,便于导入CFD前处理软件。
2.CFD前处理Gambit软件介绍快捷键功能鼠标左键旋转鼠标中键平移鼠标右键缩放Shift+鼠标左键选中Shift+鼠标中键框选、反向、替换换当先选中项Shift+鼠标右键确定(相当于点击Apply按钮)(2)各按钮功能简要介绍几何体操作按钮,激活后第二排分别为点、线、面、体和几何组按钮,分别激活可以进一步操作。
网格划分操作按钮,激活后第二排分别为边界层网格、边网格、面网格、体网格和几何组网格按钮,分别激活可以进一步操作。
边界条件设置操作按钮,激活后第二排分别为边界边界条件设置(进出口设置)和区域类型设置(定区域、静区域设置)按钮,分别激活可以进一步操作。
常用工具操作按钮,激活后第二排分别为坐标系设置、函数法生成网格、轴流叶轮工具等,分别激活可以进一步操作。
对于该模型,没有使用这一项。
功能按钮区,常用的有:适应窗口大小、调整显示坐标方向、隐藏几何体、转换静态线框模型和和实体模型、撤销和重做以及网格质量统计等功能。
文件导入(1)打开Fluent前处理软件Gambit ,分别导入蜗壳和叶轮部分的step文件和。
File→Import→STEP...(2)先导入叶轮部分,再导入蜗壳部分(3)全部导入后发现建模时,叶轮和蜗壳的坐标系不统一,二者位置关系不正确。
此时需要将蜗壳部分相对于xoy平面翻转180度。
(4)以实体图显示:(5)将叶轮部分两端凹进部分补齐,分别作为叶轮进口。
此操作主要目的是产生A、B两环面,并将这两个换面定义为wall类型,可以模拟风机进口处的挡风环。
gamit 操作步骤
gamit 操作步骤
以下是Gamit软件的操作步骤:
1. 数据准备:准备GPS观测数据和相关的参考桩,确保数据的准确性和完整性,并将其存储在计算机上的合适位置。
2. 数据导入:打开Gamit软件,从菜单中选择“数据导入”选项,在弹出的对话框中,选择准备好的GPS观测数据文件,并导入到Gamit中。
3. 固定点选择:根据需要选择一些固定点,这些点的坐标已知且稳定。
这些固定点将用于基线解算和数据校正。
请注意,以上步骤仅适用于Gamit软件的基本操作,如果您需要更详细的信息或操作指南,建议参考Gamit软件的官方文档或相关教程。
gambit轴流风机网格划分
BASIC TURBO MODEL WITH UNSTRUCTURED MESH8. BASIC TURBO MODEL WITH UNSTRUCTURED MESH This tutorial employs a simple turbine blade configuration to illustrate the basic turbo modeling functionality available in GAMBIT. It illustrates the steps and procedures required for importing data that describes the turbo blade, creating a geometric model that describes the flow region surrounding the blade, meshing the model, and exporting the mesh. The example presented here uses 3-D boundary layers to control the shape of the mesh in the regions immediately adjacent to the blade and employs an unstructured hexa-hedral mesh.In this tutorial, you will learn how to:•Import a turbo data file•Create a turbo profile•Modify a turbo profile to affect the shape of a turbo volume•Create a turbo volume•Define turbo zones•Apply 3-D boundary layers to a turbo volume•Mesh a turbo volume•View a turbo volume mesh using both 3-D and 2-D perspectives•Export a turbo volume mesh8.1 PrerequisitesPrior to reading and performing the steps outlined in this tutorial, you should familiarize yourself with the steps, principles, and procedures described in Tutorials 1, 2, 3, and 4.© Fluent Inc., Mar-06 8-1Problem Description BASIC TURBO MODEL WITH UNSTRUCTURED MESH8-2 © Fluent Inc., Mar-068.2 Problem DescriptionFigure 8-1 shows the turbomachinery configuration to be modeled and meshed in this tutorial. The configuration consists of a turbine rotor on which are affixed 60 identical blades, each of which is spaced equidistant from the others on the rotor hub. Each blade includes a concave (pressure ) side and a convex (suction ) side, and the rotor rotates counterclockwise about the x -axis, extracting work from the fluid (air) as it flows betweenthe blades (see Figure 8-2).Figure 8-1: 60-blade turbine rotorBASIC TURBO MODEL WITH UNSTRUCTURED MESH Problem DescriptionOutlet flowInlet flowFigure 8-2: Turbine rotor blade configurationsThe overall goal of this tutorial is to create a geometric model of the flow region immedi-ately surrounding one of the turbo blades and to mesh the model using an unstructured hexahedral mesh.© Fluent Inc., Mar-06 8-3Strategy BASIC TURBO MODEL WITH UNSTRUCTURED MESH8.3 StrategyIn general, the GAMBIT turbo modeling procedure includes seven basic steps:1)Creating or importing edge data that describes the turbo profile2)Creating the turbo profile3)Creating the turbo volume4)Assigning zone types to regions of the turbo volume5)Decomposing the turbo volume6)Meshing the turbo volume7)Viewing the turbo volumeThis tutorial illustrates six of the seven steps listed above. The tutorial excludes the turbo decomposition step, because the turbo volume is to be meshed using unstructured hexahe-dral mesh elements. Turbo volume decomposition is primarily used to facilitate the crea-tion of structured meshes (see Tutorial 9 in this guide).NOTE: In this tutorial, the turbo-volume viewing operation (Step 7, above) is illustrated in conjunction with the mesh examination step (see “Step 11:Examine the Mesh,” below). 8-4 © Fluent Inc., Mar-06BASIC TURBO MODEL WITH UNSTRUCTURED MESH Procedure 8.4 Procedure1.Copy the filepath/Fluent.Inc/gambit2.x/help/tutfiles/turbo_basic.tur (where 2.x is the GAMBIT version number) from the GAMBIT installation area in the directory path to your working directory.2.Start GAMBIT using the session identifier “Basic_Turbo”.Step 1: Select a Solver1.Choose the solver from the main menu bar:Solver → FLUENT 5/6The choice of solver affects the types of options available in the Specify Boundary Types form (see “Step 12:Specify Zone Types,” below). For some systems, FLUENT 5/6 is the default solver. The currently selected solver is shown at the top of the GAMBIT GUI.© Fluent Inc., Mar-06 8-5Procedure BASIC TURBO MODEL WITH UNSTRUCTURED MESH 8-6 © Fluent Inc., Mar-06Step 2: Import a Turbo Data FileTurbo data files contain information that GAMBIT uses to define the turbo profile (see “Step 3:Create the Turbo Profile,” below). Such information includes: point data that describes the shapes of the profile edges, edge-continuity data, and specification of the rotational axis for the turbo volume.1. Select the Import Turbo File option from the main menu bar.File → Import → Turbo...This command sequence opens the Import Turbo Fileform.2. Click the Browse... button.This action opens the Select Fileform.BASIC TURBO MODEL WITH UNSTRUCTURED MESH Procedurea)In the Files list, select turbo_basic.tur.b)On the Select File form, click Accept.3.On the Import Turbo File form, click Accept.GAMBIT reads the information contained in the data file and constructs the set of edges shown in Figure 8-3. The two straight edges shown in the figure describe the hub and casing for the turbo volume. The two sets of curved edges constitute cross sections of a single turbo blade.Casing edgeBlade cross sectionsHub edgeFigure 8-3: Imported turbo geometry© Fluent Inc., Mar-06 8-7Procedure BASIC TURBO MODEL WITH UNSTRUCTURED MESH 8-8 © Fluent Inc., Mar-06Step 3: Create the Turbo ProfileThe turbo profile defines the basic characteristics of the turbo volume, including the shapes of the hub, casing, and periodic (side) surfaces. In GAMBIT , the edges that describe the hub, casing, and blade cross sections are defined by means of their inlet endpoint vertices.1. Specify the hub, casing, and blade-cross-section edges of the turbo profile.TOOLS →TURBO →CREATE PROFILEThis command sequence opens the Create Turbo Profileform.In this step, you will specify vertices that define the hub, casing, and blade cross-sections. In addition, you will specify the axis of revolution for the turbo configu-ration. All instructions listed in this step refer to the vertex labels shown in Figure 8-4.BASIC TURBO MODEL WITH UNSTRUCTURED MESH Procedure© Fluent Inc., Mar-06 8-9 Hub InletCasing InletAB CDBlade TipsFigure 8-4: Vertices used to specify the turbo profilea) Activate the Hub Inlet list box on the Create Turbo Profile form.To activate an input field, such as a list box, on any GAMBIT specification form, left -click in the input box located adjacent to the field label—in this case, “Hub Inlet ”. (By default, GAMBIT activates the Hub Inlet field when you open the Create Turbo Profile form.)b) Select vertex A .c) Activate the Casing Inlet list box.d) Select vertex B .e) Specify the x axis as the axis of revolution for the turbo configuration.i. Click the Axis:Define pushbutton.This action opens the Vector Definition form.Procedure BASIC TURBO MODEL WITH UNSTRUCTURED MESH8-10© Fluent Inc., Mar-06 ii.Select the Direction:X-Positive option.iii.On the Vector Definition form, click Apply.f)Activate the Blade Tips list box.g)Select vertex C.h)Select vertex D.!The order in which the Blade Tips vertices are selected is important to the definition of a turbo profile. Specifically, the Blade Tips vertices must be selected in order from the hub cross section to the casing cross section.i)Click Apply to accept the vertex selections and create the turbo profile.GAMBIT creates the turbo profile shown in Figure 8-5.Rail edgesRail edges Medial edgesABFigure 8-5: Turbo profileThe profile includes six new edges, four of which are real edges and two of which are virtual edges. The four real edges are circular arc (“rail”) edges that are formed by revolving the hub and casing endpoint vertices about the axis of revo-lution for the profile. The two virtual edges are “medial” edges, the centermost shapes of which represent the mean shapes of the blade cross sections. The end-point vertices of the medial edges are hosted by the rail edges, and the medial edges are defined such that they pass through the leading and trailing vertices of the blade cross sections. The medial edges define the shapes of the periodic sur-faces on the turbo volume (see “Step 5:Create the Turbo Volume,” below).