圆的方程 习题课1.19
高二圆与方程基础练习题
高二圆与方程基础练习题1. 已知圆心坐标为O(2, 3),半径为r = 5。
求圆的方程。
解答:设圆的方程为(x-a)²+(y-b)²=r²,其中(a, b)为圆心坐标,r为半径。
代入已知数据,得到方程为(x-2)²+(y-3)²=5²。
2. 已知圆心坐标为M(-2, 4),圆上一点的坐标为A(3, -1)。
求圆的方程。
解答:设圆的方程为(x-a)²+(y-b)²=r²,其中(a, b)为圆心坐标,r为半径。
代入已知数据,得到方程为(x+2)²+(y-4)²=6²。
3. 已知圆心坐标为N(0, -5),半径为r = 7。
求圆的方程。
解答:设圆的方程为(x-a)²+(y-b)²=r²,其中(a, b)为圆心坐标,r为半径。
代入已知数据,得到方程为(x-0)²+(y+5)²=7²。
4. 已知圆心坐标为P(-3, 2),过点Q(4, 5)的直线交圆于两点。
求交点坐标。
解答:设直线方程为y=mx+c,其中m为斜率,c为截距。
将直线方程代入圆的方程,得到(x+3)²+(mx-2m+c)²=5²。
代入点Q的坐标,得到(4+3)²+(4m-2m+c)²=25。
化简为49+25m²-20m+c²=25。
化简后得到25m²-20m+c²=-24。
由于过点Q的直线交圆于两点,可以设两个交点的坐标为(x₁, y₁)和(x₂, y₂)。
根据交点的性质,有以下方程组:(x₁+3)²+(mx₁-2m+c)²=5²,(x₂+3)²+(mx₂-2m+c)²=5².解方程组得到交点坐标为(x₁, y₁)≈(-1.26, 6.37)和(x₂, y₂)≈(-5.42, -2.37)。
圆的方程习题课
2. 如何判断直线与圆的位置关系?
当a(a >0)取何值时,直线x+y-2a+1=0与圆x2+y2- 2ax+2y+a2-
a+1=0 相切,相离,相交?
判断直线和圆的位置关系有以下两种方法: (1)把圆心到直线的距离d 和圆的半径r 作比较; (2)用圆和直线的公共点的个数来判断,这种方法需要解方程 组进行消元.
第5页/共12页
4. 求圆的方程的常用方法:
(1). 一个圆经过点P( 2,-1 ), 和直线x- y =1相切,并且圆心在直线 y=- 2x上,求这个圆的方程.
(2). 圆C经过 A( 6 , 5 ) , B( 0 , 1 )两点, 且圆心在直线3x +10y+9=0 上,求圆C的方程.
(3). 已知两点 A( 4 , 9 ) 和B( 6 , 3 )两点, 求以AB为直径的圆的方
(2). 求过点P( -5 , 9 ),与圆(x+1)2+ (y-2) 2=13相切的直线方程.
(3). 设圆的方程x2+y2=13,它与斜率为 线 l 的方程.
的直线 l 相切 , 求直
第7页/共12页
6. 利用圆系的思想解题:
(1). 课本第82页,第8题:求经过两圆x2+y2+6x-4=0和x2+y2+6y-
课本第82页,第11题:
求函数
的最大值和最小值.
第9页/共12页
8. 提高题:
已知直线l : y=x+b与曲线C : 取值范围.
有两个公共点,求b的
第10页/共12页
课后作业:
1.课本: 第88页,第17,18,20,22,23,24,25,共7题。 2.《学习丛书》: 第39-40页
高中数学圆的方程 经典例题(含详细解析)
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r . 所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上, 又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a . 由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222b r =又圆截y 轴所得弦长为2.∴122+=a r . 又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=abb a 4422-+=)(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r 故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a .由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 练习:1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程. 解:设切线方程为1(3)y k x -=-,即310kx y k --+=, ∵圆心(1,0)到切线l 的距离等于半径2, ∴()22|31|21k k k -+=+-,解得34k =-,∴切线方程为31(3)4y x -=--,即34130x y +-=, 当过点M 的直线的斜率不存在时,其方程为3x =,圆心(1,0)到此直线的距离等于半径2, 故直线3x =也适合题意。
圆的标准方程习题课
圆的标准方程习题课
一、 复习旧知:
1、圆的标准方程:(x -a )2+(y -b )2=r 2
当a =0,b =0时,圆的方程是:x 2+y 2=r 2
.
