2010年全国高考数学真题

合集下载

(完整)2010年全国高考数学试题及答案-全国2卷,推荐文档

(完整)2010年全国高考数学试题及答案-全国2卷,推荐文档

(完整)2010年全国高考数学试题及答案-全国2卷,推荐文档绝密★启用前2010年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么球的表面积公式(+)()+()P A B P A P B = S=4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径()()()P A B P A P B ?=? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34V R 3π= n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径P ()(1)(0,1,2,,)k k n k n n k C p p k n -=-=L一、选择题(1)设全集{}*U 6x N x =∈<,集合{}{}A 1,3B 3,5==,,则U ()A B =U e()(A){}1,4 (B){}1,5 (C){}2,4 (D){}2,5(2)不等式302x x -<+的解集为()(A){}23x x -<< (B){}2x x <-(C){}23x x x <->或(D){}3x x >(3)已知2sin 3α=,则cos(2)πα-= (A) 53- (B) 19- (C) 19(D) 53 (4)函数1ln(1)(1)y x x =+->的反函数是(A) 11(0)x y ex +=-> (B) 11(0)x y e x -=+> (C) 11(R)x y e x +=-∈ (D) 11(R)x y e x -=+∈ (5) 若变量,x y 满足约束条件1325x y x x y ≥-??≥??+≤?,则2z x y =+的最大值为(A) 1 (B) 2 (C) 3 (D)4(6)如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +…+7a =(A) 14 (B) 21 (C) 28 (D)35(7)若曲线2y x ax b =++在点(0,)b 处的切线方程式10x y -+=,则(A )1,1a b == (B )1,1a b =-=(C )1,1a b ==- (D )1,1a b =-=-(8)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA=3,那么直线AB 与平面SBC 所成角的正弦值为(A )3 (B )5 (C )7 (D ) 34(9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有(A )12种(B )18种(C )36种(D )54种(10)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB a =,CA b =,1,2a b ==,则CD =(A )1233a b + (B )2233a b + (C )3455a b + (D )4355a b + (11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个(B )有且只有2个(C )有且只有3个(D )有无数个(12)已知椭圆C :22x a +22by =1(0)a b >>的离心率为23,过右焦点F 且斜率为k (k >0)的直线与C 相交于A 、B 两点,若AF =3FB ,则k = (A )1(B )2 (C )3 (D )2第Ⅱ卷(非选择题)二.填空题:本大题共4小题,每小题5分,共20分。

2010年全国统一高考数学试卷(文科)(全国新课标)

2010年全国统一高考数学试卷(文科)(全国新课标)

2010年全国统一高考数学试卷(文科)(全国新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010?全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}2.(5分)(2010?全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)(2010?全国新课标)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)(2010?全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+25.(5分)(2010?全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)(2010?全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)(2010?全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)(2010?全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)(2010?全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}10.(5分)(2010?全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)(2010?全国新课标)已知?ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在?ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)(2010?全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)(2010?全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)(2010?全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)(2010?全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)(2010?全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010?全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)(2010?全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)(2010?全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828附:K2=.20.(10分)(2010?全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.21.(2010?全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)(2010?全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE?CD.23.(10分)(2010?全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)(2010?全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.。

2010高考全国Ⅰ数学试题与答案

2010高考全国Ⅰ数学试题与答案

2010年普通高等学校招生全国统一考试文科数学(必修+选修> 解读版参考公式:如果事件互斥,那么球的表面积公式如果事件相互独立,那么其中R表示球的半径球的体积公式如果事件A在一次实验中发生的概率是,那么次独立重复实验中事件恰好发生次的概率其中R表示球的半径一、选择题(1>(A> (B>- (C> (D>1.C【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识【解读】(2>设全集,集合,,则A.B.C. D.2.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解读】,,则=(3>若变量满足约束条件则的最大值为(A>4 (B>3 (C>2 (D>13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解读】画出可行域<如右图),,由图可知,当直线经过点A(1,-1>时,z最大,且最大值为.<4)已知各项均为正数的等比数列{},=5,=10,则(A>(B> 7 (C> 6 (D>A4.A【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.mmVxZudVti【解读】由等比数列的性质知,10,所以,所以(5>的展开式的系数是(A>-6 (B>-3 (C>0 (D>35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.mmVxZudVti【解读】的系数是 -12+6=-6(6>直三棱柱中,若,,则异面直线与所成的角等于(A>30° (B>45°(C>60° (D>90°6.C【命题意图】本小题主要考查直三棱柱的性质、异面直线所成的角、异面直线所成的角的求法.【解读】延长CA到D,使得,则为平行四边形,就是异面直线与所成的角,又三角形为等边三角形,(7>已知函数.若且,,则的取值范围是(A> (B>(C> (D>7.C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a的取值范围,而利用均值不等式求得a+b=,从而错选D,这也是命题者的用苦良心之处.mmVxZudVti【解读1】因为 f(a>=f(b>,所以|lga|=|lgb|,所以a=b(舍去>,或,所以a+b=又0<a<b,所以0<a<1<b,令由“对勾”函数的性质知函数在(0,1>上为减函数,所以f(a>>f(1>=1+1=2,即a+b的取值范围是(2,+∞>.mmVxZudVti【解读2】由0<a<b,且f(a>=f(b>得:,利用线性规划得:,化为求的取值范围问题,,过点时z最小为2,∴(C> mmVxZudVti<8)已知、为双曲线C:的左、右焦点,点P在C上,∠=,则A BC DA 1B 1C 1D 1O(A>2 (B>4 (C> 6 (D> 88.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.mmVxZudVti 【解读1】.由余弦定理得cos ∠P =4【解读2】由焦点三角形面积公式得:4<9)正方体-中,与平面所成角的余弦值为 <A )<B )<C ) <D )9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 的距离是解决本题的关键所在,这也是转化思想的具体体现.mmVxZudVti 【解读1】因为BB1//DD1,所以B 与平面AC 所成角和DD1与平面AC 所成角相等,设DO⊥平面AC,由等体积法得,即.设DD1=a,mmVxZudVti则,.所以,记DD1与平面AC所成角为,则,所以.【解读2】设上下底面的中心分别为;与平面AC所成角就是B与平面AC所成角,<10)设则<A)<B) (C> (D>10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.mmVxZudVti【解读1】 a=2=, b=In2=,而,所以a<b,c==,而,所以c<a,综上c<a<b.【解读2】a=2=,b=ln2=, ,; c=,∴c<a<b<11)已知圆的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为(A> (B> (C> (D>11.D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.mmVxZudVti 【解读1】如图所示:设PA=PB=,∠APO=,则∠APB=,PO=,,===,令,则,即,由是实数,所以,,解得或.故.此时.【解读2】设,换元:,【解读3】建系:园的方程为,设,<12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为mmVxZudVti(A> (B> (C> (D>12.B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.mmVxZudVti【解读】过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为,则有,当直径通过AB与CD的中点时,,故.mmVxZudVti第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫M黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2010年高考新课标全国卷文科数学试题(附答案)

2010年高考新课标全国卷文科数学试题(附答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}R x x x A ∈≤=,2,{}Z x x xB ∈≤=,4,则A B =(A )(0,2) (B )[0,2] (C ) {}2,0 (D ){}2,1,0(2)a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于(A )865 (B )865- (C )1665 (D )1665- (3)已知复数z =,则||z = (A)14 (B )12(C )1 (D )2 (4)曲线321y x x =-+在点(1,0)处的切线方程为(A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+(5)中心在远点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为(A(B(C(D(6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p ,角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为A B CD(7) 设长方体的长、宽、高分别为2,,a a a ,其顶点都在一个球面上,则该球的表面积为(A )23aπ(B )26aπ(C )212aπ(D )224aπ(8)如果执行右面的框图,输入5N =,则输出的数等于(A )54 (B )45(C )65 (D )56(9)设偶函数()f x 满足)0(42)(>-=x x f x ,则(){}20x f x ->=(A ){}24x x x <->或 (B ){}04x x x <>或 (C ){}06 x x x <>或 (D ){}22 x x x <->或 (10)若4sin 5α=-,α是第三象限的角,则sin()4πα+=(A )-(B(C )(D(11)已知ABCD 的三个顶点为(1,2)A -,(3,4)B ,(4,2)C -,点(,)x y 在ABCD 的内部,则25z x y =-的取值范围是(A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20)(12)已知函数|lg |,010()16,102x x f x x x <⎧⎪=⎨-+>⎪⎩… 若a ,b ,c 均不相等,且()()()f a f b f c ==,则abc 的取值范围是(A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24)第Ⅱ卷本卷包括必考题和选考题两部分。

2010年全国高考文科数学试题及答案(全国1卷)

2010年全国高考文科数学试题及答案(全国1卷)
(A)(1,10)(B)(5,6)(C)(10,12)(D)(20,24)
第Ⅱ卷
二填空题:本大题共4小题,每小题5分。
(13)圆心在原点上与直线 相切的圆的方程为-----------。
(14)设函数 为区间 上的图像是连续不断的一条曲线,且恒有 ,可以用随机模拟方法计算由曲线 及直线 , , 所围成部分的面积,先产生两组 每组 个,区间 上的均匀随机数 和 ,由此得到V个点 。再数出其中满足 的点数 ,那么由随机模拟方法可得S的近似值为___________
设等差数列 满足 , 。
(Ⅰ)求 的通项公式;
(Ⅱ)求 的前 项和 及使得 最大的序号 的值。
(18)(本小题满分12分)
如图,已知四棱锥 的底面为等腰梯形, ∥ , ,垂足为 , 是四棱锥的高。
(Ⅰ)证明:平面 平面 ;
(Ⅱ)若 , 60°,求四棱锥 的体积。
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分。作答时用2B铅笔在答题卡上把所选题目的题号涂黑。
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
附:
K2=
(20)(本小题满分12分)
设 , 分别是椭圆E: + =1(0﹤b﹤1)的左、右焦点,过 的直线 与E相交于A、B两点,且 , , 成等差数列。
(Ⅰ)求
(Ⅱ)若直线 的斜率为1,求b的值。
2010年高校招生考试文数(新课标) 试题及答案
一:选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。
(1)D (2) C (3) D (4) A (5) D (6) C

2010高考数学试卷(全)

2010高考数学试卷(全)

2010年普通高等学校招生全国统一考试文科数学(必修+选修I )第I 卷一、选择题(1)cos300°= (A )32- (B )12- (C )12 (D )32(2)设全集U =(1,2,3,4,5),集合M =(1,4),N =(1,3,5),则N ⋂(C ,M )(A )(1,3) (B )(1,5) (C )(3,5) (D )(4,5)(3)若变量x 、y 满足约束条件 1.0.20.y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则z =x-2y 的最大值为(A )4 (B )3 (C )2 (D )1(4)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=(A )52 (B)7 (C)6 (D)4 2(5)(1-x )2(1-x )3的展开式中x 2的系数是(A)-6 (B )-3 (C)0 (D)3(6)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC=AA 1,则异面直线BA 1与AC 1所成的角等于(A )30° (B)45° (C)60° (D)90°(7)已知函数f (x )= lg x .若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是(A )(1,+∞) (B )[1,+∞] (C)(2,+∞) (D)[2,+∞)(8)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则 1PF ·2PF =(A )2 (B)4 (C)6 (D)8(9)正方体ABCD -A 1BCD 1中,BB 1与平面ACD 1所成角的余弦值为 (A) 23 (B)33 (C) 23 (D) 63 (10)设a =log 3,2,b =ln2,c =125-,则 (A )a <b <c (B)b <c <a (C)c <a <b (D)c <b <a(11)已知圆O 的半径为1,P A 、PB 为该圆的两条切线,A 、B 为两切点,那么PA ·PB 的最小值为(A )-4+2 (B )-3+2 (C )-4+22 (D )-3+22(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB =CD =2,则四面体ABCD 的体积的最大值为(A )233 (B) 433 (C) 23 (D) 8332010年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(13)不等式2232x x x -++>0的解集是 . (14)已知α为第一象限的角,sin α=35,则tan α= . (15)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程种各至少选一门.则不同的选法共有 种.(用数字作答)(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)记等差数列{a n }的前n 项和为S ,设S x =12,且2a 1,a 2,a 3+1成等比数列,求S n .(18)(本小题满分12分)已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a cot A +b cot B ,求内角C .(19)(本小题满分12分)投到某杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用:若两位初审专家都未予通过,则不予录用:若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审. (Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.(20)(本小题满分12分)如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E 为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A—DC—C的大小.(21)(本小题满分12分)已知函数f(x)=3a x4-2(3a+2)x2+4x.(Ⅰ)当a=16时,求f(x)的极值;(Ⅱ)若f(x)在(-1,1)上是增函数,求a的取值范围.(22)(本小题满分12分)已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直线l与C相交为A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设89FA FB−−→-−−→=,求△BDK的内切圆M的方程.。