© Fluent Inc., Mar-06 8-11Step 4: Modify the Inlet and Outlet Vertex Locations It is often useful to control the shape of the turbo volume such that its inlet and outlet surfaces represent smooth flow transitions to and from the inlet and outlet ends, respectively, of the turbo blade. In GAMBIT, you can control the shape of the turbo volume by adjusting the positions of the medial-edge endpoint vertices prior to con-structing the volume.1.Open the Slide Virtual Vertex form.TOOLS →TURBO →SLIDE VIRTUAL VERTEXThis command sequence opens the Slide Virtual Vertexform.a)Select the inlet endpoint vertex of the medial edge for the casing blade crosssection (vertex A in Figure 8-5, above).b)In the U Value field, enter the value 0.999.As an alternative to entering a value in the U Value field, you can select thevertex in the graphics window and drag it along its host rail edge until the UValue field value is 0.999.c)Retain the Move With Links (default) option.8-12 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 8-13 The Move With Links option specifies that GAMBIT is to apply the current Slide Virtual Vertex specifications to all medial-edge inlet endpoint vertices in addi-tion to the selected vertex.d) Click Apply to accept the new position of the medial-edge inlet endpoint vertices. e) Select the outlet endpoint vertex of the medial edge for the casing blade crosssection (vertex B ).f) In the U Value field, enter the value 0.019.g) Retain the Move With Links (default ) option.h) Click Apply to accept the new position of the medial-edge outlet endpoint vertices.The modified turbo profile appears as shown in Figure 8-6.Figure 8-6: Turbo profile with modified inlet and outlet vertex locationsStep 5: Create the Turbo VolumeA “turbo volume” is a 3-D region—which is defined by a set of one or more geomet-ric volumes—that represents the flow environment surrounding the turbo blade. The turbo volume characteristics are determined by the turbo profile and by specification of the number of blades on the rotor (or angle between blades), the tip clearance, and the number of spanwise sections. This example does not include a tip clearance but does include spanwise sectioning.1.Specify the pitch and number of spanwise sections for the turbo volume.TOOLS →TURBO →CREATE TURBO VOLUMEThis command sequence opens the Create Turbo Volumeform.a)In the Pitch text box, enter 60.b)On the Pitch option button (located to the right of the Pitch text box), select theBlade count option.c)In the Spanwise Sections text box, enter 2.d)Click Apply.GAMBIT creates the turbo volume shown in Figure 8-7.8-14 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 8-15 Casing faceHub faceInletfaces OutletfacesFigure 8-7: Turbo volume—consisting of two geometric volumesStep 6: Define the Turbo ZonesThis step standard zone types to surfaces of the turbo volume. The zone-type specifi-cations determine which faces are linked for meshing. In addition, GAMBIT auto-matically associates turbo zone types to boundary zone definitions for some solvers.1.Specify the faces that constitute the hub, casing, inlet, outlet of the turbo volume, aswell as the pressure and suction sides of the turbo blade.TOOLS →TURBO →DEFINE TURBO ZONESThis command sequence opens the Define Turbo Zonesform.a)Activate the Hub list box.b)Select the bottom (hub) face of the turbo volume (see Figure 8-7, above).c)Activate the Casing list box.d)Select the top (casing) face of the turbo volume.e)Activate the Inlet list box.f)Select the two inlet faces.g)Activate the Outlet list box.h)Select the two outlet faces.8-16 © Fluent Inc., Mar-06i)Activate the Pressure list box.j)Select the six faces on the inner-curve (pressure side) of the turbo blade.k)Activate the Suction list box.l)Select the six faces on the outer-curve (suction side) of the turbo blade.m)Click Apply to assign the turbo zone types.© Fluent Inc., Mar-06 8-17Step 7: Apply 3-D Boundary LayersFor turbo models, 3-D boundary layers allow you to ensure the creation of high-quality mesh elements in regions adjacent to the turbo blade surfaces. Such boundary layers are particularly useful when the turbo volume is to be meshed using an unstructured meshing scheme.1.Specify the hub, casing, and blade-cross-section edges of the turbo profile.TOOLS →TURBO →CREATE/MODIFY BOUNDARY LAYERSThis command sequence opens the Create Boundary Layerform.8-18 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 8-19 a) In the First row text box, enter a value of 1.b) In the Growth factor text box, enter a value of 1.2.c) In the Rows text box, specify a value of 5, either by direct input of the value or bysliding the Rows slider bar.GAMBIT automatically calculates a Depth value of 7.4416, based on the First row , Growth factor , and Rows specifications.d) Select the Internal continuity option.e) In the Attachment input field, select the Faces option.f) Activate the Faces list box, and select the 12 faces that comprise the pressure andsuction sides of the turbo blade.g) Click Apply .Figure 8-8 shows the 3-D boundary layers projected onto the three spanwisesurfaces of the turbo volume.Figure 8-8: Turbo volume with 3-D boundary layersBy default, GAMBIT displays the boundary layers in the graphics window unless they are made invisible by direct user action. The boundary layer dis-play can make it difficult to view the model during subsequent steps in the modeling process; therefore, it is advisable to render the boundary layers invisible before continuing the tutorial.2.Select the SPECIFY DISPLAY ATTRIBUTEScommand button on the GlobalControl toolpad.This action opens the Specify Display Attributesform.a)Select the B. Layers check box.b)Select the Visible:Off option.c)Click Apply.8-20 © Fluent Inc., Mar-06GAMBIT turns off the display of the boundary layers.d)Close the Specify Display Attributes form.© Fluent Inc., Mar-06 8-21Step 8: Mesh the Blade Cross-Section EdgesIn this step, you will pre-mesh the edges that represent the blade cross sections, thereby ensuring a finer mesh in proximity to the turbo blade surfaces than is created in the bulk of the turbo volume.1.Mesh the centermost pressure-side edges of the turbo blade.TOOLS →TURBO →MESH EDGES/FACES/VOLUMESThis command sequence opens the Mesh Edgesform.a)Activate the Edges list box, and select the three centermost edges on the pressureside of the blade cross sections.b)On the Grading:Type option button, retain Successive Ratio.8-22 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 8-23 c) In the Ratio input field, enter a value of 1.02.d) Select the Double sided option.When you select the Double sided option, GAMBIT changes the Ratio input field to Ratio 1 and displays a field named Ratio 2 that contains a ratio specifi-cation identical to that of Ratio 1 (that is, 1.02).e) On the Spacing option button, select Interval count .f) In the Spacing text box, enter a value of 100.g) Click Apply .GAMBIT meshes the selected edges as shown in Figure 8-9. The Double sided option with a ratio of 1.02 grades the edges such that mesh nodes are bunchednear the endpoint vertices of the edges.Figure 8-9: Meshed centermost pressure-side edges of the turbo blade2. Mesh the suction-side edges of the turbo blade.a) Activate the Edges list box, and select the three centermost edges on the suctionside of the blade cross sections.b) On the Grading:Type option button, retain Successive Ratio .c)In the Ratio input field, enter a value of 1.02.d)Select the Double sided option.e)On the Spacing option button, retain Interval count.f)In the Spacing text box, enter a value of 110.g)Click Apply.3.Mesh the leading edges of the turbo blade.a)Activate the Edges list box.b)Select the six edges (two edges on each cross section) on either side of the leadingvertices for the top, middle, and bottom blade cross sections.!When selecting the edges, modify the edge senses, as necessary, such that they point away from the leading vertices of the cross sections. When youselect an edge in the graphics window, GAMBIT automatically displays anarrowhead in the middle of the edge to indicate the sense of the edge. Tochange the sense of any selected edge, Shift-middle-click the edge. (NOTE: Ifthe sense-direction arrowhead is obscured by mesh nodes displayed on theedge, set the Interval count to 1 while selecting edges for meshing.)c)On the Grading:Type option button, retain Successive Ratio.d)In the Ratio input field, enter a value of 1.05.The single-sided meshing option with a ratio of 1.05 grades the edges suchthat mesh nodes are bunched near the leading vertices of the edges—that is, inthe regions of highest curvature for the edges.e)On the Spacing option button, retain Interval count.f)In the Spacing text box, enter a value of 15.g)Click Apply.4.Mesh the trailing edges of the turbo blade.a)Activate the Edges list box.b)Select the six edges (two edges on each cross section) on either side of the trailingvertices for the three blade cross sections.8-24 