2、试按下列要求,分别写出a,b,r 应满足的条件
⑴圆过原点: ;⑵圆心在X 轴上: ;
⑶圆心在Y 轴上: ;⑷圆与X 轴相切:
⑸圆与Y 轴相切: ;⑹圆与两坐标轴都相切;
3、圆心在直线32=-y x 上,且与两坐标轴相切的圆的标准方程
圆心的求解:圆被某一条线所载,圆心在弦的中垂线上,这一点很重要
如:1、过两点:P(2,2)、Q(4,2)且圆心在直线x-y=0上的圆的方程
2、一圆与两平行线033,053=-+=-+y x y x 都相切,且圆心在直线032=++y x 上,求圆的标准方程
3、求圆心在y=—4x 上且与直线x+y —1=0切于点P (3,—2)的圆的方程
例2:求经过点A(2,-1)和直线1=-y x 相切且圆心在直线x y 2-=上的圆的方程
例3:求半径为13,与直线01032=-+y x 切于点P (2,2)的圆
练习:
1、 自点A(-1,4)作圆1)3()2(22=-+-y x 的切线,则切线的长为:( )
A 、5
B 、3
C 、10
D 、5
(x -a ) 2+(y -b ) 2=r 2 [例3]
2、 一圆过原点O 和点P(1,3),且圆心在直线2+=x y 上,
则此圆的方程为
3、 求与X 轴相切,圆心在直线03=-y x 上,被直线x y =载得的弦长等于72的圆的方程
四、板书设计:
课 题
一、圆的标准方程
[例1] [例2]。
圆的方程练习题(学生版)
圆的方程练习题(学生版)1.求过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程.2.若圆过A (2,0),B (4,0),C (0,2)三点,求这个圆的方程.3.已知圆经过()()2,5,2,1-两点,并且圆心在直线12y x =上。
(1)求圆的方程;(2)求圆上的点到直线34230x y -+=的最小距离。
4.已知圆C 同时满足下列三个条件:①与y 轴相切;②在直线y x =上截得弦长为③圆心在直线30x y -=上.求圆C 的方程.5.求圆心在直线3x+y-5=0上,并且经过原点和点(4,0)的圆的方程6.求圆心为(1,1)并且与直线4=+y x 相切的圆的方程。
7.求与圆x 2+y 2−2x =0外切且与直线x +√3y =0 相切于点M(3,−√3)的圆的方程.8.求圆心在直线40x y --=上,并且过圆22640x y x ++-=与圆226280x y y ++-=的交点的圆的方程.9.已知圆心为C 的圆经过三个点O(0,0)、A(−2,4)、B(1,1). (1)求圆C 的方程;(2)若直线l 的斜率为−43,在y 轴上的截距为−1,且与圆C 相交于P 、Q 两点,求△OPQ 的面积.10.已知圆C:x 2+y 2+10x+10y+34=0: :I )试写出圆C 的圆心坐标和半径;:II )若圆D 的圆心在直线x=-5上,且与圆C 相外切,被x 轴截得的弦长为10,求圆D 的方程。
11.已知圆C 的圆心在直线y =12x 上,且过圆C 上一点M(1,3)的切线方程为y =3x .(Ⅰ)求圆C 的方程;(Ⅱ)设过点M 的直线l 与圆交于另一点N ,以MN 为直径的圆过原点,求直线l 的方程.12.已知圆C经过原点O:0:0)且与直线y=2x:8相切于点P:4:0:::1)求圆C的方程;:2)已知直线l经过点(4, 5),且与圆C相交于M:N两点,若|MN|=2,求出直线l的方程.13.在ΔABC中,点A(7,4),B(2,9),C:5:8:(1)求ΔABC的面积.(2)求ΔABC的外接圆的方程.14.已知圆心在x轴非负半轴上,半径为2的圆C与直线x−√3y+2=0相切.(1)求圆C的方程;(2)设不过原点O的直线l与圆O:x2+y2=4相交于不同的两点A,B.①求△OAB的面积的最大值;②在圆C上,是否存在点M(m,n),使得直线l的方程为mx+ny=1,且此时△OAB 的面积恰好取到①中的最大值?若存在,求出点M的坐标;若不存在,请说明理由.15.若圆C与y轴相切于点P(0,1),与x轴的正半轴交于A,B两点,且|AB|=2,求圆C的标准方程参考答案1.()()22114x y -+-=.【解析】试题分析:由,A B 的坐标计算可得AB 的垂直平分线方程y x =,进而得到:{ 20y x x y =+-=,解可得,x y 的值,即可得圆心坐标,而圆的半径22r ==,代入圆的标准方程计算即可得到答案。
圆的标准方程练习题
圆的标准方程练习题圆的标准方程练习题圆是数学中的一个基本几何形状,它在我们的生活中随处可见。
在解决与圆相关的问题时,掌握圆的标准方程是非常重要的。
本文将通过一些练习题来帮助读者加深对圆的标准方程的理解和应用。
练习题一:求圆的标准方程1. 已知圆心为(2, -3),半径为5,求圆的标准方程。
解析:圆的标准方程为$(x - h)^2 + (y - k)^2 = r^2$,其中(h, k)为圆心坐标,r 为半径。
代入已知条件,得到$(x - 2)^2 + (y + 3)^2 = 25$。
2. 已知圆心为(-1, 4),过点(3, 2),求圆的标准方程。
解析:首先求得半径,半径的长度等于圆心到过点的距离。
利用距离公式$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,代入已知条件,得到$d = \sqrt{(3 - (-1))^2 + (2 - 4)^2} = \sqrt{20} = 2\sqrt{5}$。
然后代入圆心和半径,得到$(x + 1)^2 + (y - 4)^2 = 20$。
练习题二:判断给定方程是否为圆的标准方程1. $x^2 + y^2 + 2x - 4y = 0$解析:这个方程可以通过将其进行配方来判断是否为圆的标准方程。
将方程进行配方,得到$(x + 1)^2 - 1 + (y - 2)^2 - 4 = 0$,化简后得到$(x + 1)^2 + (y - 2)^2 = 5$。
因此,这个方程是圆的标准方程。
2. $x^2 + y^2 + 3x - 2y + 4 = 0$解析:同样地,将方程进行配方,得到$(x + \frac{3}{2})^2 - (\frac{3}{2})^2 + (y - 1)^2 - 1 = 0$,化简后得到$(x + \frac{3}{2})^2 + (y - 1)^2 = \frac{9}{4} + 1$。
因此,这个方程不是圆的标准方程。
圆的方程 习题(含答案)电子教案
先求得圆的圆心与半径,可知直线一定过圆心得
。又
,
,由均值不等式可求得最值。
收集于网络,如有侵权请联系管理员删除
精品文档
【详解】
由题意可得
的圆心为(-1,2),半径为 2,而截得弦长为
4,所以直线过圆心得
,又
,
所以
当且仅当
时等号成立。
【点睛】 本题综合考查直线与圆,均值不等式求最值问题,本题的关键是由弦长为 4, 判断出直线过圆心。
由题意可得,其结果应为曲线
上的点与以
为圆心,以 为半径的
圆上的点的距离的平方的最小值,可以求曲线
上的点与圆心
的
距离的最小值,在曲线
上取一点
,曲线有
在点 M 处的
收集于网络,如有侵权请联系管理员删除
精品文档
切线的斜率为
,从而有
,即
,整理得
,解得
,所以点 满足条件,其到圆心
的距离为
,故其结果为
,
故选 D. 【点睛】
9d解析分析该题可以看做是圆上的动点到曲线上的动点的距离的平方的最小值问题可以转化为圆心到曲线上的动点的距离减去半径的平方的最值问题结合图形可以断定那个点应该满足与圆心的连线与曲线在该点的切线垂直的问题来解决从而求得切点坐标即满足条件的点代入求得结果
圆的方程 习题(含答 案)
精品文档
圆的方程 习题(含答案)
,化简得
.
