2014年中考数学应用题专题复习
2014年中考数学真题分类解析汇编(9)一元二次方程及其应用
2014年中考数学真题分类解析汇编(9)一元二次方程及其应用一元二次方程及其应用一、选择题1. ( 2014•广东,第8题3分)关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,则实数m 的取值范围为( )A .B .C .D .2. ( 2014•广西玉林市、防城港市,第9题3分)x 1,x 2是关于x 的一元二次方程x 2﹣mx +m ﹣2=0的两个实数根,是否存在实数m 使+=0成立?则正确的是结论是( )A . m =0时成立B . m =2时成立C . m =0或2时成立D . 不存在3.(2014年天津市,第10题3分)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A . x (x +1)=28B .x (x ﹣1)=28C . x (x +1)=28D . x (x ﹣1)=284.(2014年云南省,第5题3分)一元二次方程x 2﹣x ﹣2=0的解是( )A . x 1=1,x 2=2B . x 1=1,x 2=﹣2C . x 1=﹣1,x 2=﹣2D . x 1=﹣1,x 2=25.(2014•四川自贡,第5题4分)一元二次方程x 2﹣4x +5=0的根的情况是( )A . 有两个不相等的实数根B . 有两个相等的实数根C .只有一个实数根D .没有实数根6.(2014·云南昆明,第3题3分)已知1x 、2x 是9. (2014•益阳,第5题,4分)一元二次方程x 2﹣2x +m =0总有实数根,则m 应满足的条件是( )A .m >1B . m =1C . m <1D .m ≤110.(2014•呼和浩特,第10题3分)已知函数y =的图象在第一象限的一支曲线上有一点A (a ,c ),点B (b ,c +1)在该函数图象的另外一支上,则关于一元二次方程ax 2+bx +c =0的两根x 1,x 2判断正确的是( )A .x 1+x 2>1,x 1•x 2>0 B . x 1+x 2<0,x 1•x 2>0 C . 0<x 1+x 2<1,x 1•x 2>0 D . x 1+x 2与x 1•x 2的符号都不确定 11.(2014•菏泽,第6题3分)已知关于x 的一元二次方程x 2+ax +b =0有一个非零根﹣b ,则a ﹣b 的值为( ) A. 1 B . ﹣1 C . 0 D . ﹣212.(2014年山东泰安,第13题3分)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15二.填空题1. (2014•广西贺州,第16题3分)已知关于x的方程x2+(1﹣m)x+=0有两个不相等的实数根,则m的最大整数值是2.(2014•舟山,第11题4分)方程x2﹣3x=0的根为.3. (2014•扬州,第17题,3分)已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为.4.(2014•呼和浩特,第15题3分)已知m,n 是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=.5.(2014•德州,第16题4分)方程x2+2kx+k2﹣2k+1=0的两个实数根x1,x2满足x12+x22=4,则k的值为.6.(2014•济宁,第13题3分)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=.三.解答题1. (2014•广西玉林市、防城港市,第24题9分)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)2.((2014•新疆,第19题10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?3.2014年广东汕尾,第22题9分)已知关于x 的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.(2014•毕节地区,第25题12分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y 元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.5.(2014•襄阳,第16题3分)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是.6. (2014•株洲,第21题,6分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.7. (2014年江苏南京,第22题,8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率8解方程:2x2﹣4x﹣1=0.9. (2014•扬州,第20题,8分)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.。
2014年数学中考应用题专题复习
《2014年数学中考应用题专题复习》1.(本题满分10分)近年来,由于受国际石油市场的影响,汽油价格不断上涨,请你根据下面的信息,帮小明计算今年5月份每升汽油的价格.2.(本题满分9分)某公司专销产品A ,第一批产品A 上市40天内全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)3.(本题满分8分)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?4. (本题满分9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知今年5月份每升汽油的价格是去年5月份的1.6倍,用150元给汽车加的油量比去年少18.75升 今年5月份每升汽油的价格是多少呢?3倍,求彩电、冰箱、手机三大类产品分别销售多少万台销售的冰箱(含冰柜)数量是彩电数量的2(部),并计算获得的政府补贴分别为多少万元?5.(本题满分10分)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?6.(本题满分10分)为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.7.(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.(利润=(售价-成本价)×销售量)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000 元?8.(本题满分10分)某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量利润y (元)与实际销售价x (元)满足关系:y=198-6x(6≤x<8).(1)求售价为7元/件时,日销售量为多少件?(2)求日销售利润(利润=销售额-成本)y(元)与实际销售价x (件)的函数关系式;(3)试问:当实际销售价为多少元时,总利润最大.。
中考数学复习分式方程应用题(含答案)
13讲分式方程应用题一、解答题(共26题;共130分)1.(2014•丹东)某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?2.(2017•大连)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?3.(2017•遵义)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.4.(2017•贺州)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.5.(2017•扬州)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.6.(2016•曲靖)甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.7.(2017•通辽)一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.8.(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?9.(2015•随州)端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,求粽子与咸鸭蛋的价格各多少?10.(2017•长春)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.11.(2014•营口)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?12.(2017•黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?13.(2017•宜宾)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.14.(2015•沈阳)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.15.(2015•贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?16.(2015•雅安)某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?17.(2015•宜宾)列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?18.(2015•大连)甲、乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用的时间与乙做84个所用的时间相等,求甲、乙两人每小时各做多少个零件?19.(2016•呼和浩特)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?20.(2011•本溪)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?21.(2015•长春)为了美化环境,某地政府计划对辖区内60km2的土地进行绿化.为了尽快完成任务.实际平均每月的绿化面积是原计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.22.(2011•葫芦岛)某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.23.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?24.(2015•郴州)自2014年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵树.25.(2014•朝阳)某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.26.(2014•辽阳)某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.答案解析部分一、解答题1.【答案】【解答】解:该服装厂原计划每天加工x件服装,则实际每天加工1.5x件服装,根据题意,得解这个方程得x=100经检验,x=100是所列方程的根.答:该服装厂原计划每天加工100件服装.【解析】【分析】设原计划每天加工x件衣服,则实际每天加工1.5x件服装,以时间做为等量关系可列方程求解.2.【答案】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:=,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件【解析】【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.3.【答案】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+ ×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15【解析】【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.4.【答案】解:设乙工程队单独完成这项工程需要x天,依题意有(+ )×10=1﹣,解得x=20,经检验,x=20是原方程的解.答:乙工程队单独完成这项工程需要20天【解析】【分析】先根据已知条件由等量关系列出方程,再解分式方程即可得到所求的结论.5.【答案】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【解析】【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.6.【答案】解:设货车速度是x千米/小时,根据题意得:﹣=2,解得:x=60,经检验x=60是分式方程的解,且符合题意,答:货车的速度是60千米/小时.【解析】【分析】设货车的速度是x千米/小时,根据一辆小轿车的速度是货车速度的2倍列出方程,求出方程的解即可得到结果.此题考查了分式方程的应用,找出题中的等量关系是解本题的关键.7.【答案】解:设汽车出发后第1小时内的行驶速度是x千米/小时,根据题意可得:=1+ + ,解得:x=80,经检验得:x=80是原方程的根,答:汽车出发后第1小时内的行驶速度是80千米/小时【解析】【分析】根据题意结合行驶的时间的变化得出等式进而求出答案.8.【答案】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意得,=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米.【解析】【分析】设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解.9.【答案】解:设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据题意得:=,去分母得:30x=12x+21.6,解得:x=1.2,经检验x=1.2是分式方程的解,且符合题意,1.8+x=1.8+1.2=3(元),故咸鸭蛋的价格为1.2元,粽子的价格为3元.【解析】【分析】设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.10.【答案】解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:﹣=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.【解析】【分析】由"买跳绳的数量比购买排球的数量多30个“可构建方程,用跳绳的单价x表示两个数量,然后二者相减即可.11.【答案】解:(1)设签字笔的单价为x元,笔记本的单价为y元.则可列方程组,解得.答:签字笔的单价为1.5元,笔记本的单价为3.5元.(2)设学校获奖的同学有z人.则可列方程,解得z=48.经检验,z=48符合题意.答:学校获奖的同学有48人.【解析】【分析】(1)由题意可知此题存在两个等量关系,即买1支签字笔价钱+买2个笔记本的价钱=8.5元,买2支签字笔价钱+买3个笔记本的价钱=13.5元,根据这两个等量关系,可列出方程组,再求解;(2)设学校获奖的同学有z人,根据等量关系:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同,可列出方程,再求解.12.【答案】解:设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元.根据题意,得= .解得x= .经检验,x= 是原方程的解,且符合题意,则科普类图书平均每本的价格为+5= 元,答:文学类图书平均每本的价格为元,科普类图书平均每本的价格为元.【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元,根据题意可得等量关系:用12000元购进的科普类图书的本数=用5000元购买的文学类图书的本数,根据等量关系列出方程,再解即可.13.【答案】解:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:= ,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间= ,B型机器人所用时间= ,由所用时间相等,建立等量关系.14.【答案】解:设高速铁路列车的平均速度为xkm/h,根据题意,得:,去分母,得:690×3=690+4.6x,解这个方程,得:x=300,经检验,x=300是所列方程的解,因此高速铁路列车的平均速度为300km/h.【解析】【分析】设高速铁路列车的平均速度为xkm/h,根据高速铁路列车比普通铁路列车少运行了4.6h 列出分式方程,解分式方程即可,注意检验.15.【答案】【解答】解:设去年月平均生产效率为1,则今年一月份的生产效率为(1+m%),二月份的生产效率为1+m%+.根据题意得:,解得:m%=.经检验可知m%=是原方程的解.∴m=25.∴第一季度的总产量=120×1.25+120×1.25+50+120×2=590.答:今年第一季度生产总量是590台,m的值是25.【解析】【分析】今年一月份生产量为:120(1+m%);二月份生产量:120(1+m%)+50;根据“二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍”列出方程并解答.16.【答案】【解答】解:设该车间原计划每天生产的零件为x个,由题意得,﹣=5,解得x=15,经检验,x=15是原方程的解.答:该车间原计划每天生产的零件为15个.【解析】【分析】设该车间原计划每天生产的零件为x个,然后根据计划用的天数比实际用的天数多5列出方程,再求解即可.17.【答案】解:设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据题意得:,去分母得:15x=10x+2,解得:x=0.4,经检验x=0.4是分式方程的解,且符合题意,∴x+0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.【解析】【分析】设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元列出方程,求出方程的解即可得到结果.18.【答案】【解答】解:设乙每小时做的零件数量为x个,甲每小时做的零件数量是x+3,由题意得=解得x=21,经检验x=21是原分式方程的解,则x+3=24.答:甲每小时做24个零件,乙每小时做21个零件.【解析】【分析】由题意可知:设乙每小时做的零件数量为x个,甲每小:时做的零件数量是x+3;根据甲做90个所用的时间=乙做60个所用的时间列出方程求解.19.【答案】解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.依据题意可列方程:+ = ,解得:x1=10,x2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队【解析】【分析】设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天,然后依据6天可以完成,列出关于x的方程,从而可求得甲、乙两队单独完成需要的天数,然后设甲队每天的工程费为y元,则可表示出乙队每天的工程费,接下来,根据两队合作6天的工程费用为385200元列方程求解,于是可得到两队独做一天各自的工程费,然后可求得完成此项工程的工程费,从而可得出问题的答案.