【附5套中考模拟试卷】河南省安阳市2019-2020学年中考第二次模拟数学试题含解析

合集下载

【附5套中考模拟试卷】河南省安阳市2019-2020学年中考数学模拟试题(2)含解析

【附5套中考模拟试卷】河南省安阳市2019-2020学年中考数学模拟试题(2)含解析
A.线段DB绕点D顺时针旋转一定能与线段DC重合
B.线段DB绕点D顺时针旋转一定能与线段DI熏合
C.∠CAD绕点A顺时针旋转一定能与∠DAB重合
D.线段ID绕点I顺时针旋转一定能与线段IB重合
10.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD= ,则△ACE的面积为( )
2.下列计算错误的是( )
A.4x3•2x2=8x5B.a4﹣a3=a
C.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b2
3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A.甲和乙B.乙和丙C.甲和丙D.只有丙
4.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )
A.1B. C.2D.2
11.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为( )
A.4B.5C.6D.7
12.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得A.1:3B.1:4C.1:5D.1:6
5.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()
A.50.5~60.5分B.60.5~70.5分C.70.5~80.5分D.80.5~90.5分
6.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:
A. B. C. D.
18.如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.

河南省安阳市2019年中考二模数学试卷及答案

河南省安阳市2019年中考二模数学试卷及答案

安阳市 2019 年中考二模数学试卷注意事项:1 .本试卷分试题卷和答题卷两部分,试题卷共 6 页, 3 大题,满分120 分,考试时间100分钟,2 .试题卷上不要答题,选择题用2B 铅笔按要求填涂在答题卷上的指定位置,非选择题请用0.5 毫米黑色签字笔直接把答案写在答题卷上,答在试题卷上的答案无效.3.答题前,考生务必将本人所在学校、姓名、考场、座号和准考证号填写在答题卷第一面的指定位置上.一、选择题(每小题 3 分,共 24分)1.3 的绝对值是【】A.1C. 31 B. -3D. -332.下列图形中,是中心对称但不一定是轴对称图形的是【】A.等边三角形B.矩形C.菱形D.平行四边形3.据悉, 2019 年我国将发展固定宽带接入新用户28 000 000 户, 28 000 000 用科学记数法表示为【】A. 28×106B. 2.8×l06C. 2.8×10 7D.0.28×l084.如图,直线 a∥ b, c⊥d,∠ 1=44°,那∠ 2 的度数为【】A. 46°B. 44° C.36° D.22°5.如图,线段AB 两端点的坐标分别为A(4,4)、 B(6, 2),以原点 O 为位似中心,在第一象限内将线段AB 缩小为原来的1后得到线段CD,则端点 C 的坐标为【]2A. (2,1)B. (2,2)C. (1, 2)D.(3, 1)6.小明记录了某市连续10 天的最高气温如下:最高气温(℃)20222526天数1324那么关于这10 天的最高气温的说法正确的是【】A.中位数23.5B.众数 22C.方差 46D.平均数 247.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”.如“ 947”就是一个‘ ‘ V 数”,若十位上的数字为5,则从 4, 6,8 中任选两数,能与 5 组成‘‘VA.1B.1C.1D.2 64338.如图,正方形 ABCD的边长为 4cm,动点 P、 Q 同时从 A 点出发,以 lcm/s 的速度分别沿A→ B→ C 和 A→ D→ C 的路径向点 C 运动,设运动时间为x(单位: s),四边形 PBDQ的面积为 y(单位: cm2),则 y 与 x(0≤x≤ 8)之间函数关系可以用图象表示为【】二、填空题(每小题 3 分,共 21 分)9.计算: 2-2 -( 3 一2)0=a610.不等式组13 2a的解集是.3511.为表彰“我爱读书”演讲比赛中获奖同学,老师决定购买笔记本与钢笔作为奖品,已知 5 个笔记本和 2 支钢笔共需100 元: 4 个笔记本和7 支钢笔共需161 元,设每个笔记本 z 元,每支钢笔y 元,根据题意可列方程组为.12.如图是一个几何体的三视图,这个几何体是侧面积是(结果不取近似值).1323 x +k=O有两个相等的实数根,则k 的值为..关于 x 的一元二次方程 x -214.如图,在正方形 ABCD中,点 P 是 AB 边上一动点(不与 A、 B 重合),对角线AC、 BD 相交于点 O,过点 P 分别作 AC、 BD 的垂线,分别交 AC、 BD 于点 E、 F,交AD、 BC于点 M、 N.下列结论:①△222 APE≌△ AME;② PM+PN=AC;③ PE +PF =PO ;④△ POF∽△ BNF.其中正确的结论有个.15.如图,点 E是矩形 ABCD的边 AB 上一点,将△ BEC沿 CE折叠,使点 B 落在AD 边上的点 F 处,若△ AEF∽△ FEC∽△ DFC,则AB的值是.BC三、解答题(本大题 8 个小题,共 75 分)16.( 8 分)小明化简a 2 a 1a 4后说:“在原分式有意义的前提下,a 2 2a a 2 4a 2a分式的值一定是正数” ,你同意小明的说法吗?请说明理由.17.(9 分)某校兴趣小组为了解本校学生对卫生知识了解掌握情况,随机对部分学生进行问卷调查,整理调查结果并绘制了如下两幅不完整的统计图.请根据图中提供的信息解答下列问题:(1) 求本次被调查的学生人数;(2)补全两个统计图:(3) 若全校有 2100 名学生,则估计对消防安全常识不了解的学 生 有 多少名?18.( 9 分)如图,己知点 4(1,3 )在反比例函数 y= k( x>0)的 图 象x上,连接 OA ,将线段 OA 绕点 D 顺时针方向旋转 30°,得到线段OB.(1) 求反比例函数的解析式;(2) 判断点 B 是否在反比例函数图象上,并说明理由. (3) 设直线 AB 的解析式为 y=ax+b ,请直接写出不等式 ar+b- k<0 的解集.x19.( 9 分)周末数学老师布置了实践作业,小明来到一条河岸边的一段, 想测量河的宽度. 如图所 示,河岸 AB 上有一排树,相邻两棵树之间的距离均 为 10 米.小明先用测角仪在河岸 CD 的肘处测得α=26.6 °,然后沿河岸走 50 术到达 N 点,测得 β=63.4°请你根 据这些数据帮小明算出河的宽FG (结果保留整数). (参考数据: sin26.6° ≈0.45,cos26.6° ≈0.89, tan26.6 ° ≈0.5, sin63.4° ≈0.89,cos63.4° ≈0.45, tan63.4° ≈2)式出售,计划平均每吨的售价及成本如下表:销售方式批发零售储藏后销售售价(元 / 吨)300045005500成本(元 / 吨)70010001200经过一段时间,蒜苔按计划全部售出获得的总利润为y(元),蒜苔零售x(吨),且零售量是批发量的1.3(l)求 y 与 x 之间的函数关系式;(2) 由于受条件限制,经冷库储藏售出的蒜苔最多80 吨,求该生产基地全部售完蒜苔获得的最大利润.21.( 10 分)如图,在平面直角坐标系中,已知 D (-5, 4),B( -3,O),过点 D分别作 x 轴、 y 轴的垂线,垂足分别为A、C 两点,动点P 从 O 点出发,沿x 轴以每秒1个单位长度的速度向右运动,运动时间为t 秒.(1)当 t=____ 时, PC∥DB:(2)当 t=____ 时, PC⊥BC;(3)以点 O 为圆心, OP 的长为半径作⊙ O,当⊙ O与 ABCD的边所在的直线相切时,求t 的值.22.( 10 分)(1)计算探究如图①,已知⊙ O 的直径 CD 为 4,弧 AD 所对圆心角的度数为 60°,点 B 是弧 AD 的中点,已知在直径 CD上存在一点 P,使 BP+AP的值最小,求 BP+AP的最小值.(2) 作图探究如图②,四边形 ABCD的边 AB 在直线 l 上,在直线 l 上找一点 P,使∠ APC=∠ APD.保留作图痕迹,不写作法.(3) 迁移运用如图③,在四边形ABCD的对角线 AC上找一点 P,使∠ APB=∠ APD.简要写出作法.23.( 11 分)如图,在平面直角坐标系中,抛物线2与 x 轴交于 A(-4, 0)、y=ax +bx+3B(-l, 0)两点,与 y 轴交于点 C,点 D 是第三象限的抛物线上一动点.(1)求抛物线的解析式;出 S与 m 的函数关系式,并确定m 为何值时S 有最大值,最大值是多少?(3) 若点 P 是抛物线对称轴上一点,是否存在点P使得∠ APC=90°,若存在,请直接写出点P的坐标:若不..存在,请说明理由.。

河南省安阳市中考数学二模试卷

河南省安阳市中考数学二模试卷

河南省安阳市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019七上·周口期中) -3.5的倒数的相反数是()A .B .C . —D .2. (2分)下列运算结果为a6的是()A . a2+a3B . a2•a3C . (﹣a2)3D . a8÷a23. (2分) (2020八下·常熟期中) 下列式子中,属于最简二次根式的是()A .B .C .D .4. (2分)(2020·宿迁) 已知一组数据5,4,4,6,则这组数据的众数是()A . 4B . 5C . 6D . 85. (2分) (2019九上·宝安期中) 反比例函数y= (k≠0)的图象经过点(-2,3),则该反比例函数图象在()A . 第一,三象限B . 第二,四象限C . 第二,三象限D . 第一,二象限6. (2分)在Rt△ABC中,∠C=90°,sinA= ,则tanB的值为()A .B .C .D .7. (2分)(2017·谷城模拟) 如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A . 4B . 3C . 2D .8. (2分) (2020九上·白云期末) 在下列函数图象上任取不同两点P(x1 , y1),Q(x2 , y2),一定能使(x2﹣x1)(y2﹣y1)>0成立的是()A . y=﹣2x+1(x<0)B . y=﹣x2﹣2x+8(x<0)C . y=(x>0)D . y=2x2+x﹣6(x>0)二、填空题 (共10题;共12分)9. (1分)(2019·无锡模拟) 关于x,y的二元一次方程组,则4x2﹣4xy+y2的值为________.10. (1分)(2017·南岗模拟) 据媒体公布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,已知3386×1013的结果近似为3430000,用科学记数法把近似数3430000表示成a×10n的形式,则n的值是________.11. (1分)函数y=中,自变量x的取值范围是________12. (3分)直线y=2x﹣1与直线y=x+4的交点是________,故当x________时,直线y=2x﹣l上的点在直线y=x+4上相应点的上方;当x________时,直线y=2x﹣1上的点在直线y=x+4上相应点的下方.13. (1分) (2019九上·龙湾期中) 如图,边长为2的正方形的顶点、在一个半径为2的圆上,顶点、在该圆内.将正方形绕点逆时针旋转,当点第一次落在圆上时,点旋转到,则 ________ .14. (1分)如图,AB∥CD,∠BAC的平分线和∠ACD的平分线交于点E,则AE与CE的位置关系是________.15. (1分)已知x1 , x2是方程x2﹣(2k﹣1)x+(k2+3k+5)=0的两个实数根,且x12+x22=39,则k的值为________.16. (1分) (2020九上·安徽月考) 抛物线经过点,当时,当时,则k的取值范围是________.17. (1分) (2020九上·新乡期末) 如图,四边形是的内接四边形,且,点在的延长线上,若,则的半径 ________.18. (1分) (2019八下·宛城期末) 如图,在矩形中,,,点E在边AB上,点F是边BC上不与点B、C重合的一个动点,把沿EF折叠,点B落在点处.若,当是以为腰的等腰三角形时,线段的长为________.三、解答题 (共10题;共105分)19. (10分) (2020七下·抚远期中) 计算:(1);(2).20. (5分)(2016·兴化模拟) 先化简,再求值:(﹣)÷ ,其中x是方程3x2﹣x﹣1=0的根.21. (10分)如图所示,编号为①②③④的四个三角形(1)写出三角形①②的顶点坐标,两个三角形关于什么对称?(2)关于坐标原点O成中心对称的两个三角形的编号是什么?写出这两个三角形的顶点坐标.22. (15分)(2016·呼和浩特模拟) 分校为了调查初三年级学生每周的课外活动时间,随机抽查了50名初三学生,对其平均毎周参加课外活动的时间进行了调查.由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求m的值;(2)计算50名学生的课外活动时间的平均数(每组时间用其组中值表示),对初三年级全体学生平均每周的课外活动吋问做个推断;(3)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表法,求其中至少有1人课外活动时间在8~10小时的概率.23. (15分)某班抽查25名学生数学测验成绩(单位:分),频数分布直方图如图:(1)成绩x在什么范围的人数最多?是多少人?(2)若用半径为2的扇形图来描述,成绩在60≤x<70的人数对应的扇形面积是多少?(3)从相成绩在50≤x<60和90≤x<100的学生中任选2人.小李成绩是96分,用树状图或列表法列出所有可能结果,求小李被选中的概率.24. (10分) (2020九上·广东开学考) 如图,矩形ABCO中,点C在上,点A在轴上,点B的坐标是(-6,8),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、轴分别交于点D、F.(1)求点F的坐标;(2)若点N是平面内任意一点,在轴上是否存在点M,使M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.25. (5分)已知,如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为4.2m,请你计算DE的长.26. (10分)(2017·河南模拟) 某经销商销售一种产品,这种产品的成本价为10元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克,且10≤x≤18)之间的函数关系如图所示;(1)求y(千克)与销售价x的函数关系式;(2)该经销商想要获得150元的销售利润,销售价应定为多少?27. (10分) (2018九上·肥西期中) 如图,△A BC内接于⊙O,直径BD交AC于E,过O作FG⊥AB,交AC 于F,交AB于H,交⊙O于G.(1)求证:OF•DE=2OE•OH;(2)若⊙O的半径为12,且OE:OF:OD=2:3:6,求阴影部分的面积.(结果保留根号)28. (15分)(2017·环翠模拟) 综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共12分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共105分)19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、26-1、26-2、27-1、27-2、28-1、28-2、。

最新河南省安阳市2019-2020年最新中考数学一模试卷(含答案)(精校版)

最新河南省安阳市2019-2020年最新中考数学一模试卷(含答案)(精校版)

河南省安阳市2019届中考数学一模试卷(解析版)一.选择题1.﹣3的绝对值是()A. ﹣3B. 3C. ±3D. ﹣2.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是()A. B. C. D.3.下列计算正确的是()A. x2•x3=x6B. (x2)3=x5C. x2+x3=x5D. x6÷x3=x34.关于x的一元二次方程ax2﹣3x+3=0有两个不等实根,则a的取值范围是()A. a<且a≠0B. a>﹣且a≠0C. a>﹣D. a<5.3月1日,河南省统计局、国家统计局河南调查总队联合公布《2016年河南省国民经济和社会发展统计公报》,《公报》显示,到2016年年末,河南省总人口为10788万人,常住人口9532万人,数据“9532万”用科学记数法可表示为()A. 95.32×106B. 9.532×107C. 9532×104D. 0.9532×1086.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()A. 中位数是2B. 平均数是2C. 众数是2D. 极差是27.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()A. m﹣1B. m+1C. m2﹣1D. (m﹣1)28.如图所示的是A,B,C,D三点,按如下步骤作图:①先分别以A,B两点为圆心,以大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN;②再分别以B,C两点为圆心,以大于的长为半径作弧,两弧相交于G,H两点,作直线GH,GH与MN交于点P,若∠BAC=66°,则∠BPC等于()A. 100°B. 120°C. 132°D. 140°9.若二次函数y=﹣x2+4x+c的图象经过A(1,y1),B(﹣1,y2),C(2+ ,y3)三点,则y1、y2、y3的大小关系是()A. y1<y2<y3B. y1<y3<y2C. y2<y3<y1D. y2<y1<y310.在平面直角坐标系中,已知点A(﹣2,4),点B在直线OA上,且OA=2OB,则点B的坐标是()A. (﹣1,2)B. (1,﹣2)C. (﹣4,8)D. (﹣1,2)或(1,﹣2)二.填空题11.计算:=________.12.一个不透明的袋子中装有3个红球和2个白球共5个球,这些球除颜色不同外,其余均相同,从中任意摸出一个球,这个球是白球的概率为________.13.如图,在菱形ABCD中,∠BAD=100°,点E为AC上一点,若∠CBE=20°,则∠AED=________°.14.如图所示,格点△ABC绕点B逆时针旋转得到△EBD,图中每个小正方形的边长是1,则图中阴影部分的面积为________.15.如图,在矩形ABCD中,AB=3,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD、AD上,则AP+PQ最小值为________.三.解答题16.先化简:(x﹣1﹣),然后从满足﹣2<x≤2的整数值中选择一个你喜欢的数代入求值.17.某中学为了搞好对“传统文化学习”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为________人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在________组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.18.如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE相交于点F.(1)求证:CF为⊙O的切线;(2)填空:当∠CAB的度数为________时,四边形ACFD是菱形.19.某校兴趣小组想测量一座大楼AB的高度.如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)20.如图,在平面直角坐标系中,一次函数y1=kx+b的图象分别交x轴,y轴于A、B两点,与反比例函数y2=的图象交于C、D两点,已知点C的坐标为(﹣4,﹣1),点D的横坐标为2.(1)求反比例函数与一次函数的解析式;(2)直接写出当x为何值时,y1>y2?(3)点P是反比例函数在第一象限的图象上的点,且点P的横坐标大于2,过点P做x轴的垂线,垂足为点E,当△APE的面积为3时,求点P的坐标.21.某市决定购买A、B两种树苗对某段道路进行绿化改造,已知购买A种树苗9棵,B种树苗4棵,需要700元;购买A种树苗3棵,B种树苗5棵,则需要380元.(1)求购买A、B两种树苗每颗各需多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于60棵,且用于购买这两种树苗的资金不能超过5260元.若购进这两种树苗共100棵,则有哪几种购买方案?哪种方案最省钱?22.已知∠ACD=90°,AC=DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB.(1)问题发现如图(1),过点C作CE⊥CB,与MN交于点E,则易发现BD和EA之间的数量关系为________,BD、AB、CB 之间的数量关系为________.(2)拓展探究当MN绕点A旋转到如图(2)位置时,BD、AB、CB之间满足怎样的数量关系?请写出你的猜想,并给予证明.(3)解决问题当MN绕点A旋转到如图(3)位置时(点C、D在直线MN两侧),若此时∠BCD=30°,BD=2时,CB=________.23.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图所示,直线BC下方的抛物线上有一点P,过点p作PE⊥BC于点E,作PF平行于x轴交直线BC于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.答案解析部分一.<b >选择题</b>1.【答案】B【考点】绝对值【解析】【解答】解:根据负数的绝对值是它的相反数,得|﹣3|=3.故答案为:B.【分析】任何数的绝对值都是非负数。