收集于网络,如有侵权请联系管理员删除
,
.
精品文档
∴所求动点 的轨迹方程是
.
故选 C.
【点睛】
求轨迹方程的常用方法:
(1)直接法:直接利用条件建立 , 之间的关系
;
高中圆的方程基础练习题及讲解
高中圆的方程基础练习题及讲解### 高中圆的方程基础练习题及讲解#### 练习题一题目:已知圆心在原点的圆的方程为 \(x^2 + y^2 = r^2\),求半径为3的圆的方程。
解答:将 \(r = 3\) 代入圆的标准方程,我们得到:\[ x^2 + y^2 = 3^2 \]\[ x^2 + y^2 = 9 \]这就是半径为3的圆的方程。
#### 练习题二题目:圆 \(x^2 + y^2 + 6x - 8y + 20 = 0\) 与直线 \(x + y - 1 = 0\) 相切。
求圆的半径。
解答:首先,将圆的方程化为标准形式:\[ (x + 3)^2 + (y - 4)^2 = r^2 \]\[ x^2 + 6x + y^2 - 8y + 20 = r^2 \]\[ x^2 + y^2 + 6x - 8y = r^2 - 20 \]由于圆与直线相切,圆心到直线的距离等于圆的半径。
圆心坐标为\((-3, 4)\),直线方程可以写成 \(y = -x + 1\)。
使用点到直线距离公式:\[ \text{距离} = \frac{|-3 + 4 - 1|}{\sqrt{2}} \]将距离等于半径代入:\[ r = \frac{|-3 + 4 - 1|}{\sqrt{2}} \]\[ r = \frac{1}{\sqrt{2}} \]#### 练习题三题目:已知圆 \(x^2 + y^2 = 1\) 与直线 \(y = x + b\) 相切,求\(b\) 的值。
解答:由于圆与直线相切,圆心到直线的距离等于圆的半径,即1。
圆心坐标为 \((0, 0)\),直线方程可以写成 \(x - y + b = 0\)。
使用点到直线距离公式:\[ 1 = \frac{|0 - 0 + b|}{\sqrt{1^2 + (-1)^2}} \]\[ 1 = \frac{|b|}{\sqrt{2}} \]解得:\[ b = \pm \sqrt{2} \]#### 练习题四题目:求圆 \(x^2 + y^2 - 4x - 6y + 9 = 0\) 的圆心坐标和半径。
圆方程经典例题
高中数学圆的方程典型例题类型一:圆的方程〔1〕标准方程,圆心a,b,半径为r;点M(x0,y0)与圆(x a)2(y b)2r2的位置关系:当,点在圆外当,点在圆上当,点在圆内〔2〕一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。
3〕求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,假设利用圆的标准方程,需求出a,b,r;假设利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
1.假设过点P(a,a)可作圆x2+y2-2ax+a2+2a-3=0的两条切线,那么实数a的取值范围是.2.圆x2+y2-2x+6y+5a=0关于直线y=x+2b成轴对称图形,那么a-b的取值范围是()A.(-∞,4)B.(-∞,0)C.(-4,+∞)D.(4,+∞)3.求过两点A(1,4)、B(3,2)且圆心在直线y 0上的圆的标准方程并判断点P(2,4)与圆的关4.求半径为4,与圆x2y24x 2y 4 0相切,且和直线y0相切的圆的方程.5.求经过点A(0,5),且与直线x 2y 0和2x y0都相切的圆的方程.6.直线l:x+y-2=0和圆C:x2+y2-12x-12y+54=0,那么与直线l和圆C都相切且半径最小的圆的标准方程是.7、设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段弧,其弧长的比为3:1,在满足条件(1)(2)的所有圆中,求圆心到直线l:x 2y0的距离最小的圆的方程.12+(y-1)2222=上的动点,那么|PN|-|PM|的8.点P(2,2),点M是圆O:x=上的动点,点N是圆O:(x-2)+y 最大值是()A.-1B.-2类型二:直线与圆的位置关系直线与圆的位置关系有三种情况:〔1〕设直线l:AxByC0222,圆心Ca,b到l的距离为,圆C:xa ybrAa BbC,那么有dB2A22〕过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),那么过此点的切线方程1、直线3x y 23 0和圆x2y24,判断此直线与圆的位置关系.2:直线x y 1与圆x2y22ay 0(a 0)没有公共点,那么a的取值范围是3:假设直线ykx2与圆(x2)2(y3)21有两个不同的交点,那么k的取值范围是.4.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为.圆(x3)2(y3)29上到直线3x4y110的距离为1的点有几个6.、假设直线y x m与曲线y 4 x2有且只有一个公共点,求实数m的取值范围.7.圆M:x2(y2)21,Q是x轴上的动点,QA、QB分别切圆M于A,B两点(1)假设点Q的坐标为〔1,0〕,求切线QA、QB的方程;42(2)求四边形QAMB的面积的最小值;(3)假设AB,求直线MQ的方程.3类型三:圆与圆的位置关系通过两圆半径的和〔差〕,与圆心距〔d〕之间的大小比拟来确定。
圆的方程 知识点+例题+练习
教学过程1.确定一个圆的方程,需要三个独立条件.“选形式,定参数”是求圆的方程的基本方法,即根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数,同时注意利用几何法求圆的方程时,要充分利用圆的性质.2.解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.3.求圆的方程时,一般考虑待定系数法,但如果能借助圆的一些几何性质进行解题,不仅能使解题思路简化,而且还能减少计算量.如弦长问题,可借助垂径定理构造直角三角形,利用勾股定理解题.课堂巩固一、填空题1.(2014·南京模拟)已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的方程是________.2.若圆x2+y2-2ax+3by=0的圆心位于第三象限,那么直线x+ay+b=0一定不经过第________象限.3.(2014·银川模拟)圆心在y轴上且过点(3,1)的圆与x轴相切,则该圆的方程是________.4.两条直线y=x+2a,y=2x+a的交点P在圆(x-1)2+(y-1)2=4的内部,则实数a的取值范围是________.5.(2014·东营模拟)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是________.6.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是________.7.(2014·南京调研)已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则圆C上各点到l的距离的最小值为______.8.若圆x2+(y-1)2=1上任意一点(x,y)都使不等式x+y+m≥0恒成立,则实数m的取值范围是________.教学效果分析。