本题主要考查的是分式方程的应用、一元一次方程的应用,根据题意列出关于x的方程是解题的关键.20.【答案】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,=x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.【解析】【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.21.【答案】解:设原计划平均每月的绿化面积为x km2,实际平均每月的绿化面积是1.5x km2,由题意得﹣=2解得:x=10经检验x=10是原方程的解答:原计划平均每月的绿化面积为10 km2.【解析】【分析】设原计划平均每月的绿化面积为x km2,实际平均每月的绿化面积是1.5x km2,根据结果提前2个月完成任务列出方程解答即可.22.【答案】(1)设甲队单独完成需x天,则乙队单独完成需1.5x天.根据题意,得+=1.解得x=200.经检验,x=200是原分式方程的解.答:甲队单独完成需200天,乙队单独完成需300天.(2)设甲队每天的施工费为y元.根据题意,得200y+200×150×2≤300×10 000+300×150×2,解得y≤15150.答:甲队每天施工费最多为15150元.【解析】【分析】(1)假设甲队单独完成需x天,则乙队单独完成需1.5x天,根据总工作量为1得出等式方程求出即可;(2)分别表示出甲、乙两队单独施工所需费用,得出不等式,求出即可.23.【答案】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元【解析】【分析】设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.24.【答案】【解答】解:设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,由题意得+=30解得:x=200经检验x=200是原方程的解.则(1+50%)x=300=20(棵)答:樱花树的单价为200元,有20棵.【解析】【分析】设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,根据购买了桂花树和樱花树共30棵列方程解答即可.25.【答案】解:设甲队单独完成这项工程需x天,由题意得:×6+(+)×16=1,解得:x=30,经检验:x=30是原分式方程的解,2x=60,答:甲队单独完成这项工程需30天,乙队单独完成这项工程需60天.【解析】【分析】首先设甲队单独完成这项工程需x天,则乙队单独完成这项工程需2x天,根据题意可得等量关系:甲队6天的工作量+甲、乙合作16天的工作量=1,根据等量关系,列出方程,再解即可.初三复习13讲26.【答案】解:(1)设乙工程队单独完成此项工程需要x天,由题意得:+=,解得:x=30,经检验:x=30是原分式方程的解,2x=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)甲工程队单独做a天后,再由甲、乙两工程队合作:(1﹣a×)÷(+)=(天),由题意可得:1•a+(1+2.5)•≤64,解得:a≥36,答:甲工程队要单独施工36天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.故答案为:天.【解析】【分析】(1)根据题意结合总工作量为1,进而表示出两队每天完成的工作情况,进而得出答案;(2)首先表示出甲、乙两工程队合作的天数,进而利用两队施工费用得出不等式求出即可.- 11 -。
2014年全国各地中考数学真题分类解析汇编:13 二次函数
二次函数一、选择题1. (2014•广东,第10题3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0考点:二次函数的性质.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向下,可知a<0,函数有最小值,正确,故本选项不符合题意;B、由图象可知,对称轴为x=,正确,故本选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故本选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故本选项符合题意.故选D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.2. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx +与反比例函数y =在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx +的图象过第二、三、四象限,反比例函数y =分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.3.(2014年四川资阳,第10题3分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.解答:解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.4.(2014年天津市,第12 题3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x 的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1C.2D.3考点:二次函数图象与系数的关系.分析:由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.解答:解:①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2﹣4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选D.点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.5.(2014•新疆,第6题5分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1 C.顶点坐标是(1,2)D.与x轴有两个交点考点:二次函数的性质.专题:常规题型.分析:根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.解答:解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选C.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点式为y=a(x﹣)2+,的顶点坐标是(﹣,),对称轴直线x=﹣b2a,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下.6.(2014•舟山,第10题3分)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或﹣或考点:二次函数的最值专题:分类讨论.分析:根据对称轴的位置,分三种情况讨论求解即可.解答:解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时,二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选C.点评:本题考查了二次函数的最值问题,难点在于分情况讨论.y=2x2,y=﹣2x2,共有的性质是()A.开口向下B.对称轴是y轴C.都有最低点D.y随x的增大而减小考点:二次函数的性质分析:根据二次函数的性质解题.解答:解:(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=x2开口向上,对称轴为y轴,有最低点,顶点为原点.故选B.点评:考查二次函数顶点式y=a(x﹣h)2+k的性质.二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.8.(2014•孝感,第12题3分)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系;抛物线与x轴的交点专题:数形结合.分析:由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣=1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.解答:解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①错误;∵顶点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(﹣1,2),∴a﹣b+c=2,∵抛物线的对称轴为直线x=﹣=1,∴b=2a,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵当x=﹣1时,二次函数有最大值为2,即只有x=1时,ax2+bx+c=2,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选C.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.9.(2014·台湾,第26题3分)已知a、h、k为三数,且二次函数y=a(x﹣h)2+k在坐标平面上的图形通过(0,5)、(10,8)两点.若a<0,0<h<10,则h之值可能为下列何者?() A.1 B.3 C.5 D.7分析:先画出抛物线的大致图象,根据顶点式得到抛物线的对称轴为直线x =h ,由于抛物线过(0,5)、(10,8)两点.若a <0,0<h <10,则点(0,5)到对称轴的距离大于点(10,8)到对称轴的距离,所以h ﹣0>10﹣h ,然后解不等式后进行判断. 解:∵抛物线的对称轴为直线x =h , 而(0,5)、(10,8)两点在抛物线上, ∴h ﹣0>10﹣h ,解得h >5. 故选D .点评:本题考查了二次函数图象与系数的关系:二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点.抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.10.(2014·浙江金华,第9题4分)如图是二次函数2y x 2x 4=-++的图象,使y 1≤成立的x 的取值范围是【 】A .1x 3-≤≤B .x 1≤-C .x 1≥D .x 1≤-或x 3≥【答案】D . 【解析】试题分析:由图象可知,当y 1≤时,x 1≤-或x 3≥. 故选D . 考点:1.曲线上点的坐标与方程的关系;2.数形结合思想的应用11.(2014•浙江宁波,第12题4分)已知点A (a ﹣2b ,2﹣4ab )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点坐标为( ) A . (﹣3,7) B . (﹣1,7)C . (﹣4,10)D . (0,10)考点: 二次函数图象上点的坐标特征;坐标与图形变化-对称. 分析:把点A 坐标代入二次函数解析式并利用完全平方公式整理,然后根据非负数的性质列式求出a 、b ,再求出点A 的坐标,然后求出抛物线的对称轴,再根据对称性求解即可.解答:解:∵点A (a ﹣2b ,2﹣4ab )在抛物线y =x 2+4x +10上, ∴(a ﹣2b )2+4×(a ﹣2b )+10=2﹣4ab , a 2﹣4ab +4b 2+4a ﹣8ab +10=2﹣4ab , (a +2)2+4(b ﹣1)2=0, ∴a +2=0,b ﹣1=0, 解得a =﹣2,b =1, ∴a ﹣2b =﹣2﹣2×1=﹣4, 2﹣4ab =2﹣4×(﹣2)×1=10, ∴点A 的坐标为(﹣4,10), ∵对称轴为直线x =﹣=﹣2,∴点A 关于对称轴的对称点的坐标为(0,10). 故选D .点评:本题考查了二次函数图象上点的坐标特征,二次函数的对称性,坐标与图形的变化﹣对称,把点的坐标代入抛物线解析式并整理成非负数的形式是解题的关键.12.(2014•菏泽第8题3分)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.考点:动点问题的函数图象.专题:数形结合.分析:分类讨论:当0<x≤1时,根据正方形的面积公式得到y=x2;当1<x≤2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x2﹣2(x﹣1)2,配方得到y=﹣(x﹣2)2+2,然后根据二次函数的性质对各选项进行判断.解答:解:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2﹣x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣x,∴EM=x﹣(2﹣x)=2x﹣2,∴S△ENM=(2x﹣2)2=2(x﹣1)2,∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,∴y=,故选A.13.(2014•济宁,第8题3分)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b考点:抛物线与x轴的交点.分析:依题意画出函数y=(x﹣a)(x﹣b)图象草图,根据二次函数的增减性求解.解答:解:依题意,画出函数y=(x﹣a)(x﹣b)的图象,如图所示.函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为a,b(a<b).方程1﹣(x﹣a)(x﹣b)=0转化为(x﹣a)(x﹣b)=1,方程的两根是抛物线y=(x ﹣a)(x﹣b)与直线y=1的两个交点.由m<n,可知对称轴左侧交点横坐标为m,右侧为n.由抛物线开口向上,则在对称轴左侧,y随x增大而减少,则有m<a;在对称轴右侧,y随x增大而增大,则有b<n.综上所述,可知m<a<b<n.故选A.点评:本题考查了二次函数与一元二次方程的关系,考查了数形结合的数学思想.解题时,画出函数草图,由函数图象直观形象地得出结论,避免了繁琐复杂的计算.14.(2014年山东泰安,第17题3分)已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B C D.分析:根据二次函数图象判断出m<﹣1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.解:由图可知,m<﹣1,n=1,所以,m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.点评:本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.15.(2014年山东泰安,第20题3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣1 0 1 3y﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个分析:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.解:由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a <0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x>1.5时,y的值随x 值的增大而减小,故(2)错误;∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b ﹣1)x+c=0的一个根,故(3)正确;∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2=(b﹣1)x+c>0,故(4)正确.故选B.点评:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.16.(2014•滨州,第9题3分)下列函数中,图象经过原点的是()A.y=3x B.y=1﹣2x C.y=D.y=x2﹣1考点:二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征分析:将点(0,0)依次代入下列选项的函数解析式进行一一验证即可.解答:解:∵函数的图象经过原点,∴点(0,0)满足函数的关系式;A、当x=0时,y=3×0=0,即y=0,∴点(0,0)满足函数的关系式y=3x;故本选项正确;B、当x=0时,y=1﹣2×0=1,即y=1,∴点(0,0)不满足函数的关系式y=1﹣2x;故本选项错误;C、y=的图象是双曲线,不经过原点;故本选项错误;D、当x=0时,y=02﹣1=﹣1,即y=﹣1,∴点(0,0)不满足函数的关系式y=x2﹣1;故本选项错误;故选A.点评:本题综合考查了二次函数、一次函数、反比例图象上的点的坐标特征.经过函数图象上的某点,该点一定满足该函数的解析式.二.填空题1. (2014•安徽省,第12题5分)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:根据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.2.(2014年云南,第16题3分)抛物线y=x2﹣2x+3的顶点坐标是.考点:二次函数的性质.专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).点评:此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.3.(2014•浙江湖州,第16题4分)已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c 时,都有y1<y2<y3,则实数m的取值范围是.分析:根据三角形的任意两边之和大于第三边判断出a最小为2,再根据二次函数的增减性和对称性判断出对称轴在2、3之间偏向2,即不大于2.5,然后列出不等式求解即可.解:∵正整数a,b,c恰好是一个三角形的三边长,且a<b<c,∴a最小是2,∵y1<y2<y3,∴﹣<2.5,解得m>﹣.故答案为:m>﹣.点评:本题考查了二次函数图象上点的坐标特征,三角形的三边关系,判断出a最小可以取2以及对称轴的位置是解题的关键.4. (2014•株洲,第16题,3分)如果函数y=(a﹣1)x2+3x+的图象经过平面直角坐标系的四个象限,那么a的取值范围是a<﹣5.考点:抛物线与x轴的交点分析:函数图象经过四个象限,需满足3个条件:(I)函数是二次函数;(II)二次函数与x轴有两个交点;(III)二次函数与y轴的正半轴相交.解答:解:函数图象经过四个象限,需满足3个条件:(I)函数是二次函数.因此a﹣1≠0,即a≠1①(II)二次函数与x轴有两个交点.因此△=9﹣4(a﹣1)=﹣4a﹣11>0,解得a<﹣②(III)二次函数与y轴的正半轴相交.因此>0,解得a>1或a<﹣5③综合①②③式,可得:a<﹣5.故答案为:a<﹣5.