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 8-25 c) On the Grading:Type option button, retain Successive Ratio .d) In the Ratio input field, enter a value of 1.e) On the Spacing option button, retain Interval count .f) In the Spacing text box, enter a value of 3.g) Click Apply .Figure 8-10 shows the final edge-mesh configuration for the turbo blade crosssections.Figure 8-10: Meshed edges of turbo blade cross sectionsStep 9: Mesh the Center Spanwise FaceTo create an unstructured mesh for this example, it is best to pre-mesh the middle spanwise face and to employ the middle face as a source face for a Cooper meshing scheme applied to the two geometric volumes. The use of the middle face as a source face ensures that the Cooper scheme produces a mesh with minimal distortion throughout the turbo volume.1.Mesh the center spanwise face of the turbo volume.TOOLS →TURBO →MESH EDGES/FACES/VOLUMES RThis command sequence opens the Mesh Faces form.a)Activate the Faces list box, and select the middle spanwise face.GAMBIT automatically selects the Quad and Pave Scheme options based onthe face characteristics.8-26 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 8-27 b) On the Scheme:Elements option button, retain the Quad option.c) On the Scheme:Type option button, retain the Pave option.d) On the Spacing option button, select the Interval size option.e) In the Spacing text box, enter a value of 5.f) Click Apply .GAMBITmeshes the middle spanwise face as shown in Figure 8-11.Figure 8-11: Meshed center spanwise faceStep 10: Mesh the VolumesIn this step, you will apply a Cooper meshing scheme to the two geometric volumes that comprise the turbo volume.1.Mesh the turbo volume.TOOLS →TURBO →MESH EDGES/FACES/VOLUMES RThis command sequence opens the Mesh Volumes form.a)Activate the Volumes list box, and select the both of the geometric volumes thatcomprise the turbo volume.GAMBIT automatically selects the Scheme:Elements:Hex/Wedge and Scheme:Type:Cooper options for the selected volumes.b)Retain the automatically selected Scheme options.c)On the Spacing option button, select Interval size.8-28 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 8-29 d) In the Spacing text box, enter a value of 10.e) Click Apply .GAMBITmeshes the volumes as shown in Figure 8-12.Figure 8-12: Meshed volumesStep 11: Examine the Mesh1.Select the EXAMINE MESHcommand button at the bottom right of the GlobalControl toolpad.This action opens the Examine Meshform.The Examine Mesh form allows you to view various mesh characteristics for the 3-D mesh. For example, Figure 8-13 displays volume mesh elements for which the EquiSize Skew parameter is between 0.4 and 0.5 for this example.a)Click Update at the bottom of the Examine Mesh form.8-30 © Fluent Inc., Mar-06© Fluent Inc., Mar-06 8-31 GAMBIT does not automatically update the graphics display when you open the Examine Mesh form or modify its specifications, such as Display Type or Quality Type . To update the graphics display, you must click the Update push-button located at the bottom of the form. GAMBIT displays the Update pushbutton label in red lettering whenever the display needs to be updated to reflect the current Examine Mesh specifications.Some Examine Mesh operations automatically update the graphics display. For example, if you select the Display Type:Range option and click one of the histogram bars, GAMBITautomatically updates the display.Figure 8-13: Hexahedral mesh elements—EquiSize Skew = 0.4–0.5The Examine Mesh command and options can be used in conjunction with the View Turbo Volume command to view 2-D characteristics of the mesh on the hub, casing, and spanwise surfaces. Such views are particularly useful when examining the mesh on highly twisted blades.2. Display the middle spanwise surface in a cascade turbo view.TOOLS →TURBO →VIEW TURBO VOLUMEThis command sequence opens the View Turbo Volume form.8-32© Fluent Inc., Mar-06a) Select the Cascade surface:Spanwise option.b) In the Spanwise text box, enter a value of 1.The Cascade surface specifications described above specify a flattened, 2-D display of the middle spanwise surface of the turbo volume.c) Click Apply .Figure 8-14 displays face mesh elements for which the EquiSize Skew parameter is between 0.1 and 0.3 for this example. (NOTE: To view the 2-D face elements shown in Figure 8-14, select the Display Type:2D Element option on the Examine Mesh form, and specify the display of quadrilateral () elements.)© Fluent Inc., Mar-068-33Figure 8-14: Quadrilateral mesh elements—EquiSize Skew = 0.1–0.3Figure 8-15 displays a zoomed view of the mesh in the region surrounding theblade tip.Figure 8-15: Quadrilateral mesh elements—zoomed view near blade tipd)Select the Off option and click Apply to turn off the cascade turbo view beforespecifying zone types.8-34 © Fluent Inc., Mar-06Step 12: Specify Zone TypesYou can use the Specify Boundary Types command to apply solver-specific boundary zone specifications to surfaces of the turbo volume. For some solver options, includ-ing Fluent 5/6, GAMBIT automatically assigns such boundary zone specifications. 1.Check the automatically applied boundary zone types.ZONES →SPECIFY BOUNDARY TYPESThis command sequence opens the Specify Boundary Typesform.© Fluent Inc., Mar-06 8-35Step 13: Export the Mesh and Exit GAMBIT1.Export a mesh file.a)Open the Export Mesh File form.File → Export → Mesh…form.This command sequence opens the Export Mesh Filei.Enter the File Name for the file to be exported—for example, the file name“basic_turbo.msh”.ii.Click Accept.GAMBIT writes the mesh file to your working directory.2.Save the GAMBIT session and exit GAMBIT.a)Select Exit from the File menu.File → Exitform.This action opens the Exitb)Click Yes to save the current session and exit GAMBIT.8-36 © Fluent Inc., Mar-068.5 SummaryThis tutorial demonstrates the use of the basic turbo modeling operations available in GAMBIT. The edge data that describes the geometry of the turbo profile was imported from a turbo data file, and the completed turbo profile was adjusted to affect the shape of the turbo volume. The turbo volume was divided into two spanwise sections, each of which was meshed by means of a Cooper scheme that employed the common face between them as a source face. Three-dimensional boundary layers were applied to the surfaces of the turbo blade to ensure a high-quality mesh in proximity to the turbo blade. Finally, the mesh examining capabilities in GAMBIT were used in conjunction with the turbo viewing capability to examine the 2-D mesh on the middle spanwise face.© Fluent Inc., Mar-06 8-37。
GAMBIT使用说明
GAMBIT使用说明GAMBIT是使用FLUENT进行计算的第一个步骤。
在GAMBIT 中我们将完成对计算模型的基本定义和初始化,并输出初始化结果供FLUENT的计算需要。
以下是使用GAMBIT的基本步骤。
1.1定义模型的基本几何形状如左图所示的按钮就是用于构造模型的基本几何形状的。
当按下这个按钮时,将出现如下5个按钮,它们分别是用以定义点、线、面、体的几何形状的。
值得注意的是我们定义这些基本的几何元素的一般是依照以下的顺序:点——线(两点确定一线)——面(3线以上确定一面)——体(3面以上确定体)对各种几何元素的操作基本方式是:首先选中所要进行的操作,再定义完成操作所要的其他元素,作后点“APPLY”按钮完成操作。
以下不一一重复。
下面我们分别介绍各个几何元素的确定方法:1.1.1点的操作对点的操作在按下点操作按钮后进行(其他几何元素的操作也是这样)。
点有以下几种主要操作定义点的位置按钮,按下后出现下面对话框Coordinate Sys.:用以选择已有坐标系中进行当前操作的坐标系T ype:可以选择3种相对坐标系为当前坐标系:笛卡儿坐标、柱坐标、球坐标。
以下通过在Global 中直接输入点的x、y、z值定义点,注意这里的坐标值是绝对坐标值,而Local中输入的是相对坐标值,一般我们使用绝对坐标值。
Label:为所定义的点命名。
在完成以上定义后就可以通过进行这个点的定义,同时屏幕左半部的绘图区中将出现被定义的点。
用关闭此对话框。
查看所有点的几何参数按钮(在以后的操作中也可以查看其他元素的几何参数)在Vertices栏中选择被查询的点,有两种选择方式(其他几何元素的选择与此类似):①按住shift键的同时用鼠标左键取点②点按钮,选择查询点选择后进行“APPLY”完成操作,可在屏幕左下角Transcript框中看查询结果。
1.1.2线的操作线操作按钮下面介绍主要的几种线操作定义直线按钮定义直线的前提是有两个点,两点确定一条直线。
Gambit及Fluent操作步骤图解
Gambit及Fluent操作步骤图解现在PRO/E软件中建立燃烧室和气缸工作容积的三维图,并且以*.stp格式输出,在磁盘建立一个文件夹(比如在D盘建立一个名称为step的文件夹),将刚才的*.stp文件放在此文件夹下面。
桌面上打开Gambit图标,见图1。
图1在菜单File下,点击Import > STEP,见图2。
打开Import STEP File窗口,见图3。
图2图3 找到并打开刚才的*.stp文件,如图4所示。
图4 使用2条边建立一个面,见图5。
图5可以将本模型划分为两部分,打开Split Volume窗口,使用刚才建立的面将模型划分为2个部分,见图6。
图6, 进行网格划分,先对上面的体积进行网格划分,由于其形状比较规则,所以可以使用6面体网格单元,见图7。
然后对下面的体积进行网格划分,由于其形状不规则,所以选用4面体网格单元,见图8。
全部网格划分完后,见图9。
图7图8图9点击右下方的SPECIFY MODEL DISPLAY ATTRIBUTES,在其面板上的Mesh选项后点击off,即可关闭网格显示,但是此时模型网格已经划分了。
图10边界条件的设置,分别选中需要设置的面,如本例中选中face4,将其名称设为movwall,类型设为wall,见图11. 选中face12,将其名称设为middle,类型设为INTERIOR,见图12. 选择face2和face3,将其名称设为cylinder,类型设为wall。
图11图12图13指定体,分别设置模型的上部和下部为V2和V1,如图14和15.图14图15以上模型网格设置好之后,将模型以*.msh格式输出,本例子以cylinder.msh 输出,见图16。
图16打开FLUENT图标,在FLUENT Versions窗口中选择3d,见图17。
图17分别选择File>Read>Case,找到前面输出的cylinder.msh文件,选择并打开,见图18。
Gambit教程
理解连通性的概念非常重要. 为了使流体能够从一个面/体流到另一个面/体,这两个实体必须连接在一起 正投影网格 –两个实体的连接边界上的节点是共享的
正投影接触面 (面相连接)
非正投影接触面
(面不相连接)
通用操作 – 连接
连接
点,边和面都可连接. 这个操作删除所有重复实体并重新连接上面的实体. 只有不超过ACIS标准公差的实体才会被连接. 存在的网格将会被保存起来
屏幕编辑/命令处理日志文件 从日志文件中删除不必要记录,错误命令
文件菜单
输入
ACIS, Parasolid IGES, STEP, Catia V4, Catia V5 ICEM 输出, Vertex 数据 CAD Pro/E (STEP or DIREC) Optegra 可视化工具 I-DEAS FTL
一览表
窗体
选择列表
单击箭头打开选择列表
根据选择把“可用” 列表分类
选择列表的功能
单击箭头实现选择 加亮“选择的”实体呈现红色出现在屏幕上 edge.32, edge.33 不加亮“选择的” 将会呈粉红色 edge.26, edge.28 右键单击列表区域提供额外选择 过滤器习惯用来控制那个目标被选中.
边/面/体的质心
一条边上的投影
其它的点创建方法在附录里有列举
面上和体上的 从文件里读取坐标数据
边创建 – 直线和弧线
直线
多条边能通过多个点来创建.