圆的标准方程(经典练习及答案详解)
2.4 圆的方程 2.4.1 圆的标准方程1.已知圆的方程是(x-2)2+(y-3)2=4,则点P (3,2)( )A.是圆心B.在圆上C.在圆内D.在圆外(3-2)2+(2-3)2=2<4,∴点P 在圆内.2.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程是( ) A.(x+1)2+(y-3)2=29 B.(x+1)2+(y-3)2=116 C.(x-1)2+(y+3)2=29D.(x-1)2+(y+3)2=116A (-4,-5),B (6,-1),所以线段AB 的中点为C (1,-3),所求圆的半径r=12|AB|=12√102+42=√29,所以以线段AB 为直径的圆的方程是(x-1)2+(y+3)2=29,故选C .3.方程x=√1-y 2表示的图形是( ) A.两个半圆 B.两个圆 C.圆D.半圆x ≥0,方程两边同时平方并整理得x 2+y 2=1,由此确定图形为半圆,故选D .4.一个动点在圆x 2+y 2=1上移动时,它与定点A (3,0)的连线中点的轨迹方程是( ) A.(x+3)2+y 2=4 B.(x-3)2+y 2=1 C.(2x-3)2+4y 2=1D.x+322+y 2=12M (x 0,y 0)为圆上的动点,则有x 02+y 02=1,设线段MA 的中点为P (x ,y ),则x=x 0+32,y=y 0+02,则x 0=2x-3,y 0=2y ,代入x 02+y 02=1,得(2x-3)2+(2y )2=1,即(2x-3)2+4y 2=1.5.圆(x-2)2+(y+3)2=2的圆心是 ,半径是 .-3) √26.圆(x+1)2+y 2=5关于直线y=x 对称的圆的标准方程为 .(x+1)2+y 2=5的圆心坐标为(-1,0),它关于直线y=x 的对称点坐标为(0,-1),即所求圆的圆心坐标为(0,-1),所以所求圆的标准方程为x 2+(y+1)2=5.2+(y+1)2=57.若直线3x-4y+12=0与两坐标轴交点为A ,B ,则以线段AB 为直径的圆的方程是 .解析由题意得A (0,3),B (-4,0),AB 的中点-2,32为圆的圆心,直径AB=5,以线段AB 为直径的圆的标准方程为(x+2)2+y-322=254. 答案(x+2)2+y-322=2548.已知圆M 过A (1,-1),B (-1,1)两点,且圆心M 在直线x+y-2=0上. (1)求圆M 的方程;(2)若圆M 上存在点P ,使|OP|=m (m>0),其中O 为坐标原点,求实数m 的取值范围.设圆M 的方程为(x-a )2+(y-b )2=r 2(r>0),根据题意得{a +b -2=0,(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,解得{a =1,b =1,r =2,所以圆M 的方程为(x-1)2+(y-1)2=4. (2)如图,m=|OP|∈[2-√2,2+√2].关键能力提升练9.若直线y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,则k ,b 的值分别为( ) A.12,-4B.-12,4C.12,4D.-12,-4y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,直线2x+y+b=0的斜率为-2,所以k=12,并且直线2x+y+b=0经过已知圆的圆心,所以圆心(2,0)在直线2x+y+b=0上,所以4+0+b=0,所以b=-4.故选A.10.已知圆O:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆O挡住,则实数a的取值范围是()A.(-∞,-1)∪(-1,+∞)B.(-∞,-2)∪(2,+∞)C.-∞,-4√33∪4√33,+∞D.(-∞,-4)∪(4,+∞)方法1)(直接法)写出直线方程,将直线与圆相切转化为点到直线的距离来解决.过A,B两点的直线方程为y=a4x+a2,即ax-4y+2a=0,令d=√a2+16=1,化简后,得3a2=16,解得a=±4√33.再进一步判断便可得到正确答案为C.(方法2)(数形结合法)如图,设直线AB切圆O于点C在Rt△AOC中,由|OC|=1,|AO|=2,可求出∠CAO=30°.在Rt△BAD中,由|AD|=4,∠BAD=30°,可求得BD=4√33,再由图直观判断,故选C.11.(2020四川成都石室中学高二上期中)已知实数x,y满足x2+y2=1,则√3x+y的取值范围是()A.(-2,2)B.(-∞,2]C.[-2,2]D.(-2,+∞)解析因为x2+y2=1,所以设x=sin α,y=cos α,则√3x+y=√3sin α+cos α=2sinα+π6,所以√3x+y的取值范围是[-2,2].故选C.12.(多选题)若经过点P(5m+1,12m)可以作出圆(x-1)2+y2=1的两条切线,则实数m的取值可能是()A.110B.113C.-113D.-12P 可作圆的两条切线,说明点P 在圆的外部,所以(5m+1-1)2+(12m )2>1,解得m>113或m<-113,对照选项知AD 可能.13.(多选题)设有一组圆C k :(x-k )2+(y-k )2=4(k ∈R ),下列命题正确的是( ) A.不论k 如何变化,圆心C 始终在一条直线上 B.所有圆C k 均不经过点(3,0) C.经过点(2,2)的圆C k 有且只有一个 D.所有圆的面积均为4π(k ,k ),在直线y=x 上,故A 正确;令(3-k )2+(0-k )2=4,化简得2k 2-6k+5=0,∵Δ=36-40=-4<0,∴2k 2-6k+5=0无实数根,故B 正确;由(2-k )2+(2-k )2=4,化简得k 2-4k+2=0,∵Δ=16-8=8>0,有两个不等实根,∴经过点(2,2)的圆C k 有两个,故C 错误;由圆的半径为2,得圆的面积为4π,故D 正确.故选ABD .14.