绝对经典2010年全国各省高考数学试题经典完整分类汇编

绝对经典2010年全国各省高考数学试题经典完整分类汇编

绝对经典2010年全国各省高考数学试题经典完整分类汇编2010年全国各省高考数学试题经典完整分类汇编——集合与逻辑(2010上海文数)16.“”是“”成立的[答]()(A)充分不必要条件.(B)必要不充分条件.(C)充分条件.(D)既不充分也不必要条件.解析:,所以充分;但反之不成立,如(2010湖南文数)2.下列命题中的假命题是A.B.C.D.【答案】C【解析】对于C选项x=1时,,故选C(2010浙江理数)(1)设P={x︱x<4},Q={x︱<4},则(A)(B)(C)(D),可知B正确,本题主要考察了集合的基本运算,属容易题(2010陕西文数)6.“a>0”是“>0”的 [A](A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件解析:本题考查充要条件的判断,a>0”是“>0”的充分不必要条件(2010陕西文数)1.集合A={x-1≤x≤2},B={xx<1},则A∩B= [D](A){xx<1} (B){x-1≤x≤2}(C){x-1≤x≤1} (D){x-1≤x<1}{x-1≤x≤2}{xx<1}{x-1≤x<1},,则(A)(B)(C)(D)解析:选D.在集合中,去掉,剩下的元素构成(2010辽宁理数)(11)已知a>0,则x0满足关于x的方程ax=6的充要条件是(A)(B)(C)(D)【答案】C【命题立意】本题考查了二次函数的性质、全称量词与充要条件知识,考查了学生构造二次函数解决问题的能力。

【解析】由于a>0,令函数,此时函数对应的开口向上,当x=时,取得最小值,而x0满足关于x的方程ax=b,那么x0==,ymin=,那么对于任意的x∈R,都有≥=(2010辽宁理数)1.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},B∩A={9},则A=(A){1,3}(B){3,7,9}(C){3,5,9}(D){3,9}【答案】D【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn图解决集合问题的能力。

2010年全国统一高考数学试卷(理科)(大纲版ⅰ)(含解析版)

2010年全国统一高考数学试卷(理科)(大纲版ⅰ)(含解析版)