点评:本题考查二次函数的图象与性质、二次函数与x轴的交点、二次函数与y轴交点等知识点,解题关键是确定“函数图象经过四个象限”所满足的条件.5. (2014年江苏南京,第16题,2分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣1 0 1 2 3 …y…10 5 2 1 2 …则当y<5时,x的取值范围是.考点:二次函数与不等式分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.解答:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.6. (2014•扬州,第16题,3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.(第3题图)考点:抛物线与x轴的交点分析:依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.解答:解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.点评:本题考查了抛物线的对称性,知道与x轴的一个交点和对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键.7.(2014•菏泽,第12题3分)如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则= _______.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:设A点坐标为(0,a),利用两个函数解析式求出点B、C的坐标,然后求出AB的长度,再根据CD∥y轴,利用y1的解析式求出D点的坐标,然后利用y2求出点E的坐标,从而得到DE的长度,然后求出比值即可得解.解答:解:设设A点坐标为(0,a),(a>0),则x2=a,解得x=,∴点B(,a),=a,则x=,∴点C(,a),∵CD∥y轴,∴点D的横坐标与点C的横坐标相同,为,∴y1=2=3a,∴点D的坐标为(,3a),∵DE∥AC,∴点E的纵坐标为3a,∴=3a,∴x=3,∴点E的坐标为(3,3a),∴DE=3﹣,==3﹣.故答案为:3﹣.点评:本题是二次函数综合题型,主要利用了二次函数图象上点的坐标特征,根据平行与x轴的点的纵坐标相同,平行于y轴的点的横坐标相同,求出用点A的纵坐标表示出各点的坐标是解题的关键.8. (2014•珠海,第9题4分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,則它的对称轴为直线x=2.考点:二次函数的性质分析:点(1,0),(3,0)的纵坐标相同,这两点一定关于对称轴对称,那么利用两点的横坐标可求对称轴.解答:解:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x==2.故答案为:直线x=2.点评:本题主要考查了抛物线的对称性,图象上两点的纵坐标相同,则这两点一定关于对称轴对称.三.解答题1. (2014•安徽省,第22题12分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.2. (2014•福建泉州,第22题9分)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?考点:二次函数的性质;坐标与图形变化-旋转.分析:(1)由于抛物线过点O(0,0),A(2,0),根据抛物线的对称性得到抛物线的对称轴为直线x=1;(2)作A′B⊥x轴与B,先根据旋转的性质得OA′=OA=2,∠A′OA=2,再根据含30度的直角三角形三边的关系得OB=OA′=1,A′B=OB=,则A′点的坐标为(1,),根据抛物线的顶点式可判断点A′为抛物线y=﹣(x﹣1)2+的顶点.解答:解:(1)∵二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).∴抛物线的对称轴为直线x=1;(2)点A′是该函数图象的顶点.理由如下:如图,作A′B⊥x轴于点B,∵线段OA绕点O逆时针旋转60°到OA′,∴OA′=OA=2,∠A′OA=2,在Rt△A′OB中,∠OA′B=30°,∴OB=OA′=1,∴A′B=OB=,∴A′点的坐标为(1,),∴点A′为抛物线y=﹣(x﹣1)2+的顶点.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.也考查了旋转的性质.3. (2014•福建泉州,第25题12分)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥BC.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.考点:四边形综合题分析:(1)①根据有两组对边互相平行的四边形是平行四边形即可求得,②根据△ADF∽△ABC推出对应边的相似比,然后进行转换,即可得出h与x之间的函数关系式,根据平行四边形的面积公式,很容易得出面积S关于h的二次函数表达式,求出顶点坐标,就可得出面积s最大时h的值.(2)第一步,沿∠ABC的对角线对折,使C与C1重合,得到三角形ABB1,第二步,沿B1对折,使DA1⊥BB1.解答:解:(1)①∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形.②作AG⊥BC,交BC于G,交DF于H,∵∠ACB=45°,AC=24cm∴AG==12,设DF=EC=x,平行四边形的高为h,则AH=12h,∵DF∥BC,∴=,∵BC=20cm,即:=∴x=×20,∵S=xh=x•×20=20h﹣h2.∴﹣=﹣=6,∵AH=12,∴AF=FC,∴在AC中点处剪四边形DECF,能使它的面积最大.(2)第一步,沿∠ABC的对角线对折,使C与C1重合,得到三角形ABB1,第二步,沿B1对折,使DA1⊥BB1.理由:对角线互相垂直平分的四边形是菱形.点评:本题考查了相似三角形的判定及性质、菱形的判定、二次函数的最值.关键在于根据相似三角形及已知条件求出相关线段的表达式,求出二次函数表达式,即可求出结论.4. (2014•广东,第25题9分)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t 秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.考点:相似形综合题.分析:(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.解答:(1)证明:当t=2时,DH=AH=2,则H为AD的中点,如答图1所示.又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥AB于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,。
2014年全国中考数学试题解析分类汇编(第三期)09 一元二次方程及其应用
一元二次方程及其应用一、选择题1. (2014•海南,第10题3分)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A.100(1+x)2=81B.100(1﹣x)2=81C.100(1﹣x%)2=81D.100x2=81考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:若两次降价的百分率均是x,则第一次降价后价格为100(1﹣x)元,第二次降价后价格为100(1﹣x)(1﹣x)=100(1﹣x)2元,根据题意找出等量关系:第二次降价后的价格=81元,由此等量关系列出方程即可.解答:解:设两次降价的百分率均是x,由题意得:x满足方程为100(1﹣x)2=81.故选B.点评:本题主要考查列一元二次方程,关键在于读清楚题意,找出合适的等量关系列出方程.2.(2014•宁夏,第3题3分)一元二次方程x2﹣2x﹣1=0的解是()A.x1=x2=1B.x1=1+,x2=﹣1﹣C.x1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣考点:解一元二次方程-配方法.专题:计算题.分析:方程变形后,配方得到结果,开方即可求出值.解答:解:方程x2﹣2x﹣1=0,变形得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.故选C.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.(2014•陕西,第8题3分)若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A.1或4B.﹣1或﹣4C.﹣1或4D.1或﹣4考点:一元二次方程的解.菁优网分析:将x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0,再解关于a的一元二次方程即可.解答:解:∵x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,∴4+5a+a2=0,∴(a+1)(a+4)=0,解得a1=﹣1,a2=﹣4,故选B.点评:本题主要考查了一元二次方程的解的定义,解题关键是把x的值代入,再解关于a 的方程即可.4.(2014•湖北黄冈,第6题3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8B.32C.16D.40考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.解答:解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.5. (2014•湖北荆门,第5题3分)已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1B.1<α<1.5C.1.5<α<2D.2<α<3考点:解一元二次方程-公式法;估算无理数的大小.分析:先求出方程的解,再求出的范围,最后即可得出答案.解答:解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选C.点评:本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.6.(2014•攀枝花,第8题3分)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是()A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣1考点:根与系数的关系.专题:计算题.分析:先根据根与系数的关系得到α+β=﹣1,αβ=﹣1,再利用完全平方公式变形α2+β2得到(α+β)2﹣2αβ,利用通分变形+得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进行判断.解答:解:根据题意得α+β=﹣1,αβ=﹣1.所以α2+β2=(α+β)2﹣2αβ=(﹣1)2﹣2×(﹣1)=3;+===1.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.二、填空题1. (2014•湖南永州,第10题3分)方程x 2﹣2x =0的解为 x 1=0,x 2=2 .考点:解一元二次方程-因式分解法;解一元一次方程.. 专题:计算题. 分析:把方程的左边分解因式得x (x ﹣2)=0,得到x =0或 x ﹣2=0,求出方程的解即可. 解答:解:x 2﹣2x =0, x (x ﹣2)=0,x =0或 x ﹣2=0,x 1=0 或x 2=2.故答案为:x 1=0,x 2=2.点评: 本题主要考查对解一元二次方程﹣因式分解法,解一元一次方程等知识点的理解和掌握,把一元二次方程转化成一元一次方程是解此题的关键.2. (2014•随州,第14题3分)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是 20% .考点:一元二次方程的应用 专题:增长率问题. 分析: 本题需先设出这个增长率是x ,再根据已知条件找出等量关系列出方程,求出x 的值,即可得出答案.解答: 解:设这个增长率是x ,根据题意得:2000×(1+x )2=2880解得:x 1=20%,x 2=﹣220%(舍去)故答案为:20%.点评: 本题主要考查了一元二次方程的应用,在解题时要根据已知条件找出等量关系,列出方程是本题的关键.3、(2014•江西,第10题3分)若,是方程2230x x 的两个实数根,则22_______。
2014年全国中考数学试卷解析分类汇编:二元一次方程(组)及其应用
二元一次方程(组)及其应用一、选择题1. (2014•山东烟台,第5题3分)按如图的运算程序,能使输出结果为3的x ,y 的值是( )A . x =5,y =﹣2B . x =3,y =﹣3C . x =﹣4,y =2D . x =﹣3,y =﹣9 考点:实数的运算,二元一次方程的解.分析:根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.解答:由题意得,2x ﹣y =3,A 、x =5时,y =7,故本选项错误;B 、x =3时,y =3,故本选项错误;C 、x =﹣4时,y =﹣11,故本选项错误;D 、x =﹣3时,y =﹣9,故本选项正确.故选D .点评:本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.2.(2014•江西抚州,第6题,3分)已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a b +的值为( )A. 8B. 4C. -4D. -8 解析:选A . ∵方程(1)+方程(2)即可得a b +=38.3.(2014•娄底4.(3分))方程组的解是( ),.二、填空题1. (2014•山东枣庄,第14题4分)已知x、y是二元一次方程组的解,则代数式22解:,()=故答案为:.2. (2014•浙江杭州,第13题,4分)设实数x、y满足方程组,则x+y=8.,队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队.4. (2014•年山东东营,第15题4分)如果实数x,y满足方程组,那么代数式(+2)÷的值为 1 .考点:分式的化简求值;解二元一次方程组.菁优网专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.解答:解:原式=•(x+y)=xy+2x+2y,方程组,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为:1点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.5.(2014•江苏徐州,第11题3分)函数y=2x与y=x+1的图象交点坐标为(1,2).考点:两条直线相交或平行问题.菁优网专题:计算题.分析:根据两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,所以解方程组即可得到两直线的交点坐标.解答:解:解方程组得,所以函数y=2x 与y=x+1的图象交点坐标为(1,2).故答案为(1,2).点评: 本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.三、解答题1. (2014•山东威海,第19题7分)解方程组:. 解:方程组整理得:,则方程组的解为2.(2014山东济南,第24题,8分)(本小题满分8分)2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?【解析】设小李预定了小组赛球票x 张,淘汰赛球票y 张,由题意有⎩⎨⎧=+=+580070055010y x y x ,解之⎩⎨⎧==28y x . 所以,小李预定了小组赛球票8张,淘汰赛球票2张.3. (2014•山东聊城,第22题,8分)某服装店用6000元购进A ,B 两种新式服装,按标价,这两种服装的进价、标价如表所示:(2)如果A 中服装按标价的8折出售,B 中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?.件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,根据“5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元”列出方程组解决问题;(2)分情况:不大于20件;大于20件;分别列出函数关系式即可;(3)设购进玩具x件(x>20),分别表示出甲种和乙种玩具消费,建立不等式解决问题.解答:解:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,由题意得,解得,答:件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x≤20时,y=30x;当x>20时,y=20×30+(x﹣20)×30×0.7=21x+180;(3)设购进玩具x件(x>20),则乙种玩具消费27x元;当27x=21x+180,则x=30所以当购进玩具正好30件,选择购其中一种即可;当27x>21x+180,则x>30所以当购进玩具超过30件,选择购甲种玩具省钱;当27x<21x+180,则x<30所以当购进玩具少于30件,选择购乙种玩具省钱.点评:此题考查二元一次方程组,一次函数,一元一次不等式的运用,理解题意,正确劣势解决问题.5.( (2014年河南) 21,10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。
【初中数学】2014年全国中考数学试卷解析分类汇编(49专题) 通用4
一元一次方程及其应用一、选择题1. (2014年湖北咸宁2.(3分))若代数式x+4的值是2,则x等于()A. 2 B.﹣2 C. 6 D.﹣6考点:解一元一次方程;代数式求值.分析:根据已知条件列出关于x的一元一次方程,通过解一元一次方程来求x的值.解答:解:依题意,得x+4=2移项,得x=﹣2故选:B.点评:题实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.二、填空题1. (2014•娄底13.(3分))已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为1.三、解答题1.(2014•江西抚州,第19题,8分)情景:试根据图中的信息,解答下列问题:⑴购买6根跳绳需元,购买12根跳绳需元.⑵小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.解析:(1)25×6=150, 25×0.8×12=240.(2)有这种可能.设小红买了x根跳绳,则25×0.8·x=25(x-2)-5 ,解得x=11.∴小红买了11根跳绳.2.(2014•山东淄博,第21题8分)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于200 0.55第二档大于200小于400 0.6第三档大于等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?考点:一二元一次方程的应用.菁优网分析:某户居民五、六月份共用电500度,就可以得出每月用电量不可能都在第一档,分情况讨论,当5月份用电量为x度≤200度,6月份用电(500﹣x)度,当5月份用电量为x 度>200度,六月份用电量为(500﹣x)度>x度,分别建立方程求出其解即可.解答:解:当5月份用电量为x度≤200度,6月份用电(500﹣x)度,由题意,得0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6月份用电500﹣x=310度.当5月份用电量为x度>200度,六月份用电量为(500﹣x)度,由题意,得0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,分类讨论思想的运用,解答时由总价=单价×数量是关键.。