已知点A (8,-6)与圆C :x 2+y 2=25,P 是圆C 上任意一点,则|AP|的最小值是 .82+(-6)2=100>25,故点A 在圆外,从而|AP|的最小值为√82+(-6)2-5=10-5=5.15.已知圆C 的半径为2,圆心在x 轴的正半轴上,且圆心到直线3x+4y+4=0的距离等于半径长,则圆C 的标准方程为 .(a ,0),且a>0,则点(a ,0)到直线3x+4y+4=0的距离为2,即√32+42=2,所以3a+4=±10,解得a=2或a=-143(舍去),则圆C 的标准方程为(x-2)2+y 2=4.x-2)2+y 2=416.矩形ABCD 的两条对角线相交于点M (2,1),AB 边所在直线的方程为x-2y-4=0,点T (-1,0)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.因为AB 边所在直线的方程为x-2y-4=0,且AD 与AB 垂直,所以直线AD 的斜率为-2.又因为点T (-1,0)在直线AD 上,所以AD 边所在直线的方程为y-0=-2(x+1),即2x+y+2=0.(2)由{x -2y -4=0,2x +y +2=0,解得{x =0,y =-2,所以点A 的坐标为(0,-2),因为矩形ABCD 两条对角线的交点为M (2,1),所以M 为矩形外接圆的圆心.又|AM|=√(2-0)2+(1+2)2=√13,从而矩形ABCD 外接圆的方程为(x-2)2+(y-1)2=13.学科素养创新练17.设A(x A,y A),B(x B,y B)为平面直角坐标系内的两点,其中x A,y A,x B,y B∈Z.令Δx=x B-x A,Δy=y B-y A,若|Δx|+|Δy|=3,且|Δx|·|Δy|≠0,则称点B为点A的“相关点”,记作B=τ(A).(1)求点(0,0)的“相关点”的个数.(2)点(0,0)的所有“相关点”是否在同一个圆上?若在,写出圆的方程;若不在,请说明理由.因为|Δx|+|Δy|=3(Δx,Δy为非零整数),所以|Δx|=1,|Δy|=2或|Δx|=2,|Δy|=1,所以点(0,0)的“相关点”有8个.(2)是.设点(0,0)的“相关点”的坐标为(x,y).由(1)知|Δx|2+|Δy|2=5,即(x-0)2+(y-0)2=5,所以所有“相关点”都在以(0,0)为圆心,√5为半径的圆上,所求圆的方程为x2+y2=5.。
圆解方程练习题
圆解方程练习题在数学中,解方程是一个常见的问题。
而圆解方程则是解决与圆相关的方程。
本文将介绍一些圆解方程的练习题,帮助读者熟悉这一概念并提升解题能力。
1. 练习题一已知一个圆的半径为r,方程为x^2 + y^2 = r^2。
求圆上一点的坐标。
解析:根据方程,我们可以得知圆的所有点都满足这个方程。
因此,我们只需要给定一个具体的半径值r,即可求得圆上的所有点的坐标。
例如,当r=3时,圆上的一些点坐标为(3,0)、(-3,0)、(0,3)、(0,-3)等。
2. 练习题二已知一个圆的直径为d,方程为(x - a)^2 + (y - b)^2 = (d/2)^2。
求圆心坐标。
解析:根据方程,我们可以发现(x-a)^2 + (y-b)^2就是圆心到圆上一点的距离的平方。
而方程右侧等式为(d/2)^2,则表示圆半径的平方。
因此,我们可以得出结论:圆心坐标为(a, b)。
3. 练习题三已知两个圆的方程分别为x^2 + y^2 + 2x + 2y = 0和x^2 + y^2 + 4x + 4y = 0。
求两个圆的交点坐标。
解析:首先,我们可以将两个方程进行整理,得到(x + 1)^2 + (y + 1)^2 = 1和(x + 2)^2 + (y + 2)^2 = 4。
这两个方程表示的是以(-1,-1)为圆心、半径为1的圆和以(-2,-2)为圆心、半径为2的圆。
根据这两个方程,我们可以计算得到两个圆的交点坐标。
4. 练习题四已知一个圆心坐标为(h, k),半径为r。
给定一个点P(x, y),判断点P是否在圆上。
解析:根据勾股定理,我们可以用以下关系判断点P是否在圆上:当(x - h)^2 + (y - k)^2 = r^2时,点P在圆上;当(x - h)^2 + (y - k)^2 > r^2时,点P在圆外;当(x - h)^2 + (y - k)^2 < r^2时,点P在圆内。
通过练习题的学习,我们可以更深入地理解圆解方程的概念和应用。
圆的方程习题附答案
圆的方程习题附答案方程y=1-x^2表示的曲线是圆x^2+y^2=1的上半圆。
以M(1,0)为圆心,且与直线x-y+3=0相切的圆的方程是(x-1)^2+y^2=8.已知圆C1:(x+1)^2+(y-1)^2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为(x-2)^2+(y+2)^2=1.已知圆C与直线y=x及x-y-4=0都相切,圆心在直线y=-x 上,则圆C的方程为(x-1)^2+(y+1)^2=2.在平面直角坐标系xOy中,已知A(-1,0),B(0,1),则满足|PA|^2-|PB|^2=4且在圆x^2+y^2=4上的点P的个数为2.6.已知动点M(x,y)到点O(0,0)与点A(6,0)的距离之比为2,则动点M的轨迹所围成的区域的面积是多少?解析:设点P为M到OA上的垂足,则有OP = 2AP。
根据勾股定理,可得到PM 的长度为 $\sqrt{5} \times 2$。
因此,M 的轨迹是以点 A 为圆心,以 $\sqrt{5} \times 2$ 为半径的圆。
其面积为 $S = \pi \times (\sqrt{5} \times 2)^2 = 20\pi$。
因此,答案为 $20\pi$。
7.当方程 $x^2 + y^2 + kx + 2y + k^2 = 0$ 所表示的圆的面积取最大值时,直线 $y = (k - 1)x + 2$ 的倾斜角 $\alpha$ 是多少?解析:将方程化简,可得到 $(x + \frac{k}{2})^2 + (y +1)^2 = (\frac{k}{2})^2 + 1$。
因此,圆的半径为 $r =\sqrt{(\frac{k}{2})^2 + 1} - \frac{k}{2}$。
为了使圆的面积最大,需要求出 $r$ 的最大值。
对 $r$ 求导,可得到 $\frac{dr}{dk} = \frac{-3k}{4\sqrt{(\frac{k}{2})^2 + 1}} + \frac{1}{2}$。
高考数学复习圆的方程专题练习(附答案)-文档资料
高考数学复习圆的方程专题练习(附答案)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。
以下是圆的方程专题练习,请考生查缺补漏。