河南省安阳市2019-2020学年中考五诊数学试题含解析

河南省安阳市2019-2020学年中考五诊数学试题含解析

河南省安阳市2019-2020学年中考五诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一次函数y kx k =-与反比例函数(0)k y k x=≠在同一个坐标系中的图象可能是( ) A . B . C . D .2.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 3.若函数2m y x +=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A .m >﹣2B .m <﹣2C .m >2D .m <24.如图,在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点F,若AC=BD ,AB=ED ,BC=BE ,则∠ACB 等于( )A .∠EDB B .∠BEDC .∠EBD D .2∠ABF5.如图,把长方形纸片ABCD 折叠,使顶点A 与顶点C 重合在一起,EF 为折痕.若AB=9,BC=3,试求以折痕EF 为边长的正方形面积( )A .11B .10C .9D .166.若正六边形的边长为6,则其外接圆半径为( )A .3B .2C .3D .67.如图,半⊙O 的半径为2,点P 是⊙O 直径AB 延长线上的一点,PT 切⊙O 于点T ,M 是OP 的中点,射线TM 与半⊙O 交于点C .若∠P =20°,则图中阴影部分的面积为( )A .1+3πB .1+6πC .2sin20°+29πD .23π 8.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为( )A .3×109B .3×108C .30×108D .0.3×10109.已知:如图,AD 是△ABC 的角平分线,且AB :AC=3:2,则△ABD 与△ACD 的面积之比为( )A .3:2B .9:4C .2:3D .4:910.对于非零的两个实数a 、b ,规定11a b b a ⊗=-,若1(1)1x ⊗+=,则x 的值为( ) A .32 B .13 C .12 D .12- 11.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( ) A .0.25×10﹣5 B .0.25×10﹣6C .2.5×10﹣5D .2.5×10﹣6 12.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE ,过点A 作AE 的垂线交DE 于点P ,若AE=AP=1,PB=5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD =4+6.其中正确结论的序号是( )A .①③④B .①②⑤C .③④⑤D .①③⑤二、填空题:(本大题共6个小题,每小题4分,共24分.)13.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个.14.正五边形的内角和等于______度.15.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =V ,则图中阴影部分面积是 .16.直线AB ,BC ,CA 的位置关系如图所示,则下列语句:①点A 在直线BC 上;②直线AB 经过点C ;③直线AB ,BC ,CA 两两相交;④点B 是直线AB ,BC ,CA 的公共点,正确的有_____(只填写序号).17.如图,在Rt △ABC 中,∠ACB=90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD=3cm ,则EF=________cm .18.抛物线y=x 2+2x+m ﹣1与x 轴有交点,则m 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC 中,∠A=90°,AB=AC=4,D 是BC 边上一点,将点D 绕点A 逆时针旋转60°得到点E ,连接CE.B(1)当点E 在BC 边上时,画出图形并求出∠BAD 的度数;(2)当△CDE 为等腰三角形时,求∠BAD 的度数;(3)在点D 的运动过程中,求CE 的最小值. (参考数值:sin75°=624, cos75°=624,tan75°=23+) 20.(6分)已知:如图,在正方形ABCD 中,点E 在边CD 上,AQ ⊥BE 于点Q ,DP ⊥AQ 于点P .求证:AP=BQ ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.21.(6分)计算:(﹣2018)0﹣4sin45°+8﹣2﹣1. 22.(8分)计算: 021( 3.14)()3p --+-|12|4cos30-+o .23.(8分)一天晚上,李明利用灯光下的影子长来测量一路灯D 的高度.如图,当在点A 处放置标杆时,李明测得直立的标杆高AM 与影子长AE 正好相等,接着李明沿AC 方向继续向前走,走到点B 处放置同一个标杆,测得直立标杆高BN 的影子恰好是线段AB ,并测得AB =1.2m ,已知标杆直立时的高为1.8m ,求路灯的高CD 的长.24.(10分)如图,△ABC 的顶点坐标分别为A (1,3)、B (4,1)、C (1,1).在图中以点O 为位似中心在原点的另一侧画出△ABC 放大1倍后得到的△A 1B 1C 1,并写出A 1的坐标;请在图中画出△ABC 绕点O 逆时针旋转90°后得到的△A 1B 1C 1.25.(10分)在平面直角坐标系xOy 中有不重合的两个点()11,Q x y 与()22,P x y .若Q 、P 为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x 轴或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q 与点P 之间的“直距”记做PQ D ,特别地,当PQ 与某条坐标轴平行(或重合)时,线段PQ 的长即为点Q 与点P 之间的“直距”.例如下图中,点()1,1P ,点()3,2Q ,此时点Q 与点P 之间的“直距”3PQ D =.(1)①已知O 为坐标原点,点()2,1A -,()2,0B -,则AO D =_________,BO D =_________; ②点C 在直线3y x =-+上,求出CO D 的最小值;(2)点E 是以原点O 为圆心,1为半径的圆上的一个动点,点F 是直线24y x =+上一动点.直接写出点E 与点F 之间“直距”EF D 的最小值.26.(12分)如图,已知矩形 OABC 的顶点A 、C 分别在 x 轴的正半轴上与y 轴的负半轴上,二次函数228255y x x =--的图像经过点B 和点C .(1)求点 A 的坐标;(2)结合函数的图象,求当 y<0 时,x 的取值范围.27.(12分)如图所示,平面直角坐标系中,O 为坐标原点,二次函数2(0)y x bx c b =-+>的图象与x轴交于(1,0)A -、B 两点,与y 轴交于点C ;(1)求c 与b 的函数关系式;(2)点D 为抛物线顶点,作抛物线对称轴DE 交x 轴于点E ,连接BC 交DE 于F ,若AE =DF ,求此二次函数解析式;(3)在(2)的条件下,点P 为第四象限抛物线上一点,过P 作DE 的垂线交抛物线于点M ,交DE 于H ,点Q 为第三象限抛物线上一点,作QN ED ⊥于N ,连接MN ,且180QMN QMP ∠+∠=︒,当:15:16QN DH =时,连接PC ,求tan PCF ∠的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=kx的图象在一、三象限,∴A、C不符合题意,B符合题意;当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=k x的图象在二、四象限,∴D不符合题意.故选B.2.B【解析】解:由题意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,则y x=9,9的算术平方根是1.故选B.3.B【解析】【分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.4.C【解析】【分析】根据全等三角形的判定与性质,可得∠ACB=∠DBE的关系,根据三角形外角的性质,可得答案. 【详解】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,所以△ABC≅△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.【点睛】.本题主要考查全等三角形的判定与性质,熟悉掌握是关键.5.B【解析】【分析】根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.【详解】如图,∵四边形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵H BHC BCHCE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,则AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故选B.【点睛】本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.6.D【解析】【分析】连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.【详解】如图为正六边形的外接圆,ABCDEF是正六边形,∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1.故选D.【点睛】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.7.A【解析】【分析】连接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足为H,则CH=1,于是,S阴影=S△AOC+S扇形OCB,代入可得结论.连接OT 、OC ,∵PT 切⊙O 于点T ,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M 是OP 的中点,∴TM=OM=PM ,∴∠MTO=∠POT=70°,∵OT=OC ,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH ⊥AP ,垂足为H ,则CH=12OC=1, S 阴影=S △AOC +S 扇形OCB =12OA•CH+2302360π⨯=1+3π, 故选A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系.8.A【解析】【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将数据30亿用科学记数法表示为9310⨯,【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.A 【解析】试题解析:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F.∵AD 为∠BAC 的平分线,∴DE=DF ,又AB:AC=3:2,11:():():3:222ABD ACD S S AB DE AC DF AB AC ∴=⋅⋅==V V , 故选A.点睛:角平分线上的点到角两边的距离相等.10.D 【解析】试题分析:因为规定11a b b a ⊗=-,所以11(1)111x x ⊗+=-=+,所以x=12-,经检验x=12-是分式方程的解,故选D.考点:1.新运算;2.分式方程.11.D【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).【详解】解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而60.0000025 2.510-=⨯. 故选D .12.D【解析】【分析】①首先利用已知条件根据边角边可以证明△APD ≌△AEB ;②由①可得∠BEP=90°,故BE 不垂直于AE 过点B 作BF ⊥AE 延长线于F ,由①得∠AEB=135°所以∠EFB=45°,所以△EFB 是等腰Rt △,故B 到直线AE 距离为③利用全等三角形的性质和对顶角相等即可判定③说法正确;④由△APD ≌△AEB ,可知S △APD +S △APB =S △AEB +S △APB ,然后利用已知条件计算即可判定;⑤连接BD ,根据三角形的面积公式得到S △BPD =12PD×BE=32,所以S △ABD =S △APD +S △APB +S △BPD 由此即可判定.【详解】由边角边定理易知△APD ≌△AEB ,故①正确;由△APD ≌△AEB 得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,所以∠BEP=90°,过B 作BF ⊥AE ,交AE 的延长线于F ,则BF 的长是点B 到直线AE 的距离,在△AEP 中,由勾股定理得,在△BEP 中,,,由勾股定理得:∵∠PAE=∠PEB=∠EFB=90°,AE=AP ,∴∠AEP=45°,∴∠BEF=180°-45°-90°=45°,∴∠EBF=45°,∴EF=BF ,在△EFB 中,由勾股定理得: 故②是错误的;因为△APD ≌△AEB ,所以∠ADP=∠ABE ,而对顶角相等,所以③是正确的;由△APD ≌△AEB ,∴可知S △APD +S △APB =S △AEB +S △APB =S △AEP +S △BEP =12 连接BD ,则S △BPD =12PD×BE=32,所以S △ABD =S △APD +S △APB +S △BPD所以S 正方形ABCD =2S △ABD =4+6 .综上可知,正确的有①③⑤.故选D.【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】试题解析:∵袋中装有6个黑球和n 个白球,∴袋中一共有球(6+n )个, ∵从中任摸一个球,恰好是黑球的概率为34, ∴6364n =+, 解得:n=1.故答案为1.14.540【解析】【详解】过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形∴正五边形的内角和=3⨯180=540°15.4 【解析】 试题分析:由中线性质,可得AG=2GD ,则11212111222232326BGF CGE ABG ABD ABC S S S S S ===⨯=⨯⨯=⨯=V V V V V ,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.考点:中线的性质.16.③【解析】【分析】根据直线与点的位置关系即可求解.【详解】①点A在直线BC上是错误的;②直线AB经过点C是错误的;③直线AB,BC,CA两两相交是正确的;④点B是直线AB,BC,CA的公共点是错误的.故答案为③.【点睛】本题考查了直线、射线、线段,关键是熟练掌握直线、射线、线段的定义.17.3【解析】试题分析:根据点D为AB的中点可得:CD为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E、F分别为中点可得:EF为△ABC的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质18.m≤1.【解析】【分析】由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出结论.【详解】∴关于x的一元二次方程x1+1x+m−1=0有解,∴△=11−4(m−1)=8−4m≥0,解得:m≤1.故答案为:m≤1.【点睛】本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)∠BAD=15°;(2)∠BAC=45°或∠BAD =60°;(3)62【解析】【分析】(1)如图1中,当点E在BC上时.只要证明△BAD≌△CAE,即可推出∠BAD=∠CAE=12(90°-60°)=15°;(2)分两种情形求解①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形.②如图3中,当CD=CE时,△DEC是等腰三角形;(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先确定点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),可得EC的最小值即为线段CM的长(垂线段最短).【详解】解:(1)如图1中,当点E在BC上时.∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=12(90°-60°)=15°.(2)①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形,∠BAD=12∠BAC=45°.②如图3中,当CD=CE时,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分线段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),∴EC的最小值即为线段CM的长(垂线段最短),设E′N=CN=a,则AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴2+3=4aa-,∴a=2-233,∴CE′=2CN=22-263.在Rt△CE′M中,CM=CE′•cos30°=62-,∴CE的最小值为62-.【点睛】本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题.20.(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解析】试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.21.1 2 .【解析】【分析】根据零指数幂和特殊角的三角函数值进行计算【详解】解:原式=1﹣4×22+22﹣12=1﹣2+2﹣=1 2【点睛】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.22.10【解析】【分析】先分别进行0次幂的计算、负指数幂的计算、二次根式以及绝对值的化简、特殊角的三角函数值,然后再按运算顺序进行计算即可.【详解】原式=1+9-=10-=10.【点睛】本题考查了实数的混合运算,涉及到0指数幂、负指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.23.路灯高CD为5.1米.【解析】【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【详解】设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴BNCD=ABAC,即1.8 1.21.8x x=-,解得:x=5.1.经检验,x=5.1是原方程的解,∴路灯高CD为5.1米.【点睛】本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.24.(1)A(﹣1,﹣6);(1)见解析【解析】试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.试题解析:解:(1)如图,△A1B1C1为所作,A(﹣1,﹣6);(1)如图,△A 1B 1C 1为所作.25.(1)①3,1;②最小值为3;(1)25-【解析】【分析】 (1)①根据点Q 与点P 之间的“直距”的定义计算即可;②如图3中,由题意,当D CO 为定值时,点C 的轨迹是以点O 为中心的正方形(如左边图),当D CO =3时,该正方形的一边与直线y =-x +3重合(如右边图),此时D CO 定值最小,最小值为3;(1)如图4中,平移直线y =1x +4,当平移后的直线与⊙O 在左边相切时,设切点为E ,作EF ∥x 轴交直线y =1x +4于F ,此时D EF 定值最小;【详解】解:(1)①如图1中,观察图象可知D AO =1+1=3,D BO =1,故答案为3,1.②(i )当点C 在第一象限时(03x <<),根据题意可知,CO D 为定值,设点C 坐标为(),3x x -+,则()33CO D x x =+-+=,即此时CO D 为3;(ii )当点C 在坐标轴上时(0x =,3x =),易得CO D 为3;(ⅲ)当点C 在第二象限时(0x <),可得()3233CO D x x x =-+-+=-+>;(ⅳ)当点C 在第四象限时(3x >),可得()3233CO D x x x ⎡⎤⎣⎦=+--+=->;综上所述,当03x 剟时,CO D 取得最小值为3; (1)如解图②,可知点F 有两种情形,即过点E 分别作y 轴、x 轴的垂线与直线24y x =+分别交于1F 、2F ;如解图③,平移直线24y x =+使平移后的直线与O e 相切,平移后的直线与x 轴交于点G ,设直线24y x =+与x 轴交于点M ,与y 轴交于点N ,观察图象,此时1EF 即为点E 与点F 之间“直距”EF D 的最小值.连接OE ,易证MON GEO ∽△△,∴MN ON GO OE =,在Rt MON △中由勾股定理得25MN =,∴2541GO =,解得52GO =,∴1522EF D EF MG MO GO ===-=-.【点睛】本题考查一次函数的综合题,点Q 与点P 之间的“直距”的定义,圆的有关知识,正方形的性质等知识,解题的关键是理解题意,学会利用新的定义,解决问题,属于中考压轴题.失分原因第(1)问 (1)不能根据定义找出AO 、BO 的“直距”分属哪种情形;(1)不能找出点C 在不同位置时, 的取值情况,并找到 的最小值第(1)问 (1)不能根据定义正确找出点E 与点F 之间“直距” 取最小值时点E 、F 的位置;(1)不能想到由相似求出GO 的值26.(1)(40),;(2)15x -<<【解析】【分析】(1)当0x =时,求出点C 的坐标,根据四边形OABC 为矩形,得出点B 的坐标,进而求出点A 即可;(2)先求出抛物线图象与x 轴的两个交点,结合图象即可得出.【详解】解:(1)当0x =时,函数228255y x x =--的值为-2, ∴点C 的坐标为(0,2)-∵四边形OABC 为矩形,,2OA CB AB CO ∴=== 解方程2282255x x --=-,得120,4x x ==. ∴点B 的坐标为(4)2-,. ∴点A 的坐标为(40),. (2)解方程2282055x x --=,得121,5x x =-=. 由图象可知,当0y <时,x 的取值范围是15x -<<.【点睛】本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二次函数的图象与性质.27.(1)1c b =--;(2)223y x x =--;(3)12【解析】【分析】(1)把A (-1,0)代入y=x 2-bx+c ,即可得到结论;(2)由(1)得,y=x 2-bx-1-b ,求得EO=b 2,AE=b 2+1=BE ,于是得到OB=EO+BE=b 2+b 2+1=b+1,当x=0时,得到y=-b-1,根据等腰直角三角形的性质得到D (b 2,-b-2),将D (b 2,-b-2)代入y=x 2-bx-1-b 解方程即可得到结论;(3)连接QM ,DM ,根据平行线的判定得到QN ∥MH ,根据平行线的性质得到∠NMH=∠QNM ,根据已知条件得到∠QMN=∠MQN ,设QN=MN=t ,求得Q (1-t ,t 2-4),得到DN=t 2-4-(-4)=t 2,同理,设MH=s ,求得NH=t 2-s 2,根据勾股定理得到NH=1,根据三角函数的定义得到∠NMH=∠MDH 推出∠NMD=90°;根据三角函数的定义列方程得到t 1=53,t 2=-35(舍去),求得MN=53,根据三角函数的定义即可得到结论.【详解】(1)把A (﹣1,0)代入2y x bx c =-+,∴1b c 0++=,∴c 1b =--;(2)由(1)得,2y x bx 1b =---,∵点D 为抛物线顶点, ∴b b EO AE 1BE 22==+=,,∴b b OB EO BE 1b 122=+=++=+, 当x 0=时,y b 1=--,∴CO b 1BO =+=,∴OBC 45∠=︒,∴EFB 904545EBF ∠∠=︒-︒=︒=,∴EF BE AE DF ===,∴DE AB b 2==+,∴b D ,b 22⎛⎫-- ⎪⎝⎭, 将b D ,b 22⎛⎫-- ⎪⎝⎭代入2y x bx 1b =---得,22b b b 2b 122⎛⎫--=--- ⎪⎝⎭, 解得:1b 2=,2b 2=-(舍去),∴二次函数解析式为:2y x 2x 3=--;(3)连接QM ,DM ,∵QN ED ⊥,MP ED ⊥,∴QNH MHD 90∠∠==︒,∴QN //MH ,∴NMH QNM ∠∠=,∵QMN QMP 180∠∠+=︒,∴QMN QMN NMH 180∠∠∠++=︒,∵QMN MQN NMH 180∠∠∠++=︒,∴QMN MQN ∠∠=,设QN MN t ==,则()2Q 1t,t 4--,∴()22DN t 44t =---=,同理,设MN s =,则2HD s =,∴22NH t s =-,在Rt ΔMNH 中,222NH MN MH =-,∴()22222t s t s -=-,∴22t s 1-=,∴NH 1=, ∴NH 1tan NMH MH t∠==, ∵2MH t 1tan MDH DH t t ∠===, ∴NMH MDH ∠∠=,∵NMH MNH 90∠∠+=︒,∴MDH MNH 90∠∠+=︒,∴NMD 90∠=︒;∵QN :DH 15:16=, ∴16DH t 15=,16DN t 115=+, ∵sin NMH sin MDN ∠∠=, ∴NH MN MN DN =,即1t 16t t 115=+, 解得:15t 3=,23t 5=-(舍去), ∴5MN 3=, ∵222NH MN MH =-, ∴4MH PH 3==, ∴47PK PH KH 133=+=+=, 当7x 3=时,20y 9=-, ∴720P ,39⎛⎫- ⎪⎝⎭, ∴207CK 399=-=, ∴719tan KPC 733∠==, ∵PKC BOC 90∠∠==︒,∴KGC OBC 45∠∠==︒,∴7KG CK 9==,CG =7714PG 399=-=, 过P 作PT BC ⊥于T ,∴PT GT PG CG 2====, ∴CT 2PT =, ∴PT PT 1tan PCF CT 2PT 2∠===. 【点睛】本题考查了待定系数法求二次函数的解析式,平行线的性质,三角函数的定义,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.。