2010 年全国统一高考数学试卷(理科)(大纲版Ⅰ)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)复数=()A.i B.﹣i C.12﹣13i D.12+13i2.(5分)记cos(﹣80°)=k,那么tan100°=()A.B.﹣C.D.﹣3.(5 分)若变量x,y 满足约束条件,则z=x﹣2y 的最大值为()A.4 B.3 C.2 D.14.(5 分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.5.(5分)(1+2)3(1﹣)5的展开式中x 的系数是()A.﹣4 B.﹣2 C.2 D.46.(5分)某校开设A 类选修课3 门,B 类选择课4 门,一位同学从中共选3 门,若要求两类课程中各至少选一门,则不同的选法共有()A.30 种B.35 种C.42 种D.48 种7.(5分)正方体ABCD﹣A1B1C1D1 中,BB1 与平面ACD1 所成角的余弦值为()A.B.C.D.8.(5分)设a=log32,b=ln2,c= ,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a 9.(5 分)已知F1、F2 为双曲线C:x2﹣y2=1 的左、右焦点,点P 在C 上,∠F1PF2=60°,则P 到x 轴的距离为()A.B.C.D.10.(5 分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是()A.B.C.(3,+∞)D.[3,+∞)11.(5 分)已知圆O 的半径为1,PA、PB 为该圆的两条切线,A、B 为两切点,那么的最小值为()A.B.C.D.12.(5 分)已知在半径为2 的球面上有A、B、C、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为()A.B.C.D.二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)不等式的解集是.14.(5 分)已知α为第三象限的角,,则=.15.(5分)直线y=1 与曲线y=x2﹣|x|+a 有四个交点,则a 的取值范围是.16.(5 分)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D,且,则C 的离心率为.三、解答题(共6 小题,满分70 分)17.(10 分)已知△ABC 的内角A,B 及其对边a,b 满足a+b=acotA+bcotB,求内角C.18.(12 分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1 篇稿件被录用的概率;(II)求投到该杂志的4 篇稿件中,至少有2 篇被录用的概率.19.(12 分)如图,四棱锥S﹣ABCD 中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC⊥平面SBC.(I)证明:SE=2EB;(II)求二面角A﹣DE﹣C 的大小.20.(12 分)已知函数f(x)=(x+1)lnx﹣x+1.(I)若xf′(x)≤x2+ax+1,求a 的取值范围;(II)证明:(x﹣1)f(x)≥0.21.(12 分)已知抛物线C:y2=4x 的焦点为F,过点K(﹣1,0)的直线l 与C 相交于A、B 两点,点A 关于x 轴的对称点为D.(I)证明:点F 在直线BD 上;(II)设,求△BDK 的内切圆M 的方程.22.(12 分)已知数列{a n}中,a1=1,a n+1=c﹣.(I)设c=,b n=,求数列{b n}的通项公式;(II)求使不等式a n<a n+1<3 成立的c 的取值范围.2010 年全国统一高考数学试卷(理科)(大纲版Ⅰ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)复数=()A.i B.﹣i C.12﹣13i D.12+13i【考点】A5:复数的运算.【专题】11:计算题.【分析】复数的分子中利用﹣i2=1 代入3,然后化简即可.【解答】解:故选:A.【点评】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.2.(5 分)记cos(﹣80°)=k,那么tan100°=()A.B.﹣C.D.﹣【考点】GF:三角函数的恒等变换及化简求值;GG:同角三角函数间的基本关系;GO:运用诱导公式化简求值.【专题】11:计算题.【分析】法一:先求sin80°,然后化切为弦,求解即可.法二:先利用诱导公式化切为弦,求出求出结果.【解答】解:法一,所以tan100°=﹣tan80°= .:法二cos (﹣80°)=k ⇒cos (80°)=k ,=【点评】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.3.(5 分)若变量x,y 满足约束条件,则z=x﹣2y 的最大值为()A.4 B.3 C.2 D.1【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y 表示直线在y 轴上的截距,只需求出可行域直线在y 轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l 经过点A(1,﹣1)时,z 最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题.4.(5 分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=8 8 ( ) A .B .7C .6D .【考点】87:等比数列的性质.【分析】由数列{a n }是等比数列,则有 a 1a 2a 3=5⇒a 23=5;a 7a 8a 9=10⇒a 3=10.【解答】解:a 1a 2a 3=5⇒a 23=5;a 7a 8a 9=10⇒a 3=10,a 52=a 2a 8, ∴ ,∴,故选:A .【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.5.(5 分)(1+2)3(1﹣ )5 的展开式中 x 的系数是() A .﹣4B .﹣2C .2D .4【考点】DA :二项式定理. 【专题】11:计算题.【分析】利用完全平方公式展开,利用二项展开式的通项公式求出 x 的系数. 【解答】解:(1+2)3(1﹣)5=(1+6+12x +8x)(1﹣)5 故(1+2)3(1﹣)5 的展开式中含 x 的项为 1×C 53()3+12x=﹣10x +12xC 50=2x , 所以 x 的系数为 2.故选:C .【点评】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力6.(5 分)某校开设A 类选修课3 门,B 类选择课4 门,一位同学从中共选3 门,若要求两类课程中各至少选一门,则不同的选法共有()A.30 种B.35 种C.42 种D.48 种【考点】D1:分类加法计数原理.【专题】11:计算题.【分析】两类课程中各至少选一门,包含两种情况:A 类选修课选1 门,B 类选修课选2 门;A 类选修课选2 门,B 类选修课选1 门,写出组合数,根据分类计数原理得到结果.【解答】解:可分以下2 种情况:①A 类选修课选1 门,B 类选修课选2 门,有C31C42 种不同的选法;②A 类选修课选2 门,B 类选修课选1 门,有C32C41 种不同的选法.∴根据分类计数原理知不同的选法共有C31C42+C32C41=18+12=30种.故选:A.【点评】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.本题也可以从排列的对立面来考虑,写出所有的减去不合题意的,可以这样解:C73﹣C33﹣C43=30.7.(5分)正方体ABCD﹣A1B1C1D1 中,BB1 与平面ACD1 所成角的余弦值为()A.B.C.D.【考点】MI:直线与平面所成的角;MK:点、线、面间的距离计算.【专题】5G:空间角.【分析】正方体上下底面中心的连线平行于BB1,上下底面中心的连线与平面ACD1 所成角,即为BB1 与平面ACD1 所成角,直角三角形中,利用边角关系求出此角的余弦值.【解答】解:如图,设上下底面的中心分别为O1,O,设正方体的棱长等于1,则O1O 与平面ACD1 所成角就是BB1 与平面ACD1 所成角,即∠O1OD1,直角三角形OO1D1 中,cos∠O1OD1= ==,故选:D.【点评】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面ACD1 的距离是解决本题的关键所在,这也是转化思想的具体体现,属于中档题.8.(5 分)设a=log32,b=ln2,c= ,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【考点】4M:对数值大小的比较.【专题】11:计算题;35:转化思想.【分析】根据a 的真数与b 的真数相等可取倒数,使底数相同,找中间量1 与之比较大小,便值a、b、c 的大小关系.【解答】解:a=log32=,b=ln2=,而log23>log2e>1,所以a<b,c= = ,而,所以c<a,综上c<a<b,故选:C.【点评】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.9.(5 分)已知F1、F2 为双曲线C:x2﹣y2=1 的左、右焦点,点P 在C 上,∠F1PF2=60°,则P 到x 轴的距离为()A.B.C.D.【考点】HR:余弦定理;KA:双曲线的定义;KC:双曲线的性质.【专题】11:计算题.【分析】设点P (x0 ,y0 )在双曲线的右支,由双曲线的第二定义得,.由余弦定理得cos ∠F1PF2=,由此可求出P 到x 轴的距离.【解答】解:不妨设点P(x0,y0)在双曲线的右支,由双曲线的第二定义得,.由余弦定理得cos ∠F1PF2= ,即cos60°= ,解得,所以,故P 到x 轴的距离为故选:B.【点评】本题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.10.(5 分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是()A.B.C.(3,+∞)D.[3,+∞)【考点】34:函数的值域;3D:函数的单调性及单调区间;4H:对数的运算性质;7F:基本不等式及其应用.【专题】11:计算题;16:压轴题;35:转化思想.【分析】由题意f(a)=f(b),求出ab 的关系,然后利用“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,确定a+2b 的取值范围.【解答】解:因为f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或,所以a+2b=又0<a<b,所以0<a<1<b,令,由“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,所以f(a)>f(1)=1+=3,即a+2b 的取值范围是(3,+∞).故选:C.【点评】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b= ,从而错选A,这也是命题者的用心良苦之处.11.(5 分)已知圆O 的半径为1,PA、PB 为该圆的两条切线,A、B 为两切点,那么的最小值为()A.B.C.D.【考点】9O:平面向量数量积的性质及其运算;JF:圆方程的综合应用.【专题】5C:向量与圆锥曲线.【分析】要求的最小值,我们可以根据已知中,圆O 的半径为1,PA、PB 为该圆的两条切线,A、B 为两切点,结合切线长定理,设出PA,PB 的长度和夹角,并将表示成一个关于x 的函数,然后根据求函数最值的办法,进行解答.【解答】解:如图所示:设OP=x(x>0),则PA=PB=,∠APO=α,则∠APB=2α,sinα=,==×(1﹣2sin2α)=(x2﹣1)(1﹣)==x2+﹣3≥2 ﹣3,∴当且仅当x2=时取“=”,故的最小值为2﹣3.故选:D.【点评】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法﹣﹣判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.12.(5 分)已知在半径为2 的球面上有A、B、C、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为()A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积;ND:球的性质.【专题】11:计算题;15:综合题;16:压轴题.【分析】四面体ABCD 的体积的最大值,AB 与CD 是对棱,必须垂直,确定球心的位置,即可求出体积的最大值.【解答】解:过CD 作平面PCD,使AB⊥平面PCD,交AB 于P,设点P 到CD 的距离为h,则有,当直径通过AB 与CD 的中点时,,故.故选:B.【点评】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)不等式的解集是[0,2] .【考点】7E:其他不等式的解法.【专题】11:计算题;16:压轴题;35:转化思想.【分析】法一是移项后平方,注意等价转化为不等式组,化简求交集即可;法二是化简为等价不等式组的形式,求不等式组的解集.【解答】解:法一:原不等式等价于解得0≤x≤2.法二:故答案为:[0,2]【点评】本小题主要考查根式不等式的解法,利用平方去掉根号是解根式不等式的基本思路,也让转化与化归的数学思想体现得淋漓尽致.14.(5 分)已知α为第三象限的角,,则=.【考点】G3:象限角、轴线角;GG:同角三角函数间的基本关系;GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11:计算题.【分析】方法一:由α为第三象限的角,判断出2α可能的范围,再结合又<0 确定出2α在第二象限,利用同角三角函数关系求出其正弦,再由两角和的正切公式展开代入求值.方法二:判断2α可能的范围时用的条件组合方式是推出式,其它比同.【解答】解:方法一:因为α为第三象限的角,所以2α∈(2(2k+1)π,π+2 (2k+1)π)(k∈Z),又<0,所以,于是有,,所以=.方法二:α为第三象限的角,,⇒4kπ+2π<2α<4kπ+3π⇒2α在二象限,【点评】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.15.(5 分)直线y=1 与曲线y=x2﹣|x|+a 有四个交点,则a 的取值范围是(1,).【考点】3V:二次函数的性质与图象.【专题】13:作图题;16:压轴题;31:数形结合.【分析】在同一直角坐标系内画出直线y=1 与曲线y=x2﹣|x|+a 的图象,观察求解.【解答】解:如图,在同一直角坐标系内画出直线y=1 与曲线y=x2﹣|x|+a,观图可知,a 的取值必须满足,解得.故答案为:(1,)【点评】本小题主要考查函数的图象与性质、不等式的解法,着重考查了数形结合的数学思想.16.(5 分)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D,且,则C 的离心率为.【考点】K4:椭圆的性质.【专题】16:压轴题;31:数形结合.【分析】由椭圆的性质求出|BF|的值,利用已知的向量间的关系、三角形相似求出D 的横坐标,再由椭圆的第二定义求出|FD|的值,又由|BF|=2|FD|建立关于a、c 的方程,解方程求出的值.【解答】解:如图,,作DD1 ⊥y 轴于点D1 ,则由,得,所以,,即,由椭圆的第二定义得又由|BF|=2|FD|,得,a2=3c2,解得e==,故答案为:.【点评】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.三、解答题(共6 小题,满分70 分)17.(10 分)已知△ABC 的内角A,B 及其对边a,b 满足a+b=acotA+bcotB,求内角C.【考点】GF:三角函数的恒等变换及化简求值;HP:正弦定理.【专题】11:计算题.【分析】先利用正弦定理题设等式中的边转化角的正弦,化简整理求得sin(A -)=sin(B+),进而根据A,B 的范围,求得A﹣和B+的关系,进而求得A+B=,则C 的值可求.【解答】解:由已知及正弦定理,有sinA+sinB=sinA•+sinB•=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB∴sin(A﹣)=sin(B+),∵0<A<π,0<B<π∴﹣<A﹣<<B+<∴A﹣+B+=π,∴A+B=,C=π﹣(A+B)=【点评】本题主要考查了正弦定理的应用.解题过程中关键是利用了正弦定理把边的问题转化为角的问题.18.(12 分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1 篇稿件被录用的概率;(II)求投到该杂志的4 篇稿件中,至少有2 篇被录用的概率.【考点】C5:互斥事件的概率加法公式;C8:相互独立事件和相互独立事件的概率乘法公式;CA:n 次独立重复试验中恰好发生k 次的概率.【分析】(1)投到该杂志的1 篇稿件被录用包括稿件能通过两位初审专家的评审或稿件恰能通过一位初审专家的评审又能通过复审专家的评审两种情况,这两种情况是互斥的,且每种情况中包含的事情有时相互独立的,列出算式.(2)投到该杂志的4 篇稿件中,至少有2 篇被录用的对立事件是0 篇被录用,1篇被录用两种结果,从对立事件来考虑比较简单.【解答】解:(Ⅰ)记A 表示事件:稿件能通过两位初审专家的评审;B 表示事件:稿件恰能通过一位初审专家的评审;C 表示事件:稿件能通过复审专家的评审;D 表示事件:稿件被录用.则D=A+B•C,P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3,P(D)=P(A+B•C)=P(A)+P(B•C)=P(A)+P(B)P(C)=0.25+0.5×0.3=0.40.(2)记4 篇稿件有1 篇或0 篇被录用为事件E,则P(E)=(1﹣0.4)4+C41×0.4×(1﹣0.4)3=0.1296+0.3456=0.4752,∴=1﹣0.4752=0.5248,即投到该杂志的4 篇稿件中,至少有2 篇被录用的概率是0.5248.【点评】本题关键是要理解题意,实际上能否理解题意是一种能力,培养学生的数学思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度.19.(12 分)如图,四棱锥S﹣ABCD 中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC⊥平面SBC.(I)证明:SE=2EB;(II)求二面角A﹣DE﹣C 的大小.【考点】LY :平面与平面垂直;MJ :二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)连接 BD ,取 DC 的中点 G ,连接 BG ,作 BK ⊥EC ,K 为垂足,根据线面垂直的判定定理可知 DE ⊥平面 SBC ,然后分别求出 SE 与 EB 的长,从而得到结论;(Ⅱ)根据边长的关系可知△ADE 为等腰三角形,取 ED 中点 F ,连接 AF ,连接FG ,根据二面角平面角的定义可知∠A【解答】解:(Ⅰ)连接 BD ,取 DC 的中点 G ,连接 BG ,由此知DG=GC=BG=1,即△DBC 为直角三角形,故 BC ⊥BD .又 SD ⊥平面 ABCD ,故 BC ⊥SD ,所以,BC ⊥平面 BDS ,BC ⊥DE . 作 BK⊥EC ,K 为垂足,因平面 EDC ⊥平面 SBC , 故 BK⊥平面 EDC ,BK ⊥DE ,DE 与平面 SBC 内的两条相交直线 BK 、BC 都垂直, DE ⊥平面 SBC ,DE ⊥EC ,DE ⊥SB . SB=, DE=EB= 所以 SE=2EB(Ⅱ)由 SA=,AB=1,SE=2EB ,AB ⊥SA ,知AE= =1,又 AD=1.故△ADE 为等腰三角形.取ED 中点F,连接AF,则AF⊥DE,AF=.连接FG,则FG∥EC,FG⊥DE.所以,∠AFG 是二面角A﹣DE﹣C 的平面角.连接AG,AG= ,FG=,cos∠AFG=,所以,二面角A﹣DE﹣C 的大小为120°.【点评】本题主要考查了与二面角有关的立体几何综合题,考查学生空间想象能力,逻辑思维能力,是中档题.20.(12分)已知函数f(x)=(x+1)lnx﹣x+1.(I)若xf′(x)≤x2+ax+1,求a 的取值范围;(II)证明:(x﹣1)f(x)≥0.【考点】63:导数的运算.【专题】11:计算题.【分析】(Ⅰ)先根据导数公式求出导函数f′(x),代入xf′(x)≤x2+ax+1,将a 分离出来,然后利用导数研究不等式另一侧的最值,从而求出参数 a 的取值范围;(Ⅱ)【解答】解:(Ⅰ),根xf′(x)=xlnx+1,题设xf′(x)≤x2+ax+1 等价于lnx﹣x≤a.令g(x)=lnx﹣x,则当0<x<1,g′(x)>0;当x≥1 时,g′(x)≤0,x=1 是g(x)的最大值点,g(x)≤g(1)=﹣1综上,a 的取值范围是[﹣1,+∞).(Ⅱ)由(Ⅰ)知,g(x)≤g(1)=﹣1 即lnx﹣x+1≤0.当0<x<1 时,f(x)=(x+1)lnx﹣x+1=xlnx+(lnx﹣x+1)<0;当x≥1 时,f(x)=lnx+(xlnx﹣x+1)= =≥0所以(x﹣1)f(x)≥0.【点评】本题主要考查了利用导数研究函数的最值,以及利用参数分离法求参数的取值范围,同时考查了运算求解的能力,属于中档题.21.(12 分)已知抛物线C:y2=4x 的焦点为F,过点K(﹣1,0)的直线l 与C 相交于A、B 两点,点A 关于x 轴的对称点为D.(I)证明:点F 在直线BD 上;(II)设,求△BDK 的内切圆M 的方程.【考点】9S:数量积表示两个向量的夹角;IP:恒过定点的直线;J1:圆的标准方程;K8:抛物线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题;14:证明题;16:压轴题.【分析】(Ⅰ)先根据抛物线方程求得焦点坐标,设出过点K 的直线L 方程代入抛物线方程消去x,设L 与C 的交点A(x1,y1),B(x2,y2),根据韦达定理求得y1+y2 和y1y2 的表达式,进而根据点A 求得点D 的坐标,进而表示出直线BD 和BF 的斜率,进而问题转化两斜率相等,进而转化为4x2=y22,依题意可知等式成立进而推断出k1=k2 原式得证.) (Ⅱ)首先表示出 结果为求得 m ,进而求得 y 2﹣y 1 的值,推知 BD 的斜率,则 B D方程可知,设M 为(a,0),M到 x=y﹣1和【解答】解:(Ⅰ)抛物线 C :y 2=4x ①的焦点为 F (1,0),设过点K (﹣1,0)的直线 L :x=my ﹣1, 代入①,整理得y 2﹣4my +4=0, 设 L 与 C 的交点 A (x 1,y 1),B (x 2,y 2),则 y 1+y 2=4m ,y 1y 2=4, 点 A 关于 X 轴的对称点 D 为(x 1,﹣y 1). BD 的斜率 k 1===,BF 的斜率 k 2=.要使点 F 在直线 BD 上需 k 1=k 2 需 4(x 2﹣1)=y 2(y 2﹣y 1),需 4x 2=y22, 上式成立,∴k 1=k 2, ∴点 F 在直线 BD 上. (Ⅱ =(x 1﹣1,y 1)(x 2﹣1,y 2)=(x 1﹣1)(x 2﹣1)+y 1y 2=(my 1﹣2)(my 2 ﹣2)+y 1y 2=4(m 2+1)﹣8m 2+4=8﹣4m 2=, ∴m 2=,m=±.y 2﹣y 1= =4 =,∴k 1=,BD :y=(x ﹣1).易知圆心 M 在 x 轴上,设为(a ,0),M 到 x= y ﹣1 和到 BD 的距离相等,即|a +1|×=|((a ﹣1)|×,∴4|a +1|=5|a ﹣1|,﹣1<a <1,解得 a=.∴半径 r=,∴△BDK 的内切圆 M 的方程为(x ﹣)2+y 2=.【点评】本小题为解析几何与平面向量综合的问题,主要考查抛物线的性质、直线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的求解、平面向量的数量积等知识,考查考生综合运用数学知识进行推理论证的能力、运算能力和解决问题的能力,同时考查了数形结合思想、设而不求思想.22.(12 分)已知数列{a n }中,a 1=1,a n +1=c ﹣. (I ) 设 c=,b n =,求数列{b n }的通项公式;(II ) 求使不等式 a n <a n +1<3 成立的 c 的取值范围.【考点】8H :数列递推式;RG :数学归纳法.【专题】15:综合题;16:压轴题.【分析】(1)令c=代入到(2)先求出 n=1,2 时的 c 的范围,然后用数学归纳法分 3 步进行证明当 c >2 时 a n < a n +1 , 然 后 当 c > 2 时 , 令 α= , 根 据 由 可发现 c >时不能满足条件,进而可确定 c 的范围.【解答】解:(1),,即b n=4b n+2+1,a1=1,故所以{ }是首项为﹣,公比为4 的等比数列,,(Ⅱ)a1=1,a2=c﹣1,由a2>a1 得c>2.用数学归纳法证明:当c>2 时a n<a n+1.(i)当n=1 时,a2=c﹣>a1,命题成立;(ii)设当n=k 时,a k<a k+1,则当n=k+1 时,故由(i)(ii)知当c>2 时,a n<a n+1当c>2 时,令α=,由当2<c≤时,a n<α≤3当c>时,α>3 且1≤a n<α于是α﹣a n+1≤(α﹣1),当n>因此c>不符合要求.所以c 的取值范围是(2,].【点评】本小题主要考查数列的通项公式、等比数列的定义、递推数列、不等式等基础知识和基本技能,同时考查分析、归纳、探究和推理论证问题的能力,在解题过程中也渗透了对函数与方程思想、化归与转化思想的考查.。