弧 圆弧
三个点确定一条弧 /圆弧 或 中心 和两个终点 或 半径和 开始/结束角度 (仅限于弧线)
流体flunt gambit操作步骤_李岩(20110701)[1]
SolidWorks建模1、进入SolidWorks界面,选择新建—零件图—草图2、进行梳齿的草图绘制在中选择直线绘制,绘制一条直线,长度任意,左键单击直线,出现直线属性对话框我们绘制如下图形单击智能尺寸,我们可以进行直线间角度的修改将直线间角度改为 15绘制另一条直线,并在直线中点绘制一小线段选择线性草图阵列,将此小线段阵列为左右各三段,中间间隔为3mm在移动实体选项中选择复制实体图在选择绘制圆角,圆角半径0.5得到如下图形将与最左端圆弧连接的直线长度改为10mm,最又断的也改为10mm,删除多余的辅助线得到如下图形绘制梳齿的平面图形,如下图在特性选项中选择拉伸凸台/基体将图形拉伸为如下所示回到草图界面,在视图定向上选择上视在上视状态下,绘制一辅助中心线,如下图在中心线中间绘制一六面形(通过绘图菜单选项中的多边形绘制)删除多余辅助线得到将此六边形进行阵列,左右分别进行,阵列距离是1.7mm,数目是7分别进行后得到如下图形绘制如下图形黑线所示)通过智能尺寸,修改线段见几何关系,得到如下图形同样,将上面的六边形进行阵列,距离为1.7,数目12,得到如下图形通过镜像得到如下图形在特征选项中选择拉伸高度选择3.2,得到如下图形回到草图,在视图选项中选择上视选项,如图构建辅助线,如图在特征选项中选择拉伸切除将给定深度更改为两侧对称,深度10得到如下图形注意:保存时将文件格式改为Parasolid(*.x_t)格式Gambit划分网格1、进入Gambit程序,在File中选择Import—Parasolid在如下对话框中选择(文件路径选择为E:\225.x_t,因为建模图形在以Parasolid格式存储的时候就是存到此路径下,故在此路径下打开)打开之后得到如下图形在Global Control第二排的第三个选项,选择modify hide在梳齿和蜂窝分界处建立一平面,然后沿着此平面将此示例体分为两部分,操作如下:建立平面:先将四个点依次连成线,再将线连成面,平面如下分离示例体:操作步骤如下在Operation—Geometry—V olume—Split V olume中选择体与面在Operation选项中选择Mesh,然后选择Face选项中Link Face Meshes此步骤主要是为了后面的循环边条做准备,可以看到,在Link Face Meshes中有两个Face和两个Vertices选项(即两个面和两个点),目的是将相应的循环面和循环面中相应的点连接起来,以达到相应面上的各点对应相等。
Gambit中写风机tur文件的步骤
Gambit中写风机tur文件的步骤在gambit中要生成一个风机模型,可以考虑用其提供的TOOLS-TURBO命令一步一步来生成,但是在开始之前,需要生成几条线,这些线代表了风机hub,casing,以及blade和splitter 的位置和截面形状。
这些线条可以通过*.tur文件导入,下面就介绍一些*tur文件的生成步骤。
*.tur文件可以直接用文本文件来写。
*.tur文件中/ 打头的都表示注释行1. 写头文件,都文件共有三个组成部分,版本号、旋转轴,以及坐标系统。
下面举例说明:/ FILE VERSION NUMBER: 1.2.0。
1 为major version,2为minor version,0表示revision number1 2 0/ ROTATIONAL AXIS: Y-AXIS。
其中0,1,2分别表示x,y,z轴。
1/ COORDINATE SYSTEM TYPE: CARTESIAN。
0表示直角坐标,1表示柱坐标02. 分别写出hub,casing和Tip-Clearance (可选)的信息。
这些信息共包括3部分:hub共有几条边组成,每条边上有几个点,这些点的坐标是什么。
举例子:/ HUB DATA: 2 EDGES DEFINED BY 2 and 4 POINTS,RESPECTIVELY.注意下面的数字并没有实际意义,这么给出只是为了说明数据格式而已。
22-50.0 0.0 255.0200.0 0.0 255.04-50.0 0.0 255.0200.0 0.0 255.0-50.0 0.0 255.0200.0 0.0 255.0写完了hub之后,按照同样的格式写出casing,以及tip-clearance(可选)的信息。
3. 分别写出blade和splitter(可选)的截面上的信息,这些信息包括4个部分:(1)共有几中blade(如果为1则表示系统中只含有blade,没有导流板splitter;如果为2,则表示系统中同时含有blade和splitter),(2)Number of profiles used to describe blade(经过我的验证,发现这句话的意思是用几个剖面来表示blade,blade的个数必须2,对于翼型复杂的叶片,则可以增加剖面的个数使得生成的blade跟接近实际的形状),(3)Number of edges per side used to describe each profile for blade(这句话的意思应该为每个剖面的每个side上有几条edge,按照我的理解这里的side是指pressure side 或者sucti on side。
gambit使用说明书(附范例)
在Gambit中选择一个对象的方法有两种:
1.按住Shift键,用鼠标左键单击选择的对象,该对象被选中,以红色显示。
2.单击输入栏右方的向上箭头,就会出现一个对话框,从对话框中可以选择需要的点的名称(见图11)。因此为了便于记忆,建议在创建对象的时候要起一个便于记住的名字。
首先要确定问题的计算域。
二.
图1是一个二维轴对称单孔喷嘴射流问题的计算区域。由于Fulent的边界提法比较粗糙,多为一类边界条件,因此建议在确定计算域时,可以适当加大计算范围。从图中我们可以看出,计算区域为4D*12D,其中在喷嘴的左边取了2D的计算区域,就是为了减小边界条件对计算的影响。
图1计算域的确定
1.3三维建模
2.按住Shift按钮,用鼠标左键单击图形中的线段1,选择其为创建对象。
3.输入参数值为:First Row:0.05,Growth Factor:1.01,Rows:10,选择创建形式为1:1,单击Apply按钮完成创建工作(见图20)。
图
2.2.2创建边上的网格点数
当我们划分的网格需要在局部加密或者划分不均匀网格时,我们首先要定义边上的网格点的数目和分布情况。
命令显示窗和命令输入栏
命令显示窗和命令输入栏位于Gambit的左下方(如图4所示)。
图4命令显示窗和命令输入栏
命令显示窗中记录了每一步操作的命令和结果,而命令输入栏则可以直接输入命令,其效果和单击命令按钮一样。
命令解释窗
图5显示的是位于命令显示窗左方的命令解释窗,当我们将鼠标放在命令面板中任意一个按钮的上面,Description窗口中将出现对该命令的解释。
gambit 操作指南
GAMBIT 2.3Tutorial GuideMarch 2006Licensee acknowledges that use of Fluent, Inc.’s products can only provide an imprecise estimation of possible future performance and that additional testing and analysis, independent of the Licensor’s products, must be conducted before any product can be finally developed or commercially introduced. As a result, Licensee agrees that it will not rely upon the results of any usage of Fluent, Inc.’s products in determining the final design, composition, or structure of any product.© 2006 by Fluent, IncorporatedAll Rights Reserved. No part of this document may be reproduced or otherwise used in any form without express written permission from Fluent, Incorporated.Airpak, FIDAP, FLUENT, GAMBIT, Icepak, MixSim, and POLYFLOW are registered trademarks of Fluent, Inc.ImageMagick is © 1996 E.I. du Pont de Nemours and Co.All other products or name brands are trademarks of their respective holders.For GAMBIT Technical Support contact information, visit the Fluent, Inc. Web site at .Fluent, IncorporatedCenterra Resource Park10 Cavendish CourtLebanon, NH 03766iiiTABLE OF CONTENTS0. USING THIS TUTORIAL GUIDE.................................................... 0-1 0.1 What’s in This Guide .....................................................................................0-10.2 How to Use This Guide...................................................................................0-20.3 Font Conventions............................................................................................0-30.4 Using the Mouse..............................................................................................0-40.4.1 Menus and Forms .................................................................................0-40.4.2 Graphics Window.................................................................................0-40.5 GUI Components ............................................................................................0-80.5.1 Graphics Window.................................................................................0-90.5.2 Main Menu Bar ....................................................................................0-90.5.3 Operation Toolpad ...............................................................................0-90.5.4 Form Field..........................................................................................0-110.5.5 Global Control Toolpad .....................................................................0-120.5.6 Description Window ..........................................................................0-120.5.7 Transcript Window and Command Text Box ....................................0-121. CREATING AND MESHING BASIC GEOMETRY....................... 1-1 1.1 Prerequisites ....................................................................................................1-11.2 Problem Description.......................................................................................1-21.3 Strategy............................................................................................................1-31.4 Procedure.........................................................................................................1-4Step 1: Create a Brick....................................................................................1-5Step 2: Create an Elliptical Cylinder .............................................................1-8Step 3: Unite the Two Volumes ..................................................................1-10Step 4: Manipulate the Display ...................................................................1-12Step 5: Mesh the Volume ............................................................................1-14Step 6: Examine the Mesh...........................................................................1-16Step 7: Save the Session and Exit GAMBIT...............................................1-201.5 Summary .......................................................................................................1-212. MODELING A MIXING ELBOW (2-D)........................................... 2-1 2.1 Prerequisites ....................................................................................................2-12.2 Problem Description.......................................................................................2-22.3 Strategy............................................................................................................2-32.4 Procedure.........................................................................................................2-4Step 1: Select a Solver...................................................................................2-4Step 2: Create the Initial Vertices..................................................................2-5Step 3: Create Arcs for the Bend of the Mixing Elbow..............................2-10Step 4: Create Straight Edges......................................................................2-13Step 5: Create the Small Pipe for the Mixing Elbow ..................................2-15Step 6: Create Faces From Edges................................................................2-23Table of ContentsivStep 7: Specify the Node Distribution.........................................................2-26Step 8: Create Structured Meshes on Faces ................................................2-34Step 9: Set Boundary Types ........................................................................2-37Step 10: Export the Mesh and Save the Session .........................................2-412.5 Summary .......................................................................................................2-423. MODELING A THREE-PIPE INTERSECTION (3-D) ................... 3-1 3.1 Prerequisites ....................................................................................................3-13.2 Problem Description.......................................................................................3-23.3 Strategy............................................................................................................3-33.4 Procedure.........................................................................................................3-5Step 1: Select a Solver...................................................................................3-5Step 2: Create the Geometry..........................................................................3-5Step 3: Decompose the Geometry .................................................................3-9Step 4: Journal Files ....................................................................................3-19Step 5: Turn Off Automatic Smoothing of the Mesh..................................3-22Step 6: Apply Boundary Layers at Walls ....................................................3-24Step 7: Mesh the Sphere Octant Volume ....................................................3-28Step 8: Mesh the Pipe Volumes ..................................................................3-30Step 9: Examine the Quality of the Mesh....................................................3-41Step 10: Set Boundary Types ......................................................................3-443.5 Summary .......................................................................................................3-494. MODELING A COMBUSTION CHAMBER (3-D) ......................... 