2014年全国各地中考数学真题分类解析汇编:14 统计
统计一、选择题1.(2014年天津市,第11题3分)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁考点:加权平均数.分析:根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.解答:解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选B.点评:此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.2.(2014•新疆,第7题5分)某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()A .216B.252C.288D.324考点:条形统计图;用样本估计总体.分析:用分组合作学习所占的百分比乘以该校八年级的总人数,即可得出答案.解答:解:根据题意得:360×=252(人),答:该校八年级支持“分组合作学习”方式的学生约为252人;故选B.点评:此题考查了条形统计图和用样本估计总体,关键是根据题意求出抽查人数中分组合作学习所占的百分比.3.(2014年云南省,第8题3分)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B. 9.60,9.60 C. 9.60,9.70 D.9.65,9.60考点:众数;中位数分析:根据中位数和众数的概念求解.解答:解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,众数为:9.60.故选B.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(2014•温州,第2题4分)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5﹣10元B.10﹣15元C.15﹣20元D.20﹣25元考点:频数(率)分布直方图.分析:根据图形所给出的数据直接找出捐款人数最多的一组即可.解答:解:根据图形所给出的数据可得:15﹣20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元;故选C.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5.(2014•温州,第6题4分)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()星期一二三四五六日最高气温(℃)22242325242221A .22℃B.23℃C.24℃D.25℃考点:中位数.分析:将数据从小到大排列,根据中位数的定义求解即可.解答:解:将数据从小到大排列为:21,22,22,23,24,24,25,中位数是23.故选B.点评:本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.6.(2014•舟山,第2题3分)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A .6B.7C.8D.9考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选C.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.(2014•舟山,第4题3分)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况考点:扇形统计图.分析:利用扇形统计图的特点结合各选项利用排除法确定答案即可.解答:解:A、能够看出各项消费占总消费额的百分比,故选项正确;B、不能确定各项的消费金额,故选项错误;C、不能看出消费的总金额,故选项错误;D、不能看出增减情况,故选项错误.故选A.点评:本题考查了扇形统计图的知识,扇形统计图能清楚的反应各部分所占的百分比,难度较小.8.(2014•毕节地区,第5题3分)下列叙述正确的是()9.(2014•毕节地区,第7题3分)我市5月的某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是()10.(2014•武汉,第4题3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:那么这些运动员跳高成绩的众数是( )11.(2014•襄阳,第6题3分)五箱梨的质量(单位:kg)分别为:18,20,21,18,19,则这五箱梨质量的中位数和众数分别为()12.(2014•邵阳,第4题3分)如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A .1小时B.1.5小时C.2小时D.3小时考点:算术平均数;折线统计图分析:根据算术平均数的概念求解即可.解答:解:由图可得,这7天每天的学习时间为:2,1,1,1,1,1.5,3,则平均数为:=1.5.故选B.点评:本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.13.(2014•孝感,第7题3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民(户)1324月用电量(度/户)45556那么关于这10户居民月用电量(单位:度),下列说法错误的是()A .中位数是55B.众数是60C.方差是29D.平均数是54考点:方差;加权平均数;中位数;众数.分根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平析:均数和方差,即可判断四个选项的正确与否.解答:解:A、月用电量的中位数是55度,正确;B、用电量的众数是60度,正确;C、用电量的方差是24.9度,错误;D、用电量的平均数是54度,正确.故选C.点评:考查了中位数、众数、平均数和方差的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.14.(2014•四川自贡,第7题4分)一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A .8B.5C.D.3.考点:方差;算术平均数分析:根据平均数的计算公式先求出a的值,再根据方差公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],代数计算即可.解答:解:∵6、4、a、3、2的平均数是5,∴(6+4+a+3+2)÷5=5,解得:a=10,则这组数据的方差S2= [(6﹣5)2+(4﹣5)2+(10﹣5)2+(3﹣5)2+(2﹣5)2]=8;故选A.点评:本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].15.(2014·台湾,第25题3分)有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a、b之值,下列何者正确?()A.a=16 B.a=24 C.b=24 D.b=34分析:先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案.解:甲箱98﹣49=49(颗),∵乙箱中位数40,∴小于、大于40各有(49﹣1)÷2=24(颗),∴甲箱中小于40的球有39﹣24=15(颗),大于40的有49﹣15=34(颗),即a=15,b =34.故选D.点评:此题考查了中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.16.(2014•浙江湖州,第5题3分)数据﹣2,﹣1,0,1,2的方差是()A.0 B.C. 2 D.4分析:先求出这组数据的平均数,再根据方差的公式进行计算即可.解:∵数据﹣2,﹣1,0,1,2的平均数是:(﹣2﹣1+0+1+2)÷5=0,∴数据﹣2,﹣1,0,1,2的方差是:[(﹣2)2+(﹣1)2+02+12+22]=2.故选C.点评:本题考查了方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17. (2014•株洲,第3题,3分)下列说法错误的是()A必然事件的概率为1.B数据1、2、2、3的平均数是2C.数据5、2、﹣3、0的极差是8D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖考点:概率的意义;算术平均数;极差;随机事件分析:A.根据必然事件和概率的意义判断即可;B.根据平均数的秋乏判断即可;C.求出极差判断即可;D.根据概率的意义判断即可.解答:解:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B.数据1、2、2、3的平均数是=2,本项正确;C.这些数据的极差为5﹣(﹣3)=8,故本项正确;D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选:D.点评:本题主要考查了概率的意义、求算术平均数以及极差的方法,比较简单.18. (2014•泰州,第3题,3分)一组数据﹣1、2、3、4的极差是()A .5B.4C.3D.2考点:极差.分极差是最大值减去最小值,即4﹣(﹣1)即可.解答:解:4﹣(﹣1)=5.故选A.点评:此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.19. (2014•扬州,第4题,3分)若一组数据﹣1,0,2,4,x的极差为7,则x的值是()A .﹣3B.6C.7D.6或﹣3考点:极差分析:根据极差的定义分两种情况进行讨论,当x是最大值时,x﹣(﹣1)=7,当x是最小值时,4﹣x=7,再进行计算即可.解答:解:∵数据﹣1,0,2,4,x的极差为7,∴当x是最大值时,x﹣(﹣1)=7,解得x=6,当x是最小值时,4﹣x=7,解得x=﹣3,故选D.点评:此题考查了极差,求极差的方法是用最大值减去最小值,本题注意分两种情况讨论.20.(2014•呼和浩特,第2题3分)以下问题,不适合用全面调查的是()A .旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D.了解一批灯泡的使用寿命考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、旅客上飞机前的安检,意义重大,宜用全面调查,故此选项错误;B、学校招聘教师,对应聘人员面试必须全面调查,故此选项错误;C、了解全校同学课外读书时间,数量不大,宜用全面调查,故此选项错误;D、了解一批灯泡的使用寿,具有破坏性,工作量大,不适合全面调查,故D选项正确.故选:D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.21.(2014•滨州,第8题3分)有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()故选B.点评:中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.学会运用中位数解决问题.22.(2014•德州,第9题3分)雷霆队的杜兰特当选为2013﹣2014赛季NBA常规赛MVP,下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为()场次12345678得分3028283823263942A .29 28B.28 29C.28 28D.28 27考点:众数;中位数分析:根据众数和中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:23,26,28,28,30,38,39,42,则众数为:28,中位数为:=29.故选B.点评:本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.23.(2014•菏泽,第4题3分)2014年4月8日我市区县的可吸入颗粒物数值统计如下表:区县曹县单县成武定陶巨野东明郓城鄄城牡丹区开发区可吸入颗粒物0.10.10.10.10.10.10.10.10.140.14该日这一时刻的可吸入颗粒物数值的众数和中位数分别是()24.(2014•济宁,第6题3分)从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是()A样本容量越大,样本平均数就越大.B样本容量越大,样本的方差就越大.C样本容量越大,样本的极差就越大.D样本容量越大,对总体的估计就越准确.考用样本估计总体.点:分用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样析:本容量在总体中所占的比例有关,对于同一个总体,样本容量越大,估计的越准确.解答:解:∵用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,∴样本容量越大,估计的越准确.故选:D.点评:此题考查了抽样和样本估计总体的实际应用,注意在一个总体中抽取一定的样本估计总体,估计的是否准确,只与样本在总体中所占的比例有关.25.(2014年山东泰安,第9题3分)以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B. 90,89 C. 85,89 D. 85,90分析:根据中位数的定义先把这些数从小到大排列,求出最中间的两个数的平均数,再根据平均数的计算公式进行计算即可.解:∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选B.点评:此题考查了中位数和平均数,掌握中位数和平均数的计算公式和定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.二.填空题1. (2014•福建泉州,第12题4分)在综合实践课上,六名同学的作品数量(单位:件)分别为:3、5、2、5、5、7,则这组数据的众数为5件.考点:众数.分析:根据众数的定义即一组数据中出现次数最多的数,即可得出答案.解答:解:∵5出现了3次,出现的次数最多,∴这组数据的众数为5;故答案为:5.点评:此题考查了众数,众数是一组数据中出现次数最多的数,注意众数不止一个.2. (2014•广西玉林市、防城港市,第15题3分)下表是我市某一天在不同时段测得的气温情况0:004:008:0012:0016:0020:0025℃27℃29℃32℃34℃30℃则这一天气温的极差是9℃.考点:极差.分析:根据极差的定义即极差就是这组数中最大值与最小值的差,即可得出答案.解答:解:这组数据的最大值是34℃,最小值是25℃,则极差是34﹣25=9(℃).故答案为:9.点评:此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:极差的单位与原数据单位一致.3. (2014•广西贺州,第15题3分)近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x=22.考点:算术平均数.分根据算术平均数:对于n个数x1,x2,…,x n,则=(x1+x2+…+x n)就叫做这n个数析:的算术平均数进行计算即可.解答:解:(11+13+15+19+x)÷5=16,解得:x=22,故答案为:22.点评:此题主要考查了算术平均数,关键是掌握算术平均数的计算公式.4.(2014年广东汕尾,第14题5分)小明在射击训练中,五次命中的环数分别为5、7、6、6、6,则小明命中环数的众数为,平均数为.分析:根据众数和平均数的概念求解.解:6出现的次数最多,故众数为6,平均数为:=6.故答案为:6,6.点评:本题考查了众数和平均数的概念:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.5.(2014•孝感,第14题3分)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是①③.(填序号)考点:随机事件分析:随机事件就是可能发生也可能不发生的事件,依据定义即可判断.解答:解:①是随机事件;②是不可能事件;③是随机事件;④是必然事件.故答案是:①③. 点评: 本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(2014·云南昆明,第11题3分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:22=甲S ,5.12=乙S ,则射击成绩较稳定的是 (填“甲”或“乙”).考点:样本方差.分析: 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差,样本方差是衡量一个样本波动大小的量,样本方差越大,样本数据的波动就越大.解答:解:对甲、乙射击测试来说,射击成绩的方差越小,射击成绩越稳定. 故填乙.点评:本题考查了样本方差的意义,比较简单.7.(2014•浙江湖州,第14题4分)下面的频数分布折线图分别表示我国A 市与B 市在2014年4月份的日平均气温的情况,记该月A 市和B 市日平均气温是8℃的天数分别为a 天和b 天,则a +b = .O分析:根据折线图即可求得a 、b 的值,从而求得代数式的值. 解:根据图表可得:a =10,b =2,则a +b =10+2=12.故答案是:12. 点评:本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.(2014·浙江金华,第14题4分)小亮对60名同学进行节水方法的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是 ▲ .【答案】240°. 【解析】试题分析:根据扇形圆心角的计算方法,表示“一水多用”的扇形圆心角的度数是4036024040578⨯︒=+++︒.考点:扇形圆心角的计算.9.(2014•浙江宁波,第15题4分)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是 150 支.考点: 扇形统计图分析:首先根据红豆口味的雪糕的数量和其所占的百分比确定售出雪糕的总量,然后乘以水果口味的所占的百分比即可求得其数量.解答:解:观察扇形统计图知:售出红豆口味的雪糕200支,占40%, ∴售出雪糕总量为200÷40%=500支, ∵水果口味的占30%,∴水果口味的有500×30%=150支, 故答案为150.点评:本题考查了扇形统计图的知识,解题的关键是正确的从扇形统计图中整理出进一步解题的有关信息.10. (2014•湘潭,第11题,3分)未测试两种电子表的走时误差,做了如下统计平均数 方差 甲 0.4 0.026 乙0.40.137则这两种电子表走时稳定的是 甲 .考点:方差;算术平均数.分析: 根据方差的意义判断,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,找出方差较小的即可.解答:解:∵甲的方差是0.026,乙的方差是0.137, 0.026<0.137,∴这两种电子表走时稳定的是甲; 故答案为:甲.