2010年高考数学试题及答案(全国卷文数3套)

2010年高考数学试题及答案(全国卷文数3套)

2010年全国统一高考数学试卷(文科)(全国新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2} 2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2 5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828附:K2=.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b 的值.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x )的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(文科)(全国新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.2【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S=4πR2,即可得到答案.球【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S=4πR2=6πa2.球故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:方法一:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.方法二:这种随机模拟的方法是在[0,1]内生成了N个点,而满足几条曲线围成的区域内的点是N1个,所以根据比例关系=,而正方形的面积为1,所以随机模拟方法得到的面积为.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD 推断出CD=2BD,进而整理AC2=CD2+2﹣2CD得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BD cos135°AC2=CD2+AD2﹣2AD•CD cos45°即AB2=BD2+2+2BD①AC2=CD2+2﹣2CD②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD(4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P (K 2≥k )0.0500.0100.001k3.8416.63510.828附:K 2=.【分析】(1)由样本的频率率估计总体的概率,(2)求K 2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K 2的观测值因为9.967>6.635,且P (K 2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x ﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为x sinα﹣y cosα﹣sinα=0①.则OA的方程为x cosα+y sinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.2010年全国统一高考数学试卷(文科)(全国大纲版Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•全国大纲版Ⅰ)cos300°=()A.B.﹣C.D.2.(5分)(2010•全国大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}3.(5分)(2010•全国大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4B.3C.2D.14.(5分)(2010•全国大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.5.(5分)(2010•全国大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6B.﹣3C.0D.36.(5分)(2010•全国大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°7.(5分)(2010•全国大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)8.(5分)(2010•全国大纲版Ⅰ)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2B.4C.6D.89.(5分)(2010•全国大纲版Ⅰ)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.10.(5分)(2010•全国大纲版Ⅰ)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a 11.(5分)(2010•全国大纲版Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B 为两切点,那么的最小值为()A.B.C.D.12.(5分)(2010•全国大纲版Ⅰ)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•全国大纲版Ⅰ)不等式的解集是.14.(5分)(2010•全国大纲版Ⅰ)已知α为第二象限角,sinα=,则tan2α=.15.(5分)(2010•全国大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)16.(5分)(2010•全国大纲版Ⅰ)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.三、解答题(共6小题,满分70分)17.(10分)(2010•全国大纲版Ⅰ)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.18.(12分)(2010•全国大纲版Ⅰ)已知△ABC的内角A,B及其对边a,b满足a+b=a cot A+b cot B,求内角C.19.(12分)(2010•全国大纲版Ⅰ)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.20.(12分)(2010•全国大纲版Ⅰ)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.21.(12分)(2010•全国大纲版Ⅰ)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.22.(12分)(2010•全国大纲版Ⅰ)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.2010年全国统一高考数学试卷(文科)(全国大纲版Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•全国大纲版Ⅰ)cos300°=()A.B.﹣C.D.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解:∵.故选:C.【点评】本小题主要考查诱导公式、特殊三角函数值等三角函数知识.2.(5分)(2010•全国大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}【分析】根据补集意义先求∁U M,再根据交集的意义求N∩(∁U M).【解答】解:(∁U M)={2,3,5},N={1,3,5},则N∩(∁U M)={1,3,5}∩{2,3,5}={3,5}.故选:C.【点评】本小题主要考查集合的概念、集合运算等集合有关知识,属容易题.3.(5分)(2010•全国大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4B.3C.2D.1【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y 轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题.4.(5分)(2010•全国大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选:A.【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.5.(5分)(2010•全国大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6B.﹣3C.0D.3【分析】列举(1﹣x)4与可以出现x2的情况,通过二项式定理得到展开式x2的系数.【解答】解:将看作两部分与相乘,则出现x2的情况有:①m=1,n=2;②m=2,n=0;系数分别为:①=﹣12;②=6;x2的系数是﹣12+6=﹣6故选:A.【点评】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.6.(5分)(2010•全国大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【分析】延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.【点评】本小题主要考查直三棱柱ABC﹣A1B1C1的性质、异面直线所成的角、异面直线所成的角的求法,考查转化思想,属于基础题.7.(5分)(2010•全国大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【分析】由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f(b),故可得,0<a<1<b,则lga=﹣lgb,再化简整理即可求解;或采用线性规划问题处理也可以.【解答】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=﹣lgb,lga+lgb=0。

2010年全国统一高考真题数学试卷(理科)(大纲版ⅱ)(含答案及解析)

2010年全国统一高考真题数学试卷(理科)(大纲版ⅱ)(含答案及解析)