4-1 4.1 Prerequisites ....................................................................................................4-14.2 Problem Description.......................................................................................4-24.3 Strategy............................................................................................................4-34.4 Procedure.........................................................................................................4-6Step 1: Select a Solver...................................................................................4-6Step 2: Set the Default Interval Size for Meshing.........................................4-6Step 3: Create Two Cylinders .......................................................................4-8Step 4: Subtract the Small Cylinder From the Large Cylinder ....................4-12Step 5: Shade and Rotate the Display .........................................................4-14Step 6: Remove Three Quarters of the Cylindrical Volume........................4-15Step 7: Create the Chamber of the Burner ..................................................4-18Step 8: Blend the Edges of the Chamber.....................................................4-20Step 9: Decompose the Geometry ...............................................................4-23Step 10: Generate an Unstructured Hexahedral Mesh ................................4-36Step 11: Examine the Quality of the Mesh..................................................4-49Step 12: Set Boundary Types ......................................................................4-53Step 13: Export the Mesh and Save the Session .........................................4-584.5 Summary .......................................................................................................4-59Table of Contentsv5. SEDAN GEOMETRY—VIRTUAL CLEANUP ............................... 5-1 5.1 Prerequisites ....................................................................................................5-15.2 Problem Description.......................................................................................5-25.3 Strategy............................................................................................................5-35.4 Procedure.........................................................................................................5-4Step 1: Select a Solver...................................................................................5-4Step 2: Import the IGES File As-Is ...............................................................5-5Step 3: Reset and Import the IGES File Using Virtual Cleanup ...................5-9Step 4: Eliminate Very Short Edges ............................................................5-12Step 5: Automatically Connec t All Remaining “Duplicate” Edges ............5-16Step 6: Merge Faces ....................................................................................5-18Step 7: Mesh Faces on Car Body ................................................................5-23Step 8: Create a Brick Around the Car Body ..............................................5-26Step 9: Remove Unwanted Geometry .........................................................5-29Step 10: Create Straight Edges on the Symmetry Plane..............................5-30Step 11: Create Faces on the Symmetry Plane ............................................5-35Step 12: Create a Volume............................................................................5-41Step 13: Mesh the Edges .............................................................................5-43Step 14: Mesh the Volume ..........................................................................5-46Step 15: Examine the Volume Mesh...........................................................5-48Step 16: Set Boundary Types ......................................................................5-515.5 Summary .......................................................................................................5-586. SEDAN GEOMETRY—TOLERANT IMPORT.............................. 6-1 6.1 Prerequisites ....................................................................................................6-16.2 Problem Description.......................................................................................6-26.3 Strategy............................................................................................................6-36.4 Procedure.........................................................................................................6-4Step 1: Select a Solver...................................................................................6-4Step 2: Import the IGES File.........................................................................6-5Step 3: Merge Faces ......................................................................................6-8Step 4: Create a Brick Around the Car Body ..............................................6-13Step 5: Remove Unwanted Geometry .........................................................6-16Step 6: Create Straight Edges on the Symmetry Plane................................6-17Step 7: Create Faces on the Symmetry Plane ..............................................6-22Step 8: Create a Volume..............................................................................6-27Step 9: Apply Size Functions to Control Mesh Quality..............................6-29Step 10: Mesh the Volume ..........................................................................6-31Step 11: Examine the Volume Mesh...........................................................6-33Step 12: Set Boundary Types ......................................................................6-36Step 13: Export the Mesh and Save the Session .........................................6-426.5 Summary .......................................................................................................6-43 Table of Contentsvi7. MODELING FLOW IN A TANK...................................................... 7-1 7.1 Prerequisites ....................................................................................................7-17.2 Problem Description.......................................................................................7-27.3 Strategy............................................................................................................7-37.4 Procedure.........................................................................................................7-6Step 1: Select a Solver...................................................................................7-6Step 2: Set the Default Interval Size for Meshing.........................................7-6Step 3: Create Cylinders................................................................................7-8Step 4: Complete the Geometry Creation....................................................7-12Step 5: Decompose the Geometry ...............................................................7-16Step 6: Unite Some Parts of the Geometry..................................................7-23Step 7: Subtract the Remaining Parts of the Symmetry Plane.....................7-26Step 8: Split off Annulus Pipe to Make the Volumes Meshable.................7-31Step 9: Unite the Side Pipe..........................................................................7-40Step 10: Mesh the Edges .............................................................................7-42Step 11: Apply Boundary Layers ................................................................7-45Step 12: Mesh One of the Volumes ............................................................7-49Step 13: Mesh Some Faces..........................................................................7-52Step 14: Modify Mesh Settings on Some Faces..........................................7-58Step 15: Mesh the Volumes ........................................................................7-61Step 16: Examine the Volume Mesh...........................................................7-66Step 17: Set Zone Types and Export the Mesh ...........................................7-687.5 Summary .......................................................................................................7-738. BASIC TURBO MODEL WITH UNSTRUCTURED MESH.......... 8-1 8.1 Prerequisites ....................................................................................................8-18.2 Problem Description.......................................................................................8-28.3 Strategy............................................................................................................8-48.4 Procedure.........................................................................................................8-5 Step 1: Select a Solver...................................................................................8-5Step 2: Import a Turbo Data File...................................................................8-6Step 3: Create the Turbo Profile....................................................................8-8Step 4: Modify the Inlet and Outlet Vertex Locations ................................8-12Step 5: Create the Turbo Volume................................................................8-14Step 6: Define the Turbo Zones ..................................................................8-16Step 7: Apply 3-D Boundary Layers ...........................................................8-18Step 8: Mesh the Blade Cross-Section Edges .............................................8-22Step 9: Mesh the Center Spanwise Face .....................................................8-26Step 10: Mesh the Volumes ........................................................................8-28Step 11: Examine the Mesh.........................................................................8-30Step 12: Specify Zone Types.......................................................................8-35Step 13: Export the Mesh and Exit GAMBIT.............................................8-368.5 Summary .......................................................................................................8-37 Table of Contentsvii9. LOW-SPEED CENTRIFUGAL COMPRESSOR............................. 