点评:本题考查方差的意义.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11. (2014•益阳,第11题,4分)小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是 2.16米.考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:1.96,1.98,2.04,2.16,2.20,2.22,2.32,则中位数为:2.16.故答案为:2.16.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12. (2014•株洲,第12题,3分)某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为108°.考点:扇形统计图.分析:根据C等级的人数与所占的百分比计算出参加中考的人数,再求出A等级所占的百分比,然后乘以360°计算即可得解.解解:参加中考的人数为:60÷20%=300人,答:A等级所占的百分比为:×100%=30%,所以,表示A等级的扇形的圆心角的大小为360°×30%=108°.故答案为:108°.点评:本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.13. (2014年江苏南京,第10题,2分)2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.考点:众数、极差分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解答:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.14. (2014•扬州,第12题,3分)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280人.考点:用样本估计总体;扇形统计图.分析:先求出步行的学生所占的百分比,再用学生总数乘以步行学生所占的百分比即可估计全校步行上学的学生人数.解答:解:∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生700人,则据此估计步行的有700×40%=280(人).故答案为:280.点评:本题考查了扇形统计图及用样本估计总数的知识,解题的关键是从统计图中得出步行上学学生所占的百分比.15.(2014•呼和浩特,第12题3分)某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是 1.6.考点:方差.分析:根据平均数的计算公式先求出x的值,再根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],代入计算即可.解答:解:∵这组数据的平均数是10,∴(10+10+12+x+8)÷5=10,解得:x=10,∴这组数据的方差是[3×(10﹣10)2+(12﹣10)2+(8﹣10)2]=1.6;故答案为:1.6.点评:此题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].三.解答题1. (2014•福建泉州,第23题9分)课外阅读是提高学生素养的重要途径.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表类别时间t(小时)人数A t<0.510B0.5≤t<120。
2014年全国中考数学真题分类解析汇编(二元一次方程(组)及其应用)
2014年全国中考数学真题分类解析汇编(二元一次方程(组)及
其应用)
一、选择题1.(2014 新疆,第8题5分)六o一儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,依题意列方程组正确的是()A.B.C.D.考点由实际问题抽象出二元一次方程组分析设购买A型童装x套,B型童装y套,根据超市用3360元购进A,B两种童装共120套,列方程组求解.解答解设购买A型童装x套,B型童装y套,由题意得,.故选B.点评本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.2.(2014 温州,第9题4分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.考点由实际问题抽象出二元一次方程组.。
2014中考数学专题训练:应用题专项训练(一)
第1页共1页 应用题专项训练(一)1.某校九年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品.经了解得知,该超市的A ,B 两种笔记本的单价分别是12元和8元,他们准备购买两种笔记本共30本.(1)如果他们计划用300元购买奖品,且钱恰好花完,那么可行的购买方案是( )(2)两位老师根据演讲比赛的设奖情况,决定所购买的A 种笔记本的数量要少于B 种笔记本数量的32,但又不少于B 种笔记本数量的31.若设他们购买A 种笔记本n 本,购买这两种笔记本共花费W 元,则W 与n 之间的函数关系式为( )(写出自变量的取值范围)(3)在(2)的条件下,W 的最小值为( )2.某商店为了抓住文化艺术节的商机,决定购进A ,B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元.(1)购进A ,B 两种纪念品每件分别需要多少元?( )(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7 500元,但不超过7 650元,则该商场共有( )种进货方案.(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在(2)中的各种进货方案中,可获得的最大利润是( )元.3.某商场计划购进冰箱、彩电进行销售,相关信息如下表:已知商场用80 000元购进冰箱的数量与用64 000元购进彩电的数量相等.(1)表中a 的值为( )(2)为了满足市场需求,商场决定用不超过9万元采购冰箱、彩电共50台,且冰箱的数量不少于彩电数量的65.则该商场有( )种进货方案.(3)在(2)的条件下,若该商场将购进的冰箱、彩电全部售出,获得的利润为W 元,则W 的最大值为( )。
2014年全国各地中考数学真题分类解析汇编:03 整式与因式分解
整式与因式分解一、选择题1. (2014•安徽省,第2题4分)x2•x3=()A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2. (2014•安徽省,第4题4分)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.3. (2014•安徽省,第7题4分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.4. (2014•福建泉州,第2题3分)下列运算正确的是()A.a3+a3=a6B.2(a+1)=2a+1 C.(ab)2=a2b2D.a6÷a3=a2考点:同底数幂的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方.分析:根据二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则判断.解答:A、a3+a3=2a3,故选项错误;B、2(a+1)=2a+2≠2a+1,故选项错误;C、(ab)2=a2b2,故选项正确;D、a6÷a3=a3≠a2,故选项错误.故选:C.点评:本题主要考查了二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则,解题的关键是熟记法则运算5. (2014•福建泉州,第6题3分)分解因式x2y﹣y3结果正确的是()A.y(x+y)2B.y(x﹣y)2C.y(x2﹣y2)D.y(x+y)(x﹣y)考点:提公因式法与公式法的综合运用分析:首先提取公因式y,进而利用平方差公式进行分解即可.解答:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.6. (2014•广东,第3题3分)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.7. (2014•广东,第4题3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8. (2014•珠海,第3题3分)下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a考点:合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.解答:A、不是同类项,不能加减,故本选项错误;B、(3a3)2=9a6≠6a6,故本选项错误;C、不是同类项,不能加减,故本选项错误;D、﹣3a+2a=﹣a正确故选:D.点评:本题主要考查了合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;熟记计算法则是关键.9.(2014四川资阳,第3题3分)下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.解答:A、a3和a4不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选B.点评:本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.10.(2014•新疆,第3题5分)下列各式计算正确的是()B、(a2)3=a2×3=a6,故本选项错误;C、a6÷a2=a6﹣2=a4,故本选项错误;D、a•a2=a1+2=a3,故本选项正确.故选D.点评:本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟记性质并理清指数的变化是解题的关键.11.(2014年云南省,第2题3分)下列运算正确的是()A.3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.12.(2014•温州,第5题4分)计算:m6•m3的结果()A.m18B.m9C.m3D.m2考点:同底数幂的乘法.分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.解答:m6•m3=m9.故选B.点评:本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.13.(2014•舟山,第6题3分)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6D.(2a2)3=6a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方专题:计算题.分析:A、原式不能合并,错误;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断.解答:A、原式不能合并,故选项错误;B、原式=a2÷a=a,故选项正确;C、原式=﹣a3•a2=﹣a5,故选项错误;D、原式=8a6,故选项错误.故选B.点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.14.(2014•毕节地区,第3题3分)下列运算正确的是()A.π﹣3.14=0 B.+=C.a•a=2a D.a3÷a=a2考点:同底数幂的除法;实数的运算;同底数幂的乘法.分析:根据是数的运算,可判断A,根据二次根式的加减,可判断B,根据同底数幂的乘法,可判断C,根据同底数幂的除法,可判断D.解答:A、π≠3.14,故A错误;B、被开方数不能相加,故B错误;C、底数不变指数相加,故C错误;D、底数不变指数相减,故D正确;故选:D.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.15.(2014•毕节地区,第4题3分)下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+2考点:提公因式法与公式法的综合运用分析:A直接提出公因式a,再利用平方差公式进行分解即可;B和C不能运用完全平方公式进行分解;D是和的形式,不属于因式分解.解答:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故此选项正确;B、x2﹣2x+1=(x﹣1)2,故此选项错误;C、x2+1,不能运用完全平方公式进行分解,故此选项错误;D、x2﹣x+2=x(x﹣1)+2,还是和的形式,不属于因式分解,故此选项错误.故选:A.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.(2014•毕节地区,第13题3分)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2B.0C.﹣1 D.1考点:合并同类项分析:根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据乘方,可得答案.解答:解:若﹣2a m b4与5a n+2b2m+n可以合并成一项,,解得,m n=20=1,故选:D.点评:本题考查了合并同类项,同类项是字母相同且相同字母的指数也相同是解题关键.17.(2014•武汉,第5题3分)下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+1考点:幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.分析:根据幂的乘方与积的乘方、同底数幂的乘法法则及完全平方公式,分别进行各选项的判断即可.解答:A、(x3)2=x6,原式计算错误,故本选项错误;B、(2x)2=4x2,原式计算错误,故本选项错误;C、x3•x2=x5,原式计算正确,故本选项正确;D、(x+1)2=x2+2x+1,原式计算错误,故本选项错误.故选C.点评:本题考查了幂的乘方与积的乘方、同底数幂的运算,掌握各部分的运算法则是关键.18.(2014•襄阳,第2题3分)下列计算正确的是()A.a2+a2=2a4B.4x﹣9x+6x=1 C.(﹣2x2y)3=8x6y3D.a6÷a3=a2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:运用同底数幂的加法法则,合并同类项的方法,积的乘法方的求法及同底数幂的除法法则计算.解答:A、a2+a2=2a2≠2a4,故A选项错误;B、4x﹣9x+6x=x≠1,故B选项错误;C、(﹣2x2y)3=﹣8x6y3,故C选项正确;D、a6÷a3=a3≠a2故D选项错误.故选:C.点评:本题主要考查了同底数幂的加法法则,合并同类项的方法,积的乘方的求法及同底数幂的除法法则,解题的关键是熟记法则进行运算.19.(2014•襄阳,第18题5分)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.考点:二次根式的化简求值;因式分解的应用分析:根据x、y的值,先求出x﹣y和xy,再化简原式,代入求值即可.解答:∵x=1﹣,y=1+,∴x﹣y=(1﹣)(1+)=﹣2,xy=(1﹣)(1+)=﹣1,∴x2+y2﹣xy﹣2x+2y=(x﹣y)2﹣2(x﹣y)+xy=(﹣2)2﹣2×(﹣2)+(﹣1)=7+4.点评:本题考查了二次根式的化简以及因式分解的应用,要熟练掌握平方差公式和完全平方公式.20.(2014•邵阳,第2题3分)下列计算正确的是()A.2x﹣x=x B.a3•a2=a6C.(a﹣b)2=a2﹣b2D.(a+b)(a﹣b)=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式专题:计算题.分析:A、原式合并同类项得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;21.(2014•四川自贡,第2题4分)(x4)2等于()A.x6B.x8C.x16D.2x4考点:幂的乘方与积的乘方分析:根据幂的乘方等于底数不变指数相乘,可得答案.解答:原式=x4×2=x8,故选:B.点评:本题考查了幂的乘方,底数不变指数相乘是解题关键.22.(2014•四川自贡,第11题4分)分解因式:x2y﹣y=.考点:提公因式法与公式法的综合运用分析:观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.解答:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.(2014·台湾,第2题3分)若A为一数,且A=25×76×114,则下列选项中所表示的数,何者是A的因子?()A.24×5 B.77×113C.24×74×114D.26×76×116分析:直接将原式提取因式进而得出A的因子.解答:∵A=25×76×114=24×74×114(2×72),∴24×74×114,是原式的因子.故选:C.点评:此题主要考查了幂的乘方运算法则以及同底数幂的乘方,正确分解原式是解题关键.24.(2014·台湾,第15题3分)计算多项式10x 3+7x 2+15x ﹣5除以5x 2后,得余式为何?( )A .15x -55x 2B .2x 2+15x ﹣5C .3x ﹣1D .15x ﹣5分析:利用多项式除以单项式法则计算,即可确定出余式.解答:(10x 3+7x 2+15x ﹣5)÷(5x 2)=(2x +75)…(15x ﹣5).故选D . 点评:此题考查了整式的除法,熟练掌握运算法则是解本题的关键.25.(2014·台湾,第17题3分)(3x +2)(﹣x 6+3x 5)+(3x +2)(﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)与下列哪一个式子相同?( )A .(3x 6﹣4x 5)(2x +1)B .(3x 6﹣4x 5)(2x +3)C .﹣(3x 6﹣4x 5)(2x +1)D .﹣(3x 6﹣4x 5)(2x +3)分析:首先把前两项提取公因式(3x +2),再进一步提取公因式﹣(3x 6﹣4x 5)即可. 解答:原式=(3x +2)(﹣x 6+3x 5﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)=(3x +2)(﹣3x 6+4x 5)+(x +1)(3x 6﹣4x 5)=﹣(3x 6﹣4x 5)(3x +2﹣x ﹣1)=﹣(3x 6﹣4x 5)(2x +1).故选:C .点评:此题主要考查了因式分解,关键是正确找出公因式,进行分解.26.(2014·云南昆明,第4题3分)下列运算正确的是( )A. 532)(a a =B. 222)(b a b a -=-C. 3553=-D. 3273-=-考点: 幂的乘方;完全平方公式;合并同类项;二次根式的加减法;立方根.分析: A、幂的乘方:mn n m a a =)(; B 、利用完全平方公式展开得到结果,即可做出判断;C 、利用二次根式的化简公式化简,合并得到结果,即可做出判断.D 、利用立方根的定义化简得到结果,即可做出判断.解答: A、632)(a a =,错误; B 、 2222)(b ab a b a +-=- ,错误;C 、52553=-,错误;D 、3273-=-,正确.故选D.点评: 此题考查了幂的乘方,完全平方公式,合并同类项,二次根式的化简,立方根,熟练掌握公式及法则是解本题的关键.27.