2019-2020学年河南省中考数学模拟试卷(二)(有标准答案)

2019-2020学年河南省中考数学模拟试卷(二)(有标准答案)

河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

)1.﹣2的绝对值是()A.2 B.C.﹣2 D.﹣2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为()A.48° B.42° C.40° D.45°5.函数y=中自变量x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x≠26.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C (0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.河南省中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

河南省安阳市2019-2020学年中考数学仿真第二次备考试题含解析

河南省安阳市2019-2020学年中考数学仿真第二次备考试题含解析

河南省安阳市2019-2020学年中考数学仿真第二次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( ) A .B .C .D .2.13-的绝对值是( ) A .3B .3-C .13D .13-3.当x=1时,代数式x 3+x+m 的值是7,则当x=﹣1时,这个代数式的值是( ) A .7B .3C .1D .﹣74.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数ky x=(x>0)的图象经过顶点B ,则k 的值为A .12B .20C .24D .325.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >56.下列实数中,有理数是( ) A 2B .2.1&C .πD .537.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC 绕点O 按顺时针方向旋转90°,得到△A′B′O ,则点A′的坐标为( )A.(3 ,1)B.(3 ,2)C.(2 ,3)D.(1 ,3)8.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()A.160米B.(60+1603)C.1603米D.360米9.计算﹣8+3的结果是()A.﹣11 B.﹣5 C.5 D.1110.已知一次函数y=kx+3和y=k1x+5,假设k<0且k1>0,则这两个一次函数的图像的交点在()A.第一象限B.第二象限C.第三象限D.第四象限11.在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BC•AD=2AE2;④S△BEC=S△ADF.其中正确的有()A.1个B.2个C.3个D.4个12.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.14.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是_________.15.在函数y=的表达式中,自变量x的取值范围是.16.已知a2+a=1,则代数式3﹣a﹣a2的值为_____.17.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数共有______个.18.已知一组数据x1,x2,x3,x4,x5的平均数是3,则另一组新数据x1+1,x2+2,x3+3,x4+4,x5+5的平均数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N 均在小正方形的顶点上;(3)连接ME,并直接写出EM的长.20.(6分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M 与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.21.(6分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B (点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.22.(8分)如图1,在等腰△ABC 中,AB=AC,点D,E 分别为BC,AB 的中点,连接AD.在线段AD 上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P 与点 D 重合时,x 的值为0),PB+PE=y.小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的几组值,如下表:x 0 1 2 3 4 5 6y 5.2 4.2 4.6 5.9 7.6 9.5说明:补全表格时,相关数值保留一位小数.2≈1.4143≈1.7325≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y 的最小值(保留一位小数),此时点P 在图 1 中的什么位置.23.(8分)如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A (2,5)在反比例函数ky x=的图象上,过点A 的直线y=x+b 交x 轴于点B .求k 和b 的值;求△OAB 的面积.24.(10分)如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点. (1)观察猜想图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由; (3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.25.(10分)如图所示,在Rt ABC △中,90ACB ∠=︒,(1)用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹) (2)连接AP 当B Ð为多少度时,AP 平分CAB ∠.26.(12分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m=________,n=________;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.27.(12分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.(1)已知点A的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A的同族点的是;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为;(2)直线l:y=x﹣3,与x轴交于点C,与y轴交于点D,①M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;②M为直线l上的一个动点,若以(m,0)为圆心,2为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据轴对称图形的概念判断即可.【详解】A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形.故选:A.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【解析】【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.【详解】在数轴上,点13-到原点的距离是13,所以,13-的绝对值是13,故选C.【点睛】错因分析容易题,失分原因:未掌握绝对值的概念.3.B【解析】【分析】【详解】因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,故选B.4.D【解析】【详解】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.5.D【解析】ax+bx+c<0的解集:利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出2由图象得:对称轴是x=2,其中一个点的坐标为(1,0),∴图象与x轴的另一个交点坐标为(-1,0).ax+bx+c<0的解集即是y<0的解集,由图象可知:2∴x<-1或x>1.故选D.6.B【解析】【分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择.【详解】A、二次根2不能正好开方,即为无理数,故本选项错误,B、无限循环小数为有理数,符合;C、π为无理数,故本选项错误;D、53不能正好开方,即为无理数,故本选项错误;故选B.【点睛】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有 、根式下开不尽的从而得到了答案.7.D【解析】【分析】解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.8.C【解析】【分析】过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.【详解】如图所示,过点A作AD⊥BC于点D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×3=403m;在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°=120×3=1203m.∴BC=BD+DC=40312031603+=m.故选C.【点睛】本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值. 9.B【解析】【分析】绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.【详解】解:−8+3=−2.故选B.【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.10.B【解析】【分析】依题意在同一坐标系内画出图像即可判断.【详解】根据题意可作两函数图像,由图像知交点在第二象限,故选B.【点睛】此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.11.C【解析】 【分析】根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题. 【详解】∵在△ABC 中,AD 和BE 是高, ∴∠ADB=∠AEB=∠CEB=90°, ∵点F 是AB 的中点, ∴FD=12AB ,FE=12AB , ∴FD=FE ,①正确;∵∠CBE=∠BAD ,∠CBE+∠C=90°,∠BAD+∠ABC=90°, ∴∠ABC=∠C , ∴AB=AC , ∵AD ⊥BC ,∴BC=2CD ,∠BAD=∠CAD=∠CBE ,在△AEH 和△BEC 中,AEH CEBAE BEEAH CBE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEH ≌△BEC (ASA ), ∴AH=BC=2CD ,②正确;∵∠BAD=∠CBE ,∠ADB=∠CEB , ∴△ABD ∽△BCE , ∴AB ADBC BE=,即BC•AD=AB•BE , ∵∠AEB=90°,AE=BE , ∴BEBE•BE , ∴AE 2;③正确; 设AE=a ,则a , ∴a ﹣a ,∴BEC ABCCE?BES CE 2AC?BE S AC 2===V V=22-,即BEC ABC 22S =V V , ∵AF=12AB , ∴ ADF ABD ABC 11S S S 24==V V V ,∴S △BEC ≠S △ADF ,故④错误, 故选:C . 【点睛】本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 12.D 【解析】 【分析】根据直线y=ax+b (a≠0)经过第一,二,四象限,可以判断a 、b 的正负,从而可以判断直线y=bx-a 经过哪几个象限,不经过哪个象限,本题得以解决. 【详解】∵直线y=ax+b (a≠0)经过第一,二,四象限, ∴a <0,b >0,∴直线y=bx-a 经过第一、二、三象限,不经过第四象限, 故选D . 【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.3 【解析】 【分析】由一元二次方程ax 2+bx+c=0有实数根,可得y=ax 2+bx (a≠0)和y=-c 有交点,由此即可解答. 【详解】∵一元二次方程ax 2+bx+c=0有实数根, ∴抛物线y=ax 2+bx (a≠0)和直线y=-c 有交点, ∴-c≥-3,即c≤3, ∴c 的最大值为3. 故答案为:3. 【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax 2+bx (a≠0)和直线y=-c 有交点是解决问题的关键. 14.12 【解析】 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,根据红球的个数除以总数等于频率,求解即可. 【详解】∵摸到红球的频率稳定在0.25, ∴30.25a=解得:a=12 故答案为:12 【点睛】此题主要考查了利用频率估计概率,解答此题的关键是利用红球的个数除以总数等于频率. 15.x≥1. 【解析】 【分析】根据被开方数大于等于0列式计算即可得解. 【详解】根据题意得,x ﹣1≥0, 解得x≥1. 故答案为x≥1. 【点睛】本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数. 16.2 【解析】 ∵21a a +=,∴23a a --23()a a =-+31=-2=, 故答案为2. 17.4 【解析】 【分析】根据“距离坐标”和平面直角坐标系的定义分别写出各点即可. 【详解】距离坐标是(1,2)的点有(1,2),(-1,2),(-1,-2),(1,-2)共四个,所以答案填写4. 【点睛】本题考查了点的坐标,理解题意中距离坐标是解题的关键. 18.1 【解析】 【分析】根据平均数的性质知,要求x 1+1,x 2+2,x 3+3,x 4+4、x 5+5的平均数,只要把数x 1、x 2、x 3、x 4、x 5的和表示出即可. 【详解】∵数据x 1,x 2,x 3,x 4,x 5的平均数是3, ∴x 1+x 2+x 3+x 4+x 5=15, 则新数据的平均数为1234512345151555x x x x x ++++++++++==1,故答案为:1. 【点睛】本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)画图见解析;(2)画图见解析;(3)5. 【解析】 【分析】(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形; (2)根据矩形的性质画出符合题意的图形; (3)根据题意利用勾股定理得出结论. 【详解】 (1)如图所示;(2)如图所示;(3)如图所示,在直角三角形中,根据勾股定理得EM=5.【点睛】本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理.20.(1)10;(2)25.【解析】【分析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=12AD=4,设OP=x,则CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=12 PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=12QB,再求出EF=12PB,由(1)中的结论求出PB=228445+=,最后代入EF=12PB即可得出线段EF的长度不变【详解】(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴ CP=12AD=4设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB ,MQ ∥AN ,∴∠APB=∠ABP=∠MQP .∴MP=MQ ,∵BN=PM , ∴BN=QM .∵MP=MQ ,ME ⊥PQ ,∴EQ=PQ .∵MQ ∥AN ,∴∠QMF=∠BNF , ∴△MFQ ≌△NFB . ∴QF=FB ,∴EF=EQ+QF=12(PQ+QB )=12PB , 由(1)中的结论可得:PC=4,BC=8,∠C=90°, ∴PB=228445+=,∴EF=12PB=25, ∴在(1)的条件下,当点M 、N 在移动过程中,线段EF 的长度不变,它的长度为25. 【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形21.(1)(1)A (a ,0),B (3,0),D (0,3a ).(2)a 的值为73.(3)当a=5时,D 、O 、C 、B 四点共圆. 【解析】【分析】(1)根据二次函数的图象与x 轴相交,则y=0,得出A (a ,0),B (3,0),与y 轴相交,则x=0,得出D (0,3a ).(2)根据(1)中A 、B 、D 的坐标,得出抛物线对称轴x=32a +,AO=a ,OD=3a ,代入求得顶点C (32a +,-232a -⎛⎫ ⎪⎝⎭),从而得PB=3- 32a +=32a -,PC=232a -⎛⎫ ⎪⎝⎭;再分情况讨论:①当△AOD ∽△BPC 时,根据相似三角形性质得233322a aa a =--⎛⎫ ⎪⎝⎭, 解得:a=3(舍去);②△AOD ∽△CPB ,根据相似三角形性质得233322aaa a =--⎛⎫⎪⎝⎭,解得:a 1=3(舍),a 2=73;(3)能;连接BD ,取BD 中点M ,根据已知得D 、B 、O 在以BD 为直径,M (32,32a )为圆心的圆上,若点C 也在此圆上,则MC=MB ,根据两点间的距离公式得一个关于a 的方程,解之即可得出答案.【详解】(1)∵y=(x-a )(x-3)(0<a<3)与x 轴交于点A 、B (点A 在点B 的左侧),∴A (a ,0),B (3,0), 当x=0时,y=3a , ∴D (0,3a );(2)∵A (a ,0),B (3,0),D (0,3a ).∴对称轴x=32a +,AO=a ,OD=3a , 当x= 32a +时,y=- 232a -⎛⎫ ⎪⎝⎭,∴C (32a +,-232a -⎛⎫ ⎪⎝⎭), ∴PB=3-32a +=32a -,PC=232a -⎛⎫ ⎪⎝⎭, ①当△AOD ∽△BPC 时, ∴AO OD BP PC=, 即 233322a aa a =--⎛⎫ ⎪⎝⎭,解得:a=3(舍去);②△AOD ∽△CPB , ∴AO OD CP PB=, 即233322aaa a =--⎛⎫⎪⎝⎭, 解得:a 1=3(舍),a 2=73. 综上所述:a 的值为73; (3)能;连接BD ,取BD 中点M ,∵D、B、O三点共圆,且BD为直径,圆心为M(32,32a),若点C也在此圆上,∴MC=MB,∴22222 3333333222222a a a a⎡⎤+-⎛⎫⎛⎫⎛⎫⎛⎫-++=-+⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,化简得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a15a25a3=3(舍),a4=-3(舍),∵0<a<3,∴5∴当5D、O、C、B四点共圆.【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.22.(1)4.5(2)根据数据画图见解析;(3)函数y 的最小值为4.2,线段AD上靠近D点三等分点处. 【解析】【分析】(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点P 在图 1 中的位置为.线段AD 上靠近D 点三等分点处.【详解】(1)根据题意,作图得,y=4.5故答案为:4.5(2)根据数据画图得(3)根据图象,函数y 的最小值为 4.2,此时点P 在图 1 中的位置为.线段AD 上靠近 D 点三等分点处.【点睛】本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.23.(1)k=10,b=3;(2)15 2.【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=kx,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3 ∴当y=0时,x=-3,∴OB=3 ∴S=12×3×5=7.5考点:一次函数与反比例函数的综合问题.24.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3)492.【解析】【分析】(1)利用三角形的中位线得出PM=12CE,PN=12BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=12BD,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【详解】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12 BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=12 CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=22,在Rt△ABC中,AB=AC=10,AN=52,∴MN最大=22+52=72,∴S△PMN最大=12PM2=12×12MN2=14×(72)2=492.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=12 BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=12PM2=12×72=492【点睛】本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握. 25.(1)详见解析;(2)30°.【解析】【分析】据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.26. (1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.(1)根据项目B 的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A ,C 的百分比;(2)根据对“社会主义核心价值观”达到“A .非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A 项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A 非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%, (2)对“社会主义核心价值观”达到“A .非常了解”的人数为:32%×500=160, 补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A .非常了解”的程度.27.(1)①R ,S;②(4-,0)或(4,0);(2)①33n -≤≤;②m≤1-或m≥1.【解析】【分析】【详解】(1)∵点A 的坐标为(−2,1),∴2+1=4,点R(0,4),S(2,2),T(2,−2)中,0+4=4,2+2=4,2+2=5,∴点A 的同族点的是R ,S ;故答案为R ,S ;②∵点B 在x 轴上,∴点B 的纵坐标为0,设B(x,0),∴B(−4,0)或(4,0);故答案为(−4,0)或(4,0);(2)①由题意,直线3y x =-与x 轴交于C (2,0),与y 轴交于D (0,3-).点M 在线段CD 上,设其坐标为(x ,y ),则有:0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为2.即点N 在右图中所示的正方形CDEF 上.∵点E 的坐标为(3-,0),点N 在直线xn =上, ∴33n -≤≤.②如图,设P(m,0)为圆心, 2为半径的圆与直线y=x−2相切,2,45PN PCN CPN ︒=∠=∠=Q∴PC=2,∴OP=1,观察图形可知,当m≥1时,若以(m,0)为圆心2为半径的圆上存在点N ,使得M ,N 两点为同族点,再根据对称性可知,m≤1-也满足条件,∴满足条件的m 的范围:m≤1-或m≥1。

