成都石室联合中学人教版七年级数学上册期末试卷及答案

合集下载

四川省成都市石室中学人教版七年级上册数学期末试卷及答案

四川省成都市石室中学人教版七年级上册数学期末试卷及答案

四川省成都市石室中学人教版七年级上册数学期末试卷及答案 一、选择题 1.以下选项中比-2小的是( )A .0B .1C .-1.5D .-2.52.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .3.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .4.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒5.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( )A .9B .327-C .3-D .(3)-- 6.在220.23,3,2,7-四个数中,属于无理数的是( ) A .0.23 B .3 C .2- D .2277.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A.-1或2 B.-1或5 C.1或2 D.1或58.已知关于x的方程mx+3=2(m﹣x)的解满足(x+3)2=4,则m的值是()A.13或﹣1 B.1或﹣1 C.13或73D.5或739.计算32a a 的结果是()A.5a;B.4a;C.6a;D.8a.10.已知2a﹣b=3,则代数式3b﹣6a+5的值为( )A.﹣4 B.﹣5 C.﹣6 D.﹣711.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是()A.2 B.8 C.6 D.012.96.已知a<0,-1<b<0,则a,ab,ab2之间的大小关系是()A.a>ab>ab2 B.ab>ab2>a C.ab>a>ab2 D.ab<a<ab213.计算:2.5°=()A.15′B.25′C.150′D.250′14.下列等式的变形中,正确的有()①由5 x=3,得x= 53;②由a=b,得﹣a=﹣b;③由﹣x﹣3=0,得﹣x=3;④由m=n,得mn=1.A.1个B.2个C.3个D.4个15.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()A.8 B.12 C.18 D.20二、填空题16.根据下列图示的对话,则代数式2a+2b﹣3c+2m的值是_____.17.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.18.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.19.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.20.52.42°=_____°___′___″.21.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.22.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)23.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.24.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm .25.计算:3+2×(﹣4)=_____.26.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.27.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.28.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.29.若2a﹣b=4,则整式4a﹣2b+3的值是______.30.如图,直线AB、CD相交于O,∠COE是直角,∠1=44°,则∠2=______.三、压轴题31.如图,已知数轴上有三点A,B,C ,若用AB 表示A,B 两点的距离,AC 表示A ,C 两点的距离,且BC = 2 AB ,点A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点P,Q 分别从A,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.32.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.33.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。

2023-2024学年四川省成都市石室联合中学教育集团七年级(上)期末数学试卷+答案解析

2023-2024学年四川省成都市石室联合中学教育集团七年级(上)期末数学试卷+答案解析

2023-2024学年四川省成都市石室联合中学教育集团七年级(上)期末数学试卷一、选择题:本题共8小题,每小题4分,共32分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.的相反数是()A.2B.C.D.2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.3.每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为150000000千米,将150000000千米用科学记数法表示为()A.千米B.千米C.千米D.千米4.下列各式中,不是同类项的是()A.与B.与C.与D.与5.下面计算正确的是()A. B. C. D.6.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查7.数轴上点A与数轴上表示3的点相距4个单位,则点A表示的数是()A.或7B.C.7D.1或8.某班组每天生产60个零件才能在规定时间内完成一批零件生产任务,实际该班组每天比计划多生产了4个零件,结果比规定的时间提前5天完成,若设该班组要完成的零件生产任务为x个,则可列方程为()A. B. C. D.二、填空题:本题共10小题,每小题4分,共40分。

9.单项式的次数是______.10.已知是方程的解,则a的值是______.11.如图,OA是北偏东的一条射线,若,则OB的方向角是______.12.如图是一个正方体纸盒的展开图,正方体的各面标有数字1,2,3,,A,B,相对面上的两个数互为相反数,则______.13.如图,将长方形纸片ABCD沿直线EN、EM进行折叠后点E在AB边上,点刚好落在上,若折叠角,则另一个折叠角______.14.已知,,求的值为______.15.若a和b互为相反数,c和d互为倒数,,那么代数式的值为______.16.有理数a,b,c在数轴上的位置如图所示,化简:______.17.如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形,第1幅图形中“.”的个数为,第2幅图形中“”的个数为,第3幅图形中“”的个数为,以此类推,则的值为______;的值为______.18.对任意一个三位数n,如果满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数和与111的商记为,例如:,对调百位与十位上的数字得,对调百位与个位上的数字得,对调十位与个位上的数字得,这三个新三位数的和为,,所以则的值为______;若s,t都是“相异数”,其中,都是正整数,规定:,当时,则k的最大值为______.三、解答题:本题共8小题,共78分。

成都石室联合中学金沙校区人教版七年级上册数学期末试卷及答案-百度文库

成都石室联合中学金沙校区人教版七年级上册数学期末试卷及答案-百度文库

成都石室联合中学金沙校区人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1062.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π3.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 4.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1B .﹣1C .3D .﹣35.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =136.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AO C =12∠AOB D .∠AOC+∠BOC=∠AOB7.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠48.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 9.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=y C .若x ym m=,则x y = D .若x y =,则x y m m= 10.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4B .﹣2C .4D .211.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离 12.下列计算正确的是( ) A .3a +2b =5ab B .4m 2 n -2mn 2=2mn C .-12x +7x =-5xD .5y 2-3y 2=2二、填空题13.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 14.36.35︒=__________.(用度、分、秒表示)15.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________16.化简:2xy xy +=__________.17.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____. 18.16的算术平方根是 .19.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.20.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.21.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.22.计算:3+2×(﹣4)=_____.23.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、压轴题25.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.26.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.27.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和. 28.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.29.如图,数轴上有A,B两点,分别表示的数为a,b,且()225350a b++-=.点P从A点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B点后立即以相同的速度返回往A点运动,并持续在A,B两点间往返运动.在点P出发的同时,点Q从B点出发以每秒2个单位长度向左匀速运动,当点Q达到A点时,点P,Q停止运动.(1)填空:a=,b=;(2)求运动了多长时间后,点P,Q第一次相遇,以及相遇点所表示的数;(3)求当点P,Q停止运动时,点P所在的位置表示的数;(4)在整个运动过程中,点P和点Q一共相遇了几次.(直接写出答案)30.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2=,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.31.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x xxx x-+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x+与|4|x-的零点值分别为;(2)化简式子324x x-++.32.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.3.B解析:B【解析】【分析】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟,列出方程即可得. 【详解】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,由题意得1604x -1605x =12, 故选B. 【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.4.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值. 【详解】解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.5.D解析:D 【解析】 【分析】方程移项,把x 系数化为1,即可求出解. 【详解】解:方程3x ﹣1=0, 移项得:3x =1, 解得:x =13, 故选:D . 【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.D解析:D 【解析】A. ∵∠AOC =∠BOC ,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;D. ∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.故选D.点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或∠BOC)=12∠AOB.7.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键. 8.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b ,两边同时加上c ,可得 a+c<b+c ,故A 选项错误,不符合题意;B. 由a<b ,两边同时减去c ,得a-c<b-c ,故B 选项正确,符合题意;C. 由a<b ,当c>0时,ac<bc ,当c<0时,ac<bc ,当c=0时,ac=bc ,故C 选项错误,不符合题意;D.由 a<b ,当a>0,c ≠0时,a b c c <,当a<0时,a b c c>,故D 选项错误, 故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 9.D解析:D【解析】【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x y m m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x y m m=不成立,故D 选项错误; 故选:D .【点睛】 本题考查等式的变形,熟记等式的基本性质是解题的关键.10.C解析:C【解析】【分析】由题意可知3b-3a-(a-b )3=3(b-a )-(a-b )3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b )3=3(b-a )-(a-b )3=-3(a-b )-(a-b )3=3-(-1)=4;故选C .【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.11.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A .【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.12.C解析:C【解析】试题解析:A.不是同类项,不能合并.故错误.B. 不是同类项,不能合并.故错误.C.正确.D.222 532.y y y -=故错误.故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.二、填空题13.y =﹣.【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程①的解为x =2020,∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020,∴关于y的一元一次方程3232020(32)2020yy r--=--②中﹣(3y﹣2)=2020,解得:y=﹣20183.故答案为:y=﹣20183.【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.14.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.15.-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a 与b的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x取值解析:-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.【详解】解:根据题意得:2261x bx ax x -++-+=(a-1)x 2+(b-6)x+1,由结果与x 取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x 的取值无关”的意义是解本题的关键.16..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.17.-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3解析:-22【解析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.18.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 19.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2【解析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.20.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.21.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.22.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.23.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解x=-解析:5【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解24.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.三、压轴题25.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.26.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有 个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.27.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1.故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.28.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数, 对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 29.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x 秒,表示出P ,Q 的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25-,35(2)设运动时间为x秒13x2x2535+=+解得x4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P所在的位置表示的数为5 .(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,∴点P和点Q一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.30.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13AB,∴13PQAB=(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12AB,∴CM=14AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.31.(1) 2x=-和4x= ;(2)35(4)11(43)35(3)x xx xx x--<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】。

