2018届高三二轮复习数学(文)高考小题标准练:(六)含解析

合集下载

2018届江西省南昌市高三二轮复习测试数学(文)试题(解析版)

2018届江西省南昌市高三二轮复习测试数学(文)试题(解析版)

2018届江西省南昌市高三二轮复习测试数学(文)试题★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

一、单选题1.设复数其中为虚数单位,则的虚部为A.B.C.D.【答案】A【解析】【分析】根据复数共轭的概念得到,再由复数的除法运算得到结果即可.【详解】虚部为-1,故选A.【点睛】本题考查了复数的运算法则、复数的共轭复数等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.2.集合,,则A.B.C.D.【答案】B【解析】【分析】根据题意得到集合M的解集,再由集合的补集的概念得到,最后由交集的概念得到结果.【详解】,=,,则.故答案为:B.【点睛】这个题目考查了集合的交集和集合的补集的概念,要看清楚题目中所给的全集;集合常考的问题还有集合的子集个数问题,若集合有n个元素,其子集有2n个,真子集有2n-1个,非空真子集有2n-2个.3.直角的外接圆圆心O,半径为1,且,则向量在向量方向的投影为()A.B.C.D.【答案】A【解析】【分析】根据题意求得,三角形的外心O点在BC的中点处,且∠ABC=,由向量投影的定义,利用已知条件求出即可.【详解】直角外接圆圆心O落在BC的中点上,根据题意画出图像,又O为△ABC外接圆的圆心,半径为1,∴BC为直径,且BC=2,OA=AB=1,∠ABC=;∴向量在向量方向的投影|cos=.故选:A.【点睛】此题主要考查了向量投影的概念与直角三角形外接圆的性质应用问题,是基础题.解决向量的小题常用方法有:数形结合,向量的三角形法则,平行四边形法则等;建系将向量坐标化;向量基底化,选基底时一般选择已知大小和方向的向量为基底。