河南省安阳市中考数学二模考试试卷

河南省安阳市中考数学二模考试试卷

河南省安阳市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共12个小题,每小题3分,满分36分. (共12题;共36分)1. (3分) (2020七上·长春月考) 的绝对值是()A .B .C .D .2. (3分) (2020七上·长春月考) 在-2,-1,1,2四个数中,比-1小的数是()A . -2B . -1C . 1D . 23. (3分)国旗上的四个小五角星,通过怎样的移动可以相互得到()A . 轴对称B . 平移C . 旋转D . 平移和旋转4. (3分) (2019八上·海口月考) 若,则估计m的值所在范围是A .B .C .D .5. (3分) (2020七上·陈仓期末) 如图,和都是直角,,则图中不等于的角是()A .B .C .D .6. (3分)某青年排球队12名队员的年龄情况如下:年龄(单位:岁)1819202122人数14322则这个队队员年龄的众数和中位数是()A . 19,20B . 19,19C . 19,20.5D . 20,197. (3分)(2015·宁波模拟) 甲地到乙地的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由甲地到乙地的行驶时间缩短了1.5小时.设原来火车的平均速度为x千米/时,则下列方程正确的是()A . +1.8=B . ﹣1.8=C . +1.5=D . ﹣1.5=8. (3分) (2019七下·官渡期末) 下列图形可由平移得到的是()A .B .C .D .9. (3分) (2019八上·重庆开学考) 已知是二元一次方程组的解,则2m﹣n的平方根为()A . ±2B .C . ±D . 210. (3分)(2016·宿迁) 如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A . 2B .C .D . 111. (3分)已知反比例函数y=的图象经过点(2,﹣2),则k的值为()A . 4B . -C . -4D . -212. (3分)(2020·开封模拟) 如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为()A . (﹣2018,3)B . (﹣2018,﹣3)C . (﹣2016,3)D . (﹣2016,﹣3)二、填空题:本大题共8个小题,每小题5分,满分40分。

河南省安阳市2019-2020学年中考数学二模试卷含解析

河南省安阳市2019-2020学年中考数学二模试卷含解析

河南省安阳市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x 的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a 的值为( )A .1-B .1C .22-或D .31-或2.下面说法正确的个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形; ④如果∠A=∠B=∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形.A .3个B .4个C .5个D .6个3.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )A .B .C . D4.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )A .平均数B .中位数C .众数D .方差5.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x y x y +=⎧⎨+=⎩.类似地,图2所示的算筹图我们可以表述为( )A.2114327x yx y+=⎧⎨+=⎩B.2114322x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩6.下列运算正确的是()A.a2+a3=a5B.(a3)2÷a6=1 C.a2•a3=a6D.(+)2=57.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多③有15的人每周使用手机支付的次数在35~42次④每周使用手机支付不超过21次的有15人其中正确的是()A.①②B.②③C.③④D.④8.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.19.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A.14°B.15°C.16°D.17°10.在3-,1-,0,1这四个数中,最小的数是()A.3-B.1-C.0 D.111.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A .32B .3C .1D .4312.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.14.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x 个,则根据题意,可列出方程:__________.15.若函数y=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而减小,则m 的取值范围是_____.16.已知关于x 的一元二次方程(a-1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是_______________.17.分解因式:244m m ++=___________.18.已知A 、B 两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A 地到B 地匀速前行,甲、乙行进的路程s 与x (小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x 的增大而增大时,x 的取值范围是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.20.(6分)解不等式组3(2)41213x x x x --≤⎧⎪+⎨-⎪⎩f ,并写出其所有的整数解. 21.(6分)如图,O 为直线AB 上一点,∠AOC=50°,OD 平分∠AOC ,∠DOE=90°.写出图中小于平角的角.求出∠BOD 的度数.小明发现OE 平分∠BOC ,请你通过计算说明道理.22.(8分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设x (分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为1y 千米,骑自行车学生骑行的路程为2y 千米,12y y 、关于x 的函数图象如图所示.(1)求2y 关于x 的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?23.(8分)如图,AB 是⊙O 的直径,弧CD ⊥AB ,垂足为H ,P 为弧AD 上一点,连接PA 、PB ,PB 交CD 于E .(1)如图(1)连接PC 、CB ,求证:∠BCP=∠PED ;(2)如图(2)过点P 作⊙O 的切线交CD 的延长线于点E ,过点A 向PF 引垂线,垂足为G ,求证:∠APG=12∠F ; (3)如图(3)在图(2)的条件下,连接PH ,若PH=PF ,3PF=5PG ,BE=25,求⊙O 的直径AB .24.(10分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树180棵,由于同学们的积极参与,实际参加的人数比原计划增加了50%,结果每人比原计划少栽了2棵,问实际有多少人参加了这次植树活动?25.(10分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)26.(12分)李宁准备完成题目;解二元一次方程组48x yx y-=⎧⎨+=-⎩W,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组438x yx y-=⎧⎨+=-⎩;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?27.(1218(2166÷313参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得. 【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2.C【解析】试题分析:①∵三角形三个内角的比是1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小题正确;②∵三角形的一个外角与它相邻的一个内角的和是180°,∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;③∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;④∵∠A=∠B=∠C,∴设∠A=∠B=x,则∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小题正确;⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,∴三角形一个内角也等于另外两个内角的和,∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.故选D.考点:1.三角形内角和定理;2.三角形的外角性质.3.D【解析】【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x 的取值范围,然后选择即可.【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,()2210210x x x x x -+--+⎧⎨⎩>①<②, 解不等式①得,x >2.5,解不等式②的,x <5,所以,不等式组的解集是2.5<x <5,正确反映y 与x 之间函数关系的图象是D 选项图象.故选:D .4.B【解析】【分析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数.故选B.5.A【解析】【分析】根据图形,结合题目所给的运算法则列出方程组.【详解】 图2所示的算筹图我们可以表述为:2114327x y x y +=⎧⎨+=⎩. 故选A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.6.B【解析】【分析】利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.【详解】解:A、a2与a3不能合并,所以A选项错误;B、原式=a6÷a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+2+3=5+2,所以D选项错误.故选:B.【点睛】本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.B【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.【详解】解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;②每周使用手机支付次数为28~35次的人数最多,此结论正确;③每周使用手机支付的次数在35~42次所占比例为2511255=,此结论正确;④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:B.【点睛】此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据8.A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:67955x++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.9.C【解析】【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.10.A【解析】【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案.【详解】由正数大于零,零大于负数,得3101-<-<<,最小的数是3-,故选A.【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键.11.A【解析】【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=3 2故选A.12.B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选B.【点睛】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【分析】根据中位数的定义找出第20和21个数的平均数,即可得出答案.【详解】解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数.∵14岁的有1人,1岁的有21人,∴这个班同学年龄的中位数是1岁.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.14.300200(110%)20x x =⨯-- 【解析】 【分析】若设甲每小时检测x 个,检测时间为300x ,乙每小时检测()20x -个,检测时间为20020x -,根据甲检测300个比乙检测200个所用的时间少10%,列出方程即可. 【解答】若设甲每小时检测x 个,检测时间为300x ,乙每小时检测()20x -个,检测时间为20020x -,根据题意有:()300200110%20x x =⨯--. 故答案为()300200110%.20x x =⨯-- 【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.15.m >2【解析】试题分析:有函数的图象在其所在的每一象限内,函数值y 随自变量x 的增大而减小可得m-2>0,解得m>2,考点:反比例函数的性质.16.a <2且a≠1.【解析】【分析】利用一元二次方程根的判别式列不等式,解不等式求出a 的取值范围.【详解】试题解析:∵关于x 的一元二次方程(a-1)x 2-2x+l=0有两个不相等的实数根,∴△=b 2-4ac >0,即4-4×(a-2)×1>0, 解这个不等式得,a <2,又∵二次项系数是(a-1),∴a≠1.故a 的取值范围是a <2且a≠1.【点睛】本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a 的取值范围,同时方程是一元二次方程,二次项系数不为零.17.()22m +【解析】【分析】直接利用完全平方公式分解因式得出答案.【详解】解:244m m ++=()22m +,故答案为()22m +.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.18.2, 0≤x≤2或43≤x≤2. 【解析】【分析】(2)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(2)由 函数图象可知,乙比甲晚出发2小时.故答案为2.(2)在整个运动过程中,甲、乙两人之间的距离随x 的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤2;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y =kx ,由图象可知,(4,20)在函数图象上,代入得:20=4k ,∴k =5,∴甲的函数解析式为:y =5x ①设乙的函数解析式为:y =k′x+b ,将坐标(2,0),(2,20)代入得:0202k b k b=+⎧⎨=+⎩ , 解得2020k b =⎧⎨=-⎩ , ∴乙的函数解析式为:y =20x ﹣20 ②由①②得52020y x y x =⎧⎨=-⎩ , ∴43203x y ⎧=⎪⎪⎨⎪=⎪⎩,故43≤x≤2符合题意.故答案为0≤x≤2或43≤x≤2.【点睛】此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)25;(2)35.【解析】【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为25;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123 205.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.不等式组的解集为1≤x<2,该不等式组的整数解为1,2,1.【解析】【分析】先求出不等式组的解集,即可求得该不等式组的整数解.【详解】() 3241213x xxx⎧--≤⎪⎨+>-⎪⎩①②,由①得,x≥1,由②得,x<2.所以不等式组的解集为1≤x<2,该不等式组的整数解为1,2,1.【点睛】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.(1)答案见解析(2)155°(3)答案见解析【解析】【分析】(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【详解】(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点睛】本题考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.22.20.24y x=﹣;(2)骑自行车的学生先到达百花公园,先到了10分钟.【解析】【分析】(1)根据函数图象中的数据可以求得2y 关于x 的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.【详解】解:(1)设2y 关于x 的函数解析式是2y kx b +=,200404k b k b +=⎧⎨+=⎩,得0.24k b =⎧⎨=-⎩, 即2y 关于x 的函数解析式是20.24y x=﹣; (2)由图象可知,步行的学生的速度为:4400.1÷=千米/分钟,∴步行同学到达百花公园的时间为:60.160÷=(分钟), 当28y =时, 60.24x =﹣,得50x =,605010﹣=,答:骑自行车的学生先到达百花公园,先到了10分钟.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)见解析;(2)见解析;(3)AB=1【解析】【分析】(1)由垂径定理得出∠CPB=∠BCD ,根据∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED 即可得证; (2)连接OP ,知OP=OB ,先证∠FPE=∠FEP 得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,据此可得2∠APG=∠F ,据此即可得证;(3)连接AE ,取AE 中点N ,连接HN 、PN ,过点E 作EM ⊥PF ,先证∠PAE=∠F ,由tan ∠PAE=tan ∠F 得PE EM AP MF =,再证∠GAP=∠MPE ,由sin ∠GAP=sin ∠MPE 得GP EM AP PE =,从而得出MF GP AP AP=,即MF=GP ,由3PF=5PG 即35PG PF =,可设PG=3k ,得PF=5k 、MF=PG=3k 、PM=2k ,由∠FPE=∠PEF知PF=EF=5k 、EM=4k 及、AP=2PE tan PAE =∠k ,证∠PEM=∠ABP 得k ,继而可得,据此求得k=2,从而得出AP 、BP 的长,利用勾股定理可得答案.【详解】证明:(1)∵AB 是⊙O 的直径且AB ⊥CD ,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)连接OP,则OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切线,∴OP⊥PF,则∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直径,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=12∠F;(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四点共圆,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴PE EM AP MF=,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,则GP EM AP PE=,∴MF GP AP AP=,∴MF=GP,∵3PF=5PG,∴35 PGPF=,设PG=3k,则PF=5k,MF=PG=3k,PM=2k 由(2)知∠FPE=∠PEF,∴PF=EF=5k,则EM=4k,∴tan∠PEM=2142kk=,tan∠F=4433kk=,∴tan∠PAE=43 PEAP=,∵=,∴AP=2PEtan PAE=∠,∵∠APG+∠EPM=∠EPM+∠PEM=90°,∴∠APG=∠PEM,∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,∴∠APG=∠ABP,∴∠PEM=∠ABP,则tan∠ABP=tan∠PEM,即AP PM BP EM=,∴224kBP k=,则,∴BE=5k=25,则k=2,∴AP=35、BP=65,根据勾股定理得,AB=1.【点睛】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点.24.45人【解析】【详解】解:设原计划有x人参加了这次植树活动依题意得:18018021.5x x=+解得x=30人经检验x=30是原方程式的根实际参加了这次植树活动1.5x=45人答实际有45人参加了这次植树活动.25.(1)5.6(2)货物MNQP应挪走,理由见解析.【解析】【详解】(1)如图,作AD⊥BC于点DRt△ABD中,AD=ABsin45°=42=22在Rt△ACD中,∵∠ACD=30°∴2 5.6≈即新传送带AC的长度约为5.6米.(2)结论:货物MNQP应挪走.在Rt △ABD 中,BD=ABcos45°=42在Rt △ACD 中,CD=ACcos30°= ∴CB=CD —BD= 2.1≈ ∵PC=PB —CB ≈4—2.1=1.9<2∴货物MNQP 应挪走.26.(1)15x y =-⎧⎨=-⎩;(2)-1 【解析】【分析】(1)②+①得出4x=-4,求出x ,把x 的值代入①求出y 即可;(2)把x=-y 代入x-y=4求出y ,再求出x ,最后把x 、y 代入②求出答案即可.【详解】解:(1)438x y x y -=⎧⎨+=-⎩①② ①+②得,1x =-.将1x =-时代入①得,5y =-,∴15x y =-⎧⎨=-⎩. (2)设“□”为a ,∵x 、y 是一对相反数,∴把x=-y 代入x-y=4得:-y-y=4,解得:y=-2,即x=2,所以方程组的解是22x y =⎧⎨=-⎩, 代入ax+y=-8得:2a-2=-8,解得:a=-1,即原题中“□”是-1.【点睛】本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a 的方程是解(2)的关键.27.-3【解析】分析:先化简各二次根式,再根据混合运算顺序依次计算可得.详解:原式×()3点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.。