四川省成都市石室中学人教版七年级上册数学期末试卷及答案

四川省成都市石室中学人教版七年级上册数学期末试卷及答案

四川省成都市石室中学人教版七年级上册数学期末试卷及答案一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2064.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.5.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( )A .两点之间线段最短B .两点确定一条直线C .垂线段最短D .两点之间直线最短6.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠7.-2的倒数是( ) A .-2B .12-C .12D .28.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .6 9.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+ 10.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .112 11.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -12.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2 B .4 C .6 D .8 13.计算:2.5°=( )A .15′B .25′C .150′D .250′14.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=015.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( )A .3.31×105B .33.1×105C .3.31×106D .3.31×107二、填空题16.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____. 17.一个角的余角等于这个角的13,这个角的度数为________. 18.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.19.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.20.单项式22ab -的系数是________.21.写出一个比4大的无理数:____________.22.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.23.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 24.若α与β互为补角,且α=50°,则β的度数是_____. 25.数字9 600 000用科学记数法表示为 .26.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.27.方程x +5=12(x +3)的解是________. 28.当12点20分时,钟表上时针和分针所成的角度是___________.29.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______. 30.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.三、压轴题31.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.32.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.33.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.34.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?35.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.36.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?37.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)38.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案. 【详解】解:A 、5+3×6+1×6×6=59(颗),故本选项错误; B 、1+3×6+2×6×6=91(颗),故本选项正确; C 、2+3×6+1×6×6=56(颗),故本选项错误; D 、1+2×6+3×6×6=121(颗),故本选项错误; 故选:B . 【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.2.C解析:C 【解析】 【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.D解析:D 【解析】【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.4.C解析:C 【解析】试题解析:A ∵0的绝对值是0,故本选项错误. B ∵互为相反数的两个数的绝对值相等,故本选项正确. C 如果一个数是正数,那么这个数的绝对值是它本身. D ∵0的绝对值是0,故本选项错误. 故选C .5.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B.6.C解析:C 【解析】 【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果. 【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.7.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握8.C解析:C【解析】【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解.【详解】解:∵﹣2xy n+2与 3x3m-2y 是同类项,∴3m-2=1,n+2=1,解得:m=1,n=-1,∴|n﹣4m|=|-1-4|=5,故选C.【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键. 9.A解析:A【解析】【分析】根据分式的基本性质即可求出答案.【详解】解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.10.B解析:B 【解析】 【分析】观察图形,正确数出个数,再进一步得出规律即可. 【详解】摆成第一个“H”字需要2×3+1=7个棋子, 第二个“H”字需要棋子2×5+2=12个; 第三个“H”字需要2×7+3=17个棋子; 第n 个图中,有2×(2n+1)+n=5n+2(个).∴摆成 第 20 个“H”字需要棋子的个数=5×20+2=102个. 故B. 【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n .11.C解析:C 【解析】 【分析】根据题意可以用代数式表示m 的2倍与n 平方的差. 【详解】用代数式表示“m 的2倍与n 平方的差”是:2m-n 2, 故选:C . 【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.12.D解析:D 【解析】 【分析】 【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. 2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8. 故选D .本题考查数字类的规律探索.13.C解析:C【解析】【分析】根据“1度=60分,即1°=60′”解答.【详解】解:2.5°=2.5×60′=150′.故选:C.【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.14.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。

四川省成都市石室中学人教版七年级上册数学期末试卷及答案

四川省成都市石室中学人教版七年级上册数学期末试卷及答案

四川省成都市石室中学人教版七年级上册数学期末试卷及答案一、选择题1.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 2.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .33.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.下列说法中正确的有( ) A .连接两点的线段叫做两点间的距离 B .过一点有且只有一条直线与已知直线垂直 C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线5.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 6.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( )A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=07.当x=3,y=2时,代数式23x y-的值是( ) A .43B .2C .0D .38.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .3(a ﹣b )2 B .(3a ﹣b )2 C .3a ﹣b 2 D .(a ﹣3b )2 9.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,210.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元B .赔了10元C .赚了50元D .不赔不赚11.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( ) A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱12.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个二、填空题13.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.14.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.15.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ;16.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.17.52.42°=_____°___′___″.18.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为_____度.19.若代数式x2+3x﹣5的值为2,则代数式2x2+6x﹣3的值为_____.20.当12点20分时,钟表上时针和分针所成的角度是___________.21.用度、分、秒表示24.29°=_____.22.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______23.线段AB=2cm,延长AB至点C,使BC=2AB,则AC=_____________cm.24.a※b是新规定的这样一种运算法则:a※b=a﹣b+2ab,若(﹣2)※3=_____.三、压轴题25.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.26.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.27.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?28.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.29.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.30.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.31.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少? 32.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB . (1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.2.C解析:C 【解析】 【分析】 根据AC 比BC 的14多5可分别求出AC 与BC 的长度,然后分别求出当P 与Q 重合时,此时t=30s ,当P 到达B 时,此时t=15s ,最后分情况讨论点P 与Q 的位置. 【详解】 解:设BC =x ,∴AC =14x +5 ∵AC +BC =AB∴x +14x +5=30, 解得:x =20, ∴BC =20,AC =10, ∴BC =2AC ,故①成立, ∵AP =2t ,BQ =t , 当0≤t ≤15时, 此时点P 在线段AB 上, ∴BP =AB ﹣AP =30﹣2t , ∵M 是BP 的中点 ∴MB =12BP =15﹣t ∵QM =MB +BQ , ∴QM =15, ∵N 为QM 的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.3.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.C解析:C【解析】【分析】分别利用直线的性质以及射线的定义和垂线定义分析得出即可. 【详解】A .连接两点的线段的长度叫做两点间的距离,错误;B .在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;C .对顶角相等,正确;D .线段AB 的延长线与射线BA 不是同一条射线,错误. 故选C . 【点睛】本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.5.A解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.6.A解析:A 【解析】根据同类项的相同字母的指数相同可直接得出答案. 解:由题意得: m=2,n=1. 故选A .7.A解析:A 【解析】 【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A 【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.8.B解析:B 【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b -. 故选B.9.D解析:D 【解析】 【分析】直接利用单项式的次数与系数确定方法分析得出答案. 【详解】解:单项式﹣6ab 的系数与次数分别为﹣6,2. 故选:D . 【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.10.A解析:A 【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元. 考点:一元一次方程的应用11.A解析:A 【解析】设一件的进件为x 元,另一件的进价为y 元, 则x (1+25%)=200, 解得,x =160, y (1-20%)=200, 解得,y =250,∴(200-160)+(200-250)=-10(元), ∴这家商店这次交易亏了10元. 故选A .12.A【解析】①项,因为AP =BP ,所以点P 是线段AB 的中点,故①项正确;②项,点P 可能是在线段AB 的延长线上且在点B 的一侧,此时也满足BP =12AB ,故②项错误;③项,点P 可能是在线段BA 的延长线上且在点A 的一侧,此时也满足AB =2AP ,故③项错误;④项,因为点P 为线段AB 上任意一点时AP +PB =AB 恒成立,故④项错误.故本题正确答案为①.二、填空题13.-3【解析】【分析】根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可. 14.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.15.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大16.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】 解:ABC 90∠=,CBD 30∠=, ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 17.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.18.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14019.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键20.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.21.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′︒'"解析:241724【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.22.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.23.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.24.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、压轴题25.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.26.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.27.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a ,b 的值,然后在数轴上表示即可; (2)①根据PA ﹣PB =6列出关于t 的方程,解方程求出t 的值,进而得到点P 所表示的数;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)P 在原点右边;(Ⅱ)P 在原点左边.分别求出点P 运动的路程,再除以速度即可.【详解】(1)∵多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b ,∴a =﹣4,b =6.如图所示:故答案为﹣4,6;(2)①∵PA =2t ,AB =6﹣(﹣4)=10,∴PB =AB ﹣PA =10﹣2t .∵PA ﹣PB =6,∴2t ﹣(10﹣2t )=6,解得t =4,此时点P 所表示的数为﹣4+2t =﹣4+2×4=4; ②在返回过程中,当OP =3时,分两种情况:(Ⅰ)如果P 在原点右边,那么AB+BP =10+(6﹣3)=13,t =132; (Ⅱ)如果P 在原点左边,那么AB+BP =10+(6+3)=19,t =192. 【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.28.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=-=1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+=()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键. 29.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.30.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着时间的变化而改变,理由见解析【解析】【分析】(1)根据数轴上点的位置求出AB 与BC 的长即可,(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.【详解】解:(1)AB =15,BC =20,(2)设点N 移动x 秒时,点N 追上点M ,由题意得:15322x x ⎛⎫=+ ⎪⎝⎭, 解得15x =,答:点N 移动15秒时,点N 追上点M .(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是25y --、103y -+、107y +,∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,∴BC -AB 的值不会随着时间的变化而改变.【点睛】本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点,31.(1)x=1;(2) x =-3或x =5;(3) 30.【解析】【分析】(1)根据题意可得4-x =x -(-2),解出x 的值;(2)此题分为两种情况,当点P 在B 的右边时,当点P 在B 的左边时,分别列出方程求解即可;(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x 进而求出即可.【详解】(1)4-x =x -(-2),解得:x =1,(2)①当点P 在B 的右边时得:x -(-2)+x -4=8,解得:x =5,②当点P 在B 的左边时得:-2-x +4-x =8,解得:x =-3,则x =-3或x =5.(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x ,解得:x =6,则5x =30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置.32.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°. 【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON﹣∠PAO﹣∠PBO;②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,证明:延长AP交ON于点D,∵∠ADB是△AOD的外角,∴∠ADB=∠PAO+∠AOD,∵∠AP B是△PDB的外角,∴∠APB=∠PDB+∠PBO,∴∠APB=∠MON+∠PAO+∠PBO;(2)设∠MON=2m°,∠APB=2n°,∵OC平分∠MON,∴∠AOC=∠MON=m°,∵PQ平分∠APB,∴∠APQ=∠APB=n°,分两种情况:第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ,即∠OQP=m°+x°+n°①∵∠OQP+∠CON+∠OBP+∠BPQ=360°,∴∠OQP=360°﹣∠CON﹣∠OBP﹣∠BPQ,即∠OQP=360°﹣m°﹣y°﹣n°②,①+②得2∠OQP=360°+x°﹣y°,∴∠OQP=180°+x°﹣y°;第二种情况:如图4,∵∠OQP+∠APQ=∠MOC+∠PAO,即∠OQP+n°=m°+x°,∴2∠OQP+2n°=2m°+2x°①,∵∠APB=∠MON+∠PAO+∠PBO,∴2n°=2m°+x°+y°②,①﹣②得2∠OQP=x°﹣y°,∴∠OQP=x°﹣y°,综上所述,∠OQP=180°+x°﹣y°或∠OQP=x°﹣y°.。