2010年全国统一高考数学试卷(理科)(大纲版Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i2.(5分)函数的反函数是()A.y=e2x﹣1﹣1(x>0)B.y=e2x﹣1+1(x>0)C.y=e2x﹣1﹣1(x∈R)D.y=e2x﹣1+1(x∈R)3.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.44.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.355.(5分)不等式>0的解集为()A.{x|x<﹣2,或x>3}B.{x|x<﹣2,或1<x<3}C.{x|﹣2<x<1,或x>3}D.{x|﹣2<x<1,或1<x<3} 6.(5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种7.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin(2x+)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位8.(5分)△ABC中,点D在边AB上,CD平分∠ACB,若=,=,||=1,||=2,则=()A.+B.+C.+D.+9.(5分)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.310.(5分)若曲线y=在点(a,)处的切线与两个坐标围成的三角形的面积为18,则a=()A.64B.32C.16D.811.(5分)与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个12.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1B.C.D.2二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a是第二象限的角,tan(π+2α)=﹣,则tanα=.14.(5分)若(x﹣)9的展开式中x3的系数是﹣84,则a=.15.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=.16.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M 与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=.三、解答题(共6小题,满分70分)17.(10分)△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.18.(12分)已知数列{a n}的前n项和S n=(n2+n)•3n.(Ⅰ)求;(Ⅱ)证明:++…+>3n.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.20.(12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是P,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(Ⅰ)求P;(Ⅱ)求电流能在M与N之间通过的概率.21.(12分)已知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.22.(12分)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.2010年全国统一高考数学试卷(理科)(大纲版Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,把复数整理成整式形式,再进行复数的乘方运算,合并同类项,得到结果.【解答】解:()2=[]2=(1﹣2i)2=﹣3﹣4i.故选:A.【点评】本题主要考查复数的除法和乘方运算,是一个基础题,解题时没有规律和技巧可寻,只要认真完成,则一定会得分.2.(5分)函数的反函数是()A.y=e2x﹣1﹣1(x>0)B.y=e2x﹣1+1(x>0)C.y=e2x﹣1﹣1(x∈R)D.y=e2x﹣1+1(x∈R)【考点】4H:对数的运算性质;4R:反函数.【专题】11:计算题;16:压轴题.【分析】从条件中中反解出x,再将x,y互换即得.解答本题首先熟悉反函数的概念,然后根据反函数求解三步骤:1、换:x、y换位,2、解:解出y,3、标:标出定义域,据此即可求得反函数.【解答】解:由原函数解得x=e 2y﹣1+1,∴f﹣1(x)=e 2x﹣1+1,又x>1,∴x﹣1>0;∴ln(x﹣1)∈R∴在反函数中x∈R,故选:D.【点评】求反函数,一般应分以下步骤:(1)由已知解析式y=f(x)反求出x=Ф(y);(2)交换x=Ф(y)中x、y的位置;(3)求出反函数的定义域(一般可通过求原函数的值域的方法求反函数的定义域).3.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.4【考点】7C:简单线性规划.【专题】31:数形结合.【分析】先根据约束条件画出可行域,设z=2x+y,再利用z的几何意义求最值,只需求出直线z=2x+y过可行域内的点B时,从而得到m值即可.【解答】解:作出可行域,作出目标函数线,可得直线与y=x与3x+2y=5的交点为最优解点,∴即为B(1,1),当x=1,y=1时z max=3.故选:C.【点评】本题考查了线性规划的知识,以及利用几何意义求最值,属于基础题.4.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.35【考点】83:等差数列的性质;85:等差数列的前n项和.【分析】由等差数列的性质求解.【解答】解:a3+a4+a5=3a4=12,a4=4,∴a1+a2+…+a7==7a4=28故选:C.【点评】本题主要考查等差数列的性质.5.(5分)不等式>0的解集为()A.{x|x<﹣2,或x>3}B.{x|x<﹣2,或1<x<3}C.{x|﹣2<x<1,或x>3}D.{x|﹣2<x<1,或1<x<3}【考点】73:一元二次不等式及其应用.【专题】11:计算题.【分析】解,可转化成f(x)•g(x)>0,再利用根轴法进行求解.【解答】解:⇔⇔(x﹣3)(x+2)(x﹣1)>0利用数轴穿根法解得﹣2<x<1或x>3,故选:C.【点评】本试题主要考查分式不等式与高次不等式的解法,属于不等式的基础题.6.(5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】本题是一个分步计数问题,首先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有C42,余下放入最后一个信封,根据分步计数原理得到结果.【解答】解:由题意知,本题是一个分步计数问题,∵先从3个信封中选一个放1,2,有=3种不同的选法;根据分组公式,其他四封信放入两个信封,每个信封两个有=6种放法,∴共有3×6×1=18.故选:B.【点评】本题考查分步计数原理,考查平均分组问题,是一个易错题,解题的关键是注意到第二步从剩下的4个数中选两个放到一个信封中,这里包含两个步骤,先平均分组,再排列.7.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin(2x+)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】1:常规题型.【分析】先将2提出来,再由左加右减的原则进行平移即可.【解答】解:y=sin(2x+)=sin2(x+),y=sin(2x﹣)=sin2(x﹣),所以将y=sin(2x+)的图象向右平移个长度单位得到y=sin(2x﹣)的图象,故选:B.【点评】本试题主要考查三角函数图象的平移.平移都是对单个的x来说的.8.(5分)△ABC中,点D在边AB上,CD平分∠ACB,若=,=,||=1,||=2,则=()A.+B.+C.+D.+【考点】9B:向量加减混合运算.【分析】由△ABC中,点D在边AB上,CD平分∠ACB,根据三角形内角平分线定理,我们易得到,我们将后,将各向量用,表示,即可得到答案.【解答】解:∵CD为角平分线,∴,∵,∴,∴故选:B.【点评】本题考查了平面向量的基础知识,解答的核心是三角形内角平分线定理,即若AD为三角形ABC的内角A的角平分线,则AB:AC=BD:CD9.(5分)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.3【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;16:压轴题.【分析】设出底面边长,求出正四棱锥的高,写出体积表达式,利用求导求得最大值时,高的值.【解答】解:设底面边长为a,则高h==,所以体积V=a2h=,设y=12a4﹣a6,则y′=48a3﹣3a5,当y取最值时,y′=48a3﹣3a5=0,解得a=0或a=4时,当a=4时,体积最大,此时h==2,故选:C.【点评】本试题主要考查椎体的体积,考查高次函数的最值问题的求法.是中档题.10.(5分)若曲线y=在点(a,)处的切线与两个坐标围成的三角形的面积为18,则a=()A.64B.32C.16D.8【考点】6H:利用导数研究曲线上某点切线方程.【专题】31:数形结合.【分析】欲求参数a值,必须求出在点(a,)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=a处的导函数值,再结合导数的几何意义即可求出切线的斜率得到切线的方程,最后求出与坐标轴的交点坐标结合三角形的面积公式.从而问题解决.【解答】解:y′=﹣,∴k=﹣,切线方程是y﹣=﹣(x﹣a),令x=0,y=,令y=0,x=3a,∴三角形的面积是s=•3a•=18,解得a=64.故选:A.【点评】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.11.(5分)与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【考点】LO:空间中直线与直线之间的位置关系.【专题】16:压轴题.【分析】由于点D、B1显然满足要求,猜想B1D上任一点都满足要求,然后想办法证明结论.【解答】解:在正方体ABCD﹣A1B1C1D1上建立如图所示空间直角坐标系,并设该正方体的棱长为1,连接B1D,并在B1D上任取一点P,因为=(1,1,1),所以设P(a,a,a),其中0≤a≤1.作PE⊥平面A1D,垂足为E,再作EF⊥A1D1,垂足为F,则PF是点P到直线A1D1的距离.所以PF=;同理点P到直线AB、CC1的距离也是.所以B1D上任一点与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离都相等,所以与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点有无数个.故选:D.【点评】本题主要考查合情推理的能力及空间中点到线的距离的求法.12.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1B.C.D.2【考点】KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设A(x1,y1),B(x2,y2),根据求得y1和y2关系根据离心率设,b=t,代入椭圆方程与直线方程联立,消去x,根据韦达定理表示出y1+y2和y1y2,进而根据y1和y2关系求得k.【解答】解:A(x1,y1),B(x2,y2),∵,∴y1=﹣3y2,∵,设,b=t,∴x2+4y2﹣4t2=0①,设直线AB方程为,代入①中消去x,可得,∴,,解得,故选:B.【点评】本题主要考查了直线与圆锥曲线的综合问题.此类题问题综合性强,要求考生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a是第二象限的角,tan(π+2α)=﹣,则tanα=.【考点】GO:运用诱导公式化简求值;GS:二倍角的三角函数.【专题】11:计算题.【分析】根据诱导公式tan(π+α)=tanα得到tan2α,然后利用公式tan(α+β)=求出tanα,因为α为第二象限的角,判断取值即可.【解答】解:由tan(π+2a)=﹣得tan2a=﹣,又tan2a==﹣,解得tana=﹣或tana=2,又a是第二象限的角,所以tana=﹣.故答案为:.【点评】本试题主要考查三角函数的诱导公式、正切的二倍角公式和解方程,考查考生的计算能力.14.(5分)若(x﹣)9的展开式中x3的系数是﹣84,则a=1.【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3得展开式中x3的系数,列出方程解得.【解答】解:展开式的通项为=(﹣a)r C9r x9﹣2r令9﹣2r=3得r=3∴展开式中x3的系数是C93(﹣a)3=﹣84a3=﹣84,∴a=1.故答案为1【点评】本试题主要考查二项展开式的通项公式和求指定项系数的方法.15.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=2.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】设直线AB的方程与抛物线方程联立消去y得3x2+(﹣6﹣2p)x+3=0,进而根据,可知M为A、B的中点,可得p的关系式,解方程即可求得p.【解答】解:设直线AB:,代入y2=2px得3x2+(﹣6﹣2p)x+3=0,又∵,即M为A、B的中点,∴x B+(﹣)=2,即x B=2+,得p2+4P﹣12=0,解得p=2,p=﹣6(舍去)故答案为:2【点评】本题考查了抛物线的几何性质.属基础题.16.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M 与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=3.【考点】JE:直线和圆的方程的应用;ND:球的性质.【专题】11:计算题;16:压轴题.【分析】根据题意画出图形,欲求两圆圆心的距离,将它放在与球心组成的三角形MNO中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得.【解答】解法一:∵ON=3,球半径为4,∴小圆N的半径为,∵小圆N中弦长AB=4,作NE垂直于AB,∴NE=,同理可得,在直角三角形ONE中,∵NE=,ON=3,∴,∴,∴MN=3.故填:3.解法二:如下图:设AB的中点为C,则OC与MN必相交于MN中点为E,因为OM=ON=3,故小圆半径NB为C为AB中点,故CB=2;所以NC=,∵△ONC为直角三角形,NE为△ONC斜边上的高,OC=∴MN=2EN=2•CN•=2××=3故填:3.【点评】本题主要考查了点、线、面间的距离计算,还考查球、直线与圆的基础知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【分析】先由cos∠ADC=确定角ADC的范围,因为∠BAD=∠ADC﹣B所以可求其正弦值,最后由正弦定理可得答案.【解答】解:由cos∠ADC=>0,则∠ADC<,又由知B<∠ADC可得B<,由sinB=,可得cosB=,又由cos∠ADC=,可得sin∠ADC=.从而sin∠BAD=sin(∠ADC﹣B)=sin∠ADCcosB﹣cos∠ADCsinB==.由正弦定理得,所以AD==.【点评】三角函数与解三角形的综合性问题,是近几年高考的热点,在高考试题中频繁出现.这类题型难度比较低,一般出现在17或18题,属于送分题,估计以后这类题型仍会保留,不会有太大改变.解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化.18.(12分)已知数列{a n}的前n项和S n=(n2+n)•3n.(Ⅰ)求;(Ⅱ)证明:++…+>3n.【考点】6F:极限及其运算;R6:不等式的证明.【专题】11:计算题;14:证明题.【分析】(1)由题意知,由此可知答案.(2)由题意知,==,由此可知,当n≥1时,.【解答】解:(1),所以=;(2)当n=1时,;当n>1时,===所以,n≥1时,.【点评】本题考查数列的极限问题,解题时要注意公式的灵活运用.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.【考点】LM:异面直线及其所成的角;LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)欲证DE为异面直线AB1与CD的公垂线,即证DE与异面直线AB1与CD垂直相交即可;(2)将AB1平移到DG,故∠CDG为异面直线AB1与CD的夹角,作HK⊥AC1,K 为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1﹣AC1﹣B1的平面角,在三角形B1KH中求出此角即可.【解答】解:(1)连接A1B,记A1B与AB1的交点为F.因为面AA1BB1为正方形,故A1B⊥AB1,且AF=FB1,又AE=3EB1,所以FE=EB1,又D为BB1的中点,故DE∥BF,DE⊥AB1.作CG⊥AB,G为垂足,由AC=BC知,G为AB中点.又由底面ABC⊥面AA1B1B.连接DG,则DG∥AB1,故DE⊥DG,由三垂线定理,得DE⊥CD.所以DE为异面直线AB1与CD的公垂线.(2)因为DG∥AB1,故∠CDG为异面直线AB1与CD的夹角,∠CDG=45°设AB=2,则AB1=,DG=,CG=,AC=.作B1H⊥A1C1,H为垂足,因为底面A1B1C1⊥面AA1CC1,故B1H⊥面AA1C1C.又作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH 为二面角A1﹣AC1﹣B1的平面角.B1H=,C1H=,AC1=,HK=tan∠B1KH=,∴二面角A1﹣AC1﹣B1的大小为arctan.【点评】本试题主要考查空间的线面关系与空间角的求解,考查考生的空间想象与推理计算的能力.三垂线定理是立体几何的最重要定理之一,是高考的热点,它是处理线线垂直问题的有效方法,同时它也是确定二面角的平面角的主要手段.通过引入空间向量,用向量代数形式来处理立体几何问题,淡化了传统几何中的“形”到“形”的推理方法,从而降低了思维难度,使解题变得程序化,这是用向量解立体几何问题的独到之处.20.(12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是P,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(Ⅰ)求P;(Ⅱ)求电流能在M与N之间通过的概率.【考点】C5:互斥事件的概率加法公式;C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题.【分析】(1)设出基本事件,将要求事件用基本事件的来表示,将T1,T2,T3至少有一个能通过电流用基本事件表示并求出概率即可求得p.(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,根据电路图,可得B=A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3,由互斥事件的概率公式,代入数据计算可得答案.【解答】解:(Ⅰ)根据题意,记电流能通过T i为事件A i,i=1、2、3、4,A表示事件:T1,T2,T3,中至少有一个能通过电流,易得A1,A2,A3相互独立,且,P()=(1﹣p)3=1﹣0.999=0.001,计算可得,p=0.9;(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,有B=A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3,则P(B)=P(A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3)=0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9=0.9891.【点评】本题考查了概率中的互斥事件、对立事件及独立事件的概率,注意先明确事件之间的关系,进而选择对应的公式来计算.21.(12分)已知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.【考点】J9:直线与圆的位置关系;KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题;14:证明题;16:压轴题.【分析】(Ⅰ)由直线过点(1,3)及斜率可得直线方程,直线与双曲线交于BD 两点的中点为(1,3),可利用直线与双曲线消元后根据中点坐标公式找出a,b的关系式即求得离心率.(Ⅱ)利用离心率将条件|FA||FB|=17,用含a的代数式表示,即可求得a,则A点坐标可得(1,0),由于A在x轴上所以,只要证明2AM=BD即证得.【解答】解:(Ⅰ)由题设知,l的方程为:y=x+2,代入C的方程,并化简,得(b2﹣a2)x2﹣4a2x﹣a2b2﹣4a2=0,设B(x1,y1),D(x2,y2),则,,①由M(1,3)为BD的中点知.故,即b2=3a2,②故,∴C的离心率.(Ⅱ)由①②知,C的方程为:3x2﹣y2=3a2,A(a,0),F(2a,0),.故不妨设x1≤﹣a,x2≥a,,,|BF|•|FD|=(a﹣2x1)(2x2﹣a)=﹣4x1x2+2a(x1+x2)﹣a2=5a2+4a+8.又|BF|•|FD|=17,故5a2+4a+8=17.解得a=1,或(舍去),故=6,连接MA,则由A(1,0),M(1,3)知|MA|=3,从而MA=MB=MD,且MA⊥x轴,因此以M为圆心,MA为半径的圆经过A、B、D三点,且在点A处与x轴相切,所以过A、B、D三点的圆与x轴相切.【点评】本题考查了圆锥曲线、直线与圆的知识,考查学生运用所学知识解决问题的能力.22.(12分)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.【考点】6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题.【分析】(1)将函数f(x)的解析式代入f(x)≥整理成e x≥1+x,组成新函数g(x)=e x﹣x﹣1,然后根据其导函数判断单调性进而可求出函数g(x)的最小值g(0),进而g(x)≥g(0)可得证.(2)先确定函数f(x)的取值范围,然后对a分a<0和a≥0两种情况进行讨论.当a<0时根据x的范围可直接得到f(x)≤不成立;当a≥0时,令h(x)=axf(x)+f(x)﹣x,然后对函数h(x)进行求导,根据导函数判断单调性并求出最值,求a的范围.【解答】解:(1)当x>﹣1时,f(x)≥当且仅当e x≥1+x令g(x)=e x﹣x﹣1,则g'(x)=e x﹣1当x≥0时g'(x)≥0,g(x)在[0,+∞)是增函数当x≤0时g'(x)≤0,g(x)在(﹣∞,0]是减函数于是g(x)在x=0处达到最小值,因而当x∈R时,g(x)≥g(0)时,即e x≥1+x所以当x>﹣1时,f(x)≥(2)由题意x≥0,此时f(x)≥0当a<0时,若x>﹣,则<0,f(x)≤不成立;当a≥0时,令h(x)=axf(x)+f(x)﹣x,则f(x)≤当且仅当h(x)≤0因为f(x)=1﹣e﹣x,所以h'(x)=af(x)+axf'(x)+f'(x)﹣1=af(x)﹣axf (x)+ax﹣f(x)(i)当0≤a≤时,由(1)知x≤(x+1)f(x)h'(x)≤af(x)﹣axf(x)+a(x+1)f(x)﹣f(x)=(2a﹣1)f(x)≤0,h(x)在[0,+∞)是减函数,h(x)≤h(0)=0,即f(x)≤;(ii)当a>时,由y=x﹣f(x)=x﹣1+e﹣x,y′=1﹣e﹣x,x>0时,函数y递增;x<0,函数y递减.可得x=0处函数y取得最小值0,即有x≥f(x).h'(x)=af(x)﹣axf(x)+ax﹣f(x)≥af(x)﹣axf(x)+af(x)﹣f(x)=(2a ﹣1﹣ax)f(x)当0<x<时,h'(x)>0,所以h'(x)>0,所以h(x)>h(0)=0,即f(x)>综上,a的取值范围是[0,]【点评】本题主要考查导数的应用和利用导数证明不等式,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力;导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱.作为压轴题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.。