2018年高考数学二模试卷(文科)带答案精讲

2018年高考数学二模试卷(文科)带答案精讲

2018年高考数学二模试卷(文科)一、选择题(共11小题,每小题5分,满分55分)1.(5分)设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于()A.180 B.90 C.72 D.102.(5分)在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,且样本容量为100,则正中间的一组的频数为()A.80 B.0.8 C.20 D.0.23.(5分)在△ABC中,C=60°,AB=,那么A等于()A.135°B.105°C.45°D.75°4.(5分)已知:如图的夹角为的夹角为30°,若等于()A.B.C.D.25.(5分)若集合,B={1,m},若A⊆B,则m的值为()A.2 B.﹣1 C.﹣1或2 D.2或6.(5分)设α、β是两个不同的平面,l、m为两条不同的直线,命题p:若平面α∥β,l⊂α,m⊂β,则l∥m;命题q:l∥α,m⊥l,m⊂β,则β⊥α,则下列命题为真命题的是()A.p或q B.p且q C.¬p或q D.p且¬q7.(5分)已知x,y满足约束条件的最小值是()A.B.C.D.18.(5分)2011年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位恰带有两个数字“6”或恰带有两个数字“8”的一律作为“金兔卡”,享受一定优惠政策.如后四位数为“2663”、“8685”为“金兔卡”.则这组号码中“金兔卡”的张数()A.484 B.972 C.966 D.4869.(5分)有三个命题①函数的反函数是y=(x+1)2(x∈R)②函数f(x)=lnx+x﹣2的图象与x轴有2个交点;③函数的图象关于y轴对称.其中真命题是()A.①③B.②C.③D.②③10.(5分)若长度为定值的线段AB的两端点分别在x轴正半轴和y轴正半轴上移动,O为坐标原点,则△OAB的重心、内心、外心、垂心的轨迹不可能是()A.点B.线段C.圆弧D.抛物线的一部分11.(5分)若关于x的不等式|x﹣1|<ax(a≠0)的解集为开区间(m,+∞),其中m∈R,则实数a的取值范围为()A.a≥1 B.a≤﹣1 C.0<a<1 D.﹣1<a<0二、填空题(共5小题,每小题5分,满分25分)12.(5分)一个与球心距离为1的平面截球所得的圆面面积为2π,则球的表面积为.13.(5分)已知二项式展开式中的项数共有九项,则常数项为.14.(5分)已知过椭圆的右焦点在双曲线的右准线上,则双曲线的离心率为.15.(5分)函数,在区间(﹣π,π)上单调递增,则实数φ的取值范围为.16.(5分)在数学中“所有”一词,叫做全称量词,用符号“∀”表示;“存在”一词,叫做存在量词,用符号“∃”表示.设.①若∃x0∈(2,+∞),使f(x0)=m成立,则实数m的取值范围为;②若∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为.三、解答题(共6小题,满分70分)17.(12分)已知=(cosx+sinx,sinx),=(cosx﹣sinx,2cosx).(I)求证:向量与向量不可能平行;(II)若•=1,且x∈[﹣π,0],求x的值.18.(12分)已知某高中某班共有学生50人,其中男生30人,女生20人,班主任决定用分层抽样的方法在自己班上的学生中抽取5人进行高考前心理调查.(I)求男生被抽取的人数和女生被抽取的人数;(I)若从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率;(II)若本班学生考前心理状态好的概率为0.8,求调查中恰有3人心理状态良好的概率.19.(12分)如图所示,在正方体ABCD﹣A1B1C1D1中,AB=a,E为棱A1D1中点.(I)求二面角E﹣AC﹣B的正切值;(II)求直线A1C1到平面EAC的距离.20.(12分)已知f(x)=tx3﹣2x2+1.(I)若f′(x)≥0对任意t∈[﹣1,1]恒成立,求x的取值范围;(II)求t=1,求f(x)在区间[a,a+3](a<0)上的最大值h(a).21.(12分)已知{a n}是正数组成的数列,a1=1,且点在函数y=x2+1的图象上.数列{b n}满足b1=0,b n+1=b n+3an(n∈N*).(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若c n=a n b n cosnπ(n∈N*),求数列{c n}的前n项和S n.22.(10分)若圆C过点M(0,1)且与直线l:y=﹣1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点.(Ⅰ)求曲线E的方程;(Ⅱ)若t=6,直线AB的斜率为,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;(Ⅲ)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l 上,求证:t与均为定值.参考答案与试题解析一、选择题(共11小题,每小题5分,满分55分)1.(5分)设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于()A.180 B.90 C.72 D.10【分析】由a4=9,a6=11利用等差数列的性质可得a1+a9=a4+a6=20,代入等差数列的前n项和公式可求.【解答】解:∵a4=9,a6=11由等差数列的性质可得a1+a9=a4+a6=20故选B【点评】本题主要考查了等差数列的性质若m+n=p+q,则a m+a n=a p+a q和数列的求和.解题的关键是利用了等差数列的性质:利用性质可以简化运算,减少计算量.2.(5分)在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,且样本容量为100,则正中间的一组的频数为()A.80 B.0.8 C.20 D.0.2【分析】由已知中在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,我们出该组的频率,进而根据样本容量为100,求出这一组的频数.【解答】解:∵样本的频率分布直方图中,共有5个长方形,又∵中间一个小长方形的面积等于其它4个小长方形的面积和的,则该长方形对应的频率为0.2又∵样本容量为100,∴该组的频数为100×0.2=20故选C【点评】本题考查的知识点是频率分布直方图,其中根据各组中频率之比等于面积之比,求出该组数据的频率是解答本题的关键.3.(5分)在△ABC中,C=60°,AB=,那么A等于()A.135°B.105°C.45°D.75°【分析】由C的度数求出sinC的值,再由c和a的值,利用正弦定理求出sinA 的值,由c大于a,根据大边对大角,得到C大于A,得到A的范围,利用特殊角的三角函数值即可求出A的度数.【解答】解:∵C=60°,AB=c=,BC=a=,∴由正弦定理=得:sinA===,又a<c,得到A<C=60°,则A=45°.故选C【点评】此题考查了正弦定理,三角形的边角关系,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.4.(5分)已知:如图的夹角为的夹角为30°,若等于()A.B.C.D.2【分析】将向量沿与方向利用平行四边形原则进行分解,构造出三角形,由题目已知,可得三角形中三边长及三个角,然后解三角形即可得到答案.【解答】解:如图所示:根据平行四边形法则将向量沿与方向进行分解,则由题意可得OD=λ,CD=μ,∠COD=30°,∠OCD=90°,∠Rt△OCD中,sin∠COD=sin30°===,∴=2,故选D.【点评】对一个向量根据平面向量基本定理进行分解,关键是要根据平行四边形法则,找出向量在基底两个向量方向上的分量,再根据已知条件构造三角形,解三角形即可得到分解结果.5.(5分)若集合,B={1,m},若A⊆B,则m的值为()A.2 B.﹣1 C.﹣1或2 D.2或【分析】由已知中集合,解根式方程可得A={2},结合B={1,m},及A⊆B,结合集合包含关系的定义,可得m的值.【解答】解:∵集合={2}又∵B={1,m}若A⊆B则m=2故选A【点评】本题考查的知识点是集合关系中的参数取值问题,其中解根式方程确定集合A是解答本题的关键,解答中易忽略根成有意义的条件,而错解为A={﹣1}6.(5分)设α、β是两个不同的平面,l、m为两条不同的直线,命题p:若平面α∥β,l⊂α,m⊂β,则l∥m;命题q:l∥α,m⊥l,m⊂β,则β⊥α,则下列命题为真命题的是()A.p或q B.p且q C.¬p或q D.p且¬q【分析】对于命题p,q,只要把相应的平面和直线放入长方体中,找到反例即可.【解答】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.7.(5分)已知x,y满足约束条件的最小值是()A.B.C.D.1【分析】本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点(0,0)构成的线段的长度问题,注意最后要平方.【解答】解:先根据约束条件画出可行域,z=x2+y2,表示可行域内点到原点距离OP的平方,点P到直线3x+4y﹣4=0的距离是点P到区域内的最小值,d=,∴z=x2+y2的最小值为故选B.【点评】本题利用直线斜率的几何意义,求可行域中的点与原点的斜率.本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.8.(5分)2011年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位恰带有两个数字“6”或恰带有两个数字“8”的一律作为“金兔卡”,享受一定优惠政策.如后四位数为“2663”、“8685”为“金兔卡”.则这组号码中“金兔卡”的张数()A.484 B.972 C.966 D.486【分析】据题意,对卡号的后4位分3种情况讨论:①、后4位中含有2个8,进而细分为1°其他数字不重复,2°其他数字也相同,由排列、组合数公式可得其情况数目,②、后4位中含有2个6的卡片,同①可得其情况数目,③、含有2个8、2个6,由组合数公式可得其情况数目;最后由事件之间的关心计算可得答案.【解答】解:根据题意,对卡号的后4位分3种情况讨论:①、后4位中含有2个8,1°若其他数字不重复,在其中任取2个其他的数字,与2个8进行全排列,有×A44×C92种情况,2°若其他数字也相同,易得有9×C42种情况,共有×A44×C92+9×C42=486张,②、同理后4位只中含有2个6的卡片有486张,③、后4位中含有2个8、2个6,有C42=6张,共有486+486﹣6=966张;故选C.【点评】本题考查分步计数原理的应用,考查带有约束条件的数字问题,分类讨论时,注意事件之间的关系,要做到不重不漏.9.(5分)有三个命题①函数的反函数是y=(x+1)2(x∈R)②函数f(x)=lnx+x﹣2的图象与x轴有2个交点;③函数的图象关于y轴对称.其中真命题是()A.①③B.②C.③D.②③【分析】对于①,欲求原函数y=﹣1(x≥0)的反函数,即从原函数式中反解出x,后再进行x,y互换,即得反函数的解析式.对于②,利用函数f(x)的单调性,与函数的零点与方程的根判断即可;对于③,通过函数f(x)的奇偶性判断即可.【解答】解:对于①,∵y=﹣1(x≥0),∴x=(y+1)2(y≥﹣1),∴x,y互换,得y=(x+1)2(x≥﹣1).故不正确.对于②,考察f(x)的单调性,lnx和x﹣2在(0,+∞)上是增函数,故f(x)=lnx+x﹣2在(0,+∞)上是增函数,图象与x轴最多有1个交点,故不正确.对于③,函数的定义域为[﹣3,3],所以,函数化简为:y=是偶函数,图象关于y轴对称,正确.故选C.【点评】本小题主要考查函数单调性的应用、函数奇偶性的应用、反函数等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.10.(5分)若长度为定值的线段AB 的两端点分别在x 轴正半轴和y 轴正半轴上移动,O 为坐标原点,则△OAB 的重心、内心、外心、垂心的轨迹不可能是( ) A .点 B .线段 C .圆弧D .抛物线的一部分【分析】本题是个选择题,利用排除法解决.首先由△OAB 的重心,排除C ;再利用△OAB 的内心,排除B ;最后利用△OAB 的垂心,排除A ;即可得出正确选项.【解答】解:设重心为G ,AB 中点为C ,连接OC .则OG=OC (这是一个重心的基本结论).而OC=AB=定值,所以G 轨迹圆弧. 排除C ;内心一定是平分90度的那条角平分线上,轨迹是线段.排除B ;外心是三角形外接圆圆心,对于这个直角三角形,AB 中点C 就是三角形外接圆圆心,OC 是定值, 所以轨迹圆弧,排除C ; 垂心是原点O ,定点,排除A 故选D .【点评】本题考查三角形的重心、内心、外心、垂心、以及轨迹的求法.解选择题时可利用排除法.11.(5分)若关于x 的不等式|x ﹣1|<ax (a ≠0)的解集为开区间(m ,+∞),其中m ∈R ,则实数a 的取值范围为( ) A .a ≥1B .a ≤﹣1C .0<a <1D .﹣1<a <0【分析】在同一坐标系中做出函数 y=|x |和 函数y=ax 的图象,由题意结合图形可得实数a 的取值范围.