(2014•浙江湖州,第2题3分)计算2x (3x 2+1),正确的结果是( )A .5x 3+2xB . 6x 3+1C . 6x 3+2xD . 6x 2+2x分析:原式利用单项式乘以多项式法则计算即可得到结果.解答:原式=6x 3+2x ,故选C.点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.28.(2014·浙江金华,第7题4分)把代数式22x 18-分解因式,结果正确的是( )A .()22x 9-B .()22x 3- C .()()2x 3x 3+- D .()()2x 9x 9+- 【答案】C .【解析】29. (2014•湘潭,第2题,3分)下列计算正确的是( )A . a +a 2=a 3B . 2﹣1=C . 2a •3a =6aD . 2+=2 考点: 单项式乘单项式;实数的运算;合并同类项;负整数指数幂.分析: A 、原式不能合并,错误;B 、原式利用负指数幂法则计算得到结果,即可做出判断;C 、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;D 、原式不能合并,错误.解答: A 、原式不能合并,故选项错误;B 、原式=,故选项正确;C 、原式=6a 2,故选项错误;30. (2014•益阳,第2题,4分)下列式子化简后的结果为x6的是()A.x3+x3B.x3•x3C.(x3)3D.x12÷x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的运算法则进行计算即可.解答:A、原式=2x3,故本选项错误;B、原式=x6,故本选项错误;C、原式=x9,故本选项错误;D、原式=x12﹣2=x10,故本选项错误.故选B.点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.31. (2014年江苏南京,第2题,2分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6考点:幂的乘方分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解答:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.32. (2014•泰州,第2题,3分)下列运算正确的是()A.x3•x3=2x6B.(﹣2x2)2=﹣4x4C.(x3)2=x6D.x5÷x=x5考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:分别根据同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则对各选项进行计算即可.解答:A、原式=x6,故本选项错误;B、原式=4x4,故本选项错误;C、原式=x6,故本选项正确;D、原式=x4,故本选项错误.故选C.点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.33.(2014•扬州,第2题,3分)若□×3xy=3x2y,则□内应填的单项式是()A.x y B.3xy C.x D.3x考点:单项式乘单项式专题:计算题.分析:根据题意列出算式,计算即可得到结果.解答:根据题意得:3x2y÷3xy=x,故选C.点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.34.(2014•呼和浩特,第5题3分)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.A.a B.0.99a C.1.21a D.0.81a考点:列代数式.分析:原价提高10%后商品新单价为a(1+10%)元,再按新价降低10%后单价为a(1+10%)(1﹣10%),由此解决问题即可.解答:由题意得a(1+10%)(1﹣10%)=0.99a(元).故选:B.点评:本题主要考查列代数式的应用,属于应用题型,找到相应等量关系是解答此题的关键.35.(2014•滨州,第2题3分)一个代数式的值不能等于零,那么它是()A.a2B.a0C.D.|a|考点:零指数幂;绝对值;有理数的乘方;算术平方根.分析:根据非0的0次幂等于1,可得答案.解答:A、C、D、a=0时,a2=0,故A、C、D错误;B、非0的0次幂等于1,故B正确;故选:B.点评:本题考查了零指数幂,非0的0次幂等于1是解题关键.36.(2014•济宁,第2题3分)化简﹣5ab+4ab的结果是()A.﹣1 B.a C.b D.﹣ab考点:合并同类项.分析:根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变作答.解答:﹣5ab+4ab=(﹣5+4)ab=﹣ab故选:D.点评:本题考查了合并同类项的法则.注意掌握合并同类项时把系数相加减,字母与字母的指数不变,属于基础题.37.(2014年山东泰安,第2题3分)下列运算,正确的是()A.4a﹣2a=2 B.a6÷a3=a2C.(﹣a3b)2=a6b2D.(a﹣b)2=a2﹣b2分析:合并同类项时不要丢掉字母a,应是2a,B指数应该是3,D左右两边不相等.解答:A、是合并同类项结果是2a,不正确;B、是同底数幂的除法,底数不变指数相减,结果是a3;C、是考查积的乘方正确;D、等号左边是完全平方式右边是平方差,所以不相等.故选C.点评:这道题主要考查同底数幂相除底数不变指数相减以及完全平方式和平方差的形式,熟记定义是解题的关键.二.填空题1. (2014•广东,第11题4分)计算2x3÷x=.考点:整式的除法.分析:直接利用整式的除法运算法则求出即可.解答:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.2. (2014•珠海,第7题4分)填空:x2﹣4x+3=(x﹣)2﹣1.考点:配方法的应用.专题:计算题.分析:原式利用完全平方公式化简即可得到结果.解答:x2﹣4x+3=(x﹣2)2﹣1.故答案为:2点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.3. (2014•广西贺州,第13题3分)分解因式:a3﹣4a=.考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.4. (2014•广西玉林市、防城港市,第3题3分)计算(2a2)3的结果是()A.2a6B.6a6C.8a6D.8a5考点:幂的乘方与积的乘方.分析:利用幂的乘方与积的乘方的性质求解即可求得答案.解答:(2a2)3=8a6.故选C.点评:此题考查了幂的乘方与积的乘方的性质.此题比较简单,注意掌握指数的变化是解此题的关键.5.(2014•广西玉林市、防城港市,第4题3分)下面的多项式在实数范围内能因式分解的是()A.x2+y2B.x2﹣y C.x2+x+1 D.x2﹣2x+1考点:实数范围内分解因式.分析:利用因式分解的方法,分别判断得出即可.解答:A、x2+y2,无法因式分解,故此选项错误;B、x2﹣y,无法因式分解,故此选项错误;C、x2+x+1,无法因式分解,故此选项错误;D、x2﹣2x+1=(x﹣1)2,故此选项正确.故选:D.点评:此题主要考查了公式法分解因式,熟练应用公式是解题关键.6.(2014年天津市,第13题3分)计算x5÷x2的结果等于.考点:同底数幂的除法.分析:同底数幂相除底数不变,指数相减,解答:x5÷x2=x3,故答案为:x3.点评:此题考查了同底数幂的除法,解题要注意细心明确指数相减.7.(2014•温州,第11题5分)分解因式:a2+3a=.考点:因式分解-提公因式法.分析:直接提取公因式a,进而得出答案.解答:a2+3a=a(a+3).故答案为:a(a+3).点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.8.(2014年广东汕尾,第12题5分)已知a+b=4,a﹣b=3,则a2﹣b2=.分析:根据a2﹣b2=(a+b)(a﹣b),然后代入求解.解答:2﹣b2=(a+b)(a﹣b)=4×3=12.故答案是:12.点评:本题重点考查了用平方差公式.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.9.(2014•武汉,第12题3分)分解因式:a3﹣a= .10.(2014•邵阳,第12题3分)将多项式m2n﹣2mn+n因式分解的结果是.11.(2014•孝感,第15题3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为.考点:完全平方公式分析:运用平方差公式,化简代入求值,解答:因为a﹣b=1,所以﹣b2﹣2b=(a+b)(a﹣b)﹣2b=a+b﹣2b=a﹣b=1,故答案为:1.点评:本题主要考查了平方差公式,关键要注意运用公式来求值.12.(2014•浙江湖州,第17题分)计算:(3+a)(3﹣a)+a2.分析:原式第一项利用平方差公式计算,合并即可得到结果.解答:原式=9﹣a2+a2=9.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.13.(2014•浙江宁波,第16题4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).考点:平方差公式的几何背景分析:利用大正方形的面积减去4个小正方形的面积即可求解.解答:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,大正方形中未被小正方形覆盖部分的面积=()2﹣()2=ab.故答案为:ab.点评:本题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.14.(2014•浙江宁波,第19题6分)(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;(2)解不等式:5(x﹣2)﹣2(x+1)>3.考点:整式的混合运算;解一元一次不等式分析:(1)先运用完全平方公式和平方差公式展开,再合并同类项即可;(2)先去括号,再移项、合并同类项.解答:(1)原式=a2+2ab+b2+a2﹣b2﹣2ab=2a2;(2)去括号,得5x﹣10﹣2x﹣2>3,15. (2014•湘潭,第10题,3分)分解因式:ax﹣a=.16. (2014•益阳,第9题,4分)若x2﹣9=(x﹣3)(x+a),则a=.考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解得出即可.解答:∵x2﹣9=(x+3)(x﹣3)=(x﹣3)(x+a),∴a=3.故答案为:3.点评:此题主要考查了公式法分解因式,熟练掌握平方差公式是解题关键.17. (2014•株洲,第9题,3分)计算:2m2•m8=.考点:单项式乘单项式.分析:先求出结果的系数,再根据同底数幂的乘法进行计算即可.解答:2m2•m8=2m10,故答案为:2m10.点评:本题考查了单项式乘以单项式,同底数幂的乘法的应用,主要考查学生的计算能力.18. (2014•株洲,第14题,3分)分解因式:x2+3x(x﹣3)﹣9=.考点:因式分解-十字相乘法等.分析:首先将首尾两项分解因式,进而提取公因式合并同类项得出即可.解答:x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).故答案为:(x﹣3)(4x+3).点评:此题主要考查了分组分解法分解因式,正确分组得出是解题关键.19.(2014•株洲,第14题,3分)分解因式:x2+3x(x﹣3)﹣9=.考点:因式分解-十字相乘法等.分析:首先将首尾两项分解因式,进而提取公因式合并同类项得出即可.解答:x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).故答案为:(x﹣3)(4x+3).点评:此题主要考查了分组分解法分解因式,正确分组得出是解题关键.20.(2014•呼和浩特,第14题3分)把多项式6xy2﹣9x2y﹣y3因式分解,最后结果为.考点:提公因式法与公式法的综合运用.分析:首先提取公因式﹣y,进而利用完全平方公式分解因式得出即可.解答:6xy2﹣9x2y﹣y3=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2.故答案为:﹣y(3x﹣y)2.点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握完全平方公式是解题关键.21.(2014•滨州,第14题4分)写出一个运算结果是a6的算式.22.(2014•菏泽,第11题3分)分解因式:2x3﹣4x2+2x= 2x(x﹣1)2=__________ .=2x(x﹣1)2.故答案为:2x(x﹣1)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.(2014•济宁,第11题3分)如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.考点:列代数式(分式).分析:这卷电线的总长度=截取的1米+剩余电线的长度.解答:根据1米长的电线,称得它的质量为a克,只需根据剩余电线的质量除以a,即可知道剩余电线的长度.故总长度是(+1)米.点评:注意代数式的正确书写,还要注意后边有单位,故该代数式要带上括号.解决问题的关键是读懂题意,找到所求的量的等量关系.三.解答题1. (2014•安徽省,第16题8分)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③……根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③……所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.2. (2014•福建泉州,第19题9分)先化简,再求值:(a+2)2+a(a﹣4),其中a=.考点:整式的混合运算—化简求值分析:首先利用完全平方公式和整式的乘法计算,再进一步合并得出结果,最后代入求得数值即可.解答:(a+2)2+a(a﹣4)=a2+4a+4+a2﹣4a=2a2+4,当a=时,原式=2×()2+4=10.点评:此题考查整式的化简求值,注意先化简,再代入求值.3.(2014•温州,第17题10分)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a)考点:实数的运算;整式的混合运算;零指数幂.分析:(1)分别根据有理数乘方的法则、数的开放法则及0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据整式混合运算的法则进行计算即可.解答:(1)原式=2﹣10+9+1=2;(2)原式=a2+2a+1+2﹣2a=a2+3.点评:本题考查的是实数的运算,熟知有理数乘方的法则、数的开放法则及0指数幂的运算法则是解答此题的关键.4.(2014•舟山,第17题6分)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)考点:实数的运算;整式的混合运算;负整数指数幂;特殊角的三角函数值专题:计算题. 分析:(1)原式第一项化为最简二次根式,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算即可得到结果.解答: (1)原式=2+4﹣4×=2+4﹣2=4;(2)原式=x 2+4x +4﹣x 2+3x =7x +4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 5. (2014·浙江金华,第18题6分)先化简,再求值:()()()2x 5x 1x 2+-+-,其中x 2=-. 分析:。
2014年中考数学总复习资料大全(精华版)
2014年中考数学总复习资料大全实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3. 运算顺序:A.高级运算到低级运算;B.(同4. 级运算)从“左”到“右”(如5÷51³5);C.(有括号时)由“小”到“中”到“大”。
应用举例(略)附:典型例题已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
第二章 代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
【中考宝典】2014年中考数学真题分类汇编 二、方程(组)与不等式组
第二单元 方程(组)与不等式组一、 一次方程(方程组)(一)一次方程的有关概念1.(2014•襄阳)若方程mx+ny=6的两个解是、、则m 、n 的值为( A ) A . 4、2 B . 2、4C . ﹣4、﹣2D . ﹣2、﹣4解析:将、分别代入mx+ny=6中、得:、①+②得:3m=12、即m=4、将m=4代入①得:n=2、故选A2. (2014泰安)方程5x+2y=﹣9与下列方程构成的方程组的解为的是( ) A .x+2y=1B . 3x+2y=﹣8C . 5x+4y=﹣3D . 3x ﹣4y=﹣8解析:将x 与y 的值代入各项检验可得、方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x ﹣4y=﹣8.故选D.3.(2014•娄底)已知关于x 的方程2x+a ﹣5=0的解是x=2、则a 的值为 1 . 解析:把x=2代入方程、得:4+a ﹣5=0、解得:a=1.4.(2014贺州)已知关于x 、y 的方程组的解为、求m 、n 的值.解:将x=2、y=3代入方程组得:、②﹣①得:29n=29、即n=1、 将n=1代入②得:m=1、 ∴m=1、n=1.(二)一次方程的解法1.(2014滨州)方程2x ﹣1=3的解是( D )A .﹣1B .C . 1D . 22. (2014海南)方程x+2=1的解是( D )A .3B .-3C .1D .-1解析:方程两边同时减去2得、x=-1、故选D. 3.(2014•娄底)方程组的解是( D )A .B .C .D .解析:、(1)+(2)得、3x=6、x=2、把x=2代入(1)得、y=﹣1、∴原方程组的解.故选D .4.(2014孝感)已知⎩⎨⎧=-=21y x 是二元一次方程组⎩⎨⎧=-=+123y nx my x 的解、则m-n 的值是( D )A .1B .2C .3D .4解析:解方程组143123x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩、 得、所以x+y=9+(-1)=86、(2014•枣庄)已知x 、y 是二元一次方程组的解、则代数式x 2﹣4y 2的值为.解析:解方程组、得11418x y ⎧=⎪⎪⎨⎪=-⎪⎩.∴x 2﹣4y 2=()=、7.(2014湖州)3723x y x y +=⎧⎨-=⎩①解方程组②3723x y x y +=⎧⎨-=⎩①解:②①+②、得5x=10 解得x=2把x=2代入②、得4-y=3 解得y=1所以原方程组的解是21x y =⎧⎨=⎩8.(2014威海)解方程组:解:方程组整理得:(三)一次方程的应用1.(2014枣庄)某商场购进一批服装、每件进价为200元、由于换季滞销、商场决定将这种服装按标价的六折销售、若打折后每件服装仍能获利20%、则该服装标价是(B)A.350元B.400元C.450元D.500元解析:设该服装标价为x元、由题意、得0.6x-200=200×20%、解得:x=400.故选B.2.