2010高考全国新课标卷数学(含解析)

2010高考全国新课标卷数学(含解析)

AB2 +AC2 -BC2 1 = , ∠ BAC =60 ° 2AB ⋅ AC 2
三,解答题:解答应写出文字说明,正明过程和演算步骤 (17) (本小题满分 12 分) 设数列 {an } 满足 a1 = 2, an +1 − an = 3i 2 (1) 求数列 {an } 的通项公式;
2 n −1
而 a1 = 2, 所以数列{ an }的通项公式为 an = 22 n −1 。 (Ⅱ)由 bn = nan = n ⋅ 22 n −1 知
Sn = 1⋅ 2 + 2 ⋅ 23 + 3 ⋅ 25 + ⋯ + n ⋅ 2 2 n −1
从而

22 ⋅ S n = 1 ⋅ 23 + 2 ⋅ 25 + 3 ⋅ 27 + ⋯ + n ⋅ 22 n +1
(2) 令 bn = nan ,求数列的前 n 项和 Sn
解: (Ⅰ)由已知,当 n≥1 时,
an+1 = [(an+1 − an ) + (an − an−1 ) + ⋯ + (a2 − a1 )] + a1
= 3(22 n −1 + 22 n −3 + ⋯ + 2) + 2
= 22(n +1)−1 。
x
1 t
利用复合命题真值表,显然 p1 ∨ p2 , p1 ∧ ( − p2 ) 为真命题,选 C 命题意图:复合命题真假判断为背景考察函数的单调性 (6)某种种子每粒发芽的概率都为 0.9,现播种了 1000 粒,对于没有发芽的种子,每粒需再
- 2 -
补种 2 粒,补种的种子数记为 X,则 X 的数学期望为 (A)100 (B)200 (C)300 (D)400

2010年全国1卷高考数学(含答案)

2010年全国1卷高考数学(含答案)

绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并帖好条形码.请认真核准条形码的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........3.第I 卷共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B )=P (A )+P (B ) 24R S π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 334R V π=球n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一、选择题 (1)复数=-+i i3223(A )i(B )i - (C )i 1312- (D )i 1312+ (2)记k =︒-)80cos(,那么=︒100tan(A )k k 21-(B )-kk 21- (C )21kk - (D )-21kk -(3)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥+≤.02,0,1y x y x y 则y x z 2-=的最大值为 (A )4 (B )3 (C )2 (D )1(4)已知各项均为正数的等比数列}{n a 中,634987321,10,5a a a a a a a a a 则===(A )25(B )7(C )6(D )24(5)533)1()21(x x -+的展开式中x 的系数是(A )-4 (B )-2 (C )2 (D )4(6)某校开设A 类选修课3门,B 类选择题4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A )30种 (B )35种 (C )42种 (D )48种 (7)正方体ABCD —A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为(A )32 (B )33 (C )32 (D )36 (8)设2135,2ln ,2log -===c b a ,则(A )c b a <<(B )a c b << (C )b a c << (D )a b c <<(9)已知F 1、F 2为双曲线1:22=-y x C 的左、右焦点,点P 在C 上,︒=∠6021PF F ,则P到x 轴的距离为(A )23 (B )26 (C )3 (D )6(10)已知函数)()(,0.|lg |)(b f a f b a x x f =<<=且若,则b a 2+的取值范围是(A )),22(+∞(B )[)+∞,22(C )),3(+∞(D )[)+∞,3(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PB PA ⋅的最小值为(A )24+-(B )23+-(C )224+-(D )223+-(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AC=CD=2,则四面体ABCD 的体积的最大值为(A )332 (B )334 (C )32 (D )338 绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:七彩教育网 免费提供Word 版教学资源七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载1.答题前,考生先在答题卡上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2010年高考试题——数学文科(全国新课标卷)(解析版)真题

2010年高考试题——数学文科(全国新课标卷)(解析版)真题

2010年普通高等学校招生全国统一考试文科数学参考公式: 样本数据12,n x x x 的标准差 锥体体积公式s ==13V sh其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 2334,4S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合2,,|4,|A x x x R B x x Z =≤∈=≤∈,则A B =(A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2|(1)D 【解析】[2,2]A =-,{}0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16B =,所以{}0,1,2A B ⋂=,选D.【方法指导】由所求A B ⋂可知,应分别求出集合A 和集合B ,在求集合B 时要注意x Z ∈这个条件,否则容易出错.(2)a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于 (A )865 (B )865- (C )1665 (D )1665- (2)C【解析】(2)2(3,18)2(4,3)(5,12)b a b a =+-=-=-,所以216cos ,65||||4a b a b a b ⋅〈〉===+,选C.【方法小结】根据向量a =(4,3),2a +b =(3,18)的关系及向量的代数运算求向量b ,然后利用公式cos ,||||a ba b a b ⋅〈〉=求两向量夹角余弦.(3)已知复数z =z = (A)14 (B )12(C )1 (D )2(3) B 【解析】z ==21844i i ===-+-,14z i =-,所以1||2z ==,选B. 【方法技巧】先利用平方运算,然后分子、分母同时乘以分母的共轭复数,化复数z a bi =+形式,然后利用||z =.(4)曲线3y 21x x =-+在点(1,0)处的切线方程为(A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+ (4) A 【解析】32y x '=-,所以1|1x y ='=,即切线斜率为1,由直线点斜式得直线方程为01y x -=-,整理得1y x =-,选A.【规律总结】求曲线上某一点处的切线方程,通常利用导数求曲线在该点处的导数值,即切线斜率,然后利用点斜式求直线方程.(5)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为(A (B (C )2 (D )2(5) D 【解析】设双曲线方程为22221x y a b -=,则其一条渐近线b y x a =过点(4,2),所以24ba=⋅,12b a =,12a =,2222114c a e a -=-=,所以e = D. 【方法技巧】根据已知条件建立双曲线中两个参量,a b 之间的关系,然后利用222b c a =-,把式子转化为,a c 的关系,得ca的大小,即斜率的大小.(6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p ,),角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为(6)C 【解析】由题意知,当0t =时,P 在0P 位置,2d =,质点P 在圆上按逆时针方向旋转,d 逐渐变小,当4t π=时,min 0d =,结合图像可知选C.【方法技巧】解决这类问题通常利用数形结合的方法,本题借助单位圆,把动点P 由0P 位置开始逆时针方向旋转,由图形可以看出点P 到x 轴距离d 在[0,]4t π∈变化时由2减少到0,结合图像可知结论.(7) 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为 (A )3πa 2 (B )6πa 2 (C )12πa 2 (D ) 24πa 2(7) B 【解析】由题意值长方体的对角线长等于球的直径.所以22222(2)(2)6r a a a a =++=,所以2232r a =,球的表面积为2246S r a ππ==,选B. 【方法小结】要求球的表面积需要求球的半径或半径的平方,又根据长方体的顶点都在一个球面上可知球的直径即为长方体对角线长,球的直径的平方为长方体同一顶点出发的三条棱长的平方和.(8)如果执行右面的框图,输入N=5,则输出的数等于(A )54 (B )45(C )65(D )56(8) D 【解析】由框图中的判断条件可知k 的最大值为5,根据框图中的运算公式可知111111223344556S =++++⨯⨯⨯⨯⨯ 111111111151122334455666=-+-+-+-+-=-=,选D.【技巧点拨】有5N =,结合框图中的限制条件k N ≥时,输出S ,知k 的最大值为5,再根据框图知k 每次增加1,1(1)S S s k =++,得111111223344556S =++++⨯⨯⨯⨯⨯,然后利用裂项法111(1)1n n n n =-++得出结论.(9)设偶函数f (x )满足f (x )=2x -4 (x ≥0),则(){}20x f x ->= (A ){}24x x x <->或 (B ){}04 x x x <>或 (C ){}06 x x x <>或 (D ){}22 x x x <->或 (9) B 【解析】若20x -≥,2(2)240x f x --=->,得4x >;若20x -<,因()f x 为偶函数,(2)(2)f x f x -=-,2(2)240x f x --=->,得0x <.所以{|(2)0}x f x ->={|04}x x x <>或.选B.【方法小结】根据偶函数()f x 满足()24(0)xf x x =-≥,在求解不等式(2)0f x ->时要分20x -≥和20x -<两种情况来解.(10)若sin a =-45,a 是第三象限的角,则sin()4a π+=(A )-10 (B )10 (C ) -10 (D )10(10) A 【解析】因为sin a =-45,a 是第三象限的角,所以3cos 5α==-,所以7sin()(sin cos )()422510a παα+=+=-=-,选A. 【解题小结】要求sin()4a π+的值,需要求cos α的值,根据sin a =-45,a 是第三象限的角,及22sin cos 1αα+=,求cos α的值,然后利用两角和的正弦公式把sin()4a π+展开,代入,即可得结论.(11)已知ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 ABCD 的内部,则z=2x-5y 的取值范围是 (A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20) (11)B 【解析】ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),根据中点坐标公式得D (0,-4),当目标函数过点B (3,4)时,min 14z =-,当目标函数过点D (0,-4)时,max 20z =,所以z=2x-5y 的取值范围是(-14,20).【规律总结】根据题意必须求D点的坐标,根据平行四边形对角线互相平分,得D点坐标,然后把平行四边形四个顶点坐标代入z=2x-5y,得目标函数的最大值与最小值,得范围.(12)已知函数|lg|,010, ()16,10.2x xf xx x<≤⎧⎪=⎨-+>⎪⎩若,,a b c互不相等,且()()(),f a f b f c==则abc 的取值范围是(A) (1,10)(B) (5,6)(C) (10,12)(D) (20,24)(12)C 【解析】如图,根据题意()f x m=有三个解,则01m<<,若lg a m=,则10ma=,若lg b m=-,则10mb-=,若162b m-+=,则122b m=-,由01m<<,得1012212m<-<,即1012b<<,所以1010m mabc b b-=⋅⋅=,所以1012abc<<,选C.【方法技巧】数形结合可知,若,,a b c互不相等,且()()(),f a f b f c==则()f x m=有三个解,则有01m<<,若令()()()f a f b f c m===,则有10ma=,10mb-=,162b m-+=,分别求出,,a b c,用m表示abc,根据m的范围,得abc的范围.第Ⅱ卷本卷包括必考题和选考题两部分。

2010年全国统一高考数学试卷(理科)(新课标)(含解析版)(附详细答案)

2010年全国统一高考数学试卷(理科)(新课标)(含解析版)(附详细答案)

13.( 5 分)设 y=f(x)为区间 [ 0,1] 上的连续函数,且恒有 0≤f (x)≤ 1,可
以用随机模拟方法近似计算积分
,先产生两组(每组 N 个)区间

[ 0, 1] 上的均匀随机数 x1,x2,…xN 和 y1, y2,…yN,由此得到 N 个点( xi,
yi)( i=1,2,…,N),再数出其中满足 yi≤f( xi)(i=1,2,…,N)的点数 N1,
斜率为 1 的直线 ? 与 E 相交于 A,B 两点,且| AF2| ,| AB| ,| BF2| 成等差数列. ( 1)求 E 的离心率; ( 2)设点 P( 0,﹣ 1)满足 | PA| =| PB| ,求 E 的方程.
21.( 12 分)设函数 f (x) =ex﹣ 1﹣ x﹣ ax2. ( 1)若 a=0,求 f(x)的单调区间; ( 2)若当 x≥0 时 f( x)≥ 0,求 a 的取值范围.
19.(12 分)为调查某地区老年人是否需要志愿者提供帮助, 用简单随机抽样方
法从该地区调查了 500 位老年人,结果如表:
性别


是否需要志愿者
需要
40
30
不需要
160
270
( 1)估计该地区老年人中,需要志愿者提供帮助的比例;
( 2)能否有 99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有
关?
( 3)根据( 2)的结论,能否提出更好的调查方法来估计该地区的老年人中需
要志愿者提供帮助的老年人比例?说明理由.
P( K2≥k)
0.050
0.010
0.001
3.841
6.635
10.828
附: K2=

2010年全国统一高考数学试卷(理科)(新课标)(含解析版)

2010年全国统一高考数学试卷(理科)(新课标)(含解析版)