【解答】解:∵关于x 的不等式|x ﹣1|<ax (a ≠0)的解集为 开区间(m ,+∞),其中m ∈R ,在同一坐标系中做出函数y=|x﹣1|和函数y=ax的图象,如图所示:结合图象可得a≥1.故选:A.【点评】本题主要考查绝对值不等式的解法,体现了数形结合的数学思想,画出图形,是解题的关键,属于中档题.二、填空题(共5小题,每小题5分,满分25分)12.(5分)一个与球心距离为1的平面截球所得的圆面面积为2π,则球的表面积为12π.【分析】求出截面圆的半径,利用勾股定理求出球的半径,然后求出球的表面积.【解答】解:由题意可知截面圆的半径为:r,所以πr2=2π,r=,由球的半径,球心到截面圆的距离,截面圆的半径,满足勾股定理,所以球的半径为:R==.所求球的表面积为:4πR2=12π.故答案为:12π.【点评】本题考查球与球的截面以及球心到截面的距离的关系,是本题的解题的关键,考查计算能力.13.(5分)已知二项式展开式中的项数共有九项,则常数项为1120.【分析】根据展开式中的项数共有九项可求出n的值是8.利用二项展开式的通项公式求出通项,令x的指数为0,求出r,将r的值代入通项求出展开式的常数项.【解答】解:∵二项式展开式中的项数共有九项∴n=8=2r C8r x4﹣r展开式的通项为T r+1令4﹣r=0得r=4所以展开式的常数项为T5=24C84=1120故答案为:1120.【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,解答关键是求出n的值,属于中档题.14.(5分)已知过椭圆的右焦点在双曲线的右准线上,则双曲线的离心率为.【分析】先由题设条件求出椭圆的焦点坐标和双曲线的准线方程,列出关于b 的方程求出b,从而得到a和c,再利用a和c求出双曲线的离心率.【解答】解:由题设条件可知椭圆的右焦点坐标为(2,0),双曲线的右准线方程为x=,∴,解得b=2.则双曲线的离心率为.故答案为:.【点评】本题是双曲线的椭圆的综合题,难度不大,只要熟练掌握圆锥曲线的性质就行.15.(5分)函数,在区间(﹣π,π)上单调递增,则实数φ的取值范围为.【分析】求出函数的单调增区间,通过子集关系,确定实数φ的取值范围.【解答】解:函数,由2kπ﹣πφ≤2kπ,可得6kπ﹣3π﹣3φ≤x≤6kπ﹣3φ,由题意在区间(﹣π,π)上单调递增,所以6kπ﹣3π﹣3φ≤﹣π 且π≤6kπ﹣3φ,因为0<φ<2π,所以k=1,实数φ的取值范围为;故答案为:【点评】本题是基础题,考查三角函数的单调性的应用,子集关系的理解,考查计算能力.16.(5分)在数学中“所有”一词,叫做全称量词,用符号“∀”表示;“存在”一词,叫做存在量词,用符号“∃”表示.设.①若∃x0∈(2,+∞),使f(x0)=m成立,则实数m的取值范围为(,+∞);②若∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为不存在.【分析】①先对函数配方,求出其对称轴,判断出其在给定区间上的单调性进而求出函数值的范围,即可求出实数m的取值范围;②先利用单调性分别求出两个函数的值域,再比较即可求出实数a的取值范围.【解答】解:因为f(x)==,(2,+∞),f(x)>f(2)=;g(x)=a x,(a>1,x>2).g(x)>g(2)=a2.①∵∃x0∈(2,+∞),使f(x0)=m成立,∴m;②∵∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),∴⇒a不存在.故答案为:(,+∞):不存在.【点评】本题主要考查函数恒成立问题以及借助于单调性研究函数的值域,是对基础知识的综合考查,属于中档题目.三、解答题(共6小题,满分70分)17.(12分)已知=(cosx+sinx,sinx),=(cosx﹣sinx,2cosx).(I)求证:向量与向量不可能平行;(II)若•=1,且x∈[﹣π,0],求x的值.【分析】(I)先假设两个向量平行,利用平行向量的坐标表示,列出方程并用倍角和两角和正弦公式进行化简,求出一个角的正弦值,根据正弦值的范围推出矛盾,即证出假设不成立;(II)利用向量数量积的坐标表示列出式子,并用倍角和两角和正弦公式进行化简,由条件和已知角的范围进行求值.【解答】解:(I)假设∥,则2cosx(cosx+sinx)﹣sinx(cosx﹣sinx)=0,1+cosxsinx+cos2x=0,即1+sin2x+=0,∴sin(2x+)=﹣3,解得sin(2x+)=﹣<﹣1,故不存在这种角满足条件,故假设不成立,即与不可能平行.(II)由题意得,•=(cosx+sinx)(cosx﹣sinx)+2cosxsinx=cos2x+sin2x=sin (2x+)=1,∵x∈[﹣π,0],∴﹣2π≤2x≤0,即≤,∴=﹣或,解得x=或0,故x的值为:或0.【点评】本题考查了向量共线和数量积的坐标运算,主要利用了三角恒等变换的公式进行化简,对于存在性的题目一般是先假设成立,根据题意列出式子,再通过运算后推出矛盾,是向量和三角函数相结合的题目.18.(12分)已知某高中某班共有学生50人,其中男生30人,女生20人,班主任决定用分层抽样的方法在自己班上的学生中抽取5人进行高考前心理调查.(I)求男生被抽取的人数和女生被抽取的人数;(I)若从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率;(II)若本班学生考前心理状态好的概率为0.8,求调查中恰有3人心理状态良好的概率.【分析】(Ⅰ)根据题意,可得抽取的比例为,由分层抽样的性质,计算可得答案;(Ⅱ)由(Ⅰ)的结论,男生被抽取人数为3人,女生被抽取人数为2人,分析可得“至少选取1个男生”与“没有1个男生”即“选取的都是2个女生”为对立事件;先计算“选取的都是2个女生”的概率,进而由对立事件的概率性质,计算可得答案;(Ⅲ)根据题意,分析可得:本题为在5次独立重复试验中恰有3次发生,由其公式,计算可得答案.【解答】解:(Ⅰ)根据题意,在50人中抽取了5人,抽取的比例为;则抽取男生30×=3,女生20×=2;即男生被抽取人数为3人,女生被抽取人数为2人;(Ⅱ)由(Ⅰ)得,男生被抽取人数为3人,女生被抽取人数为2人,“至少选取1个男生”与“没有1个男生”即“2个女生”为对立事件;选取的两名学生都是女生的概率P==,∴所求的概率为1﹣P=;(Ⅲ)根据题意,本班学生的考前心理状态良好的概率为0.8,则抽出的5人中,恰有3人心理状态良好,即在5次独立重复试验中恰有3次发生,则其概率为C53×()3×()2=.【点评】本题主要考查排列n次独立重复实验中恰有k次发生的概率计算,涉及分层抽样与对立事件的概率计算;需要牢记各个公式,并做到“对号入座”.19.(12分)如图所示,在正方体ABCD﹣A1B1C1D1中,AB=a,E为棱A1D1中点.(I)求二面角E﹣AC﹣B的正切值;(II)求直线A1C1到平面EAC的距离.【分析】(I)取AD的中点H,连接EH,则EH⊥平面ABCD,过H作HF⊥AC与F,连接EF,我们可得∠EFH即为二面角E﹣AC﹣B的补角,解三角形EFH后,即可求出二面角E﹣AC﹣B的正切值;(II)直线A1C1到平面EAC的距离,即A1点到平面EAC的距离,利用等体积法,我们根据=,即可求出直线A 1C1到平面EAC的距离.【解答】解:(I)取AD的中点H,连接EH,则EH⊥平面ABCD,过H作HF⊥AC 与F,连接EF,则EF在平面ABCD内的射影为HF,由三垂线定理得EF⊥AC,,∴∠EFH即为二面角E﹣AC﹣B的补角∵EH=a,HF=BD=∴∠tan∠EFH===2∴二面角E﹣AC﹣B的正切值为﹣2…6分(II)直线A1C1到平面EAC的距离,即A1点到平面EAC的距离d,…8分∵=∴S•d=△EAC∵EF====•AC•EF=•a•=∴S△EAC而=••a=∴•d=•a∴d=∴直线A1C1到平面EAC的距离【点评】本题考查的知识点是二面角的平面角及求法,点到平面的距离,其中(I)的关键是得到∠EFH即为二面角E﹣AC﹣B的补角,(II)中求点到面的距离时,等体积法是最常用的方法.20.(12分)已知f(x)=tx3﹣2x2+1.(I)若f′(x)≥0对任意t∈[﹣1,1]恒成立,求x的取值范围;(II)求t=1,求f(x)在区间[a,a+3](a<0)上的最大值h(a).【分析】(I)f′(x)=3tx2﹣4x,令g(t)=3x2t﹣4x,由,能求出x的取值范围.(II)由f(x)=x3﹣2x2+1,知f′(x)=3x2﹣4x=x(3x﹣4),f′(x)>0,得f(x)在(﹣∞,0)和()为递增函数;令f′(x)<0,得f(x)在(0,)为递减函数.由此进行分类讨论,能求出f(x)在区间[a,a+3](a<0)上的最大值h(a).【解答】解:(I)f′(x)=3tx2﹣4x,令g(t)=3x2t﹣4x,则有,∴,解得.∴x的取值范围是.(II)f(x)=x3﹣2x2+1,f′(x)=3x2﹣4x=x(3x﹣4),令f′(x)>0,得x<0或x>.令f′(x)<0,得0,∴f(x)在(﹣∞,0)和()为递增函数;在(0,)为递减函数.∵f(0)=1,,令f(x)=1,得x=0或x=2.①当a+3<0,即a<﹣3时,f(x)在[a,a+3]单调递增.∴h(a)=f(a+3)=a3+7a2+15a+10.②当0≤a+3≤2,即﹣3≤a≤﹣1时,h(a)=f(0)=1.③当a+3>2,即0>a>﹣1时,h(a)=f(a+3)=a3+7a2+15a+10.∴.【点评】本题考查导数在求最大值和求最小值时的实际应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.综合性强,是高考的重点,易错点是知识体系不牢固.解题时要注意分类讨论思想的灵活运用.21.(12分)已知{a n}是正数组成的数列,a1=1,且点在函数y=x2+1的图象上.数列{b n}满足b1=0,b n+1=b n+3an(n∈N*).(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若c n=a n b n cosnπ(n∈N*),求数列{c n}的前n项和S n.【分析】(Ⅰ)由题设条件知a n=a n+1,根据等差数列的定义:{a n}是首项为1,+1公差为1的等差数列,从而a n=n,根据b n+1=b n+3an(n∈N*),可得b n+1﹣b n=3n (n∈N*).累加可求和,从而得{b n}的通项公式;(II)根据c n=a n b n cosnπ(n∈N*),可得,再分n为偶数,奇数分别求和即可【解答】解:(Ⅰ)因为点()(n∈N*)在函数y=x2+1的图象上=a n+1所以a n+1根据等差数列的定义:{a n}是首项为1,公差为1的等差数列所以a n=n=b n+3an(n∈N*).∵b n+1∴b n﹣b n=3n(n∈N*).+1∴(II)∵c n=a n b n cosnπ(n∈N*),∴当n为偶数时,S n=(﹣3+2•32+…+n•3n)+3[1﹣2+3﹣4+…+(n﹣1)﹣n]设T n=(﹣3+2•32+…+n•3n),则3T n=﹣32+2•33+…+n•3n+1∴∴当n为奇数时,∴【点评】本题以函数为载体,考查数列的概念和性质及其应用,考查错位相减法求和,解题时要注意公式的灵活运用.22.(10分)若圆C过点M(0,1)且与直线l:y=﹣1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点.(Ⅰ)求曲线E的方程;(Ⅱ)若t=6,直线AB的斜率为,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;(Ⅲ)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l 上,求证:t与均为定值.【分析】(I)由点C到定点M的距离等于到定直线l的距离与抛物线的定义可得点C的轨迹为抛物线所以曲线E的方程为x2=4y.(II)由题得直线AB的方程是x﹣2y+12=0联立抛物线的方程解得A(6,9)和B(﹣4,4),进而直线NA的方程为,由A,B两点的坐标得到线段AB中垂线方程为,可求N点的坐标,进而求出圆N的方程.(III)设A,B两点的坐标,由题意得过点A的切线方程为又Q(a,﹣1),可得x12﹣2ax1﹣4=0同理得x22﹣2ax2﹣4=0所以x1+x2=2a,x1x2=﹣4.所以直线AB的方程为所以t=﹣1.根据向量的运算得=0.【解答】【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.(Ⅱ)直线AB的方程是,即x﹣2y+12=0.由及知,得A(6,9)和B(﹣4,4)由x2=4y得,.所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.直线NA的方程为,即.①线段AB的中点坐标为,线段AB中垂线方程为,即.②由①、②解得.于是,圆C的方程为,即.(Ⅲ)设,,Q(a,1).过点A的切线方程为,即x12﹣2ax1﹣4=0.同理可得x22﹣2ax2﹣4=0,所以x1+x2=2a,x1x2=﹣4.又=,所以直线AB的方程为,即,亦即,所以t=1.而,,所以==.【点评】本题主要考查抛物线的定义和直线与曲线的相切问题,解决此类问题的必须熟悉曲线的定义和曲线的图形特征,这也是高考常考的知识点.。