一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).所以该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2019南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,所以圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2019江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y|的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),所以a+b=2.所以+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b=时取等号.[答案] 96.(2019南京市、盐城市高三模拟)在平面直角坐标系xOy中,若圆x2+(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,所以kOP==1,kAB=-1,而直线AB过P点,所以直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2019泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a=________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2+a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,所以的最小值为-4.10.已知圆的圆心为坐标原点,且经过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b 的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,所以圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2=2.圆的方程专题练习及答案就分享到这里,查字典数学网预祝考生可以考上自己理想的大学。
41《圆的方程》习题1(带答案).doc
4.1圆的方程第1题.△ABC的顶点B, C的坐标分别是(-3,-1) , (2,1),顶点A在圆(兀+ 2)2 + (y -4)2 = 4上运动,求△ ABC的重心G的轨迹方程.答案:解:设厶ABC的顶点A的朋标为(兀。
,儿),重心G的地标为(x,y).|大[为兀二£ +七+艺=兀0-3 + 2 = )1 +九+儿=儿T + 1「一3 一3‘ •一3 3所以,兀()=3兀+ 1,)乙=3丿. ①又点A在圆(x + 2)2+(y-4)2=4上运动,所以仇+2)2+(北-4)—4 ②把①式代入②式,得(3x + 3)2+(3y-4)2=4.7( 4整理得(x + l)「+ y-一 = —•\ 3丿9,( 4 V 4所以,'ABC的重心G的轨迹方程是(兀+ 1)「+ y ——=-.< 3丿9第2题.点P(m2,5)与圆x2 + y2 = 24的位置关系是()A.在圆外B.在圆内C.在圆上D.不确定答案:A .第3题.已知动点M到定点(8,0)的距离等于M到(2,0)的距离的2倍,那么点M的轨迹方程是()A. x2 + y2— 32B . x2 y2 =16C. (x-l)2 + y2=16D. x 2+(y-l)2 = 16答案:B.第4题.已知圆心在x 轴上,半径是5 H 以A(5,4)为屮点的弦长是2真,则这个I 员1的方程 是 ____________ .答案:(x-3)2 + y 2=25 或(兀_7)2 + 护=25第5题.圆在x, y 轴上分别截得弦长为4和14,且圆心在直线2x + 3y = 0上,求此圆方 程.答案:解:设圆的圆心为(a, b),圆的半径为广,则圆的方程为(兀一巧2 +(),— b)2 = r 2.又J 圆心在直线2兀+ 3),= 0上,・・・2a + 3b = 0 ③a = 9由①②③可得\b = -6 r 2=85 ・・・适合题意的圆的方程为(%一疔+ (y + 6)2 = 85或(兀+ 9)2 + (y — 6)2 = 85 .第6题.已知圆。
圆方程-圆的方程典型例题
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载圆方程-圆的方程典型例题地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容圆与方程--圆的方程典型例题类型一:圆的方程例1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为.∵圆心在上,故.∴圆的方程为.又∵该圆过、两点.∴解之得:,.所以所求圆的方程为.解法二:(直接求出圆心坐标和半径)因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线的方程为:即.又知圆心在直线上,故圆心坐标为∴半径.故所求圆的方程为.又点到圆心的距离为.∴点在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?例2 求半径为4,与圆相切,且和直线相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆.圆与直线相切,且半径为4,则圆心的坐标为或.又已知圆的圆心的坐标为,半径为3.若两圆相切,则或.(1)当时,,或(无解),故可得.∴所求圆方程为,或.(2)当时,,或(无解),故.∴所求圆的方程为,或.说明:对本题,易发生以下误解:由题意,所求圆与直线相切且半径为4,则圆心坐标为,且方程形如.又圆,即,其圆心为,半径为3.若两圆相切,则.故,解之得.所以欲求圆的方程为,或.上述误解只考虑了圆心在直线上方的情形,而疏漏了圆心在直线下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点,且与直线和都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线与相切,∴圆心在这两条直线的交角平分线上,又圆心到两直线和的距离相等.∴.∴两直线交角的平分线方程是或.又∵圆过点,∴圆心只能在直线上.设圆心∵到直线的距离等于,∴.化简整理得.解得:或∴圆心是,半径为或圆心是,半径为.∴所求圆的方程为或.说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、设圆满足:(1)截轴所得弦长为2;(2)被轴分成两段弧,其弧长的比为,在满足条件(1)(2)的所有圆中,求圆心到直线的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为,半径为.