河南省安阳市2019-2020学年中考数学一模考试卷含解析

河南省安阳市2019-2020学年中考数学一模考试卷含解析

河南省安阳市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ3.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为()A.217B.27C.57D.74.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC的()A.三条高的交点B.重心C.内心D.外心5.计算4×(–9)的结果等于A.32 B.–32 C.36 D.–366.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间x (min )的关系如图所示,水温从100℃降到35℃所用的时间是( )A .27分钟B .20分钟C .13分钟D .7分钟7.下列实数为无理数的是 ( )A .-5B .72C .0D .π8.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )A .2πB .3πC .4πD .π9.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为( )A .30°B .60°C .120°D .180°10.如图所示,把直角三角形纸片沿过顶点B 的直线(BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得等腰△EBA ,那么结论中:①∠A=30°;②点C 与AB 的中点重合;③点E 到AB 的距离等于CE 的长,正确的个数是( )A .0B .1C .2D .311.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是A .6.75×103吨B .67.5×103吨C .6.75×104吨D .6.75×105吨12.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )A.73 B.81 C.91 D.109二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为_____度.14.分解因式:x2y﹣xy2=_____.15.如图,D,E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:16,则S△BDE与S△CDE的比是___________.16.方程1223x x=+的解为__________.17.如图,在平面直角坐标系xOy中,△ABC可以看作是△DEF经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由△DEF得到△ABC的过程____.18.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B 之间的距离为_____m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.20.(6分)如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC;PC ,求⊙O的半径.(2)若2521.(6分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a= ,b= ;(2)确定y2与x之间的函数关系式:(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?22.(8分)新定义:如图1(图2,图3),在△ABC 中,把AB 边绕点A 顺时针旋转,把AC 边绕点A逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC 是△AB′C′的“旋补三角形”,△AB'C′的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”(特例感知)(1)①若△ABC 是等边三角形(如图2),BC=1,则AD= ;②若∠BAC=90°(如图3),BC=6,AD= ;(猜想论证)(2)在图1中,当△ABC 是任意三角形时,猜想AD 与BC 的数量关系,并证明你的猜想;(拓展应用)(3)如图1.点A ,B ,C ,D 都在半径为5的圆上,且AB 与CD 不平行,AD=6,点P 是四边形ABCD 内一点,且△APD 是△BPC 的“旋补三角形”,点P 是“旋补中心”,请确定点P 的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC 的长.23.(8分)先化简,再求代数式(22222x y x x xy y x xy ---+-)÷2y x y-的值,其中x=sin60°,y=tan30°. 24.(10分)如图,在Rt △ABC 中,∠C=90°,BE 平分∠ABC 交AC 于点E ,点D 在AB 上,DE ⊥EB . (1)求证:AC 是△BDE 的外接圆的切线;(2)若AD=2,AE=6,求EC 的长.25.(10分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级 非常了解 比较了解 只听说过 不了解频数 40 120 36 4 频率 0.2 m 0.18 0.02(1)本次问卷调查取样的样本容量为 ,表中的m 值为 ;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?26.(12分)如图,已知ABC DCB ∠=∠,ACB DBC ∠=∠.求证AB DC =.27.(12分)今年3月12日植树节期间,学校预购进A ,B 两种树苗.若购进A 种树苗3棵,B 种树苗5棵,需2100元;若购进A 种树苗4棵,B 种树苗10棵,需3800元.求购进A ,B 两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A 种树苗至少需购进多少棵.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A、是轴对称图形,也是中心对称图形,故错误;B、是中心对称图形,不是轴对称图形,故正确;C、是轴对称图形,也是中心对称图形,故错误;D、是轴对称图形,也是中心对称图形,故错误.故选B.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.3.B【解析】【分析】如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sin∠AFG的值.【详解】解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.∵四边形ABCD是菱形,AB=4,∠DAB=60°,∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB ∴∠HDE=∠DAB=60°,∵点E是CD中点∴DE=12CD=1在Rt△DEH中,DE=1,∠HDE=60°∴DH=1,∴AH=AD+DH=5在Rt△AHE中,∴,AE⊥GF,AF=EF∵CD=BC,∠DCB=60°∴△BCD是等边三角形,且E是CD中点∴BE⊥CD,∵BC=4,EC=1∴∵CD∥AB∴∠ABE=∠BEC=90°在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.∴EF=7 2由折叠性质可得∠AFG=∠EFG,∴sin∠EFG= sin∠AFG = 772ENEF==,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.4.D【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选D.【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.5.D【解析】【分析】根据有理数的乘法法则进行计算即可.【详解】()494936.⨯-=-⨯=-故选:D.【点睛】考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.6.C【解析】【分析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx =,将y=35代入700yx =,解得20x=;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.7.D【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A 、﹣5是整数,是有理数,选项错误;B 、72是分数,是有理数,选项错误; C 、0是整数,是有理数,选项错误;D 、π是无理数,选项正确.故选D .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.A【解析】试题解析:如图,∵在Rt △ABC 中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°,AB=2∴S △ABC =12AC•BC=2. 根据旋转的性质知△ABC ≌△AB′C′,则S △ABC =S △AB′C′,AB=AB′.∴S 阴影=S 扇形ABB′+S △AB′C′-S △ABC =2452360π⨯ =2π. 故选A .考点:1.扇形面积的计算;2.旋转的性质.9.C【解析】【分析】求出正三角形的中心角即可得解【详解】正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,故选C .【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键10.D【解析】【分析】根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.【详解】∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①选项正确;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②选项正确;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分线上的点到角的两边距离相等),∴点E到AB的距离等于CE的长,故③选项正确,故正确的有3个.故选D.【点睛】此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.11.C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C.12.C【解析】试题解析:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=1.故选C.考点:图形的变化规律.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=CD,等边对等角可得∠DAC=∠C,三角形的一个外角等于与它不相邻的两个内角的和求出∠ADB=∠C+∠DAC,再次根据等边对等角可得可得∠ADB=∠BAD,然后利用三角形的内角和等于180°列式计算即可得解.【详解】∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°−∠BAD−∠ADB=180°−56°−56°=1°.故答案为1.【点睛】本题考查了等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记各性质与定理是解题的关键.14.xy(x﹣y)【解析】原式=xy(x﹣y).故答案为xy(x﹣y).15.1:3【解析】根据相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根据相似三角形的面积比等于相似比的平方,可由:1:16DOE COA S S ∆∆=,求得DE :AC=1:4,即BE :BC=1:4,因此可得BE :EC=1:3,最后根据同高不同底的三角形的面积可知BDE S ∆与CDE S ∆的比是1:3.故答案为1:3.16.1x =【解析】【分析】两边同时乘2(3)x x +,得到整式方程,解整式方程后进行检验即可.【详解】解:两边同时乘2(3)x x +,得34x x +=,解得1x =,检验:当1x =时,2(3)x x +≠0,所以x=1是原分式方程的根,故答案为:x=1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.17.先以点O 为旋转中心,逆时针旋转90°,再将得到的三角形沿x 轴翻折.【解析】【分析】根据旋转的性质,平移的性质即可得到由△DEF 得到△ABC 的过程.【详解】由题可得,由△DEF 得到△ABC 的过程为:先以点O 为旋转中心,逆时针旋转90°,再将得到的三角形沿x 轴翻折.(答案不唯一)故答案为:先以点O 为旋转中心,逆时针旋转90°,再将得到的三角形沿x 轴翻折.【点睛】本题考查了坐标与图形变化﹣旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.18.(50). 【解析】【分析】过点A 作AM ⊥DC 于点M ,过点B 作BN ⊥DC 于点N .则AM =BN .通过解直角△ACM 和△BCN 分别求得CM 、CN 的长度,则易得MN =AB .【详解】解:如图,过点A 作AM ⊥DC 于点M ,过点B 作BN ⊥DC 于点N ,则AB =MN ,AM =BN .在直角△ACM ,∵∠ACM =45°,AM =50m ,∴CM =AM =50m .∵在直角△BCN 中,∠BCN =∠ACB +∠ACD =60°,BN =50m ,∴CN =60BN tan 3=5033(m ), ∴MN =CM−CN =503(m ). 则AB =MN =(503)m . 故答案是:(50−5033). 【点睛】 本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)详见解析;(3)图见解析,点P 坐标为(2,0).【解析】【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点的位置,然后顺次连接即可;(2))找出点A 、B 、C 关于原点O 的对称点的位置,然后顺次连接即可;(3)找出A 的对称点A′,连接BA′,与x 轴交点即为P .【详解】(1)如图1所示,△A 1B 1C 1,即为所求:(2)如图2所示,△A2B2C2,即为所求:(3)找出A的对称点A′(1,﹣1),连接BA′,与x轴交点即为P;如图3所示,点P即为所求,点P坐标为(2,0).【点睛】本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键.20.(1)证明见解析;(2)1.【解析】【分析】(1)由同圆半径相等和对顶角相等得∠OBP=∠APC,由圆的切线性质和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,则∠ABP=∠ACB,根据等角对等边得AB=AC;(2)设⊙O的半径为r,分别在Rt△AOB和Rt△ACP中根据勾股定理列等式,并根据AB=AC得52﹣r2=(25)2﹣(5﹣r)2,求出r的值即可.【详解】解:(1)连接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠OBP=∠APC,∵AB与⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,∴AB=AC;(2)设⊙O的半径为r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,在Rt△ACP中,AC2=PC2﹣PA2,AC2=(25)2﹣(5﹣r)2,∵AB=AC,∴52﹣r2=(25)2﹣(5﹣r)2,解得:r=1,则⊙O的半径为1.【点睛】本题考查了圆的切线的性质,圆的切线垂直于经过切点的半径;并利用勾股定理列等式,求圆的半径;此类题的一般做法是:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;简记作:见切点,连半径,见垂直.21.(1)a=6,b=8;(2)()28001064160(10)x xyx x⎧≤≤=⎨+>⎩;(3)A团有20人,B团有30人.【解析】【分析】(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;(2)分0≤x≤10与x>10,利用待定系数法确定函数关系式求得y2的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50-n),然后分0≤x≤10与x>10两种情况,根据(2)中的函数关系式列出方程求解即可.【详解】(1)由y 1图像上点(10,480),得到10人的费用为480元,∴a=480106800⨯=; 由y 2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元, ∴b=640108800⨯=; (2)0≤x≤10时,设y 2=k 2x,把(10, 800)代入得10k 2=800,解得k 2=80,∴y 2=80x ,x >10,设y 2=kx+b,把(10, 800)和(20,1440)代入得10800201440k b k b +=⎧⎨+=⎩解得64160k b =⎧⎨=⎩∴y 2=64x+160∴()28001064160(10)x x y x x ⎧≤≤=⎨+>⎩(3)设B 团有n 人,则A 团的人数为(50-n )当0≤n≤10时80n+48(50-n )=3040,解得n=20(不符合题意舍去)当n >10时801064n 104850n 3040⨯+-+-=()(),解得n=30.则50-n=20人,则A 团有20人,B 团有30人.【点睛】此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.22.(1)①2;②3;(2)AD=BC ;(3)作图见解析;BC=4;【解析】【分析】(1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD 的长度;②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC 、AB=AB′、AC=AC′,进而可得出△ABC ≌△AB′C′(SAS ),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.【详解】(1)①∵△ABC是等边三角形,BC=1,∴AB=AC=1,∠BAC=60,∴AB′=AC′=1,∠B′AC′=120°.∵AD为等腰△AB′C′的中线,∴AD⊥B′C′,∠C′=30°,∴∠ADC′=90°.在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,∴AD=AC′=2.②∵∠BAC=90°,∴∠B′AC′=90°.在△ABC和△AB′C′中,,∴△ABC≌△AB′C′(SAS),∴B′C′=BC=6,∴AD=B′C′=3.故答案为:①2;②3.(2)AD=BC.证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,∴∠BAC=∠AB′E.在△BAC和△AB′E中,,∴△BAC≌△AB′E(SAS),∴BC=AE.∵AD=AE,∴AD=BC.(3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P 作PF⊥BC于点F.∵PB=PC,PF⊥BC,∴PF为△PBC的中位线,∴PF=AD=3.在Rt△BPF中,∠BFP=90°,PB=5,PF=3,∴BF==1,∴BC=2BF=4.【点睛】本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度.23.23【解析】【分析】先根据分式混合运算的法则把原式进行化简,再计算x 和y 的值并代入进行计算即可【详解】原式()()22,2x y x x y x x y y x y ⎡⎤--=-⋅⎢⎥--⎢⎥⎣⎦112,2x y x y x y y ⎛⎫-=-⋅ ⎪--⎝⎭()()()()22,22x y x y x y x y x y x y x y y ⎡⎤---=-⋅⎢⎥----⎢⎥⎣⎦ ()()22,2x y x y x y x y x y y--+-=⋅-- ()()2,2y x y x y x y y --=⋅-- 1,x y=-- 33sin60tan30x y =︒==︒=Q ,, ∴原式23333=-=-=--. 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.24.(1)证明见解析;(2)1.【解析】试题分析:(1)取BD 的中点0,连结OE ,如图,由∠BED=90°,根据圆周角定理可得BD 为△BDE 的外接圆的直径,点O 为△BDE 的外接圆的圆心,再证明OE ∥BC ,得到∠AEO=∠C=90°,于是可根据切线的判定定理判断AC 是△BDE 的外接圆的切线;(2)设⊙O 的半径为r ,根据勾股定理得62+r 2=(r+2)2,解得r=2,根据平行线分线段成比例定理,由OE ∥BC 得,然后根据比例性质可计算出EC .试题解析:(1)证明:取BD 的中点0,连结OE ,如图,∵DE ⊥EB ,∴∠BED=90°,∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圆的切线;(2)解:设⊙O的半径为r,则OA=OD+DA=r+2,OE=r,在Rt△AEO中,∵AE2+OE2=AO2,∴62+r2=(r+2)2,解得r=2,∵OE∥BC,∴,即,∴CE=1.考点:1、切线的判定;2、勾股定理25.(1)200;0.6(2)非常了解20%,比较了解60%;72°;(3) 900人【解析】【分析】(1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.【详解】解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6(2)非常了解20%,比较了解60%;非常了解的圆心角度数:360°×20%=72°(3)1500×60%=900(人)答:“比较了解”垃圾分类知识的人数约为900人.【点睛】此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.26.见解析【解析】【分析】根据∠ABD=∠DCA ,∠ACB=∠DBC ,求证∠ABC=∠DCB ,然后利用AAS 可证明△ABC ≌△DCB ,即可证明结论.【详解】证明:∵∠ABD=∠DCA ,∠DBC=∠ACB∴∠ABD+∠DBC=∠DCA+∠ACB即∠ABC=∠DCB在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA )∴AB=DC【点睛】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证△ABC ≌△DCB .难度不大,属于基础题.27.(1)A 种树苗的单价为200元,B 种树苗的单价为300元;(2)10棵【解析】试题分析:(1)设B 种树苗的单价为x 元,则A 种树苗的单价为y 元.则由等量关系列出方程组解答即可;(2)设购买A 种树苗a 棵,则B 种树苗为(30﹣a )棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.试题解析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元,可得:352100{4103800y xy x+=+=,解得:300200 xy=⎧⎨=⎩,答:A种树苗的单价为200元,B种树苗的单价为300元. (2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.考点:1.一元一次不等式的应用;2.二元一次方程组的应用。