南昌市2018届高三第二轮复习测试六理科数学---精校解析Word版

南昌市2018届高三第二轮复习测试六理科数学---精校解析Word版

已知集合和集合,则等于B. C. D.轴)以上部分,所以集合为二次函数,所以集合已知,复数,,若为纯虚数,则实数的值为 B. C. 或 D.为纯虚数豕每头价格分别为元、元,设计如图所示的程序框图,则输出的、的值分别是B.D.所以输出的对于实数,“”是的充分不必要条件都是整数,则命题“若不都是奇数”是假命题,则关于的方程有实根”的逆否命题为假命题命题“全等三角形的面积相等”的否命题为真命题”,则可以得到偶数,所以,关于的方程有实根,则,解得;所以A. B. C. D.【答案】C【解析】【分析】先找到三视图对应的几何体原图,再利用补形法求几何体外接球的半径,最后求球的表面积【详解】还原几何体如图所示三棱锥由(如上右图)在直三棱柱中取的中点中点.故答案为:C如图直角坐标系中,角、角两点,若,且满足则的值B. C. D.【答案】,代入的值即得解【详解】由图易知.,即,即.则.故答案为:B本题解题的关键是化简原式为.B. C. D.【答案】天班为事件天班为事件,每人至少值一天班记为事件..,,故答案为:A在等腰直角三角形中,,点为所在平面上一动点,且满足A. B. C. D.求得动点【详解】以C为坐标原点,所以取值范围为已知是定义在,且当时,则函数上的所有零点之和为B. C. D.关于成中心对称,再作出函数在区间图像和间的图像,即得函数在区间上的所有零点之和【详解】由知关于又为奇函数,则易知,作出函数在区间所以间,所有零点之和为.B. C. D.=24.人参加:...故答案为:A设抛物线的焦点为,过轴上一定点作斜率为的直线与抛物线相交于轴交于点,记面积为面积为,则抛物线的标准方程为A. B. C. D. 【答案】C,经过定点,即轴,,即,所以联立方程,化简得根据一元二次方程的求根公式,得,所以化简得,即,所以即,设函数,其中,若仅存在两个正整数使得,则B.D.。

对函数求导,并求得最小值,分【详解】令使得,即仅有两个整数使得,解得;当,时,,代入解得已知函数在处的切线与直线平行,则【答案】【详解】由题意知,由题意知,即,保持展开式为常数项,即. 即常数项为.已知椭圆的左右两焦点为,为椭圆的内接三角形,已知,且满足,则直线【答案】【解析】的关系,可得,因为,代入坐标得又因为B、C在椭圆上所以解得BC的方程为【点睛】本题考查了直线与椭圆的位置关系,本题计算非常复杂,需要很耐心计算,属于难题。

2018届高三二轮复习数学(文)(人教版)高考小题标准练:(一) Word版含解析

2018届高三二轮复习数学(文)(人教版)高考小题标准练:(一) Word版含解析

高考小题标准练(一)满分80分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则ð(MU∪N)=( ) A.{5,7} B.{2,4}C.{2,4,8}D.{1,3,5,6,7}【解析】选C.因为M={1,3,5,7},N={5,6,7},所以M∪N={1,3,5,6,7},又U={1,2,3,4,5,6,7,8},所以ð(M∪N)={2,4,8}.U2.设i是虚数单位,是复数z的共轭复数,若z·=2,则z= ( )A.-1-iB.-1+iC.1+iD.1-i【解析】选C.设z=a+bi,由z·=2(+i)有= 2,解得a=b=1,所以z=1+i.3.设a=log3,b=,c=log2(log2),则( )A.b<c<aB.a<b<cC.c<a<bD.a<c<b【解析】选D.因为c=log2=-1=log3>log3=a,b>0,所以b>c>a.故选D.4.设数列{a n}的前n项和为S n,若S n+1,S n,S n+2成等差数列,且a2=-2,则a7= ( )A.16B.32C.64D.128【解析】选C.因为若S n+1,S n,S n+2成等差数列,所以由题意得S n+2+S n+1=2S n,得a n+2+a n+1+a n+1=0,即a n+2=-2a n+1,所以{a n}从第二项起是公比为-2的等比数列,所以a7=a2q5=64.5.过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于A,B,交其准线于点C,若=-2,|AF|=3,则抛物线的方程为( )A.y2=12xB.y2=9xC.y2=6xD.y2=3x【解析】选D.分别过A,B点作准线的垂线,垂足分别为A1,B1,过A作AD⊥x轴.所以|BF|=|BB1|,|AA1|=|AF|.又因为|BC|=2|BF|,所以|BC|=2|BB1|,所以∠CBB1=60°,所以∠AFD=∠CFO=60°,又|AF|=3,所以|FD|=,所以|AA1|=p+=3,所以p=,所以抛物线方程为y2=3x.6.程序框图如图所示,该程序运行后输出的S的值是( )A.2B.-C.-3D.【解析】选A.由程序框图知:S=2,i=1;S==-3,i=2;S==-,i=3;S==,i=4;S==2,i=5,…,可知S出现的周期为4,当i=2017=4×504+1时,结束循环,输出S,即输出的S=2.7.若函数f(x)=sin(ω>0)的图象的相邻两条对称轴之间的距离为,且该函数图象关于点(x0,0)成中心对称,x0∈,则x0=( )A. B. C. D.【解析】选A.由题意得=,T=π,ω=2,又2x0+=kπ(k∈Z),x0=-(k∈Z),而x0∈,所以x0=.8.多面体MN-ABCD的底面ABCD为矩形,其正视图和侧视图如图,其中正视图为等腰梯形,侧视图为等腰三角形,则该多面体的体积是( )世纪金榜导学号46854295A. B. C. D.【解析】选D.将多面体分割成一个三棱柱和一个四棱锥,如图所示,因为正视图为等腰梯形,侧视图为等腰三角形,所以四棱锥底面BCFE 为正方形,S四边形BCFE=2×2=4,四棱锥的高为2,所以V N-BCFE=×4×2=.可将三棱柱补成直三棱柱,则V ADM-EFN=×2×2×2=4,所以多面体的体积为.9.已知函数f(x)=则不等式f(a2-4)>f(3a)的解集为( ) A.(2,6) B.(-1,4) C.(1,4) D.(-3,5)【解析】选B.作出函数f(x)的图象,如图所示,则函数f(x)在R上是单调递减的.由f(a2-4)>f(3a),可得a2-4<3a,整理得a2-3a-4<0,即(a+1)(a-4)<0,解得-1<a<4,所以不等式的解集为(-1,4).10.点A,B,C,D均在同一球面上,且AB,AC,AD两两垂直,且AB=1,AC=2,AD=3,则该球的表面积为( )世纪金榜导学号46854296A.7πB.14πC.πD.【解析】选B.三棱锥A-BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也内接于球,长方体的对角线长为其外接球的直径,所以长方体的对角线长是=,它的外接球半径是,外接球的表面积是4π×=14π.11.双曲线C:-=1(a>0,b>0)的一条渐近线与直线x+2y+1=0垂直,F1,F2为C的焦点,A为双曲线上一点,若有|F1A|=2|F2A|,则cos∠AF2F1=( )世纪金榜导学号46854297A. B. C. D.【解析】选C.因为双曲线的一条渐近线与直线x+2y+1=0垂直,所以b=2a,又|F1A|=2|F2A|,且|F1A|-|F2A|=2a,所以|F2A|=2a,|F1A|=4a,而c2=5a2⇒2c=2a,所以cos∠AF2F1===.12.若曲线y=ln的一条切线为y=ex+b,其中a,b为正实数,则a+的取值范围是( )世纪金榜导学号46854298 A. B.C. D.【解析】选C.设切点为(x0,y0),则有⇒b=ae-2,因为b>0,所以a>,a+=a+≥2.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=________. 【解析】因为向量λa+b与a+2b平行,所以λa+b=k(a+2b),则所以λ=.答案:14.已知不等式组所表示的平面区域为D,直线l:y=3x+m 不经过区域D,则实数m的取值范围是________.【解析】由题意作平面区域如图,当直线l过点A(1,0)时,m=-3;当直线l过点B(-1,0)时,m=3;结合图象可知,实数m的取值范围是(-∞,-3)∪(3,+∞).答案:(-∞,-3)∪(3,+∞)15.为了解某班学生喜爱打乒乓球是否与性别有关,对该班40名学生进行了问卷调查,得到了如下的2×2列联表: 世纪金榜导学号46854299则在犯错误的概率不超过________的前提下认为喜爱打乒乓球与性别有关(请用百分数表示).【解析】K2===10>7.879,所以在犯错误的概率不超过0.005的前提下认为喜爱打乒乓球与性别有关.答案:0.5%16.设函数f(x)的定义域为D,若∀x∈D,∃y∈D,使得f(y)=-f(x)成立,则称函数f(x)为“美丽函数”.下列所给出的五个函数:①y=x2;②y=;③f(x)=ln(2x+3);④y=2x-2-x;⑤y=2sinx-1.其中是“美丽函数”的序号有________.世纪金榜导学号46854300 【解析】由“美丽函数”的定义知,若f(x)为“美丽函数”,则f(x)的值域与-f(x)的值域相同.给出的5个函数中,只有②③④符合.答案:②③④关闭Word文档返回原板块。