(2014•滨州)王芳同学到文具店购买中性笔和笔记本、中性笔每支0.8元、笔记本每本1.2元、王芳同学花了10元钱、则可供她选择的购买方案的个数为(两样都买、余下的钱少于0.8元)( B )A.6B.7C.8D.9解;设购买x只中性笔、y只笔记本、根据题意得出:9.2<0.8x+1.2y≤10、当x=2时、y=7、当x=3时、y=6、当x=5时、y=5、当x=6时、y=4、当x=8时、y=3、当x=9时、y=2、当x=11时、y=1、故一共有7种方案.故选B.3.(2014•温州)20位同学在植树节这天共种了52棵树苗、其中男生每人种3棵、女生每人种2棵.设男生有x 人、女生有y人、根据题意、列方程组正确的是( D )A.B.C.D.解析:根据男女生人数为20、共种了52棵树苗、列出方程组.故选D.4.(2014绍兴)如图1、天平呈平面状态、其中左侧秤盘中有一袋玻璃球、右侧秤盘中也有一袋玻璃球、还有2个各20克的砝码、现将左侧袋中一颗玻璃球移至右侧秤盘、并拿走右侧秤盘的1个砝码后、天平仍呈平衡状态、如图2、则被移动的玻璃球的质量为( A )A.10克B.15克C.20克D.25克解析:设被移动的玻璃球的质量为x克、根据题意得:20-x=x、解得:x=10、故选B.5.(2014•苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务、则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天、则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm、乙工程队平均每天疏通河道ym、则(x+y)的值为20 .解析:设甲工程队平均每天疏通河道xm、乙工程队平均每天疏通河道ym、由题意、得、解得:.∴x+y=20.6.(2014•湘潭)七、八年级学生分别到雷锋、毛泽东纪念馆参观、共589人、到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人、可列方程为2x+56=589﹣x .解析:根据到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.列方程为2x+56=589﹣x.7.(2014荆门)我们知道、无限循环小数都可以转化为分数.例如:将0.3转化为分数时、可设0.3=x、则x=0.3+1x、解得x=1、即0.3=1.仿此方法、将0.45化成分数是4599.解析:设x=0.45=0.454545……、那么100x=45.4545……、而45.4545……=45+0.4545……、∴100x=45+x化简得99x=45、解得4599x 、∴0.45=4599.8.(2014•菏泽)食品安全是关乎民生的问题、在食品中添加过量的添加剂对人体有害、但适量的添加剂对人体无害且有利于食品的储存和运输、某饮料加工厂生产的A、B两种饮料均需加入同种添加剂、A饮料每瓶需加该添加剂2克、B饮料每瓶需加该添加剂3克、已知270克该添加剂恰好生产了A、B两种饮料共100瓶、问A、B 两种饮料各生产了多少瓶?解:(1)设A饮料生产了x瓶、则B饮料生产了(100﹣x)瓶、由题意得、2x+3(100﹣x)=270、解得:x=30、100﹣x=70、答:A饮料生产了30瓶、则B饮料生产了70瓶.9.(2014•安徽)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准、共支付餐厨和建筑垃圾处理费5200元.从2014年元月起、收费标准上调为:餐厨垃圾处理费100元/吨、建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化、就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨、且建筑垃圾处理量不超过餐厨垃圾处理量的3倍、则2014年该企业最少需要支付这两种垃圾处理费共多少元?解:(1)设该企业2013年处理的餐厨垃圾x吨、建筑垃圾y吨、根据题意、得、解得.答:该企业2013年处理的餐厨垃圾80吨、建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨、建筑垃圾y吨、需要支付这两种垃圾处理费共a元、根据题意得、、解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200、由于a的值随x的增大而增大、所以当x=60时、a值最小、最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.10.(2014•滨州)某公园“6•1”期间举行特优读书游园活动、成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去、就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩、共花了38元钱;李利说他家去了4个大人和2个小孩、共花了44元钱、王斌家计划去3个大人和2个小孩、请你帮他计算一下、需准备34 元钱买门票.解析:设大人门票为x、小孩门票为y、由题意、得:、解得:、则3x+2y=34.即王斌家计划去3个大人和2个小孩、需要34元的门票.11.(2014•泰州)今年“五一”小长假期间、某市外来与外出旅游的总人数为226万人、分别比去年同期增长30%和20%、去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.解:设该市去年外来人数为x 万人、外出旅游的人数为y 万人、 由题意得、、解得:、则今年外来人数为:100×(1+30%)=130(万人)、 今年外出旅游人数为:80×(1+20%)=96(万人).答:该市今年外来人数为130万人、外出旅游的人数为96万人.12.(2014遂宁)我市某超市举行店庆活动、对甲、乙两种商品实行打折销售.打折前、购买3件甲商品和1件乙商品需用190元;购买2间甲商品和3件乙商品需用220元.而店庆期间、购买10件甲商品和10件乙商品仅需735元、这比不打折前少花多少钱? 解:设甲商品单价为x 、乙商品单价为y 、 由题意得:、解得:、则购买10件甲商品和10件乙商品需要900元、 ∵打折后实际花费735、∴这比不打折前少花165元.答:这比不打折前少花165元.换母本P 28、T 713.(2014呼和浩特)为鼓励居民节约用电、我市自2012年以来对家庭用电收费实行阶梯电价、即每月对每户居民的用电量分为三个档级收费、第一档为用电量在180千瓦时(含180千瓦时)以内的部分、执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分、实行提高电价;第三档为用电量超出450千瓦时的部分、执行市场调节价格. 我市一位同学家今年2月份用电330千瓦时、电费为213元、3月份用电240千瓦时、电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和 410千瓦时、请你依据该同学家的缴费情况、计算这位居民4、5月份的电费分别为多少元? 解:设基本电价为x 元/千瓦时、提高电价为y 元/千瓦时、由题意得: ⎩⎪⎨⎪⎧180x +150y=213180x +60y =150 解之得:⎩⎨⎧x=0.6y=0.7∴ 4月份的电费为:160×0.6=96元5月份的电费为:180×0.6+230×0.7 = 108+161 = 269元答:这位居民4、5月份的电费分别为96元和269元。
2014中考数学真题试卷题型分类汇编一元二次方程及其应用
2014中考数学真题试卷题型分类汇编一元二次方程及其应用2014中考数学真题试卷题型分类汇编-一元二次方程及其应用一、选择题1. (2014•广东,第8题3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A .B.C.D.考点:根的判别式.专题:计算题.分析:先根据判别式的意义得到△=(﹣3)2﹣4m >0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4m>0,解得m <.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2. ( 2014•广西玉林市、防城港市,第9题3分)x 1,x 2是关于x 的一元二次方程x 2﹣mx +m ﹣2=0的两个实数根,是否存在实数m 使+=0成立?则正确的是结论是( )A . m =0时成立B . m =2时成立C . m =0或2时成立D .不存在考点:根与系数的关系. 分析: 先由一元二次方程根与系数的关系得出,x 1+x 2=m ,x 1x 2=m ﹣2.假设存在实数m 使+=0成立,则=0,求出m =0,再用判别式进行检验即可.分析:关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.解答:解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选B.点评:本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.4.(2014年云南省,第5题3分)一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2考点:解一元二次方程-因式分解法.分析:直接利用十字相乘法分解因式,进而得出方程的根解答:解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x 1=﹣1,x 2=2. 故选:D .点评: 此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.5.(2014•四川自贡,第5题4分)一元二次方程x 2﹣4x +5=0的根的情况是( ) A . 有两个不相等的实数根B .有两个相等的实数根 C . 只有一个实数根 D .没有实数根考点:根的判别式. 分析:把a =1,b =﹣4,c =5代入△=b 2﹣4ac 进行计算,根据计算结果判断方程根的情况. 解答: 解:∵a =1,b =﹣4,c =5,∴△=b 2﹣4ac =(﹣4)2﹣4×1×5=﹣4<0, 所以原方程没有实数根. 故选:D .点评: 本题考查了一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的根的判别式△=b 2﹣4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.(2014·云南昆明,第3题3分)已知1x 、2x 是一元二次方程0142=+-x x 的两个根,则21x x ⋅等于( ) A . 4- B .1- C . 1D . 47.(2014·云南昆明,第6题3分)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A. 100)1(1442=-x B.144)1(1002=-xC. 100)1(1442=+x D.144)1(1002=+x考点:由实际问题抽象出一元二次方程.分析:果园从2011年到2013年水果产量问题,是典型的二次增长问题.解答:解:设该果园水果产量的年平均增长率为x,由题意有144)1(1002=+x,故选D.点评:此题主要考查了由实际问题抽象出一元二次方程,理解二次增长是做本题的关键.8.(2014•浙江宁波,第9题4分)已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()9. (2014•益阳,第5题,4分)一元二次方程x 2﹣2x +m =0总有实数根,则m 应满足的条件是( ) A . m >1 B .m =1 C .m <1 D .m ≤1 考点:根的判别式.分析:根据根的判别式,令△≥0,建立关于m 的不等式,解答即可. 解答: 解:∵方程x 2﹣2x +m =0总有实数根, ∴△≥0, 即4﹣4m ≥0, ∴﹣4m ≥﹣4, ∴m ≤1.故选D .点评: 本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(2014•呼和浩特,第10题3分)已知函数y =的图象在第一象限的一支曲线上有一点A (a ,c ),点B (b ,c +1)在该函数图象的另外一支上,则关于一元二次方程ax 2+bx +c =0的两根x 1,x 2判断正确的是( )A .x 1+x 2>1,x 1•x 2>0 B . x 1+x 2<0,x 1•x 2>0 C .0<x 1+x 2<1,x 1•x 2>0 D . x 1+x 2与x 1•x 2的符号都不确定考点:根与系数的关系;反比例函数图象上点的坐标特征.分析根据点A (a ,c )在第一象限的一支曲线上,得出a >0,c >0,再点B (b ,c +1)在该函: 数图象的另外一支上,得出b <0,c <﹣1,再根据x 1•x 2=,x 1+x 2=﹣,即可得出答案. 解答: 解:∵点A (a ,c )在第一象限的一支曲线上,∴a >0,c >0,∵点B (b ,c +1)在该函数图象的另外一支上,∴b <0,c +1<0,∴c <﹣1,∴x 1•x 2=>0,0<x 1+x 2<1,故选C .点评: 本题考查了根与系数的关系,掌握根与系数的关系和各个象限点的特点是本题的关键;若x 1,x 2是关于x 的一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的两个实数根,则x 1+x 2=﹣,x 1x 2=.11.(2014•菏泽,第6题3分)已知关于x 的一元二次方程x 2+ax +b =0有一个非零根﹣b ,则a ﹣b 的值为( ) A. 1 B . ﹣1 C . 0 D .﹣2 考点: 一元二次方程的解.12.(2014年山东泰安,第13题3分)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15分析:根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=15即可.解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=15,故选A.点评:此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.二.填空题1. (2014•广西贺州,第16题3分)已知关于x的方程x2+(1﹣m)x+=0有两个不相等的实数根,则m的最大整数值是0.考点:根的判别式.专题:计算题.分析:根据判别式的意义得到△=(1﹣m)2﹣4×>0,然后解不等式得到m的取值范围,再在此范围内找出最大整数即可.解答:解:根据题意得△=(1﹣m)2﹣4×>0,解得m<,所以m的最大整数值为0.故答案为0.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2.(2014•舟山,第11题4分)方程x2﹣3x=0的根为.考解一元二次方程-因式分解法:分析:根据所给方程的系数特点,可以对左边的多项式提取公因式,进行因式分解,然后解得原方程的解.解答:解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.点评:本题考查了解一元二次方程的方法,当方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.3. (2014•扬州,第17题,3分)已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为23.考点:因式分解的应用;一元二次方程的解;根与系数的关系专题计算题.分析:根据一元二次方程解的定义得到a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5,整理得2a2﹣2a+17,然后再把a2=a+3代入后合并即可.解答:解:∵a,b是方程x2﹣x﹣3=0的两个根,∴a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5=2a2﹣2a+17=2(a+3)﹣2a+17=2a+6﹣2a+17=23.故答案为23.点评:本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.也考查了一元二次方程解的定义.4.(2014•呼和浩特,第15题3分)已知m,n 是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n =8.考点:根与系数的关系;一元二次方程的解.专题:常规题型.分析:根据m+n=﹣=﹣2,m•n=﹣5,直接求出m、n即可解题.解答:解:∵m、n是方程x 2+2x ﹣5=0的两个实数根,且一元二次方程的求根公式是解得:m=﹣1,n=﹣1﹣或者m=﹣1﹣,n=﹣1,将m=﹣1、n=﹣1﹣代入m2﹣mn+3m+n=8;将m=﹣1﹣、n=﹣1代入m2﹣mn+3m+n=8;故答案为:8.点评:此题主要考查了一元二次方程根根的计算公式,根据题意得出m和n的值是解决问题的关键.5.(2014•德州,第16题4分)方程x2+2kx+k2﹣2k+1=0的两个实数根x1,x2满足x12+x22=4,则k的值为1.考点:根与系数的关系分析:由x12+x22=x12+2x1•x2+x22﹣2x1•x2=(x1+x2)2﹣2x1•x2=4,然后根据根与系数的关系即可得到一个关于k的方程,从而求得k的值.解答:解;x12+x22=4,即x12+x22=x12+2x1•x2+x22﹣2x1•x2=(x1+x2)2﹣2x1•x2=4,又∵x1+x2=﹣2k,x1•x2=k2﹣2k+1,代入上式有4k2﹣4(k2﹣2k+1)=4,解得k=1.故答案为:1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.6.(2014•济宁,第13题3分)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=4.考点:解一元二次方程-直接开平方法.专题:计算题.分析:利用直接开平方法得到x=±,得到方程的两个根互为相反数,所以m+1+2m﹣4=0,解得m=1,则方程的两个根分别是2与﹣2,则有=2,然后两边平方得到=4.解答:解:∵x2=(ab>0),∴x=±,∴方程的两个根互为相反数,∴m+1+2m﹣4=0,解得m=1,∴一元二次方程ax2=b(ab>0)的两个根分别是2与﹣2,∴=2,∴=4.故答案为4.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±p;如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±p.三.解答题1. (2014•广西玉林市、防城港市,第24题9分)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)考点:一元二次方程的应用;一元一次不等式的应用.分析:(1)根据题意分别求出今年将报废电动车的数量,进而得出明年报废的电动车数量,进而得出不等式求出即可;(2)分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.解答:解:(1)设从今年年初起每年新增电动车数量是x万辆,由题意可得出:今年将报废电动车:10×10%=1(万辆),∴[(10﹣1)+x](1﹣10%)+x≤11.9,解得:x≤2.答:从今年年初起每年新增电动车数量最多是2万辆;(2)∵今年年底电动车拥有量为:(10﹣1)+x=11(万辆),明年年底电动车拥有量为:11.9万辆,∴设今年年底到明年年底电动车拥有量的年增长率是y,则11(1+y)=11.9,解得:y≈0.082=8.2%.答:今年年底到明年年底电动车拥有量的年增长率是8.2%.