四川省成都市石室中学人教版七年级上册数学期末试卷及答案

四川省成都市石室中学人教版七年级上册数学期末试卷及答案

四川省成都市石室中学人教版七年级上册数学期末试卷及答案一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .3.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -4.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 5.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上6.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了12 个棋子,按这样的规律摆下去,摆成第 20 个“H”字需要棋子()A.97B.102C.107D.1127.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A.①④B.②③C.③D.④8.96.已知a<0,-1<b<0,则a,ab,ab2之间的大小关系是()A.a>ab>ab2 B.ab>ab2>a C.ab>a>ab2 D.ab<a<ab29.在下边图形中,不是如图立体图形的视图是()A.B.C.D.10.如果a﹣3b=2,那么2a﹣6b的值是()A.4 B.﹣4 C.1 D.﹣111.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是()A.设B.和C.中D.山12.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==二、填空题13.一个角的余角等于这个角的13,这个角的度数为________. 14.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.15.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.16.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.17.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.18.36.35︒=__________.(用度、分、秒表示)19.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________. 20.当a=_____时,分式13a a --的值为0. 21.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.22.如果一个数的平方根等于这个数本身,那么这个数是_____. 23.3.6=_____________________′24.钟表显示10点30分时,时针与分针的夹角为________.三、解答题25.足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问: (1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场?26.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离.27.今年秋季,斗门土特产喜获丰收,某土特产公司组织10辆汽车装运甲,乙,丙三种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一士特产,且必须装满,设装运甲种士特产的汽车有x辆,装运乙种特产的汽车有y辆,根据下表提供的信息,解答以下问题:土特产种类甲乙丙每辆汽车运载量(吨)436每吨土特产获利(元)10009001600(1)装运丙种土特产的车辆数为辆(用含有x,y的式子表示);(2)用含有x,y的式子表示这10辆汽车共装运土特产的数量;(3)求销售完装运的这批土特产后所获得的总利润(用含有x,y的式子表示).28.如图,点O是直线AE上的一点,OC是∠AOD的平分线,∠BOD=13∠AOD.(1)若∠BOD=20°,求∠BOC的度数;(2)若∠BOC=n°,用含有n的代数式表示∠EOD的大小.29.一位同学做一道题:“已知两个多项式A,B,计算.”他误将“”看成“”,求得的结果为.已知,请求出正确答案.30.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A.1.5小时以上;B.1~1.5小时;C.0.5~1小时;D.0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.四、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.33.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB 的长小于点A 绕点C 到B 的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短, 故选C . 【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB 的长小于点A 绕点C 到B 的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.A解析:A 【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.3.B解析:B 【解析】 【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.4.B解析:B 【解析】 【分析】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟,列出方程即可得. 【详解】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,由题意得1604x -1605x =12, 故选B. 【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5.A解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.6.B解析:B 【解析】 【分析】观察图形,正确数出个数,再进一步得出规律即可. 【详解】摆成第一个“H”字需要2×3+1=7个棋子, 第二个“H”字需要棋子2×5+2=12个; 第三个“H”字需要2×7+3=17个棋子; 第n 个图中,有2×(2n+1)+n=5n+2(个).∴摆成 第 20 个“H”字需要棋子的个数=5×20+2=102个. 故B. 【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n .7.A解析:A 【解析】 【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案. 【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确; ②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误; ③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误; ④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确. 故选A . 【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.8.B解析:B【解析】先根据同号得正的原则判断出ab的符号,再根据不等式的基本性质判断出ab2及a的符号及大小即可.解:∵a<0,b<0,∴ab>0,又∵-1<b<0,ab>0,∴ab2<0.∵-1<b<0,∴0<b2<1,∴ab2>a,∴a<ab2<ab.故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.9.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A选项为该立体图形的俯视图,不合题意;B选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.10.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.11.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.二、填空题13.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.14.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 16.1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解解析:1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键17.2或8.【解析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键18.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.19.-3【解析】【分析】根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可. 20.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a =1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a =1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.21.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,, ,平分,.故答案为60.【点睛】 解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 22.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.23.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】=︒+︒=︒+⨯=3°36′.解:3.630.63(0.660)'故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.24.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°.故答案为:135°.三、解答题25.(1)前8场比赛中胜了5场;(2)这支球队打满14场后最高得35分;(3)在后6场比赛中这个球队至少胜3场.【解析】【分析】(1)设这个球队胜x场,则平(8﹣1﹣x)场,根据题意可得等量关系:胜场得分+平场得分=17分,根据等量关系列出方程,再解即可;(2)由题意得:前8场得17分,后6场全部胜,求和即可;(3)根据题意可列出不等式进行分组讨论可解答.由已知比赛8场得分17分,可知后6场比赛得分不低于12分就可以,所以胜场≥4一定可以达标,而如果胜场是3场,平场是3场,得分3×3+3×1=12刚好也行,因此在以后的比赛中至少要胜3场.【详解】(1)设这个球队胜x场,则平(8﹣1﹣x)场,依题意可得3x+(8﹣1﹣x)=17,解得x=5.答:这支球队共胜了5场;(2)打满14场最高得分17+(14﹣8)×3=35(分).答:最高能得35分;(3)由题意可知,在以后的6场比赛中,只要得分不低于12分即可,所以胜场不少于4场,一定可达到预定目标.而胜3场,平3场,正好也达到预定目标.因此在以后的比赛中至少要胜3场.答:至少胜3场.【点睛】本题考查了一元一次方程的应用、逻辑分析.根据题意准确的列出方程和不等关系,通过分析即可求解,要把所有的情况都考虑进去是解题的关键.26.小明家到景蓝小区门口的距离为1000米.【解析】【分析】可设小明家到景蓝小区门口的距离是x米,根据等量关系:小明家到景蓝小区门口的时间=小明的父母到景蓝小区门口的时间,依此列出方程求解即可.【详解】解:设小明家到景蓝小区门口的距离为x 米,由题意得:54054060x x ⨯+=+ 解得:x =1000,答:小明家到景蓝小区门口的距离为1000米.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27.(1)(10﹣x ﹣y );(2)(60﹣2x ﹣3y )吨;(3)(96000﹣5600x ﹣6900y )元.【解析】【分析】(1)根据“装运丙种土特产的车辆数=总汽车辆数10-装运甲种土特产的车辆数-装运乙种土特产的车辆数”列式表达便可;(2)根据“装运甲种土特产的每辆车运载重量⨯装运甲种土特产的车辆数+装运乙种土特产的每辆车运载重量⨯装运乙种土特产的车辆数+装运丙种土特产的每辆车运载重量⨯装运丙种土特产的车辆数10=辆汽车共装运土特产的数量”列出代数式并化简便可;(3)根据“甲种土特产每吨利润⨯甲种土特产的总吨数+乙种土特产每吨利润⨯乙种土特产的总吨数+丙种土特产每吨利润⨯丙种土特产的总吨数=总利润”列出代数式,并化简便可.【详解】解:(1)由题意得,装运丙种土特产的车辆数为:10x y --(辆)故答案为:(10)x y --;(2)根据题意得,436(10)x y x y ++--436066x y x y =++--6023x y =--,答:这10辆汽车共装运土特产的数量为(6023)x y --吨;(3)根据题意得,10004900316006(10)x y x y ⨯+⨯+⨯--400027009600096009600x y x y =++--9600056006900x y =--答:销售完装运的这批土特产后所获得的总利润为(9600056006900)x y --元.【点睛】本题主要考查了列代数式和整式的加减应用,正确理解各种数量关系之间的运算关系是列代数式的关键所在.28.(1)10°;(2)180°﹣6n【解析】【分析】(1)根据∠BOD=13∠AOD.∠BOD=20°,可求出∠AOD,进而求出答案;(2)设∠BOD的度数,表示∠AOD,用含有n的代数式表示∠AOD,从而表示∠DOE.【详解】解:(1)∵∠BOD=13∠AOD.∠BOD=20°,∴∠AOD=20°×3=60°,∵OC是∠AOD的平分线,∴∠AOC=∠COD=12∠AOD=12×60°=30°,∴∠BOC=∠COD﹣∠BOD=30°﹣20°=10°;(2)设∠BOD=x,则∠AOD=3x,有(1)得,∠BOC=∠COD﹣∠BOD,即:n=32x﹣x,解得:x=2n,∴∠AOD=3∠BOD=6n,∠EOD=180°﹣∠AOD=180°﹣6n,【点睛】考查角平分线的意义,以及角的计算,通过图形直观得到角的和或差是解决问题的关键.29.【解析】【分析】根据题意列出式子,先求出A表示的多项式,然后再求2A+B.【详解】解:由,,得.所以.【点睛】本题考查整式的加减运算,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.根据题中的关系可先求出A,进一步求得2A+B.30.(1)本次一共调查了200名学生;(2)补图见解析;(3)学校有600人平均每天参加体育锻炼在1小时以下.【解析】【分析】(1)根据A类人数和占比即可求出总人数;(2)用总人数减去A类,C类,D类的人数得到B类人数,即可补全图形;(3)用3000乘以C、D类人数占比即可得出答案.【详解】解:(1)读图可得:A类有60人,占30%;则本次一共调查了60÷30%=200人;(2)“B”有200﹣60﹣30﹣10=100人,如图所示;(3)每天参加体育锻炼在1小时以下占15%,每天参加体育锻炼在0.5小时以下占5%;则3000×(15%+5%)=3000×20%=600人.因此学校有600人平均每天参加体育锻炼在1小时以下.【点睛】本题考查统计图知识,理解条形图和扇形图中数据的对应关系是解题的关键.四、压轴题31.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP =12∠BOC =75°, ∴∠COQ =90°﹣75°=15°,∴∠AOQ =∠AOC ﹣∠COQ =30°﹣15°=15°,t =15÷3=5;②是,理由如下:∵∠COQ =15°,∠AOQ =15°,∴OQ 平分∠AOC ;(2)∵OC 平分∠POQ ,∴∠COQ =12∠POQ =45°. 设∠AOQ =3t ,∠AOC =30°+6t ,由∠AOC ﹣∠AOQ =45°,可得30+6t ﹣3t =45,解得:t =5,当30+6t ﹣3t =225,也符合条件,解得:t =65,∴5秒或65秒时,OC 平分∠POQ ;(3)设经过t 秒后OC 平分∠POB ,∵OC 平分∠POB ,∴∠BOC =12∠BOP , ∵∠AOQ +∠BOP =90°,∴∠BOP =90°﹣3t ,又∠BOC =180°﹣∠AOC =180°﹣30°﹣6t ,∴180﹣30﹣6t =12(90﹣3t ), 解得t =703. 【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.32.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒ 40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.33.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:。