2018年高三年级数学二轮复习-数列专题及答案解析

2018年高三年级数学二轮复习-数列专题及答案解析

2018届高三第二轮复习——数列第1讲等差、等比考点【高 考 感 悟】从近三年高考看,高考命题热点考向可能为:1.必记公式(1)等差数列通项公式:a n =a 1+(n -1)d . (2)等差数列前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)d2.(3)等比数列通项公式:a n a 1qn -1.(4)等比数列前n 项和公式:S n =⎩⎪⎨⎪⎧na 1(q =1)a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1).(5)等差中项公式:2a n =a n -1+a n +1(n ≥2). (6)等比中项公式:a 2n =a n -1·a n +1(n ≥2). (7)数列{a n }的前n 项和与通项a n 之间的关系:a n =⎩⎪⎨⎪⎧S 1(n =1)S n -S n -1(n ≥2).2.重要性质(1)通项公式的推广:等差数列中,a n =a m +(n -m )d ;等比数列中,a n =a m qn -m.(2)增减性:①等差数列中,若公差大于零,则数列为递增数列;若公差小于零,则数列为递减数列. ②等比数列中,若a 1>0且q >1或a 1<0且0<q <1,则数列为递增数列;若a 1>0且0<q <1或a 1<0且q >1,则数列为递减数列. 3.易错提醒(1)忽视等比数列的条件:判断一个数列是等比数列时,忽视各项都不为零的条件. (2)漏掉等比中项:正数a ,b 的等比中项是±ab ,容易漏掉-ab .【 真 题 体 验 】1.(2015·新课标Ⅰ高考)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172 B.192C .10D .12 2.(2015·新课标Ⅱ高考)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12 D.183.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=__________,d =________.4.(2016·全国卷1)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式;(II )求{}n b 的前n 项和.【考 点 突 破 】考点一、等差(比)的基本运算1.(2015·湖南高考)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.2.(2015·重庆高考)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .考点二、等差(比)的证明与判断【典例1】( 2017·全国1 )记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。

2018版全国高考数学第2轮复习 第二篇 熟练规范 中档大题保高分 第21练 三角函数的图象与性质 文

2018版全国高考数学第2轮复习 第二篇 熟练规范 中档大题保高分 第21练 三角函数的图象与性质 文

1234
解答
3.已知函数 f(x)=4cos ωxsinωx-π6(ω>0)的最小正周期是 π. (1)求函数f(x)在区间(0,π)上的单调递增区间;
1234
解答
(2)求 f(x)在π8,38π上的最大值和最小值.
解 当 x∈π8,38π时,2x∈π4,34π,
规范解答·评分标准
解 f(x)=m·n=cos ωxsin ωx+ 3cos(ωx+π)cos ωx=cos ωxsin ωx- 3cos ωxcos ωx
=sin 22ωx-
3cos
22ωx+1=sin2ωx-π3-
3 2.
3分
∵f(x)相邻两条对称轴之间的距离为π2,
∴T=π,∴ω=1,∴f(x)=sin2x-π3-
2- 3 因此 f(x)的最小正周期为 π,最大值为 2 .
1234
解答
(2)讨论 f(x)在π6,23π上的单调性. 解 当 x∈π6,23π时,0≤2x-π3≤π, 从而当 0≤2x-π3≤π2,即π6≤x≤51π2时,f(x)单调递增; 当π2≤2x-π3≤π,即51π2≤x≤23π时,f(x)单调递减. 综上可知,f(x)在π6,51π2上单调递增,在51π2,23π上单调递减.
研透考点 核心考点突破练
考点一 三角函数的最值问题
方法技巧 求解三角函数最值的常用方法 (1)有界性法:将 y=asin x+bcos x+c 化为 y= a2+b2sin (x+φ)+c.然后 利用正弦函数的有界性求解. (2)换元法:对于y=asin2x+bsin x+c(或y=asin xcos x+b(sin x±cos x)+c) 型的函数最值,可设t=sin x(或t=sin x±cos x). (3)利用数形结合或单调性.

2018届高三数学理二轮复习高考小题专攻练 4 含解析

2018届高三数学理二轮复习高考小题专攻练 4 含解析

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

高考小题专攻练4.数列小题强化练,练就速度和技能,掌握高考得分点!一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=( )A.-1B.1C.3D.7【解析】选B.因为a1+a3+a5=105,即3a3=105,所以a3=35.同理可得a4=33,所以公差d=a4-a3=-2,所以a20=a4+(20-4)×d=1.2.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1等于( )A.错误!未找到引用源。

B.-错误!未找到引用源。

C.错误!未找到引用源。

D.-错误!未找到引用源。

【解析】选 C.设等比数列{a n}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,所以q2=9,又a5=a1q4=9,所以a1=错误!未找到引用源。

.3.在等比数列{a n}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是( )A.错误!未找到引用源。

B.-错误!未找到引用源。

C.±错误!未找到引用源。

D.±3【解析】选A.依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6=错误!未找到引用源。

=错误!未找到引用源。

.4.等差数列{a n}中,a1>0,公差d<0,S n为其前n项和,对任意自然数n,若点(n,S n)在以下4条曲线中的某一条上,则这条曲线应是( )【解析】选C.因为S n=na1+错误!未找到引用源。