点评:此题主要考查了一元一次不等式的应用以及一元一次方程的应用,分别表示出今年与明年电动车数量是解题关键.2.((2014•新疆,第19题10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?考点:一元二次方程的应用.3.2014年广东汕尾,第22题9分)已知关于x 的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.分析:(1)将x=1代入方程x2+ax+a﹣2=0得到a的值,再根据根与系数的关系求出另一根;(2)写出根的判别式,配方后得到完全平方式,进行解答.解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a ﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x 1,则1x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0,∴不论a取何实数,该方程都有两个不相等的实数根.点评:本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.4.(2014•毕节地区,第25题12分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y 元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.解得:x1=6,x2=12(舍去).答:该产品的质量档次为第6档.点评:本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.5.(2014•襄阳,第16题3分)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是5.考点:一元二次方程的解分析:把x=a代入方程x2﹣5x+m=0,得a2﹣5a+m=0①,把x=﹣a代入方程方程x2+5x﹣m=0,得a2﹣5a﹣m=0②,再将①+②,即可求出a的值.解答:解:∵a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,∴a2﹣5a+m=0①,a2﹣5a﹣m=0②,①+②,得2(a2﹣5a)=0,∵a>0,∴a=5.故答案为5.点评:本题主要考查的是一元二次方程的根即方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.6. (2014•湘潭,第26题)已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC 解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k.(第1题图)考点:二次函数综合题.分析:(1)由对称轴为x=﹣,且函数过(0,0),则可推出b,c,进而得函数解析式.(2)=,且两三角形为同高不同底的三角形,易得=,考虑计算方便可作B,C对x 轴的垂线,进而有B,C横坐标的比为=.由B,C为直线与二次函数的交点,则联立可求得B,C坐标.由上述倍数关系,则k易得.(3)以BC为直径的圆经过原点,即∠BOC=90°,一般考虑表示边长,再用勾股定理构造方程求解k.可是这个思路计算量异常复杂,基本不考虑,再考虑(2)的思路,发现B,C横纵坐标恰好可表示出EB,EO,OF,OC.而由∠BOC=90°,易证△EBO∽△FOC,即EB•FC=EO•FO.有此构造方程发现k值大多可约去,进而可得k 值.解答:解:(1)∵二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,∴﹣=2,0=0+0+c,∴b=4,c=0,∴y=﹣x2+4x.(2)如图1,连接OB,OC,过点A作AE⊥y 轴于E,过点B作BF⊥y轴于F,∵=,∴=,∴=,∵EB∥FC,∴==.∵y=kx+4交y=﹣x2+4x于B,C,∴kx+4=﹣x2+4x,即x2+(k﹣4)x+4=0,∴△=(k﹣4)2﹣4•4=k2﹣8k,∴x=,或x=,∵x B<x C,∴EB=x B=,FC=x C=,∴4•=,解得k=9(交点不在y轴右边,不符题意,舍去)或k=﹣1.∴k=﹣1.(3)∵∠BOC=90°,∴∠EOB+∠FOC=90°,∵∠EOB+∠EBO=90°,∴∠EBO=∠FOC,∵∠BEO=∠OFC=90°,∴△EBO∽△FOC,∴,∴EB•FC=EO•FO.∵x B=,x C=,且B、C过y=kx+4,∴y B=k•+4,y C=k•+4,∴EO=y B=k•+4,OF=﹣y C=﹣k•﹣4,∴•=(k•+4)•(﹣k•﹣4),整理得16k=﹣20,∴k=﹣.点评:本题考查了函数图象交点的性质、相似三角形性质、一元二次方程及圆的基本知识.题目特殊,貌似思路不难,但若思路不对,计算异常复杂,题目所折射出来的思想,考生应好好理解掌握.7. (2014•株洲,第21题,6分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.考点:一元二次方程的应用.分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c 的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.解答:解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.点评:此题主要考查了一元二次方程的应用以及根的判别式和勾股定理逆定理等知识,正确由已知获取等量关系是解题关键.8. (2014年江苏南京,第22题,8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 2.6(1+x)2万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.考点:列一元二次方程解实际问题的运用%]分析:(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.解答:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.9. (2014年江苏南京,第24题)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?考点:二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用分析:(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解答:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.点评:本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.10. (2014•泰州,第17题,12分)(1)计算:﹣24﹣+|1﹣4sin60°|+(π﹣)0;(2)解方程:2x2﹣4x﹣1=0.考点:实数的运算;零指数幂;解一元二次方程-公式法;特殊角的三角函数值.分析:(1)原式第一项利用乘方的意义化简,第二项化为最简二次根式,第三项利用特殊角的三角函数值及绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果;(2)找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.解答解:(1)原式=﹣16﹣2+2﹣1+1=﹣16;(2)这里a=2,b=﹣4,c=﹣1,:∵△=16+8=24,∴x ==.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11. (2014•扬州,第20题,8分)已知关于x 的方程(k﹣1)x2﹣(k﹣1)x +=0有两个相等的实数根,求k的值.考点:根的判别式;一元二次方程的定义分析:根据根的判别式令△=0,建立关于k的方程,解方程即可.解答:解:∵关于x的方程(k﹣1)x2﹣(k﹣1)x +=0有两个相等的实数根,∴△=0,∴[﹣(k﹣1)]2﹣4(k﹣1)=0,整理得,k2﹣3k+2=0,即(k﹣1)(k﹣2)=0,解得:k=1(不符合一元二次方程定义,舍去)或k=2.∴k=2.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.。
【初中数学】2014年中考数学试题分类汇编(共24个专题) 人教版23
频数与频率一、选择题1. (2014•安徽省,第5题4分)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.2考点:频数(率)分布表.分析:求得在8≤x<32这个范围的频数,根据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.点评:本题考查了频数分布表,用到的知识点是:频率=频数÷总数.2. (2014•山东淄博,第3题4分)如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D. 52,52考点:频数(率)分布直方图;中位数;众数.专题:计算题.分析:找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.解答:解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选D点评:此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.3.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考数学应用题专题复习1、整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?2、由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?3、为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.4、某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾? (2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?5、我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准,右图反映的是每月收取水费y (元)与用水量x (吨)之间的函数关系. (1)小明家五月份用水8吨,应交水费______元;(2)按上述分段收费标准,小明家三、四月份分别交水费26元和18元,问四月份比三月份节约用水多少吨?6、甲、乙两位同学住在同一小区,在同一中学读书,一天恰好在同一时间骑自行车沿同一线路上学,小区离学校有9km ,甲以匀速行驶,花了30min 到校,乙的行程信息如图中折线O –A –B -C 所示,分别用1y ,2y 表示甲、乙在时间x (min )时的行程,请回答下列问题:⑴分别用含x 的解析式表示1y ,2y (标明x 的范围),并在图中画出函数1y 的图象; ⑵甲、乙两人在途中有几次相遇?分别是出发后的多长时间相遇?第5题7、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,设每件商品的售价为x元,每月的销售量为y件.(1)求y与x的函数关系式并写出自变量x的取值范围;(2)设每月的销售利润为W,请写出W与x的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?8、有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额)?9、为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?10、“保护环境,人人有责”为了更好的治理巴河,巴中市污水处理厂决定购买A、B两型污水处理设备,共10台,其信息如下表:(1)设购买A型设备x台,所需资金共为W万元,每月处理污水总量为y吨,试写出W与x,y与x的函数关系式.(2)经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金?11、某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.⑴请你帮助学校设计所有可行的租车方案;⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?12、莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发平均每天售出6吨.(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?(2)在(1)条件下,若批发每吨获得的利润为2000元,零售每吨获得的利润为2200元,计算实际获得的总利润.13、某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数.商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?14、为了增强居民的节约用水的意识,某市制定了新的水费标准:每户每月用水量不超过5吨的部分,自来水公司按每吨2元收费;超过5吨的部分,按每吨2.6元收费。
设某用户月用水量x吨,自来水公司的应收水费为y元。
(1)试写出y(元)与x(吨)之间的函数关系式;(2)该户今年5月份的用水量为8吨,自来水公司应收水费多少元?15、一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?16、为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?17、5月12日,我国四川省汶川县等地发生强烈地震,在抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要25台,乙地需要23台;A、B两省获知情况后慷慨相助,分别捐赠该型号挖掘机26台和22台并将其全部调往灾区.如果从A省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元.设从A省调往甲地x台挖掘机,A、B两省将捐赠的挖掘机全部调往灾区共耗资y万元.⑴请直接写出y与x之间的函数关系式及自变量x的取值范围;⑶怎样设计调运方案能使总耗资最少?最少耗资是多少万元?18、一家计算机专买店A型计算器每只进价12元,售价20元,多买优惠:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按每只19元的价格购买.但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买?(2)写出专买店当一次销售x(x>10)只时,所获利润y元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲买了46只,乙买了50只,店主却发现卖46只赚的钱反而比卖50只赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每只16元至少提高到多少?中考数学应用题专题答案1、【答案】解:(1)设甲种药品的出厂价格为每盒x 元,乙种药品的出厂价格为每盒y 元.则根据题意列方程组得:⎩⎨⎧=+-=+8.3362.256.6y x y x 解之得:⎩⎨⎧==36.3y x5×3.6-2.2=18-2.2=15.8(元) 6×3=18(元)答:降价前甲、乙两种药品每盒的零售价格分别是15.8元和18元 (2)设购进甲药品x 箱(x 为非负整数),购进乙药品(100-x )箱,则根据题意列不等式组得:⎩⎨⎧≥-≥-⨯⨯+⨯⨯40100900)100(10%10510%158x x x 解之得:607157≤≤x 则x 可取:58,59,60,此时100-x 的值分别是:42,41,40有3种方案供选择:第一种方案,甲药品购买58箱,乙药品购买42箱;第二种方案,甲药品购买59箱,乙药品购买41箱; 第三种方案,甲药品购买60箱,乙药品购买40箱;(注:(1)中不作答不扣分,(2)中在方案不写或写错扣1分) 2、【答案】解:(1)设今年甲型号手机每台售价为x 元,由题意得, 80000x+500=60000x. 解得x=1500. 经检验x=1500是方程的解. 故今年甲型号手机每台售价为1500元. (2)设购进甲型号手机m 台,由题意得,17600≤1000m+800(20-m )≤18400, 8≤m≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)方法一:设总获利W 元,则W=(1500-1000)m+(1400-800-a )(20-m ), W=(a -100)m+12000-20a . 所以当a=100时,(2)中所有的方案获利相同. 方法二:由(2)知,当m=8时,有20-m=12.此时获利y 1=(1500-1000)×8+(1400-800-a )×12=4000+(600-a )×12 当m=9时,有20-m=11此时获利y 2=(1500-1000)×9+(1400-800-a )×11=4500+(600-a )×11 由于获利相同,则有y 1= y 2.即4000+(600-a )×12=4500+(600-a )×11, 解之得a=100 .所以当a=100时,(2)中所有方案获利相同. 3、解:(1)设甲工程队单独完成需x 天,则乙工程队单独完成该工程需(x+25)天. 根据题意得:3030125x x +=+. 方程两边同乘以x (x+25),得 30(x+25)+30x= x (x+25),即 x 2-35x -750=0.解之,得x 1=50,x 2=-15. 经检验,x 1=50,x 2=-15都是原方程的解. 但x 2=-15不符合题意,应舍去. ∴ 当x=50时,x+25=75.答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天. (2)此问题只要设计出符合条件的一种方案即可. 方案一:由甲工程队单独完成. 所需费用为:2500×50=125000(元). 方案二:甲乙两队合作完成. 所需费用为:(2500+2000)×30=135000(元).4、解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000)x -尾,由题意得: 0.50.8(6000)3600x x +-= 解这个方程,得:4000x = ∴60002000x -= 答:甲种鱼苗买4000尾,乙种鱼苗买2000尾.(2)由题意得:0.50.8(6000)4200x x +-≤ 解这个不等式,得: 2000x ≥ 即购买甲种鱼苗应不少于2000尾.(3)设购买鱼苗的总费用为y ,则0.50.8(6000)0.34800y x x x =+-=-+由题意,有909593(6000)6000100100100x x +-≥⨯ 解得: 2400x ≤ 在0.34800y x =-+中 ∵0.30-<,∴y 随x 的增大而减少∴当2400x =时,4080y =最小.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低. 5、【答案】解:(1)16;(2)解法一:由图可得 用水10吨内每吨2元,10吨以上每吨 50-2020-10 =3元三月份交水费26元>20元。