成都石室中学初中学校人教版七年级上册数学期末试卷及答案

成都石室中学初中学校人教版七年级上册数学期末试卷及答案

成都石室中学初中学校人教版七年级上册数学期末试卷及答案.doc一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .2.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1 C .2 D .3 3.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1064.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b 5.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .36.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 7.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120208.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y9.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .10.当x=3,y=2时,代数式23x y-的值是( )A .43B .2C .0D .311.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >012.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =60二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.14.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.15.5535______. 16.若3750'A ∠=︒,则A ∠的补角的度数为__________. 17.单项式﹣22πa b的系数是_____,次数是_____.18.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可). 19.若a a -=,则a 应满足的条件为______. 20.若a 、b 是互为倒数,则2ab ﹣5=_____.21.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.22.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.23.钟表显示10点30分时,时针与分针的夹角为________.24.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.27.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.28.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.29.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______;()3求当t 为何值时,1PQ AB 2=?()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.30.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3.问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.31.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.32.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A、5+3×6+1×6×6=59(颗),故本选项错误;B、1+3×6+2×6×6=91(颗),故本选项正确;C、2+3×6+1×6×6=56(颗),故本选项错误;D、1+2×6+3×6×6=121(颗),故本选项错误;故选:B.【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.2.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案. 【详解】 解:根据题意可得: 把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B. 【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.3.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】试题分析:384 000=3.84×105. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.D解析:D 【解析】 【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论. 【详解】解:∵由图可知a <0<b , ∴ab <0,即-ab >0 又∵|a |>|b |, ∴a <﹣b . 故选:D . 【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.C解析:C【解析】【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可.【详解】解:∵ 2.5-<1-<0<3,∴最小的数是 2.5-,故选:C.【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.6.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x天,由题意得方程:4 10+415x+=1.故选B.【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.7.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 -,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.8.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x﹣3y﹣12x+6y=﹣10x +3y . 故选B .点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.9.C解析:C 【解析】 【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可. 【详解】 移项得,x >2, 在数轴上表示为:故选:C . 【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.10.A解析:A 【解析】 【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A 【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.11.C解析:C 【解析】 【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可. 【详解】解:由a 、b 在数轴上的位置可知:a <0,b >0,且|a |>|b |, ∴a +b <0,ab <0,a ﹣b <0,a ÷b <0. 故选:C .12.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价,可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.【解析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进<<5【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.解:50,则62636555=<=<,5<<,5<<.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 16.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.17.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 18.36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】324x xy -=x(x+2y)(x-2y).当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入19.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.≥解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】-=,解:a a∴≥,a0≥.故答案为a0【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.20.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.21.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.22.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,23.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°.故答案为:135°.24.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.三、压轴题25.(1)80°;(2)140°【解析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 26.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.27.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.28.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB∠∠=,12AOE AOD∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】 (1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=-=1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+ =()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.29.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.30.(1)1+a 或1-a ;(2)12或52;(3)1≤b≤7. 【解析】【分析】(1)根据d 追随值的定义,分点N 在点M 左侧和点N 在点M 右侧两种情况,直接写出答案即可;(2)①分点A 在点B 左侧和点A 在点B 右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N 在点M 右侧时,点N 表示的数是1+a ;点N 在点M 左侧时,点N 表示的数是1-a ;(2)①b=4时,AB 相距3个单位,当点A在点B左侧时,t=(3-2)÷(3-1)=12,当点A在点B右侧时,t=(3+2)÷(3-1)=52;②当点B在点A左侧或重合时,即d≤1时,随着时间的增大,d追随值会越来越大,∵0<t≤3,点A到点B的d追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d≥1,∴d=1,当点B在点A右侧时,即d>1时,在AB重合之前,随着时间的增大,d追随值会越来越小,∵点A到点B的d追随值d[AB]≤6,∴d≤7∴1<d≤7,综合两种情况,d的取值范围是1≤d≤7.故答案为(1)1+a或1-a;(2)①12或52;②1≤b≤7.【点睛】本题考查了数轴上两点之间的距离和动点问题.31.(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒【解析】【分析】(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE的面积S;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,∵点M的坐标为(2,8),点N的坐标为(2,6),∴MN∥y轴,∴K(4,8);(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=12OF•AE=12(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,0),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△OBG+S四边形DBGH+S△ODH,=12OG•BG+12(BG+DH)•GH﹣12OH•DH,=12×2(6-t)+12×4(6﹣t+8﹣t)﹣12×6(8﹣t),=10﹣2t,∵S△OBD=S△OAE,∴10﹣2t=8﹣t,t=2;②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,8﹣t),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,=12OH•DH﹣12(BG+DH)•GH﹣12OG•BG,=12×2(8-t)﹣12×4(6﹣t+8﹣t)﹣12×2(6﹣t),=2t﹣10,∵S△OBD=S△OAE,∴2t﹣10=8﹣t,t=6;综上,t的值是2秒或6秒.【点睛】本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.32.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD﹣∠COE=12(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.。