2010 年全国统一高考数学试卷(理科)(新课标)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2} 2.(5分)已知复数,是z 的共轭复数,则=()A.B.C.1 D.23.(5 分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2 4.(5分)如图,质点P 在半径为2 的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为()A.B.C.D.5.(5分)已知命题p1:函数y=2x﹣2﹣x 在R 为增函数,p2:函数y=2x+2﹣x 在R 为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2 和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q46.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000 粒,对于没有发芽的种子,每粒需再补种2 粒,补种的种子数记为X,则X 的数学期望为()A.100 B.200 C.300 D.4007.(5 分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2 或x>4} B.{x|x<0 或x>4}C.{x|x<0 或x>6} D.{x|x<﹣2 或x>2}9.(5 分)若,α是第三象限的角,则=()A.B.C.2D.﹣210.(5 分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa211.(5 分)已知函数,若a,b,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是()1 n +1 n A .(1,10) B .(5,6) C .(10,12) D .(20,24)12.(5 分)已知双曲线 E 的中心为原点,P (3,0)是 E 的焦点,过 P 的直线 l 与 E 相交于 A ,B 两点,且 AB 的中点为 N (﹣12,﹣15),则 E 的方程式为 ()A .B .C .D .二、填空题(共 4 小题,每小题 5 分,满分 20 分)13.(5 分)设 y=f (x )为区间[0,1]上的连续函数,且恒有 0≤f (x )≤1,可以用随机模拟方法近似计算积分,先产生两组(每组 N 个)区间[0,1]上的均匀随机数 x 1,x 2,…x N 和 y 1,y 2,…y N ,由此得到 N 个点(x i , y i )(i=1,2,…,N ),再数出其中满足 y i ≤f (x i )(i=1,2,…,N )的点数 N 1,那么由随机模拟方案可得积分的近似值为. 14.(5 分)正视图为一个三角形的几何体可以是(写出三种)15.(5 分)过点 A (4,1)的圆 C 与直线 x ﹣y=1 相切于点 B (2,1),则圆 C 的方程为.16.(5 分)在△ABC 中,D 为边 BC 上一点,BD=DC ,∠ADB=120°,AD=2,若 △ADC 的面积为,则∠BAC= .三、解答题(共 8 小题,满分 90 分)17.(12 分)设数列满足 a =2,a ﹣a =3•22n ﹣1 (1) 求数列{a n }的通项公式;(2) 令 b n =na n ,求数列{b n }的前 n 项和 S n .18.(12 分)如图,已知四棱锥 P ﹣ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为 H ,PH 是四棱锥的高,E 为 AD 中点(I ) 证明:PE ⊥BC(II ) 若∠APB=∠ADB=60°,求直线 PA 与平面 PEH 所成角的正弦值.19.(12 分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方 法从该地区调查了 500 位老年人,结果如表:性别 是否需要志愿者男 女需要 40 30 不需要160270(1) 估计该地区老年人中,需要志愿者提供帮助的比例;(2) 能否有 99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3) 根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.附:K 2=.20.(12 分)设 F 1,F 2 分别是椭圆的左、右焦点,过 F 1P (K 2≥k )0.050 0.010 0.0013.8416.63510.828斜率为1 的直线ℓ 与E 相交于A,B 两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E 的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E 的方程.21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0 时f(x)≥0,求a 的取值范围.22.(10 分)如图:已知圆上的弧,过C 点的圆的切线与BA 的延长线交于E 点,证明:(I)∠ACE=∠BCD.(II)BC2=BE•CD.23.(10 分)已知直线C1(t 为参数),C2(θ为参数),(I)当α=时,求C1 与C2 的交点坐标;(II)过坐标原点O 做C1 的垂线,垂足为A,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.24.(10 分)设函数f(x)=|2x﹣4|+1.(I)画出函数y=f(x)的图象:(II)若不等式f(x)≤ax 的解集非空,求a 的取值范围.2010 年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】先化简集合A 和B,注意集合B 中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.【点评】本题主要考查集合间的交集运算以及集合的表示方法,涉及绝对值不等式和幂函数等知识,属于基础题.2.(5分)已知复数,是z 的共轭复数,则=()A.B.C.1 D.2【考点】A5:复数的运算.【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选:A.【点评】命题意图:本题主要考查复数的运算,涉及复数的共轭复数知识,可以利用复数的一些运算性质可以简化运算.3.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1B.y=2x﹣1C.y=﹣2x﹣3D.y=﹣2x﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1 处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x==2,得切线的斜率为2,所以k=2;﹣1所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.4.(5分)如图,质点P 在半径为2 的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P 的位置到到x 轴距离来确定答案.【解答】解:通过分析可知当t=0 时,点P 到x 轴距离d 为,于是可以排除答案A,D,再根据当时,可知点P 在x 轴上此时点P 到x 轴距离d 为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.5.(5分)已知命题p1:函数y=2x﹣2﹣x 在R 为增函数,p2:函数y=2x+2﹣x 在R 为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2 和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4【考点】2E:复合命题及其真假;4Q:指数函数与对数函数的关系.【专题】5L:简易逻辑.【分析】先判断命题p1 是真命题,P2 是假命题,故p1∨p2 为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1 是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2 是假命题.由此可知,q1 真,q2 假,q3 假,q4真.故选:C.【点评】只有p1 与P2 都是真命题时,p1∧p2 才是真命题.只要p1 与p2 中至少有一个真命题,p1∨p2 就是真命题.6.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000 粒,对于没有发芽的种子,每粒需再补种2 粒,补种的种子数记为X,则X 的数学期望为()A.100 B.200 C.300 D.400【考点】CH:离散型随机变量的期望与方差;CN:二项分布与n 次独立重复试验的模型.【专题】11:计算题;12:应用题.【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2 个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000 粒,没有发芽的种子数ξ 服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2 粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选:B.【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力.属于基础性题目.7.(5 分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.(5 分)设偶函数 f (x )满足 f (x )=2x ﹣4(x ≥0),则{x |f (x ﹣2)>0}=( ) A .{x |x <﹣2 或 x >4} B .{x |x <0 或 x >4} C .{x |x <0 或x >6}D .{x |x <﹣2 或 x >2}【考点】3K :函数奇偶性的性质与判断. 【专题】11:计算题.【分析】由偶函数 f (x )满足 f (x )=2x ﹣4(x ≥0),可得 f (x )=f (|x |)=2|x |﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案. 【解答】解:由偶函数 f (x )满足 f (x )=2x ﹣4(x ≥0),可得 f (x )=f (|x |)=2|x |﹣4,则f (x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使|x ﹣2|>2 解得 x >4,或 x <0.应选:B .【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.9.(5 分)若,α 是第三象限的角,则 =( )A .B .C .2D .﹣2【考点】GF :三角函数的恒等变换及化简求值;GW :半角的三角函数.【专题】11:计算题.【分析】将欲求式 中的正切化成正余弦,还要注意条件中的角 α 与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.【点评】本题主要考查三角恒等变换中的倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力.10.(5 分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa2【考点】LR:球内接多面体.【专题】11:计算题.【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a 的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选:B.【点评】本题主要考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.11.(5 分)已知函数,若a,b,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.12.(5 分)已知双曲线E 的中心为原点,P(3,0)是E 的焦点,过P 的直线l 与E 相交于A,B 两点,且AB 的中点为N(﹣12,﹣15),则E 的方程式为()A.B.C.D.【考点】KB :双曲线的标准方程;KH :直线与圆锥曲线的综合. 【专题】11:计算题;5D :圆锥曲线的定义、性质与方程.【分析】已知条件易得直线 l 的斜率为 1,设双曲线方程,及 A ,B 点坐标代入方程联立相减得x 1+x2=﹣24,根据=,可求得 a 和【解答】解:由已知条件易得直线 l 的斜率为 k=k PN =1, 设双曲线方程为,A (x 1,y 1),B (x 2,y 2),则有 ,两式相减并结合 x 1+x 2=﹣24,y 1+y 2=﹣30 得 =,从而 k==1即 4b 2=5a 2,又 a 2+b 2=9, 解得 a 2=4,b 2=5,故选:B . 【点评】本题主要考查了双曲线的标准方程.考查了学生综合分析问题和解决问题的能力.二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.(5 分)设 y=f (x )为区间[0,1]上的连续函数,且恒有 0≤f (x )≤1,可以用随机模拟方法近似计算积分 ,先产生两组(每组 N 个)区间[0,1]上的均匀随机数x1,x2,…x N 和y1,y2,…y N,由此得到N 个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【考点】69:定积分的应用;CE:模拟方法估计概率;CF:几何概型.【专题】11:计算题.【分析】要求∫f(x)dx 的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.【点评】本题考查几何概型模拟估计定积分值,以及定积分在面积中的简单应用,属于基础题.14.(5 分)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【考点】L7:简单空间图形的三视图.【专题】21:阅读型.【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.【点评】本题主要考查三视图以及常见的空间几何体的三视图,考查空间想象能力.15.(5 分)过点A(4,1)的圆C 与直线x﹣y=1 相切于点B(2,1),则圆C 的方程为(x﹣3)2+y2=2.【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【专题】16:压轴题.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则(4﹣a)2+(1﹣b)2=r2,(2﹣a)2+(1﹣b)2=r2,=﹣1,解得a=3,b=0,r=,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.【点评】命题意图:本题主要考查利用题意条件求解圆的方程,通常借助待定系数法求解.16.(5 分)在△ABC 中,D 为边BC 上一点,BD=DC,∠ADB=120°,AD=2,若△ADC 的面积为,则∠BAC= 60°.【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先根据三角形的面积公式利用△ADC 的面积求得DC,进而根据三角形ABC 的面积求得BD 和BC,进而根据余弦定理求得AB.最后在三角形ABC 中利用余弦定理求得cos∠BAC,求得∠BAC 的值.【解答】解:由△ADC 的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,1 n +1 n n n n n n,则=.故∠BAC=60°.【点评】本题主要考查解三角形中的边角关系及其面积等基础知识与技能,分析问题解决问题的能力以及相应的运算能力.三、解答题(共 8 小题,满分 90 分)17.(12 分)设数列满足 a =2,a ﹣a =3•22n ﹣1 (1) 求数列{a n }的通项公式;(2) 令 b n =na n ,求数列{b n }的前 n 项和 S n .【考点】8E :数列的求和;8H :数列递推式. 【专题】11:计算题.【分析】(Ⅰ)由题意得 a n +1=[(a n +1﹣a n )+(a n ﹣a n ﹣1)+…+(a 2﹣a 1)]+a 1=3(22n﹣1+22n ﹣3+…+2)+2=22(n +1)﹣1.由此可知数列{a}的通项公式为 a =22n ﹣1.(Ⅱ)由 b =na =n•22n ﹣1 知 S =1•2+2•23+3•25++n•22n ﹣1,由此入手可知答案. 【解答】解:(Ⅰ)由已知,当 n ≥1 时,a n +1=[(a n +1﹣a n )+(a n ﹣a n ﹣1)+…+(a 2﹣a 1)]+a 1=3(22n ﹣1+22n ﹣3+…+2)+2=3×+2=22(n +1)﹣1.而 a 1=2,所以数列{a n }的通项公式为 a n =22n ﹣1.(Ⅱ)由 b n =na n =n•22n ﹣1 知 S n =1•2+2•23+3•25+…+n•22n ﹣1①n n 从而 22S =1•23+2•25+…+n•22n +1② ①﹣②得(1﹣22)•S =2+23+25+…+22n ﹣1﹣n•22n +1. 即.【点评】本题主要考查数列累加法(叠加法)求数列通项、错位相减法求数列和等知识以及相应运算能力.18.(12 分)如图,已知四棱锥 P ﹣ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为 H ,PH 是四棱锥的高,E 为 AD 中点(I ) 证明:PE ⊥BC(II ) 若∠APB=∠ADB=60°,求直线 PA 与平面 PEH 所成角的正弦值.【考点】MA :向量的数量积判断向量的共线与垂直;MI :直线与平面所成的角.【专题】11:计算题;13:作图题;14:证明题;35:转化思想.【分析】以 H 为原点,HA ,HB ,HP 分别为 x ,y ,z 轴,线段 HA 的长为单位长,建立空间直角坐标系.(1) 表示,,计算,就证明 PE ⊥BC .(2) ∠APB=∠ADB=60°,求出 C ,P 的坐标,再求平面 PEH 的法向量,求向量,然后求与面 PEH 的法向量的数量积,可求直线 PA 与平面 PEH 所成角的正弦值.【解答】解:以 H 为原点,HA ,HB ,HP 分别为 x ,y ,z 轴,线段 HA 的长为单 位长,建立空间直角坐标系如图,则 A (1,0,0),B (0,1,0) (Ⅰ)设 C (m ,0,0),P (0,0,n )(m <0,n >0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m= ,n=1 ,故 C (﹣),设=(x,y,z)为平面PEH 的法向量则即因此可以取,由,可得所以直线PA 与平面PEH 所成角的正弦值为.【点评】本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.19.(12 分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500 位老年人,结果如表:性别男女是否需要志愿者需要40 30不需要160 270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.050 0.010 0.0013.841 6.635 10.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500 位老年人中有70 位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(12 分)设F1,F2 分别是椭圆的左、右焦点,过F1斜率为1 的直线ℓ 与E 相交于A,B 两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E 的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E 的方程.【考点】83:等差数列的性质;K3:椭圆的标准方程;K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l 的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2 和x1x2进而根据,求得a 和b 的关系,进而求得a 和c 的关系,离心率可得.(II)设AB 的中点为N(x0,y0),根据(1)则可分别表示出x0 和y0,根据|PA|=|PB|,推知直线PN 的斜率,根据求得c,进而求得a 和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l 的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B 两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则, 因为直线 AB 斜率为 1,|AB |=|x 1﹣x 2|=,得,故 a 2=2b 2 所以 E 的离心率(I ) 设 AB 的中点为 N (x 0,y 0),由(I )知. 由|PA |=|PB |,得 k PN =﹣1,即得 c=3,从而故椭圆 E 的方程为. 【点评】本题主要考查圆锥曲线中的椭圆性质以及直线与椭圆的位置关系,涉及等差数列知识,考查利用方程思想解决几何问题的能力及运算能力21.(12 分)设函数f (x )=e x ﹣1﹣x ﹣ax 2.(1) 若 a=0,求 f (x )的单调区间;(2) 若当 x ≥0 时 f (x )≥0,求 a 的取值范围.【考点】6B :利用导数研究函数的单调性.【专题】32:分类讨论.【分析】(1)先对函数 f (x )求导,导函数大于 0 时原函数单调递增,导函数小于 0 时原函数单调递减.(2)根据 e x ≥1+x 可得不等式 f′(x )≥x ﹣2ax=(1﹣2a )x ,从而可知当 1﹣2a ≥0,即时,f′(x )≥0 判断出函数 f (x )的单调性,得到答案.【解答】解:(1)a=0 时,f (x )=e x ﹣1﹣x ,f′(x )=e x ﹣1.当 x ∈(﹣∞,0)时,f'(x )<0;当 x ∈(0,+∞)时,f'(x )>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0 时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0 时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f (x)<0.综合得a 的取值范围为.【点评】本题主要考查利用导数研究函数性质、不等式恒成立问题以及参数取值范围问题,考查分类讨论、转化与划归解题思想及其相应的运算能力.22.(10 分)如图:已知圆上的弧,过C 点的圆的切线与BA 的延长线交于E 点,证明:(I)∠ACE=∠BCD.(II)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC 是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB 即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC 与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5 分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10 分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10 分)已知直线C1(t 为参数),C2(θ为参数),(I)当α=时,求C1 与C2 的交点坐标;(II)过坐标原点O 做C1 的垂线,垂足为A,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1 与C2 的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P 点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1 的普通方程为,C2 的普通方程为x2+y2=1.联立方程组,解得C1 与C2 的交点为(1,0).(Ⅱ)C1 的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA 的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A 点坐标为(sin2α,﹣cosαsinα),故当α变化时,P 点轨迹的参数方程为:,P 点轨迹的普通方程.故P 点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10 分)设函数f(x)=|2x﹣4|+1.(I)画出函数y=f(x)的图象:(II)若不等式f(x)≤ax 的解集非空,求a 的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x 的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax 的图象可知先寻找满足f(x)≤ax 的零界情况,从而求出a 的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax 的图象可知,极小值在点(2,1)当且仅当a<﹣2 或a≥ 时,函数y=f(x)与函数y=ax 的图象有交点.故不等式f(x)≤ax 的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。