河南省安阳市2019-2020学年中考第二次质量检测数学试题含解析

河南省安阳市2019-2020学年中考第二次质量检测数学试题含解析

河南省安阳市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a 元/千克,乙种糖果的单价为b 元/千克,且a >b.根据需要小明列出以下三种混合方案:(单位:千克) 甲种糖果 乙种糖果 混合糖果 方案1 2 3 5 方案2 3 2 5 方案32.52.55则最省钱的方案为( ) A .方案1 B .方案2C .方案3D .三个方案费用相同2.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是( )A .B .C .D .3.在下列交通标志中,是中心对称图形的是( )A .B .C .D .4.若顺次连接四边形ABCD 各边中点所得的四边形是菱形,则四边形ABCD 一定是( ) A .矩形B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形5.如图,已知AOB ∠,用尺规作图作2AOC AOB ∠=∠.第一步的作法以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点E ,F 第二步的作法是( )A.以点E为圆心,OE长为半径画弧,与第1步所画的弧相交于点DB.以点E为圆心,EF长为半径画弧,与第1步所画的弧相交于点DC.以点F为圆心,OE长为半径画弧,与第1步所画的弧相交于点DD.以点F为圆心,EF长为半径画弧,与第1步所画的弧相交于点D6.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率7.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=40°,那么∠2的度数()A.40°B.50°C.60°D.90°8.如图是一个由4个相同的正方体组成的立体图形,它的左视图为()A.B.C.D.9.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是()A.12B.18C.38D.111222++10.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰()丙丁平均数8 8方差 1.2 1.8A.甲B.乙C.丙D.丁11.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π12.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).14.分解因式:mx2﹣6mx+9m=_____.15.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.16.关于x的一元二次方程2210ax x-+=有实数根,则a的取值范围是__________.17.若反比例函数y=﹣6x的图象经过点A(m,3),则m的值是_____.18.已知A(x1,y1),B(x2,y2)都在反比例函数y=6x的图象上.若x1x2=﹣4,则y1⋅y2的值为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A、B两班学生测试成绩在80≤x<90这一组的数据如下:A班:80 80 82 83 85 85 86 87 87 87 88 89 89B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89 ③A、B两班学生测试成绩的平均数、中位数、方差如下:平均数中位数方差A班80.6 m 96.9B班80.8 n 153.3根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).20.(6分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D 三点在同一直线上.(1)求树DE 的高度; (2)求食堂MN 的高度.21.(6分)(1)(﹣2)2+2sin 45°﹣11()182-⨯(2)解不等式组523(1)131322x x x x +>-⎧⎪⎨-≤-⎪⎩,并将其解集在如图所示的数轴上表示出来.22.(8分)如图,在平行四边形ABCD 中,AD >AB .(1)作出∠ABC 的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD 于点E ,AF ⊥BE ,垂足为点O ,交BC 于点F ,连接EF .求证:四边形ABFE 为菱形.23.(8分)如图,抛物线y=x 2﹣2mx (m >0)与x 轴的另一个交点为A ,过P (1,﹣m )作PM ⊥x 轴于点M ,交抛物线于点B ,点B 关于抛物线对称轴的对称点为C (1)若m=2,求点A 和点C 的坐标;(2)令m >1,连接CA ,若△ACP 为直角三角形,求m 的值;(3)在坐标轴上是否存在点E ,使得△PEC 是以P 为直角顶点的等腰直角三角形?若存在,求出点E 的坐标;若不存在,请说明理由.。

河南省安阳市2019-2020学年中考数学五月模拟试卷含解析

河南省安阳市2019-2020学年中考数学五月模拟试卷含解析

河南省安阳市2019-2020学年中考数学五月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为( )A .3B .2C .23D .()123+ 2.在Rt ABC ∆中,90C ∠=︒,1BC =,4AB =,则sin B 的值是( )A .155B .14C .13D .1543.下列计算正确的是( )A .(﹣2a )2=2a 2B .a 6÷a 3=a 2C .﹣2(a ﹣1)=2﹣2aD .a•a 2=a 24.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为( )A .7.49×107B .74.9×106C .7.49×106D .0.749×1075.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .10033D .25253+6.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .3B .8C .3D .67.把8a 3﹣8a 2+2a 进行因式分解,结果正确的是( )A .2a (4a 2﹣4a+1)B .8a 2(a ﹣1)C .2a (2a ﹣1)2D .2a (2a+1)2的形状大致是( )A .B .C .D .9.在数轴上到原点距离等于3的数是( )A .3B .﹣3C .3或﹣3D .不知道10.计算12-+的值( )A .1B .1-C .3D .3-11.如图,在网格中,小正方形的边长均为1,点A,B,C 都在格点上,则∠ABC 的正切值是( )A .12B .2C .5D .25 12.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知关于x 的一元二次方程kx 2+3x ﹣4k+6=0有两个相等的实数根,则该实数根是_____. 14.如图,已知ABC V ,D 、E 分别是边BA 、CA 延长线上的点,且//.DE BC 如果35DE BC =,4CE =,那么AE 的长为______.15.在实数﹣2、0、﹣1、2、2-中,最小的是_______.16.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于_____.17.已知抛物线y=2112x -,那么抛物线在y 轴右侧部分是_________(填“上升的”或“下降的”). 18.一次函数y=(k ﹣3)x ﹣k+2的图象经过第一、三、四象限.则k 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在矩形ABCD 中,AB═2,AD=3,P 是BC 边上的一点,且BP=2CP .(1)用尺规在图①中作出CD 边上的中点E ,连接AE 、BE (保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB 是否平分∠AEC ,并说明理由;(3)如图③,在(2)的条件下,连接EP 并廷长交AB 的廷长线于点F ,连接AP ,不添加辅助线,△PFB 能否由都经过P 点的两次变换与△PAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)20.(6分)如图,在平行四边形ABCD 中,ADC ∠的平分线与边AB 相交于点E .(1)求证BE BC CD +=;(2)若点E 与点B 重合,请直接写出四边形ABCD 是哪种特殊的平行四边形.过程如下.(Ⅰ)收集、整理数据请将表格补充完整:(Ⅱ)描述数据为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;(Ⅲ)分析数据、做出推测预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.22.(8分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)23.(8分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.24.(10分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)25.(10分)已知:如图所示,在ABC ∆中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.26.(12分)如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC 与△DEF 是否相似,并证明你的结论.27.(12分)如图,已知与抛物线C1过 A (-1,0)、B (3,0)、C (0,-3).(1)求抛物线C 1 的解析式.(2)设抛物线的对称轴与 x 轴交于点 P ,D 为第四象限内的一点,若△CPD 为等腰直角三角形,求出 D 点坐标.题目要求的.)1.C【解析】【分析】过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.【详解】过O作OC⊥AB,交圆O于点D,连接OA,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:3cm,则3cm.故选C.【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.2.D【解析】【分析】首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.【详解】∵∠C=90°,BC=1,AB=4,∴22224115AC AB BC=--=∴154ACsinBAB==故选:D.【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形【解析】【详解】解:选项A,原式=24a;选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D,原式=3a故选C4.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7490000=7.49×106.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】【详解】解:过点B作BE⊥AD于E.设BE=x.∵∠BCD=60°,tan∠BCEBE CE =,3CE x ∴=,则33503x x -=, 解得253x =即小岛B 到公路l 的距离为253,故选B.6.D【解析】分析: 连接OB ,根据等腰三角形三线合一的性质可得BO ⊥EF ,再根据矩形的性质可得OA=OB ,根据等边对等角的性质可得∠BAC=∠ABO ,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC ,再利用勾股定理列式计算即可求出AB. 详解: 如图,连接OB ,∵BE=BF ,OE=OF ,∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠BAC=∠ABO ,又∵∠BEF=2∠BAC ,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴3∴3,∴22AC BC -22(43)(23)-6,角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键. 7.C【解析】【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【详解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故选C.【点睛】本题因式分解中提公因式法与公式法的综合运用.8.C【解析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=bx的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选C.考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系9.C【解析】【分析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.【分析】根据有理数的加法法则进行计算即可.【详解】12=1-+故选:A.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.11.A【解析】分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到△ABC是直角三角形,根据正切的定义计算即可.详解:连接AC,由网格特点和勾股定理可知,2,22,10AB BC==AC2+AB2=10,BC2=10,∴AC2+AB2=BC2,∴△ABC是直角三角形,∴tan∠ABC=21222ACAB==.点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.12.C【解析】【详解】Q用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB 的长小于点A 绕点C 到B 的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.﹣1 【解析】 【分析】根据二次项系数非零结合根的判别式△=0,即可得出关于k 的一元一次不等式及一元二次方程,解之即可得出k 值,将其代入原方程中解之即可得出原方程的解. 【详解】解:∵关于x 的一元二次方程kx 1+3x-4k+6=0有两个相等的实数根,∴()20{=3464=0k k k ≠∆-⨯-,解得:k=34, ∴原方程为x 1+4x+4=0,即(x+1)1=0, 解得:x=-1. 故答案为:-1. 【点睛】本题考查根的判别式、一元二次方程的定义以及配方法解一元二次方程,牢记“当△=0时,方程有两个相等的实数根”是解题的关键. 14.32【解析】 【分析】由DE ∥BC 不难证明△ABC ~△ADE,再由DE AEBC AC=,将题中数值代入并根据等量关系计算AE 的长. 【详解】解:由DE ∥BC 不难证明△ABC ~△ADE,∵35DE AE BC AC ==,CE=4, ∴345DE AE BC AE ==-, 解得:AE=32故答案为32.【点睛】本题考查了相似三角形的判定和性质,熟记三角形的判定和性质是解题关键. 15.﹣1.【解析】【分析】【详解】解:在实数﹣1、0、﹣1、1、2-中,最小的是﹣1,故答案为﹣1.【点睛】本题考查实数大小比较.16.5π【解析】【分析】根据题意得出球在无滑动旋转中通过的路程为12圆弧,根据弧长公式求出弧长即可.【详解】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为14圆的周长,然后沿着弧O1O2旋转14圆的周长,则圆心O运动路径的长度为:112544π⨯⨯+×2π×5=5π,故答案为5π.【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度.17.上升的【解析】【详解】∵抛物线y=12x2-1开口向上,对称轴为x=0 (y 轴),∴在y 轴右侧部分抛物线呈上升趋势.故答案为:上升的.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.18.k >3 【解析】分析:根据函数图象所经过的象限列出不等式组3020k k ->⎧⎨-+<⎩,通过解该不等式组可以求得k 的取值范围.详解:∵一次函教y=(k−3)x−k+2的图象经过第一、三、四象限, ∴3020k k ->⎧⎨-+<⎩,解得,k>3. 故答案是:k>3.点睛:此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况: ①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限; ②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限; ③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限; ④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)作图见解析;(2)EB 是平分∠AEC ,理由见解析; (3)△PFB 能由都经过P 点的两次变换与△PAE 组成一个等腰三角形,变换的方法为:将△BPF 绕点B 顺时针旋转120°和△EPA 重合,①沿PF 折叠,②沿AE 折叠. 【解析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE ≌△BCE ,得出∠AED=∠BEC ,再用锐角三角函数求出∠AED ,即可得出结论;(3)先判断出△AEP ≌△FBP ,即可得出结论.【详解】(1)依题意作出图形如图①所示;(2)EB 是平分∠AEC ,理由: ∵四边形ABCD 是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=3, ∵点E 是CD 的中点, ∴DE=CE=12CD=1, 在△ADE 和△BCE 中,90AD BC C D DE CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADE ≌△BCE , ∴∠AED=∠BEC ,在Rt △ADE 中,AD=3,DE=1, ∴tan ∠AED=ADDE=3, ∴∠AED=60°, ∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED ﹣∠BEC=60°=∠BEC , ∴BE 平分∠AEC ; (3)∵BP=2CP ,BC=3=,∴CP=33,BP=233,在Rt △CEP 中,tan ∠CEP=CP CE =33, ∴∠CEP=30°, ∴∠BEP=30°, ∴∠AEP=90°, ∵CD ∥AB , ∴∠F=∠CEP=30°, 在Rt △ABP 中,tan ∠BAP=BP AB =33, ∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB , ∵CB ⊥AF , ∴AP=FP , ∴△AEP ≌△FBP ,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.20.(1)见解析;(2)菱形.【解析】【分析】(1)根据角平分线的性质可得∠ADE=∠CDE,再由平行线的性质可得AB∥CD,易得AD=AE,从而可证得结论;(2)若点E与点B重合,可证得AD=AB,根据邻边相等的平行四边形是菱形即可作出判断.【详解】(1)∵DE平分∠ADC,∴∠ADE=∠CDE.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC,AB=CD.∵∠AED=∠CDE.∴∠ADE=∠AED.∴AD=AE.∴BC=AE.∵AB=AE+EB.∴BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,∵点E与B重合,∴AD=AB.∵四边形ABCD是平行四边形∴平行四边形ABCD为菱形.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质,菱形的性质,熟练掌握各知识是解题的关键.21.(Ⅰ)见表格;(Ⅱ)折线图;(Ⅲ)60%、之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3%.【解析】(Ⅰ)根据百分比的意义解答可得;(Ⅱ)根据折线图和扇形图的特点选择即可得;(Ⅲ)根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3% .【详解】(Ⅰ)年份2014 2015 2016 2017 2018动车组发送旅客量a 亿人次0.87 1.14 1.46 1.80 2.17铁路发送旅客总量b 亿人次 2.52 2.76 3.07 3.42 3.82动车组发送旅客量占比× 100 34.5 % 41.3 % 47.6 % 52.6 % 56.8 %(Ⅱ)为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进行描述,故答案为折线图;(Ⅲ)预估2019 年春运期间动车组发送旅客量占比约为60%,预估理由是之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3%.【点睛】本题考查了统计图的选择,根据统计图的特点正确选择统计图是解题的关键.22.51.96米.【解析】【分析】先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,sin60CD BC︒=,即可求出CD的长.【详解】解:∵∠CBD=1°,∠CAB=30°,∴∠ACB=30°.∴AB=BC=1.在Rt△BDC中,sin60CD BC︒=∴3sin606030351.962CD BC=⋅︒=⨯=≈(米).答:文峰塔的高度CD约为51.96米.本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答. 23.300米 【解析】 【详解】解:设原来每天加固x 米,根据题意,得.去分母,得 1200+4200=18x (或18x=5400) 解得300x =.检验:当300x =时,20x ≠(或分母不等于0). ∴300x =是原方程的解. 答:该地驻军原来每天加固300米. 24.49.2米 【解析】 【分析】设PD=x 米,在Rt △PAD 中表示出AD ,在Rt △PDB 中表示出BD ,再由AB=80.0米,可得出方程,解出即可得出PD 的长度,继而也可确定小桥在小道上的位置. 【详解】 解:设PD=x 米,∵PD ⊥AB ,∴∠ADP=∠BDP=90°.在Rt △PAD 中,x tan PAD AD ∠=,∴x x 5AD x tan38.50.804===︒. 在Rt △PBD 中,x tan PBD DB ∠=,∴x xDB 2x tan26.50.50===︒. 又∵AB=80.0米,∴5x 2x 80.04+=,解得:x≈24.6,即PD≈24.6米.∴DB=2x=49.2米.答:小桥PD 的长度约为24.6米,位于AB 之间距B 点约49.2米. 25.77B ∠=︒,38.5C ∠=︒. 【解析】 【分析】根据等腰三角形的性质即可求出∠B ,再根据三角形外角定理即可求出∠C. 【详解】在ABC ∆中,AB AD DC ==, ∵AB AD =,在三角形ABD 中,()118026772B ADB ∠=∠=︒-︒⨯=︒,又∵AD DC =,在三角形ADC 中, ∴117738.522C ADB ∠=∠=︒⨯=︒. 【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等边对等角.26. (1) (2)△ABC ∽△DEF. 【解析】 【分析】(1)根据已知条件,结合网格可以求出∠ABC 的度数,根据,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC 的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC 与△DEF 相似. 【详解】(1)9045135ABC ∠=+=o o o ,BC ==故答案为 (2)△ABC ∽△DEF.证明:∵在4×4的正方形方格中, 135,9045135ABC DEF ∠=∠=+=o o o o , ∴∠ABC=∠DEF.∵2,2,AB BC FE DE ====∴AB BC DE FE ==== ∴△ABC ∽△DEF. 【点睛】考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键. 27.(1)y = x 2-2x-3,(2)D 1(4,-1),D 2(3,- 4),D 3 ( 2,- 2 ) 【解析】 【分析】(1)设解析式为y=a(x-3)(x+1),把点C (0,-3)代入即可求出解析式; (2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标.【详解】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a×(-3)×1解得a=1,∴解析式为y= x2-2x-3,(2)如图所示,对称轴为x=1,过D1作D1H⊥x轴,∵△CPD为等腰直角三角形,∴△OPC≌△HD1P,∴PH=OC=3,HD1=OP=1,∴D1(4,-1)过点D2F⊥y轴,同理△OPC≌△FCD2,∴FD2=3,CF=1,故D2(3,- 4)由图可知CD1与PD2交于D3,此时PD3⊥CD3,且PD3=CD3,PC=22,∴PD3=CD3=513=10故D3 ( 2,- 2 )∴D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使△CPD 为等腰直角三角形.【点睛】此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.。