四川省成都市石室中学人教版七年级上册数学期末试卷及答案

四川省成都市石室中学人教版七年级上册数学期末试卷及答案

四川省成都市石室中学人教版七年级上册数学期末试卷及答案一、选择题1.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=- D .()2121826x x ⨯=- 2.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯ B .56.04810⨯ C .66.04810⨯ D .60.604810⨯ 3.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯4.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm5.若21(2)0x y -++=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-6.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边C .在点 A, C 之间D .以上都有可能7.﹣2020的倒数是( ) A .﹣2020B .﹣12020C .2020D .120208.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =9.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 10.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( ) A .3.31×105 B .33.1×105C .3.31×106D .3.31×10711.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm12.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____. 14.已知x=5是方程ax ﹣8=20+a 的解,则a= ________15.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………16.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.17.36.35︒=__________.(用度、分、秒表示)18.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.19.因式分解:32x xy -= ▲ .20.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____. 21.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____. 22.若523m xy +与2n x y 的和仍为单项式,则n m =__________.23.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______. 24.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、解答题25.如图,已知180AOB ∠=︒,射线ON .()1请画出BON ∠的平分线OC ;()2如果70AON ∠=︒,射线OA OB 、分别表示从点O 出发东、西两个方向,那么射线ON 方向,射线OC 表示 方向.()3在()1的条件下,当60AON ∠=︒时,在图中找出所有与AON ∠互补的角,这些角是_ .26.(1)求出下列各数:①2的算术平方根;②﹣27的立方根;③16的平方根. (2)将(1)中求出的每个数准确地表示在数轴上,将这些数按从小到大的顺序排列,并用“<”连接.27.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取______名学生; (2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是_______; (4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.28.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完 这批T 恤衫商店共获利多少元?29.如图,射线OM 上有三点A 、B 、C ,满足OA=20cm ,AB=60cm ,BC=10cm ,点P 从点O 出发,沿OM 方向以1cm/秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动. (1)若点Q 运动速度为2cm/秒,经过多长时间P 、Q 两点相遇?(2)当P 在线段AB 上且PA=3PB 时,点Q 运动到的位置恰好是线段AB 的三等分点,求点Q 的运动速度;30.如图,已知数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11,动点P 从点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)数轴上点B 表示的数是 ,当点P 运动到AB 中点时,它所表示的数是 ; (2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若P ,Q 两点同时出发,求点P 与Q 运动多少秒时重合?(3)动点Q 从点B 出发,以每秒2个单拉长度的速度沿数轴向左匀速运动,若P ,Q 两点同时出发,求:①当点P 运动多少秒时,点P 追上点Q ?②当点P 与点Q 之间的距离为8个单位长度时,求此时点P 在数轴上所表示的数.四、压轴题31.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题:(1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为,取得最佳值最小值的数列为(写出一个即可);(3)将2,-9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a的值.32.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.33.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF,然后将一副三角板拼接在一起,其中45角(AOB∠)的顶点与60角(COD∠)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停止.①当OB平分EOD∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】设分配x 名工人生产螺栓,则(26-x )名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程. 【详解】解:设分配x 名工人生产螺栓,则(26-x )名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个, ∴可得2×12x=18(26-x ). 故选:D . 【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.2.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 3.C解析:C 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.5.A解析:A【解析】1x (y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y )2015=(1﹣2)2015=﹣1. 故选A6.C解析:C 【解析】 【分析】根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解. 【详解】∵绝对值表示数轴上两点的距离a b -表示a 到b 的距离 b c -表示b 到c 的距离 a c -表示a 到c 的距离∵a b b c a c -+-=-丨丨丨丨丨丨 ∴B 在A 和C 之间 故选:C 【点睛】本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.7.B解析:B 【解析】 【分析】根据倒数的概念即可解答. 【详解】解:根据倒数的概念可得,﹣2020的倒数是12020-, 故选:B . 【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.8.A解析:A 【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1. 故选A .考点:解一元一次方程.9.B解析:B【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.10.C解析:C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:3310000=3.31×106.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.12.A【解析】要把原方程变形化简,去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6,移项,合并得,x=31a,因为无解,所以a﹣1=0,即a=1.故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.15.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,n解析:83【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.16.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.17.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.18.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.19.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).20.【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:,故答案为:.【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.解析:5()-a b【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b ,故答案为:5()-a b .【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.21.3(x ﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x 辆车,则可列方程:3(x ﹣2)解析:3(x ﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x 辆车,则可列方程:3(x ﹣2)=2x+9.故答案是:3(x ﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.22.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.23.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系. 24.6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.三、解答题25.(1)详见解析;(2)北偏东20°,北偏西35°;(3),BON AOC ∠∠【解析】【分析】(1)以点O 为圆心,以任意长为半径画弧,与OB 、ON 相交于两点,再分别以这两点为圆心,以大于它们12长度为半径画弧,两弧相交于一点,然后过点O 与这点作射线OC 即为所求;(2)过点O 作OE ⊥AB ,根据垂直的定义以及角平分线的定义求出∠EON 与∠COE ,然后根据方位角的定义解答即可;(3)根据∠AON=60°,利用平角的定义可得∠BON ,利用角平分线的定义求出∠CON=60°,然后求出∠AOC=120°从而得解.【详解】解:(1)如图所示,OC 即为∠BON 的平分线;(2)过点O 作OE ⊥AB ,∵∠AON=70°,∴∠EON=90°-70°=20°,∴ON 是北偏东20°,∵OC 平分∠BON ,∴∠CON=12(180°-70°)=55°, ∴∠COE=∠CON-∠EON=55°-20°=35°,∴OC 是北偏西35°;故答案为:北偏东20°;北偏西35°.(3)∵∠AON=60°,OC 平分∠BON ,∴∠CON=12(180°-60°)=60°, ∴∠AOC=∠CON+∠AON=60°+60°=120°,∴∠AOC+∠AON=180°,又根据平角的定义得,∠BON+∠AON=180°,∴与∠AON 互补的角有∠AOC ,∠BON ;故答案为:∠AOC ,∠BON.【点睛】本题考查了复杂作图,角平分线的定义,方位角,以及余角与补角,比较简单,作角平分线是基本作图,一定要熟练掌握.26.(1)①2;②-3;③±2;(2)图见解析,﹣3<﹣2<2<2.【解析】【分析】(1)利用算术平方根、平方根、立方根定义计算即可求出;(2)将各数表示在数轴上,按照从小到大顺序排列即可.【详解】解(1)①2的算术平方根是2;②﹣27的立方根是﹣3;③16=4,4的平方根是±2.(2)将(1)中求出的每个数表示在数轴上如下:用“<”连接为:﹣3<﹣2<2<2.【点睛】此题考查了实数大小比较,以及实数与数轴,熟练掌握运算法则是解本题的关键.27.(1)50;(2)补图见解析;(3)72°;(4)672人.【解析】【分析】(1)画出统计图,根据跳绳的人数除以占的百分比即可得出抽取的学生总数;(2)根据总学生数,求出踢毽子与其他的人数,补全条形统计图即可(3)根据其他占的百分比乘以360°即可得到结果(4)由立定跳远的百分比,乘以2100即可得到结果【详解】(1)根据题意得:15÷30%=50(名)则共抽取50名学生(2)根据题意得:踢毽子人数为50×18%=9(名),其他人数为50×(1-30%-18%-32%)=10名,补全条形统计图,如图所示(3)根据题意得:360°×20%=72°则“其他"部分对应的圆心角的度数是72°;(4)根据题意得'立定跳远"部分的学生有2100×32%=672(名)【点睛】此题考查条形统计图,用样本估计总体和扇形统计图,看懂图中数据是解题关键28.(1)甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)售完这批T 恤衫商店共获利5960元.【解析】【分析】(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,根据题意列出方程求解即可;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【详解】(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有:78006400301.5x x+=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)6400x=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元).答:售完这批T恤衫商店共获利5960元.【点睛】本题考查分式方程的应用,根据等量关系建立方程是关键,注意分式方程需要验根.29.(1)经过30秒时间P、Q两点相遇;(2)点Q是速度为613cm/秒或1013cm/秒.【解析】【分析】(1)设经过t秒时间P、Q两点相遇,列出方程即可解决问题;(2)分两种情形求解即可.【详解】(1)设经过t秒时间P、Q两点相遇,则t+2t=90,解得t=30,所以经过30秒时间P、Q两点相遇.(2)∵AB=60cm,PA=3PB,∴PA=45cm,OP=65cm.∴点P、Q的运动时间为65秒,∵AB=60cm ,13AB=20cm , ∴QB=20cm 或40cm , ∴点Q 是速度为10+2065=613cm/秒或10+4065=1013cm/秒. 【点睛】本题考查两点间距离、路程、速度、时间之间的关系等知识,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.30.(1)-5,0.5;(2)点P 与Q 运动2.2秒时重合;(3)①当点P 运动11秒时,点P 追上点Q ;②当点P 与点Q 之间的距离为8个单位长度时,此时点P 在数轴上所表示的数为﹣3或﹣51.【解析】【分析】(1)由题意得出数轴上点B 表示的数是5-,由点P 运动到AB 中点得出点P 对应的数是1(56)0.52⨯-+=即可; (2)设点P 与Q 运动t 秒时重合,点P 对应的数为63t -,点Q 对应的数为52t -+,得出方程6352t t -=-+,解方程即可;(3)①运动t 秒时,点P 对应的数为63t -,点Q 对应的数为52t --,由题意得出方程6352t t -=--,解方程即可;②由题意得出|63(52)|8t t ----=,解得3t =或19t =,进而得出答案.【详解】解:(1)数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11,∴数轴上点B 表示的数是6115-=-,点P 运动到AB 中点,∴点P 对应的数是:1(56)0.52⨯-+=,故答案为:5-,0.5;(2)设点P 与Q 运动t 秒时重合,点P 对应的数为:63t -,点Q 对应的数为:52t -+, 6352t t ∴-=-+,解得: 2.2t =,∴点P 与Q 运动2.2秒时重合;(3)①运动t 秒时,点P 对应的数为:63t -,点Q 对应的数为:52t --,点P 追上点Q ,6352t t ∴-=--,解得:11t =,∴当点P 运动11秒时,点P 追上点Q ; ②点P 与点Q 之间的距离为8个单位长度,|63(52)|8t t ∴----=,解得:3t =或19t =,当3t =时,点P 对应的数为:63693t -=-=-,当19t =时,点P 对应的数为:6365751t -=-=-,∴当点P 与点Q 之间的距离为8个单位长度时,此时点P 在数轴上所表示的数为3-或51-.【点睛】此题考查的知识点是一元一次方程的应用与两点间的距离及数轴,根据已知得出各线段之间的等量关系是解题关键.四、压轴题31.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10. 【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a 的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52, 所以数列−4,−3,2的最佳值为52; 对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52, 所以数列−4,2,−3的最佳值为1; 对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52, 所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a=11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.32.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s 【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.33.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.。