9-1 9.1 Prerequisites ....................................................................................................9-19.2 Problem Description.......................................................................................9-29.3 Strategy............................................................................................................9-39.4 Procedure.........................................................................................................9-4 Step 1: Select a Solver...................................................................................9-4Step 2: Import ACIS Geometry.....................................................................9-5Step 3: Create the Turbo Profile....................................................................9-8Step 4: Modify the Inlet and Outlet Vertex Locations ................................9-11Step 5: Create the Turbo Volume................................................................9-13Step 6: Define the Turbo Zones ..................................................................9-15Step 7: Adjust Edge Split Points .................................................................9-17Step 8: Decompose the Turbo Volume .......................................................9-20Step 9: Mesh the Volumes ..........................................................................9-21Step 10: Examine the Mesh.........................................................................9-23Step 11: Specify Zone Types.......................................................................9-27Step 12: Export the Mesh and Exit GAMBIT.............................................9-289.5 Summary .......................................................................................................9-2910. MIXED-FLOW PUMP IMPELLER.............................................. 10-1 10.1 Prerequisites ................................................................................................10-1 10.2 Problem Description...................................................................................10-210.3 Strategy........................................................................................................10-3 10.4 Procedure.....................................................................................................10-4 Step 1: Select a Solver.................................................................................10-4Step 2: Import a Turbo Data File.................................................................10-5Step 3: Create the Turbo Profile..................................................................10-8Step 4: Modify the Inlet and Outlet Vertex Locations ..............................10-11Step 5: Create the Turbo Volume..............................................................10-13Step 6: Define the Turbo Zones ................................................................10-15Step 7: Apply 3-D Boundary Layers .........................................................10-16Step 8: Mesh the Pressure and Suction Faces ...........................................10-19Step 9: Mesh the Volume ..........................................................................10-21Step 10: Examine the Mesh.......................................................................10-23Step 11: Specify or Check Zone Types .....................................................10-28Step 12: Export the Mesh and Exit GAMBIT...........................................10-3010.5 Summary ...................................................................................................10-3111. INDUSTRIAL DRILL BIT—STEP GEOMETRY....................... 11-1 11.1 Prerequisites ................................................................................................11-1 11.2 Problem Description...................................................................................11-211.3 Strategy........................................................................................................11-4 11.4 Procedure.....................................................................................................11-5 Table of ContentsviiiStep 1: Select a Solver.................................................................................11-5Step 2: Import a STEP File .........................................................................11-6Step 3: Merge Faces and Edges to Suppress Model Features .....................11-9Step 4: Use Cleanup Tools to Check and Clean Up Geometry.................11-11Step 5: Apply Size Functions to Control Mesh Quality............................11-18Step 6: Mesh the Volume ..........................................................................11-20Step 7: Examine the Volume Mesh...........................................................11-22Step 8: Export the Mesh and Exit GAMBIT.............................................11-2511.5 Summary ...................................................................................................11-2612. INDUSTRIAL DRILL BIT—DIRECT CAD IMPORT ............... 12-1 12.1 Prerequisites ................................................................................................12-1 12.2 Problem Description...................................................................................12-212.3 Strategy........................................................................................................12-4 12.4 Procedure.....................................................................................................12-5 Step 1: Start Pro/ENGINEER .....................................................................12-5Step 2: Start GAMBIT from within Pro/ENGINEER.................................12-6Step 3: Open the Part File ...........................................................................12-7Step 4: Display the GAMBIT User Interface..............................................12-8Step 5: Select the Solver..............................................................................12-9Step 6: Import the CAD Geometry............................................................12-10Step 7: Merge Faces and Edges to Suppress Model Features ...................12-12Step 8: Use Cleanup Tools to Check and Clean Up Geometry.................12-14Step 9: Apply Size Functions to Control Mesh Quality............................12-26Step 10: Mesh the Volume ........................................................................12-28Step 11: Examine the Volume Mesh.........................................................12-30Step 12: Export the Mesh and Close GAMBIT ........................................12-33Step 13: Exit Pro/ENGINEER and GAMBIT...........................................12-3512.5 Summary ...................................................................................................12-3613. CATALYTIC CONVERTER ......................................................... 13-1 13.1 Prerequisites ................................................................................................13-113.2 Problem Description...................................................................................13-213.3 Strategy........................................................................................................13-313.4 Procedure.....................................................................................................13-4Step 1: Select a Solver.................................................................................13-4Step 2: Import the IGES File.......................................................................13-5Step 3: Attempt to Heal the Geometry ........................................................13-8Step 4: Eliminate the Bad and Overlapping Faces ....................................13-11Step 5: Replace the Overlapping Face ......................................................13-13Step 6: Attempt Again to Heal the Geometry............................................13-15Step 7: Clean Up Holes in the Model........................................................13-17Step 8: Clean Up Short Edges ...................................................................13-21Step 9: Clean Up Sharp Angles.................................................................13-23Table of ContentsixStep 10: Clean Up Large Angles...............................................................13-26Step 11: Stitch the Faces to Create a Volume ...........................................13-29Step 12: Mesh the Large Circular Faces ...................................................13-30Step 13: Apply Size Functions to Control Mesh Quality..........................13-33Step 14: Mesh the Volume ........................................................................13-35Step 15: Examine the Volume Mesh.........................................................13-37Step 16: Export the Mesh and Save the Session .......................................13-4113.5 Summary ...................................................................................................13-4214. AIRPLANE GEOMETRY.............................................................. 14-1 14.1 Prerequisites ................................................................................................14-114.2 Problem Description...................................................................................14-214.3 Strategy........................................................................................................14-314.4 Procedure.....................................................................................................14-4Step 1: Select a Solver.................................................................................14-4Step 2: Import the STEP File ......................................................................14-5Step 3: Clean Up Duplicate Faces...............................................................14-8Step 4: View List of Duplicate Edges .......................................................14-11Step 5: Heal the Geometry ........................................................................14-12Step 6: Clean Up Holes .............................................................................14-13Step 7: Create a Brick around the Airplane Body.....................................14-17Step 8: Delete the Brick High-level Geometry..........................................14-20Step 9: Connect Faces on the Symmetry Plane .........................................14-21。