河南省安阳市2019-2020学年中考数学五模考试卷含解析

河南省安阳市2019-2020学年中考数学五模考试卷含解析

河南省安阳市2019-2020学年中考数学五模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.2.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④3.如果关于x的方程220++=没有实数根,那么c在2、1、0、3-中取值是()x x cA.2;B.1;C.0;D.3-.4.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元5.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.其中正确的个数为A.1 B.2 C.3 D.46.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为()A.62°B.56°C.60°D.28°7.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132×12D.x(x-1)=132×28.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确9.今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为()A.83×105B.0.83×106C.8.3×106D.8.3×10710.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.13C10D31011.下列图形中,是轴对称图形但不是中心对称图形的是()A.直角梯形B.平行四边形C.矩形D.正五边形12.一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13 B.14 C.15 D.16二、填空题:(本大题共6个小题,每小题4分,共24分.)13.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.14.不等式组的解是________.15.如图,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,将△ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是_____cm1.(结果保留π).16.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.17.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.18.如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F 处,联结FC,当△EFC是直角三角形时,那么BE的长为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式:3x ﹣1>2(x ﹣1),并把它的解集在数轴上表示出来.20.(6分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离” (1)求抛物线y =x 2﹣2x+3与x 轴的“亲近距离”;(2)在探究问题:求抛物线y =x 2﹣2x+3与直线y =x ﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x 轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.(3)若抛物线y =x 2﹣2x+3与抛物线y =214x +c 的“亲近距离”为23,求c 的值. 21.(6分)如图,已知D 是AC 上一点,AB=DA ,DE ∥AB ,∠B=∠DAE .求证:BC=AE . 22.(8分)正方形ABCD 的边长是10,点E 是AB 的中点,动点F 在边BC 上,且不与点B 、C 重合,将△EBF 沿EF 折叠,得到△EB′F .(1)如图1,连接AB′.①若△AEB′为等边三角形,则∠BEF 等于多少度. ②在运动过程中,线段AB′与EF 有何位置关系?请证明你的结论.(2)如图2,连接CB′,求△CB′F 周长的最小值.(3)如图3,连接并延长BB′,交AC 于点P ,当BB′=6时,求PB′的长度.23.(8分)化简(222121x x x x x x ----+)1x x ÷+,并说明原代数式的值能否等于-1. 24.(10分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A 、B 、C 、D 、E 等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.25.(10分)计算:(﹣2)2+20180﹣3626.(12分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:(1)收回问卷最多的一天共收到问卷_________份;(2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?27.(12分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=12 AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,BECD= ;②当θ=180°时,BECD= .(2)拓展探究试判断:当0°≤θ<360°时,BE CD 的大小有无变化?请仅就图2的情形给出证明; (3)问题解决 ①在旋转过程中,BE 的最大值为 ;②当△ADE 旋转至B 、D 、E 三点共线时,线段CD 的长为 .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A【解析】【分析】根据题意,将运动过程分成两段.分段讨论求出解析式即可.【详解】∵BD=2,∠B=60°,∴点D 到AB 3当0≤x≤2时, y=21332x x x ; 当2≤x≤4时,y=13 32x x =. 根据函数解析式,A 符合条件.故选A .【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.2.B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.故选B.3.A【解析】分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案.详解:∵关于x的方程x1+1x+c=0没有实数根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故选A.点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.4.C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.5.B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。

河南省安阳市2019-2020学年中考第二次大联考数学试卷含解析

河南省安阳市2019-2020学年中考第二次大联考数学试卷含解析

河南省安阳市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是()A.40°B.43°C.46°D.54°2.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3.把不等式组24030xx-≥⎧⎨->⎩的解集表示在数轴上,正确的是()A.B.C.D.4.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)8 9 10户数 2 6 2则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4 B.极差是2 C.平均数是9 D.众数是95.如图,A(4,0),B(1,3),以OA、OB为边作□OACB,反比例函数kyx=(k≠0)的图象经过点C.则下列结论不正确的是()A.□OACB的面积为12B.若y<3,则x>5C.将□OACB向上平移12个单位长度,点B落在反比例函数的图象上.D.将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上.6.sin60°的值为()A.3B.32C.22D.127.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A.16+162B.16+82C.24+162D.4+428.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为()A.4.25分钟B.4.00分钟C.3.75分钟D.3.50分钟9.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC 与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD10.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()A.21313B.31313C.23D.131311.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,朝上一面上的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.1216B.172C.136D.11212.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为()A.70°B.65°C.62°D.60°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点P(3a,a)是反比例函kyx(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.14.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.15.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.16.不等式-2x+3>0的解集是___________________17.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.18.计算(+1)(-1)的结果为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.20.(6分)如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 满足4a -+|b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.a= ,b= ,点B 的坐标为 ;当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.21.(6分)先化简,再求值:22111211a a a a a a ---÷----,其中21a =+.22.(8分)已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC n的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.23.(8分)(1)解方程组31021 x yx y+=⎧⎨-=⎩(2)若点A是平面直角坐标系中坐标轴上的点,( 1 )中的解 ,x y分别为点B的横、纵坐标,求AB的最小值及AB取得最小值时点A的坐标.24.(10分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin 37°≈0.60,cos 37°≈0.80,t an 37°≈0.75)25.(10分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.(1)求证:PD是⊙O的切线;(2)若AB=4,DA=DP,试求弧BD的长;(3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.26.(12分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?27.(12分)如图,现有一块钢板余料ABCED,它是矩形缺了一角,90,6,10,A B D AB dm AD dm∠=∠=∠=︒==4,2BC dm ED dm==.王师傅准备从这块余料中裁出一个矩形AFPQ(P为线段CE上一动点).设AF x=,矩形AFPQ的面积为y.(1)求y与x之间的函数关系式,并注明x的取值范围;(2)x为何值时,y取最大值?最大值是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据DE∥AB可求得∠CDE=∠B解答即可.【详解】解:∵DE∥AB,∴∠CDE=∠B=46°,故选:C.【点睛】本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.2.C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选:C.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.A【分析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.【详解】2x 4030x -≥⎧⎨-⎩①>②由①,得x≥2,由②,得x <1,所以不等式组的解集是:2≤x <1.不等式组的解集在数轴上表示为:.故选A .【点睛】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.A【解析】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],分别进行计算可得答案.详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9, 众数为9,方差:S 2=110 [(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4, 故选A .点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.5.B【解析】【分析】先根据平行四边形的性质得到点C 的坐标,再代入反比例函数k y x=(k≠0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.解:Q A(4,0),B (1,3),4BC OA ==,∴ ()5,3C ,Q 反比例函数k y x=(k≠0)的图象经过点C , ∴5315k =⨯=,∴反比例函数解析式为15y x=. □OACB 的面积为4312b OA y ⨯=⨯=,正确;当0y <时,0x <,故错误;将□OACB 向上平移12个单位长度,点B 的坐标变为()1,15,在反比例函数图象上,故正确;因为反比例函数的图象关于原点中心对称,故将□OACB 绕点O 旋转180°,点C 的对应点落在反比例函数图象的另一分支上,正确.故选:B.【点睛】本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键.6.B【解析】解:sin60°B . 7.A【解析】【分析】分析出此三棱柱的立体图像即可得出答案.【详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=4=2+4×所以答案选择A 项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.8.C【解析】根据题目数据求出函数解析式,根据二次函数的性质可得.【详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:930.7 1640.8 2550.5a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得:a=−0.2,b=1.5,c=−2,即p=−0.2t2+1.5t−2,当t=−1.5-0.22⨯=3.75时,p取得最大值,故选C.【点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键. 9.D【解析】【详解】解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A选项正确;∵AD=DE,∴»»AD DE=,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B选项正确;∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C选项正确;∵CD•AB=AC•BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是对应夹角,故D选项错误,故选:D.考点:1.圆周角定理2.相似三角形的判定10.B【解析】【分析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.【详解】∵四边形ABCD 为正方形,∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,在Rt △BEF中,BE ==∴cos 13BF EBF BE ∠===. 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形. 11.C【解析】【分析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共666⨯⨯=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为1 36,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.边长为3,4,5的三角形组成直角三角形.12.A【解析】【分析】由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.【详解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故选:A.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y=12 x【解析】设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:14πr2=10π解得:r=.∵点P(3a,a)是反比例函y=kx(k>0)与O的一个交点,∴3a2=k.r=∴a 2=21(210)10=4. ∴k=3×4=12, 则反比例函数的解析式是:y=12x . 故答案是:y=12x. 点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键. 14.1【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO ∽△BKO ,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:1,在Rt △OBF 中,即可求得tan ∠BOF 的值,继而求得答案.【详解】如图,连接BE ,∵四边形BCEK 是正方形,∴KF=CF=12CK ,BF=12BE ,CK=BE ,BE ⊥CK , ∴BF=CF ,根据题意得:AC ∥BK ,∴△ACO ∽△BKO ,∴KO :CO=BK :AC=1:3,∴KO :KF=1:1,∴KO=OF=12CF=12BF , 在Rt △PBF 中,tan ∠BOF=BF OF =1, ∵∠AOD=∠BOF ,∴tan ∠AOD=1.故答案为1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.15.3:2因为DE∥BC,所以32AD AEDB EC==,因为EF∥AB,所以23CE CFEA BF==,所以32BFFC=,故答案为: 3:2.16.x<3 2【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-3,系数化为1,得:x<32,故答案为x<32.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17.2 3【解析】【分析】根据概率的概念直接求得. 【详解】解:4÷6=2 3 .故答案为:2 3 .【点睛】本题用到的知识点为:概率=所求情况数与总情况数之比. 18.1【解析】【分析】利用平方差公式进行计算即可.【详解】原式=()2﹣1=2﹣1=1,故答案为:1.本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.绳索长为20尺,竿长为15尺.【解析】【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设绳索长、竿长分别为x 尺,y 尺, 依题意得:552x y x y =+⎧⎪⎨=-⎪⎩ 解得:20x =,15y =.答:绳索长为20尺,竿长为15尺.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 20.(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.【解析】试题分析:(160.b -=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标; (2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.试题解析:(1)∵a 、b60.b -=∴a−4=0,b−6=0,解得a=4,b=6,∴点B 的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P 从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O 的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:8−6=2,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P 在OC 上时,点P 移动的时间是:5÷2=2.5秒, 第二种情况,当点P 在BA 上时,点P 移动的时间是:(6+4+1)÷2=5.5秒, 故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒.21.1a-1,2【解析】【分析】先根据完全平方公式进行约分化简,再代入求值即可.【详解】原式=2a 1--2a-11a-1⋅()=21-a-1a-1=1a-1,将a +1,故答. 【点睛】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.22.(1)1502AOD α∠=︒-;(2)AD =(3)1122or 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α ∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB 、OC 、OD.由(1)可得:△OBC 是等边三角形,∠BOD=1302BOC ∠=︒ ∵OB=2,∴OD=OB∙cos 30︒3∵B 为AC u u u r 的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:227AO OD +=(3)①如图3.圆O 与圆D 相内切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:OD=3,圆D 的半径为1 ∴AD=31+设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x += ∴AE=3312AF 2+=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:OD=3,圆D的半径为1∴AD=31-在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=--+ 解得:331x -= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.23.(1)31x y =⎧⎨=⎩;(2)当A 坐标为()3 , 0时,AB 取得最小值为1. 【解析】【分析】(1)用加减消元法解二元一次方程组;(2)利用(1)确定出B 的坐标,进而得到AB 取得最小值时A 的坐标,以及AB 的最小值.【详解】解:(1)31021x y x y +=⎧⎨-=⎩①②①2⨯+②得:721x =解得:3x =把3x =代入②得1y =,则方程组的解为31x y =⎧⎨=⎩(2 )由题意得:()3, 1B ,当A 坐标为()3 , 0时,AB 取得最小值为1.【点睛】此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键.24.35km【解析】试题分析:如图作CH ⊥AD 于H .设CH=xkm ,在Rt △ACH 中,可得AH=3737CH x tan tan =︒︒,在Rt △CEH 中,可得CH=EH=x ,由CH ∥BD ,推出AH AC HD CB =,由AC=CB ,推出AH=HD ,可得37x tan ︒=x+5,求出x 即可解决问题.试题解析:如图,作CH ⊥AD 于H .设CH=xkm ,在Rt △ACH 中,∠A=37°,∵tan37°=CH AH , ∴AH=3737CH x tan tan =︒︒, 在Rt △CEH 中,∵∠CEH=45°,∴CH=EH=x ,∵CH ⊥AD ,BD ⊥AD ,∴CH ∥BD ,∴AH AC HD CB=, ∵AC=CB ,∴AH=HD ,∴37x tan ︒=x+5, ∴x=5?37137tan tan ︒-︒≈15, ∴AE=AH+HE=1537tan ︒+15≈35km , ∴E 处距离港口A 有35km .25.(1)见解析;(2);(3).【解析】【分析】(1)连结OD ;由AB 是⊙O 的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A ,∠BDO=∠ABD ;得到∠PDO=90°,且D 在圆上,于是得到结论;(2)设∠A=x ,则∠A=∠P=x ,∠DBA=2x ,在△ABD 中,根据∠A+∠ABD=90o 列方程求出x 的值,进而可得到∠DOB=60o ,然后根据弧长公式计算即可;(3)连结OM ,过D 作DF ⊥AB 于点F ,然后证明△OMN ∽△FDN ,根据相似三角形的性质求解即可.【详解】(1)连结OD ,∵AB 是⊙O 的直径,∴∠ADB=90o ,∠A+∠ABD=90o ,又∵OA=OB=OD ,∴∠BDO=∠ABD ,又∵∠A=∠PDB ,∴∠PDB+∠BDO=90o ,即∠PDO=90o ,且D 在圆上,∴PD 是⊙O 的切线.(2)设∠A=x ,∵DA=DP ,∴∠A=∠P=x ,∴∠DBA=∠P+∠BDP=x+x=2x ,在△ABD 中,∠A+∠ABD=90o ,x=2x=90o ,即x=30o ,∴∠DOB=60o ,∴弧BD 长.(3)连结OM ,过D 作DF ⊥AB 于点F ,∵点M 是的中点, ∴OM ⊥AB ,设BD=x ,则AD=2x ,AB==2OM ,即OM=,在Rt △BDF 中,DF=,由△OMN ∽△FDN 得.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o 是解(2)的关键,证明△OMN ∽△FDN 是解(3)的关键.26.(1)50件;(2)120元.【解析】【分析】(1)设第一批购进文化衫x 件,根据数量=总价÷单价结合第二批每件文化衫的进价比第一批每件文化衫的进价多10元,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据第二批购进的件数比第一批多40%,可求出第二批的进货数量,设该服装店销售该品牌文化衫每件的售价为y 元,根据利润=销售单价×销售数量-进货总价,即可得出关于y 的一元一次不等式,解之取其内的最小值即可得出结论.【详解】解:(1)设第一批购进文化衫x 件, 根据题意得:4000x +10=63000(140)0x +, 解得:x=50,经检验,x=50是原方程的解,且符合题意,答:第一批购进文化衫50件;(2)第二批购进文化衫(1+40%)×50=70(件),设该服装店销售该品牌文化衫每件的售价为y 元,根据题意得:(50+70)y ﹣4000﹣6300≥4100,解得:y≥120,答:该服装店销售该品牌文化衫每件最低售价为120元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.27.(1)2213169(),410326y x x =--+≤≤;(1)132x =时,y 取最大值,为1696.【解析】【分析】(1)分别延长DE,FP,与BC的延长线相交于G,H,由AF=x知CH=x-4,根据CH PHCG GE=,即4664x z--=可得z=2623x-,利用矩形的面积公式即可得出解析式;(1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得.【详解】解:(1)分别延长DE,FP,与BC的延长线相交于G,H,∵AF=x,∴CH=x-4,设AQ=z,PH=BQ=6-z,∵PH∥EG,∴CH PHCG GE=,即4664x z--=,化简得z=2623x-,∴y=2623x-•x=-23x1+263x (4≤x≤10);(1)y=-23x1+263x=-23(x-132)1+1696,当x=132dm时,y取最大值,最大值是1696dm1.【点睛】本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质.。