成都石室中学初中学校人教版七年级上册数学期末试卷及答案

成都石室中学初中学校人教版七年级上册数学期末试卷及答案

25%,在这次买卖中,这家商店( )
A.不赔不赚
B.赚了 9 元
C.赚了 18 元
D.赔了 18 元
13么 a、b 的值分别为( )
A. a 2,b 3
B. a 1,b 2
C. a 1,b 3
D. a 2,b 2
14.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角
形中 y 与 n 之间的关系是()
A.y=2n+1
B.y=2n+n
C.y=2n+1+n
D.y=2n+n+1
15.如图,在数轴上有 A,B,C,D 四个整数点(即各点均表示整数),且 2AB=BC=3CD,
若 A,D 两点表示的数分别为-5 和 6,点 E 为 BD 的中点,在数轴上的整数点中,离点 E 最
A.对现代大学生零用钱使用情况的调查 B.对某班学生制作校服前身高的调查
C.对温州市市民去年阅读量的调查
D.对某品牌灯管寿命的调查
8.一张普通 A4 纸的厚度约为 0.000104m,用科学计数法可表示为() m
A.1.04 102
B.1.04 103
C.1.04 104
D.1.04 105
9.已知关于 x 的方程 ax﹣2=x 的解为 x=﹣1,则 a 的值为(
成都石室中学初中学校人教版七年级上册数学期末试卷及答案.doc
一、选择题
1.近年来,国家重视精准扶贫,收效显著.据统计约有 65 000 000 人脱贫,把 65 000 000
用科学记数法表示,正确的是( )
A.0.65×108
B.6.5×107
C.6.5×108
D.65×106

成都石室联合中学金沙校区人教版七年级上册数学期末试卷及答案-百度文库

成都石室联合中学金沙校区人教版七年级上册数学期末试卷及答案-百度文库

成都石室联合中学金沙校区人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3 B .13 C .13- D .32.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( )A .0.65×108B .6.5×107C .6.5×108D .65×1063.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒ 4.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+=C .6352x x -+=D .6352x x --= 5.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( )A .1个B .2个C .3个D .4个6.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73 D .5或737.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( )A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm 8.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7 B .﹣1 C .9 D .79.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( )A .3.31×105B .33.1×105C .3.31×106D .3.31×10710.下列调查中,调查方式选择正确的是( )A .为了了解1 000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量, 选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查11.下列图形中,哪一个是正方体的展开图( )A .B .C .D .12.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32b B .a =2b C .a =52b D .a =3b二、填空题13.若|x |=3,|y |=2,则|x +y |=_____.14.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.15.计算:()222a -=____;()2323x x ⋅-=_____.16.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.17.若方程11222m x x --=++有增根,则m 的值为____. 18.16的算术平方根是 . 19.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.20.|﹣12|=_____. 21.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.22.-2的相反数是__.23.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.24.若523m x y +与2n x y 的和仍为单项式,则n m =__________.三、解答题25.先化简,再求值: 22212144x x x x--+--,其中5x =. 26.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A .1.5小时以上;B .1~1.5小时;C .0.5~1小时;D .0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B 的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.27.已知:四点A B C D 、、、的位置如图所示,根据下列语句,画出图形.()1画直线AD 、直线,BC 画射线AB ;()2画一点O ,使点O 既在直线AD 上又在直线,BC 上;()3在上面所作的图形中,以A B C D O 、、、、为端点的线段共有 条.28.小明每天早上要在7:40之前赶到距家1100米的学校上学,小明以60m /min 的速度出发,5min 后,爸爸以180m/min 的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?29.如图,C 为线段AD 上一点,点B 为CD 的中点,且AD =9,BD =2.(1)求AC 的长;(2)若点E 在直线AD 上,且EA =1,求BE 的长.30.如图,在数轴上有 A 、B 、C 、D 四个点,分别对应的数为 a ,b , c , d ,且满足 a ,b 是方程| x +7|=1的两个解(a < b ),且(c -12)2 与| d -16 |互为相反数.(1)填空: a = 、b = 、 c = 、 d = ;(2)若线段 AB 以 3 个单位/ 秒的速度向右匀速运动,同时线段CD 以 1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C , D 两个端点重合),若BD =2AC ,求t 的值;(3)在(2)的条件下,线段 AB ,线段CD 继续运动,当点 B 运动到点 D 的右侧时,问是否存在时间t ,使 BC =3AD ?若存在,求t 的值;若不存在,说明理由.四、压轴题31.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.32.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.33.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.B解析:B【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.详解:65 000 000=6.5×107.故选B .点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D解析:D【解析】【分析】由题意分两种情况过点O 作OE AB ⊥,利用垂直定义以及对顶角相等进行分析计算得出选项.【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D.【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.4.C解析:C【解析】【分析】方程两边都乘以2,再去括号即可得解.【详解】3532x x --=方程两边都乘以2得:6-(3x-5)=2x,去括号得:6-3x+5=2x,故选:C.【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.5.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.7.C解析:C【解析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.8.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.9.C解析:C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判【详解】解:3310000=3.31×106.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.B解析:B【解析】选项A、C、D,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B.11.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键. 12.B解析:B【解析】【分析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.二、填空题13.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x=3,y=﹣2时,|x+y|=|3+(﹣2)|=1(3)x=﹣3,y=2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.14.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.15.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a()23x x⋅-=523-6x【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键16.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键17.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键18.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 19.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x 的值.【详解】若经过一次输入结果得131,则5x +1=131,解得x =26;若解析:26,5,45【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x 的值.【详解】若经过一次输入结果得131,则5x +1=131,解得x =26;若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=45;若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−125(负数,舍去);故满足条件的正数x值为:26,5,45.【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.20.【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.21.8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2c解析:8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2cm=4cm②当C在AB延长线时,如图所示,AC=AB+BC=6cm+2cm=8cm综上所述,A、C两点间的距离是8cm或4cm故答案为:8cm或4cm.【点睛】本题考查线段的和差计算,分情况讨论是解题的关键.22.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.23.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C -︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.24.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.三、解答题25.2x x +;57. 【解析】【分析】 直接利用分式的加减运算法则化简,然后代入求值,进而得出答案.【详解】解: 原式221214x xx--+=-222(2)4(2)(2)2x x x x xx x x x--===-+-+;当x=5时,原式=5 7 .【点睛】此题主要考查了分式的化简求值,正确掌握分式的加减运算法则是解题关键.26.(1)本次一共调查了200名学生;(2)补图见解析;(3)学校有600人平均每天参加体育锻炼在1小时以下.【解析】【分析】(1)根据A类人数和占比即可求出总人数;(2)用总人数减去A类,C类,D类的人数得到B类人数,即可补全图形;(3)用3000乘以C、D类人数占比即可得出答案.【详解】解:(1)读图可得:A类有60人,占30%;则本次一共调查了60÷30%=200人;(2)“B”有200﹣60﹣30﹣10=100人,如图所示;(3)每天参加体育锻炼在1小时以下占15%,每天参加体育锻炼在0.5小时以下占5%;则3000×(15%+5%)=3000×20%=600人.因此学校有600人平均每天参加体育锻炼在1小时以下.【点睛】本题考查统计图知识,理解条形图和扇形图中数据的对应关系是解题的关键.27.()1见解析;()2见解析;()37【解析】【分析】(1)根据直线、射线的性质画图即可;(2)画出直线AD和直线BC的交点即可得出答案;(3)根据线段的定义分别得出各条线段即可.【详解】解:(1)(2)如图所示:(3)根据图形可知线段有: AO , AB ,AD ,BO , BC ,CO ,OD ,共7条.故答案为:7【点睛】此题主要考查了简单作图,解答此题需要熟练掌握直线、射线、线段的性质,认真作图解答即可.28.(1)2.5min (2)650m【解析】【分析】(1)可以设爸爸追上小明用了x 分钟,根据爸爸追上小明时的行程=小明5分钟的行程+x 分钟的行程列出方程求解即可;(2)根据(1)中的时间可求得行程,即可得距离学校的距离=总路程一已行路程【详解】(1)设爸爸追上小明用了min x .依题意,得(18060)605x -=⨯,解得 2.5x =.答:爸爸追上小明用了2.5min .(2)1100180 2.5-⨯1100450=-650(m)=答:追上小明时,距离学校还有650m 远.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.29.(1)5;(2)BE 的长为8或6【解析】【分析】(1)由中点的定义可得CD =2BD ,由BD =2可求CD 的长度,最后根据线段的和差即可解答;(2)由于点E 在直线AD 上位置不确定,需分E 在线段DA 上和线段AD 的延长线两种情况解答.【详解】解:(1)∵点B 为CD 的中点,BD =2,∴CD =2BD =4,∵AD =9,∴AC =AD ﹣CD =9﹣4=5;(2)若E 在线段DA 的延长线,如图1,∵EA =1,AD =9,∴ED =EA +AD =1+9=10,∵BD =2,∴BE =ED ﹣BD =10﹣2=8,若E 线段AD 上,如图2,EA =1,AD =9,∴ED =AD ﹣EA =,9﹣1=8,∵BD =2,∴BE =ED ﹣BD =8﹣2=6,综上所述,BE 的长为8或6.【点睛】本题考查的是线段的中点、线段的和差计算等知识点,根据题意画出图形并进行分类讨论是解答本题的关键.30.(1)a = -8 , b = -6,c = 12 , d = 16;(2)316t =;(3)t =274 或t = 458时, BC = 3AD【解析】【分析】(1)根据绝对值的含义a a ±=(a 为正数) 及平方和绝对值的非负性20,0a a ≥≥ 即可求解;(2)AB 、CD 运动时, 点 A 对应的数为: -8 + 3t , 点 B 对应的数为: -6 + 3t , 点C 对应的数为:12 - t , 点 D 对应的数为: 16 - t ,根据题意列出关于t 的等式求解即可;(3)根据题意求出t 的取值范围,用含t 的式子表示出BC 和AD ,再根据BC =3AD 即可求出t 值.【详解】(1) | x + 7 |= 1,∴ x = -8 或-6∴ a = -8 , b = -6,(c -12)2 + | d -16 |= 0 ,∴ c = 12 , d = 16(2) AB 、CD 运动时, 点 A 对应的数为: -8 + 3t , 点 B 对应的数为: -6 + 3t , 点C 对应的数为:12 - t , 点 D 对应的数为: 16 - t ,∴ BD =|16 - t - (-6 + 3t ) |=| 22 - 4t |AC =|12 - t - (-8 + 3t ) |=| 20 - 4t |BD = 2 AC ,∴ 22 - 4t = ±2(20 - 4t )解得: 92t =或316t = 当92t =时,此时点 B 对应的数为152,点C 对应的数为152,此时不满足题意, 故316t = (3)当点 B 运动到点 D 的右侧时, 此时-6 + 3t > 16 - t 112t ∴>, BC =|12 - t - (-6 + 3t ) |=|18 - 4t | ,AD =|16 - t - (-8 + 3t ) |=| 24 - 4t | ,BC = 3AD ,∴|18 - 4t |= 3 | 24 - 4t | ,解得: t =274 或t = 458经验证,t =274 或t = 458, BC = 3AD 【点睛】本题考查了有理数与数轴的综合问题,涉及字母的表示,绝对值的性质,解方程,灵活应用绝对值的性质是解题的关键.四、压轴题31.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.32.(1)-12,8-5t ;(2)94或114;(3)10;(4)MN 的长度不变,值为10. 【解析】【分析】(1)根据已知可得B 点表示的数为8﹣20;点P 表示的数为8﹣5t ;(2)运动时间为t 秒,分点P 、Q 相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P 运动x 秒时追上Q ,根据P 、Q 之间相距20,列方程求解即可;(4)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1)20;(2)t=15s或17s (3)4 3 s.【解析】【分析】(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.【详解】(1)设P、Q速度分别为3m、2m,根据题意得:12×3m=36,解得:m=1,∴P、Q速度分别为3、2,∴BC=12×2=24,∴OC=OB-BC=44-24=20.(2)当A、B在相遇前且相距5个单位长度时:3t+2t+5=44+36,5t=75,∴t=15(s);当A、B在相遇后且相距5个单位长度时:3t+2t-5=44+36,5t=85,∴t=17(s).综上所述:t=15s或17s.(3)P运动到原点时,t=3644443++=1243s,此时QB=2×1243=2483>44+38=80,∴Q点已到达A点,∴Q点已到达A点的时间为:3644804022+==(s),故提前的时间为:1243-40=43(s).【点睛】本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.。