2010年高考全国数学卷(全国Ⅱ.文)(含详解答案)

2010年高考全国数学卷(全国Ⅱ.文)(含详解答案)

2010年普通高等学校招生全国统一考试(全国卷Ⅱ)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分和第Ⅱ卷(非选择题)两部分 第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷降答题卡一同交回,满分150分,考试用时120分钟分钟注意事项:注意事项: 1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号答题卡上填写清楚,并认真找准条形码上的准考证号,姓名、考、谁座位号填写在规定的位置贴好条形码。

条形码。

2. 每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷的答案无效。

皮擦干净后,再选涂其它答案标号,答在试卷的答案无效。

第Ⅰ卷 (选择题 共50分)选择题:本大题共10小题,每小题5分,共50分。

在,每小题给出的四个选项中,分。

在,每小题给出的四个选项中, 参考公式:参考公式:如果事件A 、B 互斥,那么互斥,那么 球的表面积公式球的表面积公式球的表面积公式P (A+B A+B))=P(A)+P(B) S=4πR 2 如果事件A 、B 相互独立,那么相互独立,那么 P (A-B A-B))=P(A)-P(B)一、选择题一、选择题(A ){}1,4 (B ){}1,5 (C ){}2,4 (D ){}2,5【解析】 C :本题考查了集合的基本运算. 属于基础知识、基本运算的考查. ∵ A={1,3}。

B={3,5},∴ {1,3,5}A B = ,∴(){2,4}U C A B = 故选 C . (2)不等式32x x -+<0的解集为的解集为(A ){}23x x -<< (B ){}2x x <- (C ){}23x x x <->或 (D ){}3x x > 【解析】A :本题考查了不等式的解法∵ 32x x -<+,∴ 23x -<<,故选A (3)已知2sin 3a =,则cos(2)x a -=(A )53-(B )19-(C )19(D )5335733a +a +a +3C S E F 233 3t3t 3sty23st23st255))且斜率为,若33x。

(完整word)2010年高考新课标全国卷理科数学试题(附答案)

(完整word)2010年高考新课标全国卷理科数学试题(附答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{||2}A x R x =∈≤},{|4}B x Z x =∈≤,则A B ⋂=(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2} (2)已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z ⋅= (A)14 (B)12(C) 1 (D)2 (3)曲线2xy x =+在点(1,1)--处的切线方程为(A)21y x =+ (B)21y x =- (C) 23y x =-- (D)22y x =-- (4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0(2,2)P -,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为tdπ2OA B C D(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C)300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A)54 (B )45(C)65 (D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->=(A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A) 12- (B) 12(C) 2 (D) 2-(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π(B)273a π (C)2113a π (D) 25a π (11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc的取值范围是(A) (1,10) (B) (5,6)(C) (10,12)(D) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -=第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。

2010年全国统一高考数学试卷(文科)(新课标)(答案解析版)

2010年全国统一高考数学试卷(文科)(新课标)(答案解析版)

2010年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=( )A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于( )A.B.C.D.【考点】9S:数量积表示两个向量的夹角.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一. 3.(5分)已知复数Z=,则|z|=( )A.B.C.1D.2【考点】A5:复数的运算.【专题】11:计算题.【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题. 4.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为( )A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为( )A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( )A.3πa2B.6πa2C.12πa2D.24πa2【考点】LG:球的体积和表面积.【专题】11:计算题.【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入N=5,则输出的数等于( )A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=( )A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=( )A.B.C.D.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的. 11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是( )A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【考点】7C:简单线性规划.【专题】11:计算题;16:压轴题.【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为 x2+y2=2 .【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为 .【考点】CE:模拟方法估计概率;CF:几何概型.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的 ①②③⑤ (填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】L7:简单空间图形的三视图.【专题】15:综合题;16:压轴题.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD= 2+ .【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD 得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BDcos135°AC2=CD2+AD2﹣2AD•CDcos45°即AB2=BD2+2+2BD ①AC2=CD2+2﹣2CD ②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD (4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【考点】84:等差数列的通项公式;85:等差数列的前n项和.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD ,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直.【专题】11:计算题;14:证明题;35:转化思想.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【考点】K4:椭圆的性质.【专题】15:综合题.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【考点】6B:利用导数研究函数的单调性.【专题】15:综合题;53:导数的综合应用.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年全国高考数学试题(课标卷)解析(理科数学)
1、D
解析:由已知得,所以.
2、A
解析:,
所以.
另解:,下略.
3、A
解析:,所以,故切线方程为.
另解:将点代入可排除B、D,而,由反比例函数的图像,再根据图像平移得在点处的切线斜率为正,排除C,从而得
4、C
解析:显然,当时,由已知得,故排除A、D,又因为质点是按逆时针方向转动,随时间的变化质点P到轴的距离先减小,再排除B,即得C.另解:根据已知条件得,再结合已知得质点P到轴的距离关于时间的函数为,画图得C.
5、C
解析:易知是真命题,而对:,当时,,又,所以,函数单调递增;同理得当时,函数单调递减,故是假命题.由此可知,真,假,假,真.另解:对的真假可以取特殊值来判断,如取,得;取,得即可得到是假命题,下略.
6、B
解析:根据题意显然有,所以,故.
7、D
解析:根据题意满足条件的

8、B
解析:当时,,又由于函数是偶函数,所以时,的解集为或,故的解集为或.
另解:根据已知条件和幂函数的图像易知的解集为或,故的解集为或.9、A 解析:由已知得,所以,又属于第二或第四象限,故由解得:,从而.
另解:由已知得,所以
10、、B
解析:如图,P为三棱柱底面中心,O为球心,易知
,所以球的半径满足:
,故
11、C
解析:不妨设,取特例,如取,则易得,从而,选C.
另解:不妨设,则由,再根据图像易得,故选
12、B
解析:由已知条件易得直线的斜率为,设双曲线方程为,,则有,两式相减并结合得,,从而,即,又,解得,故选B.
13、
解析:的几何意义是函数的图像与轴、直线和直线所围成图形的面积,根据几何概型易知.
14、三棱锥、三棱柱、圆锥等
15、
解析:设圆的方程为,则根据已知条件得
16、
解析:设,则,由已知条件有
,再由余弦定理分别得到,再由余弦定理得,所以.
17、解:
(Ⅰ)由已知,当n≥1时,。


所以数列{}的通项公式为。

(Ⅱ)由知

从而

①-②得。


(18)解:
以为原点,分别为轴,线段的长为单位长,建立空间直角坐标系如图,则
(Ⅰ)设

可得
因为
所以
(Ⅱ)由已知条件可得
设为平面的法向量
则即
因此可以取,
由,
可得
所以直线与平面所成角的正弦值为
(19)解:
(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为
(2)。

由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关。

(III)由(II)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.
(20.)解:
(I)由椭圆定义知,又,

的方程为,其中。

设,,则A、B两点坐标满足方程组
化简的

因为直线AB斜率为1,所以
得故
所以E的离心率
(II)设AB的中点为,由(I)知
,。

由,得,

得,从而
故椭圆E的方程为。

(21)解:
(1)时,,.
当时,;当时,.故在单调减少,在单调增加(II)
由(I)知,当且仅当时等号成立.故

从而当,即时,,而,
于是当时,.
由可得.从而当时,

故当时,,而,于是当时,.
综合得的取值范围为.
(22)解:
(I)因为,
所以.
又因为与圆相切于点,故,
所以.
(II)因为,
所以∽,故,
即.
(23)解:
(Ⅰ)当时,的普通方程为,的普通方程为。

联立方程组,解得与的交点为(1,0)。

(Ⅱ)的普通方程为。

A点坐标为,
故当变化时,P点轨迹的参数方程为:
P点轨迹的普通方程为。

故P点轨迹是圆心为,半径为的圆。

(24) 解:
(Ⅰ)由于,函数的图像略。

(Ⅱ)由函数与函数的图像可知,当且仅当或时,函数与函数的图像有交点。

故不等式的解集非空时,的取值范围为。

相关文档
最新文档