gambit使用说明书(附范例)
适用类型
方法
Quad
Tri
Quad/Tri
Map
Submap
Pave
Tri Primitive
Wedge Primitive
表2
下面仍然以二维轴对称自由射流的网格划分为例,来介绍各种网格的生成。
1.单击命令面板中的 按钮(Mesh Face),进入面的网格创建命令面板(见图25)。
图25
2.选择视图中的面,系统中默认的网格点的类型为四边形结构网格。单击Apply按钮,观察网格的生成(见图26)。
视图控制面板中常用的命令有:
全图显示、 选择显示视图、 选择视图坐标、 选择显示项目、 渲染方式。
同时,我们还可以使用鼠标来控制视图中的模型显示。其中按住左键拖曳鼠标可以旋转视图,按住中键拖动鼠标则可以在视图中移动物体,按住右键上下拖动鼠标可以缩放视图中的物体。
命令面板
命令面板是Gambit的核心部分,通过命令面板上的命令图标,我们可以完成绝大部分网格划分的工作。
图26
3.在命令面板的Type中选择网格类型为Pave,单击Apply按钮,观察网格的生成(见图27)。
图27
4.选择Element类型为Tri,单击Apply按钮,观察网格的生成(见图28)。
图28
三.
在Gambit中,我们可以先定义好各个边界条件的类型,具体的边界条件取值在Fluent中确定。
1.在菜单栏中选择Fluent/Fluent5。这个步骤是不可缺少的,它相当于给Gambit定义了一个环境变量,设置完之后,定义的边界条件类型和Fluent5中的边界类型相对应。
命令显示窗和命令输入栏
命令显示窗和命令输入栏位于Gambit的左下方(如图4所示)。
Gambit及Fluent操作步骤图解
现在PRO/E软件中建立燃烧室和气缸工作容积的三维图,并且以*.stp格式输出,在磁盘建立一个文件夹(比如在D盘建立一个名称为step的文件夹),将刚才的*.stp文件放在此文件夹下面。
桌面上打开Gambit图标,见图1。
图1在菜单File下,点击Import > STEP,见图2。
打开Import STEP File窗口,见图3。
图2图3 找到并打开刚才的*.stp文件,如图4所示。
图4 使用2条边建立一个面,见图5。
图5可以将本模型划分为两部分,打开Split V olume窗口,使用刚才建立的面将模型划分为2个部分,见图6。
图6进行网格划分,先对上面的体积进行网格划分,由于其形状比较规则,所以可以使用6面体网格单元,见图7。
然后对下面的体积进行网格划分,由于其形状不规则,所以选用4面体网格单元,见图8。
全部网格划分完后,见图9。
图7图8图9点击右下方的SPECIFY MODEL DISPLAY ATTRIBUTES,在其面板上的Mesh选项后点击off,即可关闭网格显示,但是此时模型网格已经划分了。
图10边界条件的设置,分别选中需要设置的面,如本例中选中face4,将其名称设为movwall,类型设为wall,见图11. 选中face12,将其名称设为middle,类型设为INTERIOR,见图12.选择face2和face3,将其名称设为cylinder,类型设为wall。
图11图12指定体,分别设置模型的上部和下部为V2和V1,如图14和15.图14图15以上模型网格设置好之后,将模型以*.msh格式输出,本例子以cylinder.msh输出,见图16。
图16打开FLUENT图标,在FLUENT Versions窗口中选择3d,见图17。
图17分别选择File>Read>Case,找到前面输出的cylinder.msh文件,选择并打开,见图18。
图18在Surface菜单下选择Zone,打开Zone Surface控制面板,图19分别选中V1和V2,然后单价Create,即可建立它们的表面,见图20。
Gambit及其Fluent操作技巧步骤图案详解
现在PRO/E软件中建立燃烧室和气缸工作容积的三维图,并且以*.stp格式输出,在磁盘建立一个文件夹(比如在D盘建立一个名称为step的文件夹),将刚才的*.stp文件放在此文件夹下面。
桌面上打开Gambit图标,见图1。
图1在菜单File下,点击Import > STEP,见图2。
打开Import STEP File窗口,见图3。
图2图3 找到并打开刚才的*.stp文件,如图4所示。
图4 使用2条边建立一个面,见图5。
图5可以将本模型划分为两部分,打开Split V olume窗口,使用刚才建立的面将模型划分为2个部分,见图6。
图6进行网格划分,先对上面的体积进行网格划分,由于其形状比较规则,所以可以使用6面体网格单元,见图7。
然后对下面的体积进行网格划分,由于其形状不规则,所以选用4面体网格单元,见图8。
全部网格划分完后,见图9。
图7图8图9点击右下方的SPECIFY MODEL DISPLAY ATTRIBUTES,在其面板上的Mesh选项后点击off,即可关闭网格显示,但是此时模型网格已经划分了。
图10边界条件的设置,分别选中需要设置的面,如本例中选中face4,将其名称设为movwall,类型设为wall,见图11. 选中face12,将其名称设为middle,类型设为INTERIOR,见图12. 选择face2和face3,将其名称设为cylinder,类型设为wall。
图11图12图13指定体,分别设置模型的上部和下部为V2和V1,如图14和15.图14图15以上模型网格设置好之后,将模型以*.msh格式输出,本例子以cylinder.msh输出,见图16。
图16打开FLUENT图标,在FLUENT Versions窗口中选择3d,见图17。
图17分别选择File>Read>Case,找到前面输出的cylinder.msh文件,选择并打开,见图18。
图18在Surface菜单下选择Zone,打开Zone Surface控制面板,图19分别选中V1和V2,然后单价Create,即可建立它们的表面,见图20。
GAMBIT使用说明
GAMBIT使用说明GAMBIT是使用FLUENT进行计算的第一个步骤。
在GAMBIT 中我们将完成对计算模型的基本定义和初始化,并输出初始化结果供FLUENT的计算需要。
以下是使用GAMBIT的基本步骤。
1.1定义模型的基本几何形状如左图所示的按钮就是用于构造模型的基本几何形状的。
当按下这个按钮时,将出现如下5个按钮,它们分别是用以定义点、线、面、体的几何形状的。
值得注意的是我们定义这些基本的几何元素的一般是依照以下的顺序:点——线(两点确定一线)——面(3线以上确定一面)——体(3面以上确定体)对各种几何元素的操作基本方式是:首先选中所要进行的操作,再定义完成操作所要的其他元素,作后点“APPLY”按钮完成操作。
以下不一一重复。
下面我们分别介绍各个几何元素的确定方法:1.1.1点的操作对点的操作在按下点操作按钮后进行(其他几何元素的操作也是这样)。
点有以下几种主要操作定义点的位置按钮,按下后出现下面对话框Coordinate Sys.:用以选择已有坐标系中进行当前操作的坐标系T ype:可以选择3种相对坐标系为当前坐标系:笛卡儿坐标、柱坐标、球坐标。
以下通过在Global 中直接输入点的x、y、z值定义点,注意这里的坐标值是绝对坐标值,而Local中输入的是相对坐标值,一般我们使用绝对坐标值。
Label:为所定义的点命名。
在完成以上定义后就可以通过进行这个点的定义,同时屏幕左半部的绘图区中将出现被定义的点。
用关闭此对话框。
查看所有点的几何参数按钮(在以后的操作中也可以查看其他元素的几何参数)在Vertices栏中选择被查询的点,有两种选择方式(其他几何元素的选择与此类似):①按住shift键的同时用鼠标左键取点②点按钮,选择查询点选择后进行“APPLY”完成操作,可在屏幕左下角Transcript框中看查询结果。
1.1.2线的操作线操作按钮下面介绍主要的几种线操作定义直线按钮定义直线的前提是有两个点,两点确定一条直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gambit中写风机tur文件的步骤在gambit中要生成一个风机模型,可以考虑用其提供的TOOLS-TURBO命令一步一步来生成,但是在开始之前,需要生成几条线,这些线代表了风机hub,casing,以及blade和splitter 的位置和截面形状。
这些线条可以通过*.tur文件导入,下面就介绍一些*tur文件的生成步骤。
*.tur文件可以直接用文本文件来写。
*.tur文件中/ 打头的都表示注释行1. 写头文件,头文件共有三个组成部分,版本号、旋转轴,以及坐标系统。
下面举例说明:/ FILE VERSION NUMBER: 1.2.0。
1 为major version,2为minor version,0表示revision number1 2 0/ ROTATIONAL AXIS: Y-AXIS。
其中0,1,2分别表示x,y,z轴。
1/ COORDINATE SYSTEM TYPE: CARTESIAN。
0表示直角坐标,1表示柱坐标02. 分别写出hub,casing和Tip-Clearance (可选)的信息。
这些信息共包括3部分:hub共有几条边组成,每条边上有几个点,这些点的坐标是什么。
举例子:/ HUB DATA: 2 EDGES DEFINED BY 2 and 4 POINTS,RESPECTIVELY.注意下面的数字并没有实际意义,这么给出只是为了说明数据格式而已。
22-50.0 0.0 255.0200.0 0.0 255.04-50.0 0.0 255.0200.0 0.0 255.0-50.0 0.0 255.0200.0 0.0 255.0写完了hub之后,按照同样的格式写出casing,以及tip-clearance(可选)的信息。
3. 分别写出blade和splitter(可选)的截面上的信息,这些信息包括4个部分:(1)共有几中blade(如果为1则表示系统中只含有blade,没有导流板splitter;如果为2,则表示系统中同时含有blade和splitter),(2)Number of profiles used to describe blade(经过我的验证,发现这句话的意思是用几个剖面来表示blade,blade的个数必须2,对于翼型复杂的叶片,则可以增加剖面的个数使得生成的blade跟接近实际的形状),(3)Number o f edges per side used to describe each profile for blade(这句话的意思应该为每个剖面的每个side上有几条edge,按照我的理解这里的side是指pressure side 或者sucti on side。
而且这里的edge条数只能为1或者2或者3,大于3是不允许的。
这里有个疑问,应该只能写一个数字,但是却有很多剖面,而且每个剖面都有两个side,这是不是说明,每个剖面上的每个side上的edge数必须一致,如果不一致的话,那怎么表示?),(4)剖面上边的连续性(这里指的边的连续性,并不是指整个剖面上边的连续性。
而是指某个side上边的连续性,help上的原文是这样的:If a profile includes two edges per side, you must specify three continuity entries—one each for the profile leading and trailing t ips and one for the point of connection between the two edges that define eit her side of the profile. 连续性的取值共有三种情况,0,1,2。
0表示共点的两条线连续,但是1次和2次导数都不连续;1表示,两条线连续,1次导数连续,但2次导数不连续;2表示,1次和2次导数都连续。
参加help中的..\gambit2.0\help\html\users_guide\ug0d. htm。
这里也有一个疑问,这里的连续性的用处是什么?)4. 给定pressure side和sunction side上的信息。
分成几个步骤:(1)给出每条edge上点的个数,(2)给出每个点的坐标。
这里有几点需要注意的,(1)点必须按照顺序给出,从前缘到后缘。
(2)完整描述出一个剖面,需要给出pressure side和sunction side上所有的点,并且sucntion side的值要跟在pressure side的后面,而不能倒过来(3)剖面的定义也是有先后的,依次给出从hub到casing的剖面。
最后给出一个完整的例子,这个例子和help中给出的一样,但是多了一个剖面。
/ Durham Linear Turbine Cascade (modified) test case/ File Version1 3 1/ Rotational Axis/ Coordinate Type/ Hub edge points12-300 0 2005100 0 2005/ Shroud edge points12-300 0 2295100 0 2295/ Tip Clearance Edge Points/ Number of blades1/ Number of Profiles3/ Number of Edges per Profile Side3/ Profile Edge Continuity2 2 1 2/ Hub Section (#1)/ Pressure side7-178.4200072288512899 139.2000019550323202 2000 -176.7800003290176107 137.600004673004122 2000 -174.5299994945525839 136.1999958753585531 2000 -171.430006623268099 135.4999989271163656 2000 -167.1600043773650839 136.1300051212310507 2000 -162.880003452300997 138.1600052118301107 2000 -158.6000025272369101 139.9900019168853476 2000 38-158.6000025272369101 139.9900019168853476 2000 -154.3300002813338949 141.6299939155578329 2000 -150.049999356269808 143.0699974298476889 2000 -145.7799971103667929 144.3099975585937216 2000 -141.499996185302706 145.3700065612792685 2000 -137.219995260238619 146.23999595642087 2000-132.9499930143356039 146.9099968671798422 2000 -128.6700069904327108 147.3899930715560629 2000 -124.3899986147880412 147.679999470710726 2000 -120.1199963688850261 147.7099955081939413 2000 -115.8400028944015361 147.4999934434890463 2000 -111.5700006484985209 147.0199972391128256 2000 -107.289999723434434 146.2599933147430136 2000 -103.0099987983703471 145.1900005340575888 2000 -98.73999655246734619 143.8000053167342855 2000 -94.4600030779838562 142.0399993658065512 2000 -90.18000215291975508 139.9600058794021322 2000 -85.90999990701673994 137.470006942748995 2000 -81.62999898195265303 134.5299929380416586 2000 -77.35999673604963789 131.0600042343139364 2000 -73.0800032615661479 127.0599961280822612 2000 -68.80000233650206098 122.490003705024705 2000 -64.53000009059904585 117.1799972653388835 2000 -60.24999916553496604 111.2200021743774272 2000 -55.98000064492224936 104.8199981451034404 2000 -51.69999971985816245 97.81999886035919189 2000 -47.41999879479408264 90.30000120401381025 2000 -43.15000027418135886 82.4600011110305644 2000 -38.86999934911727195 74.30999726057051191 2000 -34.58999842405318503 65.8100023865699626 2000 -30.31999990344047191 57.08000063896178489 2000 -26.04000084102153423 48.14000055193901062 2000 -21.77000045776366832 38.97000104188918357 2000-17.48999953269958141 29.64000031352042797 2000 -13.20999953895807089 20.19999921321868541 2000 -8.940000087022779596 10.66000014543533148 2000 -5.840000230818986005 3.599999938160180601 2000 -3.590000094845890555 -1.399990054778754489 2000 3-3.590000094845890555 -1.399990054778754489 2000 -1.94999994710087754 -2.100009936839341673 2000 -1.277757707708361501 -1.935544983413521436 2000 / Suction side6-178.4200072288512899 139.2000019550323202 2000 -179.6000003814696981 142.8000032901763632 2000 -179.6000003814696981 149.499997496604891 2000 -178.4200072288512899 152.4000018835067465 2000 -176.7800003290176107 156.0000032186507894 2000 -174.5299994945525839 161.1600071191787436 2000 45-174.5299994945525839 161.1600071191787436 2000 -171.430006623268099 167.3800051212310507 2000 -167.1600043773650839 174.9799996614455893 2000 -162.880003452300997 181.2600046396255209 2000 -158.6000025272369101 186.3999962806701376 2000 -154.3300002813338949 190.5799955129623413 2000 -150.049999356269808 193.9900070428848267 2000 -145.7799971103667929 196.7200040817260742 2000 -141.499996185302706 198.8199949264526367 2000 -137.219995260238619 200.3600001335144043 2000 -132.9499930143356039 201.3700008392333984 2000 -128.6700069904327108 201.9000053405761719 2000 -124.3899986147880412 202.0000070333480835 2000 -120.1199963688850261 201.7100006341934204 2000 -115.8400028944015361 201.0300010442733765 2000-111.5700006484985209 199.9700069427490234 2000-107.289999723434434 198.550000786781311 2000-103.0099987983703471 196.7400014400482178 2000-98.73999655246734619 194.5099979639053345 2000-94.4600030779838562 191.8800026178359985 2000-90.18000215291975508 188.810005784034729 2000-85.90999990701673994 185.3100061416625692 2000-81.62999898195265303 181.3299953937530233 2000-77.35999673604963789 176.8400073051452353 2000-73.0800032615661479 171.8800067901611044 2000-68.80000233650206098 166.4499938488006308 2000-64.53000009059904585 160.5000048875808432 2000-60.24999916553496604 153.9999991655349447 2000-55.98000064492224936 146.9099968671798422 2000-51.69999971985816245 139.1800045967101767 2000-47.41999879479408264 130.8600008487701132 2000-43.15000027418135886 121.8700036406516887 2000-38.86999934911727195 112.1900007128715373 2000-34.58999842405318503 101.7500013113021851 2000-30.31999990344047191 90.43999761343000898 2000-26.04000084102153423 78.48999649286268721 