d,所以S n=错误!未找到引用源。

【全国通用-2018高考推荐】最新高考总复习数学(文)二轮复习模拟试题答案解析版

【全国通用-2018高考推荐】最新高考总复习数学(文)二轮复习模拟试题答案解析版

2018年高考数学二模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)设集合A={x|(x﹣1)(x﹣2)≤0},集合B={x|x|<1},则A∪B=()A.∅B.{x|x=1} C.{x|1≤x≤2} D.{x|﹣1<x≤2}【考点】:并集及其运算.【专题】:集合.【分析】:求出集合的等价条件,根据集合的基本运算进行求解即可.【解析】:解:A={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},由B={x|x|<1}得{x|﹣1<x<1},则A∪B={x|﹣1<x≤2},故选:D【点评】:本题主要考查集合的基本运算,比较基础.2.(5分)在如图所示的正方形中随机掷一粒豆子,豆子落在该正方形内切圆的四分之一圆(如图阴影部分)中的概率是()A.B.C.D.【考点】:几何概型.【专题】:概率与统计.【分析】:设正方形的边长,求出面积以及内切圆的四分之一圆面积,利用几何概型求概率.【解析】:解:设正方形的边长为2,则面积为4;圆与正方形内切,圆的半径为1,所以圆的面积为π,则阴影部分的面积为,所以所求概率为P==.故选:C.【点评】:本题考查了几何概型概率的求法,属于基础题.3.(5分)实数x,y满足不等式组,则目标函数z=x+3y的最小值是()A.﹣12 B.﹣8 C.﹣4 D.0【考点】:简单线性规划.【专题】:不等式的解法及应用.【分析】:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解析】:解:由约束条件作出可行域如图,化目标函数z=x+3y为,由图可知,当直线过A(﹣2,2)时,直线在y轴上的截距最小,z有最小值为﹣8.故选:B.【点评】:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.4.(5分)已知非零平面向量,,则“与共线”是“+与﹣共线”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】:平行向量与共线向量.【专题】:平面向量及应用.【分析】:设出两个命题,利用充分必要条件的定义对p⇒q,q⇒p分别进行判断.【解析】:解:设命题q:“与共线”,设命题“+与﹣共线”,显然命题q成立时,命题p成立,所以q是P成立的充分条件;当“+与﹣共线”时,根据共线的定义有+=λ(﹣),则,由于非零平面向量,,所以λ=±1,那么,所以与共线,所以q是p 必要条件;综上可得,q是p的充要条件;故选:C.【点评】:本题考查了共线向量以及充分必要条件的判断,关键是判断条件与结论的关系.5.(5分)执行如图所示的程序框图,输出S的值为()A.0 B.﹣1 C.﹣D.﹣【考点】:程序框图.【专题】:图表型;算法和程序框图.【分析】:模拟执行程序框图,依次写出每次循环得到的S,n的值,当n=7时n大于5退出循环,输出S的值为0.【解析】:解:模拟执行程序框图,可得S=0,n=1S=,n=3,n不大于5S=﹣,n=5,n不大于5S=0,n=7,n大于5退出循环,输出S的值为0,故选:A.【点评】:本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,n的值是解题的关键,属于基础题.6.(5分)函数f(x)=的零点个数是()A.0 B.1 C. 2 D. 3【考点】:函数零点的判定定理.【专题】:计算题;作图题;函数的性质及应用.【分析】:作函数f(x)=的图象,利用数形结合求解.【解析】:解:作函数f(x)=的图象如下,由图象可知,函数f(x)=的零点个数是2,故选:C.【点评】:本题考查了学生的作图与用图的能力,属于基础题.7.(5分)已知点A为抛物线C:x2=4y上的动点(不含原点),过点A的切线交x轴于点B,设抛物线C的焦点为F,则△ABF()A.一定是直角B.一定是锐角C.一定是钝角D.上述三种情况都可能【考点】:抛物线的简单性质.【专题】:综合题;圆锥曲线的定义、性质与方程.【分析】:求导数,确定过A的切线方程,可得B的坐标,求出=(x0,),=(﹣x0,1),可得•=0,即可得出结论.【解析】:解:由x2=4y可得y=x2,∴y′=x,设A(x0,),则过A的切线方程为y﹣=x0(x﹣x0),令y=0,可得x=x0,∴B(x0,0),∵F(0,1),∴=(x0,),=(﹣x0,1),∴•=0,∴∠ABF=90°,故选:A.【点评】:本题考查直线与抛物线的位置关系,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.8.(5分)已知某校一间办公室有四位老师甲、乙、丙、丁.在某天的某个时段,他们每人各做一项工作,一人在查资料,一人在写教案,一人在批改作业,另一人在打印材料.若下面4个说法都是正确的:①甲不在查资料,也不在写教案;②乙不在打印材料,也不在查资料;③丙不在批改作业,也不在打印材料;④丁不在写教案,也不在查资料.此外还可确定:如果甲不在打印材料,那么丙不在查资料.根据以上信息可以判断()A.甲在打印材料B.乙在批改作业C.丙在写教案D.丁在打印材料【考点】:进行简单的合情推理.【专题】:简易逻辑.【分析】:若甲不在打印资料,则丙不在查资料,则甲在改作业,丙只能写教案,乙不管是写教案还是改作业都与甲或丙在做一样的事,与题设矛盾,从而得解.【解析】:解:把已知条件列表如下:若甲不在打印资料,则丙不在查资料,则甲在改作业,丙只能写教案,乙不管是写教案还是改作业都与甲或丙在做一样的事,与题设矛盾.所以甲一定在打印资料,此时丁在改作业,乙在写教案,丙在查资料.故选:A.【点评】:这是一个典型的逻辑推理应用题,解题方法是由确定项开始用排除法,逐个推论确定各自的正确选项,最终解决问题.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.(5分)设i为虚数单位,则i(1﹣i)= 1+i .【考点】:复数代数形式的乘除运算.【专题】:数系的扩充和复数.【分析】:直接利用复数代数形式的乘法运算化简求值.【解析】:解:i(1﹣i)=i﹣i2=1+i.故答案为:1+i.【点评】:本题考查了复数代数形式的乘法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)若中心在原点的双曲线C的一个焦点是F1(0,﹣2),一条渐近线的方程是x﹣y=0,则双曲线C的方程为﹣=1 .【考点】:双曲线的简单性质.【专题】:计算题;圆锥曲线的定义、性质与方程.【分析】:设双曲线的方程为﹣=1(a,b>0)则c=2,由渐近线方程y=±x,可得a=b,再由a,b,c的关系,解得a,b,进而得到双曲线方程.【解析】:解:设双曲线的方程为﹣=1(a,b>0)则c=2,由渐近线方程y=±x,由题意可得a=b,又c2=a2+b2,解得a=b=2,则双曲线的方程为﹣=1.故答案为:﹣=1.【点评】:本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程,属于基础题.11.(5分)一个四棱锥的三视图如图所示,则这个四棱锥的体积为;表面积为3+.【考点】:由三视图求面积、体积.【专题】:计算题;作图题;空间位置关系与距离.【分析】:由题意作出其直观图,从而求体积及表面积即可.【解析】:解:由题意可知,其直观图如下,其底面为正方形,S=1×1=1,高为2;故V=×1×2=;其表面积S=1+(2+2+)=3+;故答案为:,3+.【点评】:本题考查了学生的空间想象力与作图能力,属于基础题.12.(5分)已知在△ABC中,C=,cosB=,AB=5,则sinA= ;△ABC的面积为14 .【考点】:正弦定理.【专题】:解三角形.【分析】:由C=,cosB=,可得sinC=cosC=,sinB=,sinA=sin(B+C)=sinBcosC+cosBsinC.由正弦定理可得:,可得b=,再利用三角形面积计算公式即可得出.【解析】:解:∵C=,cosB=,∴sinC=cosC=,sinB==.∴sinA=sin(B+C)=sinBcosC+cosBsinC==.由正弦定理可得:,可得b===4,∴S=×=14.故答案分别为:,14.【点评】:本题考查了正弦定理的应用、同角三角函数基本关系式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.13.(5分)在圆C:(x﹣2)2+(y﹣2)2=8内,过点P(1,0)的最长的弦为AB,最短的弦为DE,则四边形ADBE的面积为4.【考点】:圆的切线方程.【专题】:直线与圆.【分析】:由圆的知识可知过(1,0)的最长弦为直径,最短弦为过(1,0)且垂直于该直径的弦,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可.【解析】:解:圆的标准方程为(x﹣2)2+(y﹣2)2=8,由题意得最长的弦|AB|=4,圆心(2,2),圆心与点(1,0)的距离d==,根据勾股定理得最短的弦|DE|=2=2=2,且AB⊥DE,四边形ABCD的面积S=|AB|•|DE|=×4×2=4,故答案为:4.【点评】:本题考查学生灵活运用几何知识决数学问题的能力,掌握对角线垂直的四边形的面积计算方法为对角线乘积的一半是解决问题的关键,属中档题.14.(5分)关于函数f(x)=的性质,有如下四个命题:①函数f(x)的定义域为R;②函数f(x)的值域为(0,+∞);③方程f(x)=x有且只有一个实根;④函数f(x)的图象是中心对称图形.其中正确命题的序号是①③④.【考点】:命题的真假判断与应用;函数的定义域及其求法;函数的值域;函数的图象.【专题】:简易逻辑.【分析】:直接利用函数的定义域、值域判断①②的正误;利用函数的零点与函数的图象的关系判断③的正误;利用函数的对称性判断④的正误;【解析】:解:对于①,函数f(x)=的定义域为R;所以①正确;对于②,函数f(x)的值域为(0,+∞);显然不正确,因为函数减函数函数的值域是:(),所以②不正确;对于③方程f(x)=x有且只有一个实根;如图,作出两个是的图象,可知可知方程只有一个根,所以③正确;对于④,函数f(x)的图象是中心对称图形.因为f(x+1)+f(﹣x)=,==,∴f(x)关于()对称,所以④正确.故答案为:①③④.【点评】:本题考查函数的简单性质的应用,函数的零点的判断,考查数形结合以及基本知识的应用,考查逻辑推理能力.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=cosx(2sinx+cosx)﹣sin2x.(Ⅰ)求函数f(x)在区间[,π]上的最大值及相应的x的值;(Ⅱ)若f(x0)=2,且x0∈(0,2π),求x0的值.