则到轴、轴的距离分别为和.由题设知:圆截轴所得劣弧所对的圆心角为,故圆截轴所得弦长为.∴又圆截轴所得弦长为2.∴.又∵到直线的距离为∴当且仅当时取“=”号,此时.这时有∴或又故所求圆的方程为或解法二:同解法一,得.∴.∴.将代入上式得:.上述方程有实根,故,∴.将代入方程得.又∴.由知、同号.故所求圆的方程为或.说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆,求过点与圆相切的切线.解:∵点不在圆上,∴切线的直线方程可设为根据∴解得所以即因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为.说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用,求出切点坐标、的值来解决,此时没有漏解.例6 两圆与相交于、两点,求它们的公共弦所在直线的方程.分析:首先求、两点的坐标,再用两点式求直线的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆、的任一交点坐标为,则有:①②①-②得:.∵、的坐标满足方程.∴方程是过、两点的直线方程.又过、两点的直线是唯一的.∴两圆、的公共弦所在直线的方程为.说明:上述解法中,巧妙地避开了求、两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆外一点,作这个圆的两条切线、,切点分别是、,求直线的方程。
圆的标准方程练习题
圆的标准方程练习题在解决圆的问题时,我们经常使用到的一个重要工具就是圆的标准方程。
通过掌握圆的标准方程的用法,我们可以更方便地进行圆的解析几何运算。
接下来,我将为大家提供一些圆的标准方程练习题,帮助大家加深对这一概念的理解。
练习题一:给定圆心和半径,求标准方程1. 已知圆心为 (2, 3),半径为 5,求圆的标准方程。
解析:设圆的标准方程为 (x-a)² + (y-b)² = r²,其中 (a, b) 为圆心坐标,r 为半径。
将已知数据代入方程,得到:(x-2)² + (y-3)² = 5²,即 (x-2)² + (y-3)² = 25。
练习题二:给定标准方程,求圆心和半径1. 已知圆的标准方程为 x² + y² - 6x + 8y + 9 = 0,求圆的圆心和半径。
解析:观察标准方程可得出:(x-3)² + (y+4)² = 16。
由此可知圆的圆心为 (3, -4),半径为 4。
练习题三:给定圆上一点,求标准方程1. 已知圆上一点为 (5, 2),圆心为 (3, 4),求圆的标准方程。
解析:设圆的标准方程为(x-a)²+ (y-b)²= r²。
将已知数据代入方程,可得到:(x-3)² + (y-4)² = r²。
由于圆上一点为 (5, 2),代入方程得到 (5-3)² + (2-4)² = r²,化简得 4 + 4 = r²,即 8 = r²。
所以圆的标准方程为 (x-3)² + (y-4)² = 8。
通过以上几道练习题,我们对圆的标准方程的应用有了更深入的了解。
掌握了圆的标准方程的求解方法,我们在解决与圆相关的数学问题时,就能更加得心应手。
不过,还需要注意的是,在使用圆的标准方程时,我们需要确保给定的数据准确无误。
圆解方程练习题带答案
圆解方程练习题带答案解方程是数学中重要的内容之一,帮助我们理解数学概念并解决实际问题。
在解方程的学习过程中,练习题是不可或缺的一部分。
本文将提供一些圆解方程的练习题及其答案,帮助读者加深对圆解方程的理解。
练习题1:已知圆的半径为3,求圆的面积。
解答:圆的面积公式为:S = π * r^2将半径r代入公式中,得到:S = π * 3^2S = π * 9S = 9π练习题2:已知圆心坐标为(2, 4),半径为5,求圆的方程。
解答:圆的方程为:(x - a)^2 + (y - b)^2 = r^2其中,(a, b)为圆心坐标,r为半径。
将已知数据代入方程中,得到:(x - 2)^2 + (y - 4)^2 = 5^2x^2 - 4x + 4 + y^2 - 8y + 16 = 25x^2 + y^2 - 4x - 8y - 5 = 0练习题3:已知圆心坐标为(-1, 2),过点(4, 1)的直线与圆交于两个点,求这两个点的坐标。
解答:设圆心为C(-1, 2),过点(4, 1)的直线为l。
首先求直线l的方程:设直线l的斜率为k。
k = (1 - 2) / (4 - (-1)) = -1/5直线l的方程为:y = -1/5 * x + b将过圆心C的直线l带入圆的方程中,求得交点:(-1)^2 + (2 - (-1)/5 * x + b)^2 = r^2x^2 - 2/5x + 2 - 2/5b + b^2 = r^2将直线l的方程代入上式中,得到:x^2 - 2/5x + 2 - 2/5(-1/5 * x + b) + b^2 = r^2x^2 - 2/5x + 2 + 2/25x - 2/25b + b^2 = r^2整理得:(1 + 2/25)x^2 + (-2/5 + 2/25b - 2/25x)x + (2 + b^2) - r^2 = 0令A = 1 + 2/25,B = -2/5 + 2/25b - 2/25x,C = 2 + b^2 - r^2则上式可化为:Ax^2 + Bx + C = 0由已知直线l与圆交于两个点可得到两个解,即求二次方程Ax^2 + Bx + C = 0的解。
圆的方程经典题目带答案
圆的方程经典题目1.求满足下列条件的圆的方程(1)过点A(5,2)和B(3,-2),且圆心在直线32-=x y 上;(2)圆心在835=-y x 上,且与两坐标轴相切;(3)过ABC ∆的三个顶点)5,5()2,2()5,1(C B A 、、---;(4)与y 轴相切,圆心在直线03=-y x 上,且直线 x y =截圆所得弦长为72;(5)过原点,与直线1:=x l 相切,与圆1)2()1(:22=-+-y x C 相外切;(6)以C(1,1)为圆心,截直线2-=x y 所得弦长为22;(7)过直线042:=++y x l 和圆0142:22=+-++y x y x C 的交点,且面积最小的圆的方程. (8)已知圆满足①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为1:3③圆心到直线02:=-y x l 的距离为52.0,求该圆的方程. (9)求经过)3,1()2,4(-B A 两点且在两坐标轴上的四个截距之和是2的圆的方程2、已知方程0916)41(2)3(24222=++-++-+m y m x m y x 表示一个圆(1)求实数m的取值范围 (2)求该圆半径r 的取值范围(3)求面积最大的圆的方程(4)求圆心的轨迹方程1. 