成都石室联合中学人教版七年级数学上册期末试卷及答案

成都石室联合中学人教版七年级数学上册期末试卷及答案

成都石室联合中学人教版七年级数学上册期末试卷及答案一、选择题1.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短2.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,33.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③B .①②C .②④D .③④4.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2B .8C .6D .05.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④6.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( ) A .a >ab >ab 2 B .ab >ab 2>a C .ab >a >ab 2 D .ab <a <ab 27.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个8.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33° 9.已知一个多项式是三次二项式,则这个多项式可以是( ) A .221x x -+B .321x +C .22x x -D .3221x x -+10.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =11.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°12.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-113.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟14.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上 D .AD 上15.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题16.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.17.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………18.单项式22ab -的系数是________.19.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.20.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.21.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______22.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)23.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 24.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.25.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.26.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.27.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 28.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.29.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 30.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.三、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.32.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1) 若b=-4,则a的值为__________.(2) 若OA=3OB,求a的值.(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.33.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。

成都石室联合中学金沙校区人教版七年级上册数学期末试卷及答案-百度文库

成都石室联合中学金沙校区人教版七年级上册数学期末试卷及答案-百度文库

成都石室联合中学金沙校区人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.下列说法中正确的有()A.连接两点的线段叫做两点间的距离B.过一点有且只有一条直线与已知直线垂直C.对顶角相等D.线段AB的延长线与射线BA是同一条射线2.A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是( )A.1601603045x x-=B.1601601452x x-=C.1601601542x x-=D.1601603045x x+=3.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm,根据题意,可得方程为()A.2(x+10)=10×4+6×2 B.2(x+10)=10×3+6×2C.2x+10=10×4+6×2 D.2(x+10)=10×2+6×24.已知一个多项式是三次二项式,则这个多项式可以是()A.221x x-+B.321x+C.22x x-D.3221x x-+5.若OC是∠AOB内部的一条射线,则下列式子中,不能表示“OC是∠AOB的平分线”的是( )A.∠AOC=∠BOC B.∠AOB=2∠BOCC.∠AOC=12∠AOB D.∠AOC+∠BOC=∠AOB6.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A.向西走3米B.向北走3米C.向东走3米D.向南走3米7.下列等式的变形中,正确的有()①由5 x=3,得x= 53;②由a=b,得﹣a=﹣b;③由﹣x﹣3=0,得﹣x=3;④由m=n,得mn=1.A .1个B .2个C .3个D .4个 8.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( )A .2B .4C .﹣2D .﹣4 9.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513 B .﹣511C .﹣1023D .102510.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0m B .0.8m C .0.8m - D .0.5m - 11.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=112.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯B .5510⨯C .6510⨯D .510⨯二、填空题13.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.14.单项式22ab -的系数是________.15.写出一个比4大的无理数:____________.16.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.17.分解因式: 22xyxy +=_ ___________18.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.19.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.20.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.21.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____. 22.观察“田”字中各数之间的关系:则c 的值为____________________.23.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、解答题25.如图,点P 是线段AB 上的一点,请在图中完成下列操作. (1)过点P 画BC 的垂线,垂足为H ; (2)过点P 画AB 的垂线,交BC 于Q ; (3)线段 的长度是点P 到直线BC 的距离.26.已知,,,A B C D 四点如图所示,请按要求画图.(1)画直线AB ;(2)若所画直线AB 表示一条河流,点,C D 分别表示河流两旁的两块稻田,要在河岸边某一位置开渠引水灌溉稻田,请在河流AB 上确定点P ,使得在点P 处开渠到两块稻田,C D 的距离之和最短,并说明理由.27.计算:2×(﹣4)+18÷(﹣3)3﹣(﹣5). 28.根据语句画出图形:如图,已知、、A B C 三点.(1)画线段AB ; (2)画射线AC ; (3)画直线BC ;(4)取AB 的中点P ,连接PC .29.如图,已知数轴上有、、A B C 三个点,它们表示的数分别是24,10,10--.(1)填空:AB = ,BC = .(2)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC AB -的值是否随着时间t 的变化而改变? 请说明理由。