【考点】:三角函数中的恒等变换应用;正弦函数的图象.【专题】:计算题;三角函数的求值.【分析】:(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=2sin(2x+),由x∈[,π],可求sin(2x+)∈[﹣1,],从而可求当且仅当2x+=,即x=π时,f(x)max=1.(Ⅱ)由题意,2sin(2x0+)=2,又x0∈(0,2π),可得2x0+∈(,),即可解得x0的值.【解析】:解:(Ⅰ)f(x)=cosx(2sinx+cosx)﹣sin2x=cosx(2sinx+cosx)﹣sin2x=2sinxcosx+cos2x﹣sin2x=sin2x+cos2x=2sin(2x+),∵x∈[,π],∴2x+∈[,],∴sin(2x+)∈[﹣1,],∴当且仅当2x+=,即x=π时,f(x)max=1;…8分(Ⅱ)由题意,2sin(2x0+)=2,所以sin(2x0+)=1,又x0∈(0,2π),所以2x0+∈(,),所以2x0+=或2x0+=,所以x0=或x0=.…13分【点评】:本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.16.(13分)已知递增的等差数列{a n}(n∈N*)的前三项之和为18,前三项之积为120.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若点A1(a1,b1),A2(a2,b2),…,A n(a n,b n)(n∈N*)从左至右依次都在函数y=3的图象上,求这n个点A1,A2,A3,…,A n的纵坐标之和.【考点】:数列的求和.【专题】:等差数列与等比数列.【分析】:(Ⅰ)通过前三项之和、前三项之积可得公差及首项,根据公式计算即可;(Ⅱ)根据题意及(I),可得=9,问题转化为求首项为3、公比为9的等比数列{b n}的前n项和,计算即可.【解析】:解:(Ⅰ)设数列{a n}的公差为d,∵前三项之和为18,∴a2=6,a1=6﹣d,a3=6+d,又∵前三项之积为120,∴(6﹣d)×6×(6+d)=120,解得d=4或﹣4(舍),∴a1=6﹣4=2,∴a n=4n﹣2;(Ⅱ)根据题意及(I),可得b n=32n﹣1,∴求这n个点A1,A2,A3,…,A n的纵坐标之和即为数列{b n}的前n项和T n,∵=9,b1=32×1﹣1=3,∴数列{b n}是首项为3、公比为9的等比数列,∴T n==(9n﹣1).【点评】:本题考查等差中项的性质,求通项及前n项和,注意解题方法的积累,属于中档题.17.(13分)某学科测试,要求考生从A,B,C三道试题中任选一题作答.考试结束后,统计数据显示共有420名学生参加测试,选择A,B,C题作答的人数如表:(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从420份试卷中抽出若干试卷,其中从选择A题作答的试卷中抽出了3份,则应从选择B,C题作答的试卷中各抽出多少份?(Ⅱ)若在(Ⅰ)问被抽出的试卷中,选择A,B,C题作答得优的试卷分别有2份,2份,1份.现从被抽出的选择A,B,C题作答的试卷中各随机选1份,求这3份试卷都得优的概率.【考点】:列举法计算基本事件数及事件发生的概率.【专题】:概率与统计.【分析】:(Ⅰ)根据分层抽样即可得到应从选择B,C题作答的试卷中各抽出得份数;(Ⅱ)记(Ⅰ)中抽取得选择A题作答的试卷分别为a1,a2,a3,其中a1,a2得优,选择B题作答的试卷分别为b1,b2,其中b1,b2得优,选择C题作答的试卷分别为c1,c2其中c1得优,一一列举出所有得结果,再找到满足条件的基本结果,根据概率公式计算即可.【解析】:解(Ⅰ)由题意可得,试卷的抽出比例为=,所以应从选择B题作答试卷中抽取2份,从选择C题作答试卷中抽出2份,(Ⅱ)记(Ⅰ)中抽取得选择A题作答的试卷分别为a1,a2,a3,其中a1,a2得优,选择B题作答的试卷分别为b1,b2,其中b1,b2得优,选择C题作答的试卷分别为c1,c2其中c1得优,从三种试一份卷中分别抽取所有得结果如下,{a1,b1,c1},{a1,b1,c2},{a1,b2,c1},{a1,b2,c2},{a2,b1,c1},{a2,b1,c2},{a2,b2,c1},{a2,b2,c2},{a3,b1,c1},{a3,b1,c2},{a3,b2,c1},{a3,b2,c2},所以结果共有12种可能,其中3份都得优得有{a1,b1,c1},{a1,b2,c1},{a2,b1,c1},{a2,b2,c1},共4种,故这3份试卷都得优的概率P==.【点评】:本题考查了分层抽样和古典概率的问题,关键是不重不漏的列举所有得基本事件,属于基础题.18.(14分)如图,在矩形ABCD中,AB=2AD,M为CD的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.点O是线段AM的中点.(Ⅰ)求证:平面DOB⊥平面ABCM;(Ⅱ)求证:AD⊥BM;(Ⅲ)过D点是否存在一条直线l,同时满足以下两个条件:①l⊂平面BCD;②l∥AM.请说明理由.【考点】:平面与平面垂直的判定;空间中直线与直线之间的位置关系.【专题】:空间位置关系与距离.【分析】:(Ⅰ)根据面面垂直的判定定理进行判断即可证明平面DOB⊥平面ABCM;(Ⅱ)根据线面垂直的性质定理即可证明AD⊥BM;(Ⅲ)利用反证法结合线面平行的性质进行证明.【解析】:证明:(Ⅰ)由已知DA=DM,O是AM的中点,∴DO⊥AM,∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,DO⊂平面DOB,∴平面DOB⊥平面ABCM;(Ⅱ)在矩形ABCD中,AB=2AD,M为CD的中点,∴AM=BM=AD=AB,∴AM⊥BM,由(1)知,DO⊥平面ABCM;∵BM⊂平面ABCM,∴DO⊥BM,∵DO,AM⊂平面ADM,DO∩AM=0,∴BM⊥平面ADM,而AD⊂平面ADM,∴AD⊥BM;(Ⅲ)过D点是不存在一条直线l,同时满足以下两个条件:①l⊂平面BCD;②l∥AM.证明(反证法)假设过D存在一条直线l满足条件,则∵l∥AM,L⊄平面ABCM,AM⊂平面ABCM,∴l∥平面ABCM,∵l⊂平面BCD,平面ABCM∩平面BCD=BC,∴l∥BC,即AM∥BC,由图易知,AM,BC相交,此时矛盾,∴过D点不存在一条直线l满足题设条件.【点评】:本题主要考查空间直线和平面平行,垂直以及面面垂直的判定,利用相应的判定定理是解决本题的关键.19.(14分)已知椭圆C:+y2=1,O为坐标原点,直线l与椭圆C交于A,B两点,且∠AOB=90°.(Ⅰ)若直线l平行于x轴,求△AOB的面积;(Ⅱ)若直线l始终与圆x2+y2=r2(r>0)相切,求r的值.【考点】:椭圆的简单性质.【专题】:向量与圆锥曲线;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.【分析】:(Ⅰ)由题意设出A,B两点的坐标,结合∠AOB=90°,得,进一步得到A的横纵坐标的关系,代入椭圆方程求得坐标,得到B的坐标,然后代入三角形的面积公式得答案;(Ⅱ)当直线l的斜率存在时,设其方程为y=kx+m,联立方程组,得到关于x的一元二次方程,写出判别式大于0,再由根与系数关系得到A,B两点横纵坐标的和与积,代入x1x2+y1y2=0得到m与k的关系,结合判别式大于0求得m的范围,再由直线l始终与圆x2+y2=r2(r>0)相切,得到圆的半径与m的关系,从而求得r的值,当直线l的斜率不存在时,由直线l与圆x2+y2=r2(r>0)相切直接求得r的值,则r值可求.【解析】:解:(Ⅰ)不妨设直线l在x轴上方,则A,B两点关于y轴对称,设A(x1,y1),B(﹣x1,y1),(x1<0,y1>0),则,由∠AOB=90°,得,∴.又∵点A在椭圆上,∴.由于x1<0,解得:.则A(),B().∴.(Ⅱ)当直线l的斜率存在时,设其方程为y=kx+m,设A(x1,y1),B(x2,y2),联立方程组,整理得:(4k2+1)x2+8kmx+4m2﹣4=0.方程的判别式△=4k2﹣m2+1>0,.由∠AOB=90°,得,即x1x2+y1y2=0.而y1y2=(kx1+m)(kx2+m),则+m2=0∴.整理得:5m2﹣4k2﹣4=0.把4k2=5m2﹣4代入△=4k2﹣m2+1>0,得.而4k2=5m2﹣4≥0,∴,满足.直线l始终与圆x2+y2=r2(r>0)相切,得,由,得.∵r>0,∴r=.当直线l的斜率不存在时,若直线l与圆x2+y2=r2(r>0)相切,此时直线l的方程为:x=,r=.综上所述:r=.【点评】:本题考查了向量在解圆锥曲线问题中的应用,考查了直线与圆锥曲线,圆与圆锥曲线的位置关系,涉及直线和圆锥曲线的位置关系问题,常采用联立直线和圆锥曲线,利用一元二次方程的根与系数关系求解,特点是运算量大,要求考生具有较强的运算能力,是压轴题.20.(13分)已知函数f(x)=asinx+cosx,其中a>0.(Ⅰ)当a≥1时,判断f(x)在区间[0,]上的单调性;(Ⅱ)当0<a<1时,若不等式f(x)<t2+at+2对于x∈[0,]恒成立,求实数t的取值范围.【考点】:三角函数中的恒等变换应用;正弦函数的图象.【专题】:导数的概念及应用;三角函数的求值.【分析】:(Ⅰ)由题意求导数可得f′(x)≥0,可得f(x)在区间[0,]上单调递增;(Ⅱ)由f′(x)=0可得方程a=tanx在(0,)上必有一根,记为x0,易得∴f(x)max=f(x0)=(a2+1)cosx0=,问题转化为(t﹣2)a+(t2+2)>0当0<a<1时恒成立,构造函数h(a)=(t﹣2)a+(t2+2),可得,解不等式组可得答案.【解析】:解:(Ⅰ)∵a≥1,x∈[0,],∴f′(x)=acosx﹣sinx≥cosx﹣sinx≥0,∴f(x)在区间[0,]上单调递增;(Ⅱ)令f′(x)=0可得acosx=sinx,∵x∈[0,],∴cosx≠0,∴a=tanx,∵0<a<1,∴tanx∈(0,1),∵函数y=tanx在(0,)上单调递增,∴方程a=tanx在(0,)上必有一根,记为x0,则f′(x0)=acosx0﹣sinx0=0,∵f′(x)=acosx﹣sinx在x∈[0,]上单调递减,∴当x∈(0,x0)时,f′(x)>f′(x0)=0,当x∈(x0,)时,f′(x)<f′(x0)=0,∴函数f(x)在(0,x0)单调递增,在(x0,)单调递减,∴f(x)max=f(x0)=asinx0﹣cosx0,又∵acosx0=sinx0,cos2x0+sin2x0=1,∴(a2+1)cos2x0=1,∴cos2x0=,∴f(x)max=f(x0)=(a2+1)cosx0=∵当0<a<1时,若不等式f(x)<t2+at+2对于x∈[0,]恒成立,∴<t2+at+2,即(t﹣2)a+(t2+2)>0当0<a<1时恒成立,令h(a)=(t﹣2)a+(t2+2),则,解不等式组可得t≤﹣1或t≥0【点评】:本题考查三角函数恒等变换,涉及导数法判函数的单调性和恒成立问题,属中档题.。