已知圆2522=+y x , 求下列相应值(1)过)4,3(-的切线方程(2)过)7,5(的切线方程、切线长;切点弦方程、切点弦长 (3)以)2,1(为中点的弦的方程 (4)过)2,1(的弦的中点轨迹方程 (5)斜率为3的弦的中点的轨迹方程2. 已知圆 0622=+-++m y x y x 与直线032=-+y x 相交于Q P 、两点,O 为坐标原点,若OQ OP ⊥,求实数m 的值.3、已知直线b x y l +=:与曲线21:x y C -=有两个公共点,求b 的取值范围4、一束光线通过点)18,25(M 射到x 轴上,被反射到圆25)7(:22=-+y x C 上.求: (1)通过圆心的反射线方程,(2)在x 轴上反射点A 的活动范围.5、圆034222=-+++y x y x 上到直线0=++m y x 的距离为2的点的个数情况已知两圆01010:221=--+y x y x O 和04026:222=--++y x y x O (1)判断两圆的位置关系 (2)求它们的公共弦所在的方程 (3)求公共弦长 (4)求公共弦为直径的圆的方程.题型五、最值问题思路1:几何意义 思路2:参数方程 思路3、换元法 思路4、函数思想 1. 实数y x ,满足0124622=+--+y x y x(1)求x y 的最小值 (2)求22y x ++32-y 的最值;(3)求y x 2-的最值(4)|143|-+y x 的最值 2. 圆25)2()1(:22=-+-y x C 与)(047)1()12(:R m m y m x m l ∈=--+++.(1)证明:不论m 取什么实数直线l与圆C 恒相交(2)求直线l 被圆C 截得最短弦长及此时的直线方程3、平面上有A (1,0),B (-1,0)两点,已知圆的方程为()()222342x y -+-=.⑴在圆上求一点1P 使△AB 1P 面积最大并求出此面积;⑵求使22AP BP +取得最小值时的点P 的坐标.4、已知P 是0843:=++y x l 上的动点,PB PA ,是圆012222=+--+y x y x 的两条切线,A 、B 是切点,C 是圆心,那么四边形PACB 的面积的最小值为5、已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_________6、已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的互相垂直的弦分别为AC 和BD ,则四边形ABCD 的面积为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
肥城市第三中学 高一数学 必修二
学案
2015.1.20 制作人:李胜芳
审核人:高一数学组
【当堂达标】
1 .若 x2 y 2 ( 1) x 2 y 0 表示圆,则 的取值范围是( A. (0,∞ ) B. , 1 ) 分析题目 总结方法
1 4
2.m 为何值时, 方程 x2+y2-4x+2my+2m2-2m+1=0 表示圆, 并求出半径最大时圆的 方程。
3.已知圆与 y 轴相切,圆心在直线 x-3y=0 且这个圆经过点 A(6,1) ,求该圆的 方程.
4
肥城市第三中学 高一数学 必修二
学案
2015.1.20 制作人:李胜芳
审核人:高一数学组
特别地,当圆心在原点时,圆的方程: 当圆与 x 轴相切时,圆的方程: 当圆与 y 轴相切时,圆的方程: 2. 点与圆的位置关系: (1) 点在圆内: (2) 点在圆上: (3) 点在圆外:
识记
基础自测:
1.关于 x,y 的方程 Ax +Bxy+Cy +Dx+Ey+F=0 表示一个圆的条件是 2.方程 x y 2 x 4 y 6 0 表示的图形是(
学习重点:圆的方程的求解。 学习难点:知识的灵活应用。 回顾复习:
1. 圆的方程: (1) 圆的标准方程: (2) 圆的一般方程: 当 当 D E 4F 表示任何图形。
2 2
时,方程表示圆,此时圆心为
2 2
,半径为
0 时,表示一个点; 当 D E 4F 0 时,方程不
回顾 知识
∞) (∞, ) C. (1,
1 5
D.R
2.已知点 P(-2, 4)和圆 C:x2+y2+6x-4y+9=0 , 点 P 与圆 C 的位置关系:
。
2 2 3. 如果方程 x2 y 2 Dx Ey F 0 D E 4 F 0 所表示的曲线关于
直线 y x 对称,那么必有__
_
4.求下列各圆的圆心坐标及半径: (1)x2+y2-2x-5=0 (2)x2+y2+2x-4y-4=0
(3)x2+y2+2ax=0
(4) x2+y2-2by-2b2=0
5.求下列各圆的方程: (1)圆心为 C(8,-3) ,且过点 A(5,1) (2)过 A(-1,5),B(5,5),C(6,-2)三点。
6.等腰△ABC 的顶点 A(4,2),底边一个端点 B(3,5),求另一个端点 C 的轨迹方程城市第三中学 高一数学 必修二
学案
2015.1.20 制作人:李胜芳
审核人:高一数学组
作业:P144
A组 1
反思提升:这节课你学到了哪些知识?
拓展延伸:
1. 已知点 P(1,1)与圆 C:(x+2)2+(y+2)2=1,求点 P 到圆 C 的最大距离和最小 距离。
5
3.点 (11) , 在圆 ( x a)2 ( y a)2 4 的内部,则 a 的取值范围是( A. 1 a 1 B. 0 a 1 C. a 1 或 a 1
D. a 1
4.已知点 A(3,-2),B(-5,4),以线段 AB 为直径的圆的方程为
肥城市第三中学 高一数学 必修二
学案
2015.1.20 制作人:李胜芳
审核人:高一数学组
4.1 圆的方程 习题课
学习内容 学习目标:
1. 通过练习进一步掌握圆的标准方程和一般方程,并且能准确熟练的求出圆的 方程。 2. 进一步培养学生自主合作学习的能力及利用数形结合解决问题的能力。
学习指导 即时感悟
2 2
2 2
)
1
肥城市第三中学 高一数学 必修二
学案
2015.1.20 制作人:李胜芳
审核人:高一数学组
A 以 (1 , 2) 为圆心, 11 为半径 C 以 (1 , 2) 为圆心, 11 为半径
B 以 (1 , 2) 为圆心, 11 为半径的圆 D 以 (1 , 2) 为圆心, 11 为半径的圆 )
自主合作探究:
例 1 . 已知方程 x2+y2-2(m+3)x+2·(1-4m2)·y+16m4+9=0 表示一个圆. (1)求实数 m 的取值范围;(2)求该圆半径 r 的取值范围,并求半径最大时圆的面 积;(3)求圆心的轨迹方程.
例 2:求圆心在直线 2x+y=0 上,且与直线 x+y-1=0 切于点(2,-1)的圆的 方程。