河南省安阳市2019-2020学年中考数学第二次调研试卷含解析

河南省安阳市2019-2020学年中考数学第二次调研试卷含解析

河南省安阳市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的几何体,它的左视图是()A .B .C .D .2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132×12D.x(x-1)=132×23.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A.180元B.200元C.225元D.259.2元4.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.10033100x yx y+=⎧⎨+=⎩B.1003100x yx y+=⎧⎨+=⎩C.100131003x yx y+=⎧⎪⎨+=⎪⎩D.1003100x yx y+=⎧⎨+=⎩5.如图,在△ABC中,DE∥BC,若23ADDB=,则AEEC等于( )A.13B.25C.23D.356.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则»BC的长是( )A.πB.13πC.12πD.16π7.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.248.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()A.160米B.(60+1603)C.1603米D.360米9.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米10.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )A.6 B.3.5 C.2.5 D.111.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.310C.105D.35512.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD 中,E 、F 分别是AD 、CD 的中点,沿着BE 将△ABE 折叠,点A 刚好落在BF 上,若AB=2,则AD=________.14.因式分解:2312x -=____________.15.图中是两个全等的正五边形,则∠α=______.16.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3h ,若静水时船速为26km/h ,水速为2km/h ,则A 港和B 港相距_____km .17.已知反比例函数k y x=的图像经过点(-2017,2018),当0x >时,函数值y 随自变量x 的值增大而_________.(填“增大”或“减小”)18.如图,直线l 1∥l 2,则∠1+∠2=____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知二次函数2y x bx c =-++与x 轴交于A 、B 两点,A 在B 左侧,点C 是点A 下方,且AC ⊥x 轴.(1)已知A(-3,0),B(-1,0),AC=OA .①求抛物线解析式和直线OC 的解析式;②点P 从O 出发,以每秒2个单位的速度沿x 轴负半轴方向运动,Q 从O 出发,2个单位的速度沿OC 方向运动,运动时间为t.直线PQ 与抛物线的一个交点记为M,当2PM=QM 时,求t 的值(直接写出结果,不需要写过程)(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EG⊥x轴于G,连CG,BF,求证:CG∥BF20.(6分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.(1)在AB边上取点E,使AE=4,连接OA,OE;(2)在BC边上取点F,使BF=______,连接OF;(3)在CD边上取点G,使CG=______,连接OG;(4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.21.(6分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.请判断:AF与BE的数量关系是,位置关系;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.22.(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:()1这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______; ()2将条形统计图补充完整;()3该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.23.(8分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P 处放一水平的平面镜,光线从点A 出发经过平面镜反射后刚好射到古城墙CD 的顶端C 处. 已知AB ⊥BD 、CD ⊥BD ,且测得AB=1.2m ,BP=1.8m.PD=12m ,求该城墙的高度(平面镜的原度忽略不计): 请你设计一个测量这段古城墙高度的方案.要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.24.(10分)在平面直角坐标系xOy 中,函数a y x=(x >0)的图象与直线l 1:y =x +b 交于点A (3,a -2).(1)求a ,b 的值;(2)直线l 2:y =-x +m 与x 轴交于点B ,与直线l 1交于点C ,若S △ABC ≥6,求m 的取值范围. 25.(10分)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.26.(12分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.27.(12分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.2.B【解析】全组有x名同学,则每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,所以,x(x-1)=132,故选B.3.A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 4.C【解析】【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x匹,小马有y匹,由题意得:100131003x yx y+=⎧⎪⎨+=⎪⎩,故选C.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.5.C【解析】试题解析::∵DE∥BC,∴23AE ADEC DB==,故选C.考点:平行线分线段成比例.6.B【解析】【分析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴»BC的长=6011803ππ⋅⋅=,故选B.【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.7.A【解析】【详解】解:∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF=22AF AB-=6,∴CF=BC-BF=10-6=4,∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故选A.8.C【解析】【分析】过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.【详解】如图所示,过点A作AD⊥BC于点D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×3403;在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°==∴BC=BD+DC=m.故选C.【点睛】本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值. 9.B【解析】试题分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故选B.考点:勾股定理的应用.10.C【解析】【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【详解】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x ,4,5,中位数是x ,平均数(2+3+4+5+x )÷5=x , 解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x ,3,4,5,中位数是3,平均数(2+3+4+5+x )÷5=3, 解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x ,2,3,4,5,中位数是3,平均数(2+3+4+5+x )÷5=3, 解得x=1,符合排列顺序;∴x 的值为6、3.5或1.故选C .【点睛】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.11.B【解析】【分析】根据S △ABE =12S 矩形ABCD =1=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt △ADE 中,22AD DE +2231+10,∵S △ABE =12S 矩形ABCD =1=12•AE•BF , ∴BF=3105. 故选:B .【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.12.D【解析】【分析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.22【解析】如图,连接EF ,∵点E 、点F 是AD 、DC 的中点,∴AE=ED ,CF=DF=12CD=12AB=1, 由折叠的性质可得AE=A′E ,∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA ED EF EF ='⎧⎨=⎩, ∴Rt △EA′F ≌Rt △EDF (HL ),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=22223122BF CF-=-=.∴AD=BC=22.点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF,证明Rt△EA′F≌Rt△EDF,得出BF的长,再利用勾股定理解答即可.14.3(x-2)(x+2)【解析】【分析】先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底.【详解】原式=3(x2﹣4)=3(x-2)(x+2).故答案为3(x-2)(x+2).【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.15.108°【解析】【分析】先求出正五边形各个内角的度数,再求出∠BCD和∠BDC的度数,求出∠CBD,即可求出答案.【详解】如图:∵图中是两个全等的正五边形,∴BC=BD,∴∠BCD=∠BDC,∵图中是两个全等的正五边形,∴正五边形每个内角的度数是0 (52)1805-⨯=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案为108°.【点睛】本题考查了正多边形和多边形的内角和外角,能求出各个角的度数是解此题的关键.16.1.【解析】【分析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解.【详解】解:设A 港与B 港相距xkm ,根据题意得:3262262x x +=+- , 解得:x=1,则A 港与B 港相距1km .故答案为:1.【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程.17.增大【解析】【分析】根据题意,利用待定系数法解出系数的符号,再根据k 值的正负确定函数值的增减性.【详解】 ∵反比例函数k y x=的图像经过点(-2017,2018), ∴k=-2017×2018<0,∴当x>0时,y 随x 的增大而增大.故答案为增大.18.30°【解析】【分析】分别过A 、B 作l 1的平行线AC 和BD ,则可知AC ∥BD ∥l 1∥l 2,再利用平行线的性质求得答案.【详解】如图,分别过A 、B 作l 1的平行线AC 和BD ,∵l 1∥l 2,∴AC ∥BD ∥l 1∥l 2,∴∠1=∠EAC ,∠2=∠FBD ,∠CAB+∠DBA=180°,∵∠EAB+∠FBA=125°+85°=210°,∴∠EAC+∠CAB+∠DBA+∠FBD=210°,即∠1+∠2+180°=210°,∴∠1+∠2=30°,故答案为30°.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)①y=-x 2-4x -3;y=x ;②1113± 或63314150±;(2)证明见解析. 【解析】【分析】(1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA 知C 点坐标为(-3,-3),故可求出直线OC 的解析式;②由题意得OP=2t,P(-2t ,0),过Q 作QH ⊥x 轴于H,得OH=HQ=t,可得Q(-t,-t),直线 PQ 为y =-x -2t ,过M 作MG ⊥x 轴于G ,由12PG PM GH QM ==,则2PG =GH ,由2P G G H x x x x -=-,得2P M M Q x x x x -=-, 于是22M M t x x t --=+,解得533M M x t x t =-=-或,从而求出M(-3t,t)或M (51,33t t --),再分情况计算即可; (2) 过F 作FH ⊥x 轴于H ,想办法证得tan ∠CAG=tan ∠FBH ,即∠CAG=∠FBH ,即得证.【详解】2y x bx c =-++解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得09301b c b c =--+⎧⎨=--+⎩解得43b c =-⎧⎨=-⎩∴y=-x 2-4x -3;由AC=OA 知C 点坐标为(-3,-3),∴直线OC 的解析式y=x ;②OP=2t,P(-2t ,0),过Q 作QH ⊥x 轴于H,∵,∴OH=HQ=t,∴Q(-t,-t),∴PQ :y =-x -2t ,过M 作MG ⊥x 轴于G , ∴12PG PM GH QM ==, ∴2PG =GH ∴2P G G H x x x x -=-,即2P M M Q x x x x -=-,∴ 22M M t x x t --=+, ∴533M M x t x t =-=-或,∴M(-3t,t)或M (51,33t t --) 当M(-3t,t)时:29123t t t =-+-,∴t =当M (51,33t t --)时:2125203393t t t -=-+-,∴t =综上:1118t ±=或6350t ±= (2)设A(m,0)、B(n,0),∴m 、n 为方程x 2-bx -c=0的两根,∴m+n=b,mn =-c,∴y =-x2+(m+n)x -mn =-(x -m)(x -n),∵E 、F 在抛物线上,设()()2111E x x m n x mn -++-,、()()2222,F x x m n x mn -++-, 设EF :y =kx+b,∴E E FE y kx b y kx b =+⎧⎨=+⎩ , ∴()EF E F y y k x x -=-∴()()2212121212E F E F x x m n x x y y k m n x x x x x x -+++--===+---- ∴()()()()12111:F y m n x x x x x m x n =+------,令x =m∴()()()()12111c y m n x x m x x m x n =+------=()()()()112112+m x m n x x x n m x m x -+---=--∴AC=()()12m x m x ---,又∵1A E AG x x m x =-=-,∴tan ∠CAG=2AC x m AG=-, 另一方面:过F 作FH ⊥x 轴于H ,∴()()22FH x m x n =--,2BH x n =-,∴tan ∠FBH=2FH x m BH=- ∴tan ∠CAG=tan ∠FBH∴∠CAG=∠FBH∴CG ∥BF【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.20. (1)见解析;(2)3;(3)2;(4)1,EB 、BF ;FC 、CG ;GD 、DH ;HA【解析】【分析】利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH=HA ,进一步求得S △AOE =S 四边形EOFB =S 四边形FOGC =S 四边形GOHD =S △HOA .即可.【详解】(1)在AB 边上取点E ,使AE =4,连接OA ,OE ;(2)在BC 边上取点F ,使BF =3,连接OF ;(3)在CD 边上取点G ,使CG =2,连接OG ;(4)在DA 边上取点H ,使DH =1,连接OH .由于AE =EB +BF =FC +CG =GD +DH =HA .可证S △AOE =S 四边形EOFB =S 四边形FOGC =S 四边形GOHD =S △HOA .故答案为:3,2,1;EB 、BF ;FC 、CG ;GD 、DH ;HA .【点睛】此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.21.(1)AF=BE ,AF ⊥BE ;(2)证明见解析;(3)结论仍然成立【解析】试题分析:(1)根据正方形和等边三角形可证明△ABE ≌△DAF ,然后可得BE=AF ,∠ABE=∠DAF ,进而通过直角可证得BE ⊥AF ;(2)类似(1)的证法,证明△ABE ≌△DAF ,然后可得AF=BE ,AF ⊥BE ,因此结论还成立; (3)类似(1)(2)证法,先证△AED ≌△DFC ,然后再证△ABE ≌△DAF ,因此可得证结论. 试题解析:解:(1)AF=BE ,AF ⊥BE .(2)结论成立.证明:∵四边形ABCD 是正方形,∴BA="AD" =DC ,∠BAD =∠ADC = 90°.在△EAD 和△FDC 中,,{,,EA FD ED FC AD DC ===∴△EAD ≌△FDC .∴∠EAD=∠FDC .∴∠EAD+∠DAB=∠FDC+∠CDA ,即∠BAE=∠ADF .在△BAE 和△ADF 中,,{,,BA AD BAE ADF AE DF =∠=∠=∴△BAE ≌△ADF .∴BE = AF ,∠ABE=∠DAF .∵∠DAF +∠BAF=90°,∴∠ABE +∠BAF=90°,∴AF ⊥BE .(3)结论都能成立.考点:正方形,等边三角形,三角形全等22.(1)100,108°;(2)答案见解析;(3)600人.【解析】【分析】(1)先利用QQ 计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,∴此次共抽查了:20÷20%=100人.喜欢用QQ 沟通所占比例为:30310010=, ∴QQ 的扇形圆心角的度数为:360°×310=108°. (2)喜欢用短信的人数为:100×5%=5人 喜欢用微信的人数为:100-20-5-30-5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:40100×100%=40%. ∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人 .【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(1)8m;(2)答案不唯一【解析】【分析】(1)根据入射角等于反射角可得∠APB=∠CPD ,由AB⊥BD、CD⊥BD 可得到∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴AB CD BP BP=,∴CD=1.212 1.8⨯=8.答:该古城墙的高度为8m(2)解:答案不唯一,如:如图,在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,过点D作DC⊥AB于点C.在Rt△ACD中,∠ACD=90°,tanα=AC CD,∴AC=α tanα,∴AB=A C+BC=αtanα+h【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.24.(1)a=3,b=-2;(2) m≥8或m≤-2【解析】【分析】(1)把A点坐标代入反比例解析式确定出a的值,确定出A坐标,代入一次函数解析式求出b的值;(2)分别求出直线l1与x轴交于点D,再求出直线l2与x轴交于点B,从而得出直线l2与直线l1交于点C坐标,分两种情况进行讨论:①当S△ABC=S△BCD+S△ABD=6时,利用三角形的面积求出m的值,②当S△ABC=S△BCD−S△AB D=6时,利用三角形的面积求出m的值,从而得出m的取值范围.【详解】(1)∵点A在a yx=图象上∴23aa-=∴a=3∴A(3,1)∵点A在y=x+b图象上∴1=3+b∴b=-2∴解析式y=x-2(2)设直线y=x-2与x轴的交点为D∴D(2,0)①当点C在点A的上方如图(1)∵直线y=-x+m与x轴交点为B∴B(m,0)(m>3)∵直线y=-x+m与直线y=x-2相交于点C ∴2y xy x m=-⎧⎨=-+⎩解得:2222mxmy+⎧=⎪⎪⎨-⎪=⎪⎩∴C22,22m m+-⎛⎫⎪⎝⎭∵S△ABC=S△BCD-S△ABD≥6∴()()1212216222m m m -⨯-⨯--⨯≥ ∴m≥8②若点C 在点A 下方如图2∵S △ABC =S △BCD +S △ABD ≥6∴()()1122126222m m m --⨯+-⨯≥ ∴m≤-2综上所述,m≥8或m≤-2【点睛】此题考查了一次函数与反比例函数的交点问题,三角形的面积,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.25.(1)A (,0)、B (3,0).(2)存在.S △PBC 最大值为2716(3)2m =1m =-时,△BDM 为直角三角形. 【解析】【分析】 (1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值.【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=.∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--. 设P (p ,213p p 22--), ∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+(). ∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716. (3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -),∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+,解得:12m 2=-,22m 2=(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+,解得:1m 1=-,2m 1=(舍去) .综上所述,2m =或1m =-时,△BDM 为直角三角形. 26.(1)50;(2)16;(3)56(4)见解析【解析】【分析】(1)用A 等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A 、B 、D 等级的人数得到C 等级的人数,然后补全条形图;(3)用700乘以D 等级的百分比可估计该中学八年级学生中体能测试结果为D 等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【详解】(1)10÷20%=50(名) 答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C 等级的学生有16名.图形统计图补充完整如下图所示:(3)700×450=56(名) 答:估计该中学八年级学生中体能测试结果为D 等级的学生有56名. (4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=21126=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.27.(1)10300y x =-+(830x ≤<);(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.【解析】【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x 的取值范围;(2)根据利润=每千克的利润×销售量,可得关于x 的二次函数,利用二次函数的性质即可求得;(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【详解】(1)设 y kx b =+,将点(10,200)、(15,150)分别代入, 则1020015150k b k b +=⎧⎨+=⎩,解得10300k b =-⎧⎨=⎩, ∴10300y x =-+,∵蜜柚销售不会亏本,∴x 8≥,又0y >,∴103000x -+≥ ,∴30x ≤,∴ 830x ≤≤ ;(2) 设利润为w 元,则 ()()810300w x x =--+=2103802400x x -+-=2210(19)1210x x --+,∴ 当19x = 时, w 最大为1210,∴ 定价为19元时,利润最大,最大利润是1210元;(3) 当19x = 时,110y =,110×40=4400<4800,∴不能销售完这批蜜柚.【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;
20.(6分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y= 的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.
21.(6分)如图,把两个边长相等的等边△ABC和△ACD拼成菱形ABCD,点E、F分别是CB、DC延长上的动点,且始终保持BE=CF,连结AE、AF、EF.求证:AEF是等边三角形.
A.75°B.65°C.60°D.50°
7.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )
A.30B.40C.60D.80
8.下列图形中,可以看作中心对称图形的是( )
河南省安阳市2019-2020学年中考第二次模拟数学试题
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符Fra bibliotek题目要求的.)
1.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是( )
A.8cmB.4cmC.4 cmD.5cm
11.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为( )
A.﹣2B.﹣1C.1D.2
12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有( ).
18.如图,四边形 是矩形,四边形 是正方形,点 在 轴的负半轴上,点 在 轴的正半轴上,点 在 上,点 在反比例函数 ( 为常数, )的图像上,正方形 的面积为4,且 ,则 值为________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?
A.①④⑤B.①②④C.①③④D.①③⑤
2.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是( )
A.m<﹣1B.m<1C.m>﹣1D.m>1
3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正确的结论有( )
A. B. C. D.
9.如图,平面直角坐标系xOy中,四边形OABC的边OA在x轴正半轴上,BC∥x轴,∠OAB=90°,点C(3,2),连接OC.以OC为对称轴将OA翻折到OA′,反比例函数y= 的图象恰好经过点A′、B,则k的值是( )
A.9B. C. D.3
10.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为( )
A.2个B.3个C.4个D.5个
4.若点A(a,b),B( ,c)都在反比例函数y= 的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是( )
A. B.
C. D.
5.在平面直角坐标系中,位于第二象限的点是( )
A.(﹣1,0)B.(﹣2,﹣3)C.(2,﹣1)D.(﹣3,1)
6.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是( )
A.1个B.2个C.3个D.4个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数共有______个.
23.(8分)综合与探究
如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处.
22.(8分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.
14.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.
15.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.
16.若两个关于x,y的二元一次方程组 与 有相同的解,则mn的值为_____.
17.已知点 、 都在反比例函数 的图象上,若 ,则k的值可以取______ 写出一个符合条件的k值即可 .
相关文档
最新文档