2018届高三二轮复习数学(文)(人教版)高考大题专攻练:(三)Word版含解析

2018届高三二轮复习数学(文)(人教版)高考大题专攻练:(三)Word版含解析

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

高考大题专攻练3.数列(A组)大题集训练,练就慧眼和规范,占领高考制胜点!1.设数列的前n项和为S n,对任意的正整数n,都有a n=5S n+1成立,b n=-1-log2,数列的前n项和为T n,c n=. 世纪金榜导学号46854417[来源:](1)求数列的通项公式与数列前n项和A n.(2)对任意正整数m,k,是否存在数列中的项a n,使得≤32a n成立?若存在,请求出正整数n的取值集合,若不存在,请说明理由.【解析】(1)因为a n=5S n+1,令n=1?a1=-,由得,a n+1=-a n,所以等比数列{a n}的通项公式a n=,b n=-1-log2|a n|=2n-1,==-,所以A n=1-=.(2)存在.因为a n=?S n==-.所以S1=-,S2=-,当n为奇数,S n=-单增,n为偶数,S n=-单减,所以(S n)min=-,(S n)max=-,[来源:学科网ZXXK][来源:学_科_网]设对任意正整数m,k,存在数列{a n}中的项,使得|S m-S k|≤32a n成立, 即(S n)max-(S n)min==≤32a n=32·,解得:n∈{2,4}. 2.已知数列{a n}满足a1=1,a n+1=1-,其中n∈N*.(1)设b n=,求证:数列{b n}是等差数列,并求出{a n}的通项公式a n.(2)设c n=,数列{c n c n+2}的前n项和为T n,是否存在正整数m,使得T n<对于n∈N*恒成立,若存在,求出m的最小值,若不存在,请说明理由.【解析】(1)因为b n+1-b n=-=-=-=2,所以数列{b n}是公差为2的等差数列,又b1==2,所以b n=2+(n-1)×2=2n.所以2n=,解得a n=.(2)存在.由(1)可得c n==,所以c n c n+2=×=2,[来源:学科网]所以数列{c n c n+2}的前n项和为T n=2[+++…+(-)+(-)][来源:学§科§网Z§X§X§K]=2<3.要使得T n<对于n∈N*恒成立,只要3≤,即≥3,解得m≥3或m≤-4,而m>0,故m的最小值为 3.关闭Word文档返回原板块。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考小题标准练(六)
满分80分,实战模拟,40分钟拿下高考客观题满分!
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.若集合A={x|3+2x-x2>0},集合B={x|2x<2},则A∩B等于( )
A.(1,3)
B.(-∞,-1)
C.(-1,1)
D.(-3,1)
【解析】选C.因为A=(-1,3),B=(-∞,1),所以A∩B=(-1,1).
2.若复数z=+a在复平面上对应的点在第二象限,则实数a可以是( )
A.-4
B.-3
C.1
D.2
【解析】选A.若z=+a=(3+a)-ai在复平面上对应的点在第二象限,则a<-3.
3.已知平面向量a,b的夹角为,且a·(a-b)=8,|a|=2,则|b|等于( )
A. B.2 C.3 D.4
【解析】选 D.因为a·(a-b)=8,所以a·a-a·b=8,即
|a|2-|a||b|·cos<a,b>=8,所以4+2|b|×=8,解得|b|=4.
4.已知x,y取值如表: 世纪金榜导学号46854325
从所得的散点图分析可知:y与x线性相关,且=0.95x+,则等于
( )
A.1.30
B.1.45
C.1.65
D.1.80
【解析】选B.根据题意=4,=5.25,样本点中心(4,5.25)代入回归直线方程,可知=1.45.
5.已知sin cos+cos sin=,则cosx等于( )
A. B.- C. D.±
【解析】选B.sin cos+cos sin=
sin=-cosx=,即cosx=-.
6.设f=且f=4,则f等于( )
A.1
B.2
C.3
D.4
【解析】选C.因为f=4,即a2=4,a=±2,又因为a是底数,所以a=-2舍去,所以a=2,所以f=log28=3,故选C.
7.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程是( )
A.(x+1)2+y2=2
B.(x+1)2+y2=8
C.(x-1)2+y2=2
D.(x-1)2+y2=8
【解析】选A.直线x-y+1=0与x轴的交点为即(-1,0). 根据题意,圆心为(-1,0).
因为圆C与直线x+y+3=0相切,所以半径为圆心到切线的距离,即
r=d==,
则圆的方程为(x+1)2+y2=2.
8.如图是一个几何体的三视图,在该几何体的各个面中,面积最小的面的面积为
( )
A.4
B.4
C.4
D.8
【解析】选B.由三视图可知,该几何体的直观图如图所示,
面积最小的面为面VAB,S△VAB=×2×4=4.
9.如图是一个程序框图,若输出i的值为5,则实数m的值可以是
( )
A.3
B.4
C.5
D.6
【解析】选B.S=2,i=2,2≤2m;S=6,i=3,6≤3m;S=13,i=4,13≤4m;
S=23,i=5,23>5m,此时程序结束,则≤m<,故选B.
10.《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半.问何日相逢,各穿几何?题意是:有两只老鼠从墙的两边打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,如果墙足够厚,S n为前n天两只老鼠打洞长度之和,则S5= 世纪金榜导学号46854326( )
A.31
B.32
C.33
D.26
【解析】选 B.大老鼠、小老鼠每天打洞尺数分别构成等比数列
,,公比分别为2,,首项都为1,所以
S5=+=32.故选B.
11.已知双曲线-=1(a>0,b>0)的右焦点为F,直线x=a与双曲线的渐近线在第一象限的交点为A,且直线AF与双曲线的一条渐近线关于直线y=b对称,则双曲线的离心率为( )
世纪金榜导学号46854327 A. B.3 C.2 D.
【解析】选C.易得点A坐标为(a,b),因为直线AF与双曲线的一条渐近线关于直线y=b对称,所以直线AF的斜率为-,即=-⇒=2.
12.若函数f=-x2+x+1在区间上单调递减,则实数a的取值范围是
( )
世纪金榜导学号46854328 A. B.
C. D.
【解析】选C.f′(x)=x2-ax+1,由题设知x2-ax+1≤0在上恒成立,
故即a≥.
二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)
13.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是________.
【解析】假设乙是罪犯,那么甲和丙的供词是真话,乙和丁的供词是假话,符合题意;
假设丙是罪犯,那么说真话的就有甲、乙、丁三人;
假设丁是罪犯,那么说真话的只有甲;
假设甲是罪犯,那么说真话的只有丙.后面三个假设都与题目要求不符合,假设不成立,故罪犯是乙.
答案:乙
14.已知区域M:定点A(3,1),在M内任取一点P,使得|PA|≥的概率为________.
【解析】如图,区域M表示边长为2的正方形,其面积为22=4.
满足|PA|<的点P在以点A(3,1)为圆心,为半径的圆内(阴影部分).
连接AB,AC,由|AB|=|AC|==,|BC|=2,知AB⊥AC,
则S阴影=×2-××=-1.
故在M内任取一点P,使得|PA|<的概率为p==-.
故所求的概率为1-p=1-+=-.
答案:-
15.已知等比数列{a n}为递增数列,a1=-2,且3(a n+a n+2)=10a n+1,则公比q=______.
世纪金榜导学号46854329 【解析】因为等比数列{a n}为递增数列,且a1=-2<0,所以公比0<q<1,又因为3(a n+a n+2)=10a n+1,两边同除a n可得3(1+q2)=10q,即3q2-10q+3=0,
解得q=3或q=,而0<q<1,所以q=.
答案:
16.设向量a=(a1,a2),b=(b1,b2),定义一种向量积a⊗b=(a1b1,a2b2),已
知向量m=,n=,点P(x,y)在y=sinx的图象上运动.Q是函数y=f(x)图象上的点,且满足=m⊗+n(其中O为坐标原点),则函数y=f(x)的值域是________.
世纪金榜导学号46854330 【解析】令Q(c,d),由新的运算可得
=m⊗+n=+
=,
即消去x得d=sin,
所以y=f(x)=sin,
易知y=f(x)的值域为
答案:
关闭Word文档返回原板块。

相关文档
最新文档