2000-21.77000045776366832 66.16000086069105635 2000-17.48999953269958141 53.50000038743018393 2000-13.20999953895807089 40.63000157475470786 2000-8.940000087022779596 27.62000076472758892 2000-5.840000230818986005 18.06999929249286296 2000-3.590000094845890555 11.18000037968158544 2000-1.94999994710087754 6.21999986469745636 2000-0.769999984186142683 2.659999998286366019 2000 0.09000000136438755793 0.07000569894444196029 2000 30.09000000136438755793 0.07000569894444196029 2000 -0.769999984186142683 -1.59999995958060004 2000-1.277757707708361501 -1.935544983413521436 2000 / Hub Section (#2)/ Pressure side7-178.4200072288512899 139.2000019550323202 2100 -176.7800003290176107 137.600004673004122 2100 -174.5299994945525839 136.1999958753585531 2100 -171.430006623268099 135.4999989271163656 2100 -167.1600043773650839 136.1300051212310507 2100 -162.880003452300997 138.1600052118301107 2100 -158.6000025272369101 139.9900019168853476 2100 38-158.6000025272369101 139.9900019168853476 2100 -154.3300002813338949 141.6299939155578329 2100 -150.049999356269808 143.0699974298476889 2100 -145.7799971103667929 144.3099975585937216 2100 -141.499996185302706 145.3700065612792685 2100 -137.219995260238619 146.23999595642087 2100-132.9499930143356039 146.9099968671798422 2100 -128.6700069904327108 147.3899930715560629 2100 -124.3899986147880412 147.679999470710726 2100 -120.1199963688850261 147.7099955081939413 2100 -115.8400028944015361 147.4999934434890463 2100 -111.5700006484985209 147.0199972391128256 2100 -107.289999723434434 146.2599933147430136 2100 -103.0099987983703471 145.1900005340575888 2100 -98.73999655246734619 143.8000053167342855 2100 -94.4600030779838562 142.0399993658065512 2100 -90.18000215291975508 139.9600058794021322 2100 -85.90999990701673994 137.470006942748995 2100 -81.62999898195265303 134.5299929380416586 2100 -77.35999673604963789 131.0600042343139364 2100 -73.0800032615661479 127.0599961280822612 2100-68.80000233650206098 122.490003705024705 2100 -64.53000009059904585 117.1799972653388835 2100 -60.24999916553496604 111.2200021743774272 2100 -55.98000064492224936 104.8199981451034404 2100 -51.69999971985816245 97.81999886035919189 2100 -47.41999879479408264 90.30000120401381025 2100 -43.15000027418135886 82.4600011110305644 2100 -38.86999934911727195 74.30999726057051191 2100 -34.58999842405318503 65.8100023865699626 2100 -30.31999990344047191 57.08000063896178489 2100 -26.04000084102153423 48.14000055193901062 2100 -21.77000045776366832 38.97000104188918357 2100 -17.48999953269958141 29.64000031352042797 2100 -13.20999953895807089 20.19999921321868541 2100 -8.940000087022779596 10.66000014543533148 2100 -5.840000230818986005 3.599999938160180601 2100 -3.590000094845890555 -1.399990054778754489 2100 3-3.590000094845890555 -1.399990054778754489 2100 -1.94999994710087754 -2.100009936839341673 2100 -1.277757707708361501 -1.935544983413521436 2100 / Suction side6-178.4200072288512899 139.2000019550323202 2100 -179.6000003814696981 142.8000032901763632 2100 -179.6000003814696981 149.499997496604891 2100 -178.4200072288512899 152.4000018835067465 2100 -176.7800003290176107 156.0000032186507894 2100 -174.5299994945525839 161.1600071191787436 2100 45-174.5299994945525839 161.1600071191787436 2100 -171.430006623268099 167.3800051212310507 2100 -167.1600043773650839 174.9799996614455893 2100-162.880003452300997 181.2600046396255209 2100 -158.6000025272369101 186.3999962806701376 2100 -154.3300002813338949 190.5799955129623413 2100 -150.049999356269808 193.9900070428848267 2100 -145.7799971103667929 196.7200040817260742 2100 -141.499996185302706 198.8199949264526367 2100 -137.219995260238619 200.3600001335144043 2100 -132.9499930143356039 201.3700008392333984 2100 -128.6700069904327108 201.9000053405761719 2100 -124.3899986147880412 202.0000070333480835 2100 -120.1199963688850261 201.7100006341934204 2100 -115.8400028944015361 201.0300010442733765 2100 -111.5700006484985209 199.9700069427490234 2100 -107.289999723434434 198.550000786781311 2100 -103.0099987983703471 196.7400014400482178 2100 -98.73999655246734619 194.5099979639053345 2100 -94.4600030779838562 191.8800026178359985 2100 -90.18000215291975508 188.810005784034729 2100 -85.90999990701673994 185.3100061416625692 2100 -81.62999898195265303 181.3299953937530233 2100 -77.35999673604963789 176.8400073051452353 2100 -73.0800032615661479 171.8800067901611044 2100 -68.80000233650206098 166.4499938488006308 2100 -64.53000009059904585 160.5000048875808432 2100 -60.24999916553496604 153.9999991655349447 2100 -55.98000064492224936 146.9099968671798422 2100 -51.69999971985816245 139.1800045967101767 2100 -47.41999879479408264 130.8600008487701132 2100 -43.15000027418135886 121.8700036406516887 2100 -38.86999934911727195 112.1900007128715373 2100 -34.58999842405318503 101.7500013113021851 2100 -30.31999990344047191 90.43999761343000898 2100 -26.04000084102153423 78.48999649286268721 2100-21.77000045776366832 66.16000086069105635 2100-17.48999953269958141 53.50000038743018393 2100-13.20999953895807089 40.63000157475470786 2100-8.940000087022779596 27.62000076472758892 2100-5.840000230818986005 18.06999929249286296 2100-3.590000094845890555 11.18000037968158544 2100-1.94999994710087754 6.21999986469745636 2100-0.769999984186142683 2.659999998286366019 2100 0.09000000136438755793 0.07000569894444196029 2100 30.09000000136438755793 0.07000569894444196029 2100 -0.769999984186142683 -1.59999995958060004 2100-1.277757707708361501 -1.935544983413521436 2100/ Shroud Section (#3)/ Pressure side7-178.4200072288512899 139.2000019550323202 2300-176.7800003290176107 137.600004673004122 2300-174.5299994945525839 136.1999958753585531 2300-171.430006623268099 135.4999989271163656 2300-167.1600043773650839 136.1300051212310507 2300-162.880003452300997 138.1600052118301107 2300-158.6000025272369101 139.9900019168853476 230038-158.6000025272369101 139.9900019168853476 2300-154.3300002813338949 141.6299939155578329 2300-150.049999356269808 143.0699974298476889 2300-145.7799971103667929 144.3099975585937216 2300-141.499996185302706 145.3700065612792685 2300-137.219995260238619 146.23999595642087 2300-132.9499930143356039 146.9099968671798422 2300-128.6700069904327108 147.3899930715560629 2300-124.3899986147880412 147.679999470710726 2300-120.1199963688850261 147.7099955081939413 2300 -115.8400028944015361 147.4999934434890463 2300 -111.5700006484985209 147.0199972391128256 2300 -107.289999723434434 146.2599933147430136 2300 -103.0099987983703471 145.1900005340575888 2300 -98.73999655246734619 143.8000053167342855 2300 -94.4600030779838562 142.0399993658065512 2300 -90.18000215291975508 139.9600058794021322 2300 -85.90999990701673994 137.470006942748995 2300 -81.62999898195265303 134.5299929380416586 2300 -77.35999673604963789 131.0600042343139364 2300 -73.0800032615661479 127.0599961280822612 2300 -68.80000233650206098 122.490003705024705 2300 -64.53000009059904585 117.1799972653388835 2300 -60.24999916553496604 111.2200021743774272 2300 -55.98000064492224936 104.8199981451034404 2300 -51.69999971985816245 97.81999886035919189 2300 -47.41999879479408264 90.30000120401381025 2300 -43.15000027418135886 82.4600011110305644 2300 -38.86999934911727195 74.30999726057051191 2300 -34.58999842405318503 65.8100023865699626 2300 -30.31999990344047191 57.08000063896178489 2300 -26.04000084102153423 48.14000055193901062 2300 -21.77000045776366832 38.97000104188918357 2300 -17.48999953269958141 29.64000031352042797 2300 -13.20999953895807089 20.19999921321868541 2300 -8.940000087022779596 10.66000014543533148 2300 -5.840000230818986005 3.599999938160180601 2300 -3.590000094845890555 -1.399990054778754489 2300 3-3.590000094845890555 -1.399990054778754489 2300 -1.94999994710087754 -2.100009936839341673 2300 -1.277757707708361501 -1.935544983413521436 2300/ Suction side6-178.4200072288512899 139.2000019550323202 2300 -179.6000003814696981 142.8000032901763632 2300 -179.6000003814696981 149.499997496604891 2300 -178.4200072288512899 152.4000018835067465 2300 -176.7800003290176107 156.0000032186507894 2300 -174.5299994945525839 161.1600071191787436 2300 45-174.5299994945525839 161.1600071191787436 2300 -171.430006623268099 167.3800051212310507 2300 -167.1600043773650839 174.9799996614455893 2300 -162.880003452300997 181.2600046396255209 2300 -158.6000025272369101 186.3999962806701376 2300 -154.3300002813338949 190.5799955129623413 2300 -150.049999356269808 193.9900070428848267 2300 -145.7799971103667929 196.7200040817260742 2300 -141.499996185302706 198.8199949264526367 2300 -137.219995260238619 200.3600001335144043 2300 -132.9499930143356039 201.3700008392333984 2300 -128.6700069904327108 201.9000053405761719 2300 -124.3899986147880412 202.0000070333480835 2300 -120.1199963688850261 201.7100006341934204 2300 -115.8400028944015361 201.0300010442733765 2300 -111.5700006484985209 199.9700069427490234 2300 -107.289999723434434 198.550000786781311 2300 -103.0099987983703471 196.7400014400482178 2300 -98.73999655246734619 194.5099979639053345 2300 -94.4600030779838562 191.8800026178359985 2300 -90.18000215291975508 188.810005784034729 2300 -85.90999990701673994 185.3100061416625692 2300 -81.62999898195265303 181.3299953937530233 2300 -77.35999673604963789 176.8400073051452353 2300-73.0800032615661479 171.8800067901611044 2300-68.80000233650206098 166.4499938488006308 2300-64.53000009059904585 160.5000048875808432 2300-60.24999916553496604 153.9999991655349447 2300-55.98000064492224936 146.9099968671798422 2300-51.69999971985816245 139.1800045967101767 2300-47.41999879479408264 130.8600008487701132 2300-43.15000027418135886 121.8700036406516887 2300-38.86999934911727195 112.1900007128715373 2300-34.58999842405318503 101.7500013113021851 2300-30.31999990344047191 90.43999761343000898 2300-26.04000084102153423 78.48999649286268721 2300-21.77000045776366832 66.16000086069105635 2300-17.48999953269958141 53.50000038743018393 2300-13.20999953895807089 40.63000157475470786 2300-8.940000087022779596 27.62000076472758892 2300-5.840000230818986005 18.06999929249286296 2300-3.590000094845890555 11.18000037968158544 2300-1.94999994710087754 6.21999986469745636 2300-0.769999984186142683 2.659999998286366019 2300 0.09000000136438755793 0.07000569894444196029 2300 30.09000000136438755793 0.07000569894444196029 2300 -0.769999984186142683 -1.59999995958060004 2300-1.277757707708361501 -1.935544983413521436 2300。