成都石室中学初中学校人教版七年级上册数学期末试卷及答案

成都石室中学初中学校人教版七年级上册数学期末试卷及答案

成都石室中学初中学校人教版七年级上册数学期末试卷及答案.doc一、选择题1.以下选项中比-2小的是( )A .0B .1C .-1.5D .-2.52.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+C .23x =D .3-3x x = 3.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×107 4.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯ 5.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒ 6.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+6 7.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边 C .在点 A, C 之间D .以上都有可能 8.如果a ﹣3b =2,那么2a ﹣6b 的值是( ) A .4B .﹣4C .1D .﹣1 9.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y 10.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨.A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯11.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( )A .2或2.5B .2或10C .2.5D .212.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD ∠的度数为( )A .100B .120C .135D .150二、填空题13.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米.14. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.15.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.16.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________ 17.52.42°=_____°___′___″.18.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.19.|﹣12|=_____. 20.数字9 600 000用科学记数法表示为 .21.﹣225ab π是_____次单项式,系数是_____. 22.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 23.3.6=_____________________′24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、解答题25.某学校七年级举行“每天锻炼一小时,健康生活一辈子”为主题的一分钟跳绳大赛,校团委组织了全级1000名学生参加为了解本次大赛的成绩,校团委随机抽取了其中100名学生的成绩作为样本进行统计,制成如下不完整的统计图表根据所给信息,解答下列问题;(1)m=______,n=______.(2)补全频数分布直方图;(3)若成绩在80分以上(包括80分)为“优”,请你估计该校七年级参加本次比赛的1000名学生中成绩是“优”的有多少人.成绩x (分)频数(人)频率50≤x<6055% 60≤x<701515% 70≤x<802020% 80≤x<90m35% 90≤x≤10025n26.计算:﹣6÷2+11()34×12+(﹣3)2.27.如图,在平面内有,,A B C三点.(1)请按要求作图:画直线AC ,射线BA ,线段BC ,取BC 的中点D ,过点D 作DE AC ⊥于点E .(2)在完成第(1)小题的作图后,图中以,,,,A B C D E 这些点为端点的线段共有 条.28.已知x a y b=⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解,则3a b -=_____. 29.光明中学组织学生到距离学校 9 千米的博物馆参观,学生小华因有事未能赶上包车,于是准备在学校门口直接乘出租车去博物 馆,出租车的收费标准如下:里 程收费(元) 3 千米以内(含 3 千米)10.00 3 千米以外,每增加 1 千米 2.40(1)写出小华乘出租车的里程数为 x 千米(x ≥3)时,所付车费为多少元(用含 x 的代 数式表示);(2)如果小华同学身上仅有 25 元钱,由学校乘出租车到博物馆钱够不够?请说明理由.30.已知,数轴上点A 、C 对应的数分别为a 、c ,且满足()2020710a c ++-=,点B 对应点的数为-3.(1)a =______,c =______;(2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点Q 的速度为1个单位长度/秒,求经过多长时间P 、Q 两点的距离为43; (3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数.四、压轴题31.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2? (3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.32.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.33.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2.①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案.【详解】根据题意可得:2.52 1.501-<-<-<<,故答案为:D.【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.2.A解析:A【解析】【分析】把32x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.【详解】解:A中、把32x=-代入方程得左边等于右边,故A对;B中、把32x=-代入方程得左边不等于右边,故B错;C中、把32x=-代入方程得左边不等于右边,故C错;D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A.【点睛】 本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.3.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.5.D解析:D【解析】【分析】由题意分两种情况过点O 作OE AB ⊥,利用垂直定义以及对顶角相等进行分析计算得出选项.【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D.【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.6.C解析:C【解析】【分析】利用完全平方式的结构特征即可求出m 的值.【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式,∴2m =±6,解得:m =±3,故选:C .【点睛】 此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键. 7.C解析:C【解析】【分析】根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解.【详解】 ∵绝对值表示数轴上两点的距离a b -表示a 到b 的距离b c -表示b 到c 的距离a c -表示a 到c 的距离∵a b b c a c -+-=-丨丨丨丨丨丨∴B 在A 和C 之间故选:C【点睛】本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.8.A解析:A【解析】【分析】将a ﹣3b =2整体代入即可求出所求的结果.【详解】解:当a ﹣3b =2时,∴2a ﹣6b=2(a ﹣3b )=4,故选:A .【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.9.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x ﹣3y ﹣12x +6y=﹣10x +3y .故选B .点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.10.D解析:D【解析】【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1.【详解】150万=1500000=61.510⨯,故选:D.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.11.A解析:A【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t的值为2或2.5,故选A.【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.12.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.二、填空题13.【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是解析:【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.14.2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-6=2cm;当点C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.15.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.17.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.18.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.19.【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.20.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n 的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.21.三﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 22.5或11【解析】【分析】由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.【详解】由于C 点的位置不确定,故要分两种情况讨论:当C 点在B 点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.【详解】由于C 点的位置不确定,故要分两种情况讨论:当C 点在B 点右侧时,如图所示:AC=AB+BC=8+3=11cm ;当C 点在B 点左侧时,如图所示:AC=AB ﹣BC=8﹣3=5cm ;所以线段AC 等于11cm 或5cm.23.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】=︒+︒=︒+⨯=3°36′.解:3.630.63(0.660)'故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.24.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.x+解析:416【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()+++++++=+1771416x x x x xx+.故答案为416【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、解答题25.(1)35,25%;(2)见解析;(3)600人【解析】【分析】(1)根据“频数=样本容量×频率”,直接求解即可;(2)求出m的值,再补全频数分布直方图,即可;(3)由成绩在80分以上(包括80分)的百分比,即可求解.【详解】(1)∵被调查的总人数为100人,∴m=100×35%=35,n=25100×100%=25%,故答案为:35,25%;(2)补全图形如下:(3)估计该校七年级参加本次比赛的1000名学生中成绩是“优”的有:1000×(35%+25%)=600(人).【点睛】本题主要考查频数分布直方图表,掌握“频数=样本容量×频率”,是解题的关键.26.【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:﹣6÷2+11()34-×12+(﹣3)2=﹣3+11121234⨯-⨯+(﹣3)2=﹣3+4﹣3+9=7.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.27.(1)见解析;(2)8.【解析】【分析】(1)根据直线是向两方无限延伸的,线段有两个端点,射线是向一方无限延伸的画出直线AC、射线BA、线段BC,根据中点的定义找出BC中点D,利用网格的特点连接小正方形对角线并延长交AC于E即可得DE AC⊥.【详解】(1)答案如图所示:(2)图中以A、B、C、D、E为端点的线段有:AB、AE、AC、EC、BD、BC、DC、DE,共8条,故答案为:8【点睛】本题考查了基本作图,直线、射线、线段的定义,是基础题,主要训练了同学们把几何文字语言转化为几何图形语言的能力.28.【解析】【详解】解:∵x ay b=⎧⎨=⎩是方程组2025x yx y-=⎧⎨+=⎩的解,∴2025a ba b-=⎧⎨+=⎩①②,①+②得,3a﹣b=5.故答案为5.29.(1)(2.4x+2.8);(2)小华由学校乘出租车到博物馆钱够了.【解析】【分析】(1)根据3千米以内收费10元,超过3千米,每增加1千米收费2.4元,列代数式即可;(2)求出到达博物馆所需的钱数,然后判断25元钱是否能够到达博物馆.【详解】(1)由题意得,所付车费为:2.4(x-3)+10(x≥3);(2)将x=9代入得:2.4×6+10=24.4元<25元,所以小华由学校乘出租车到博物馆钱够了.【点睛】本题考查了列代数式和代数式求值,关键是读懂题意,根据题意列出代数式.30.(1)-7,1.(2)经过43秒或83秒P ,Q 两点的距离为43.(3)在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.【解析】【分析】(1)由绝对值和偶次方的非负性列方程组可解;(2)设经过t 秒两点的距离为43,根据题意列绝对值方程求解即可; (3)分类讨论:点P 未运动到点C 时;点P 运动到点C 返回时;当点P 返回到点A 时.分别求出不同阶段的运动时间,进而求出相关点所表示的数即可.【详解】(1)由非负数的性质可得:7010a c +=⎧⎨-=⎩, ∴7a =-,1c =,故答案为:-7,1;(2)设经过t 秒两点的距离为43, 由题意得:41433t t ⨯+-=, 解得43t =或83, 答:经过43秒或83秒P ,Q 两点的距离为43; (3)点P 未运动到点C 时,设经过x 秒P ,Q 相遇,由题意得:34x x =+,∴2x =,表示的数为:7321-+⨯=-,点P 运动到点C 返回时,设经过y 秒P ,Q 相過,由题意得:()34217y y ++=--⎡⎤⎣⎦,∴3y =,表示的数是:()331710⨯----=⎡⎤⎣⎦,当点P 返回到点A 时,用时163秒,此时点Q 所在位置表示的数是13-,设再经过z 秒相遇,由题意得:()1373z z +=---, ∴53z =, 表示的数是:57323-+⨯=-, 答:在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.【点睛】本题综合考查了绝对值和偶次方的非负性、利用方程来解决动点问题与行程问题,本题难度较大.四、压轴题31.(1)﹣14,8﹣5t ;(2)2.5或3秒时P 、Q 之间的距离恰好等于2;(3)点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B 点表示的数为8﹣22;点P 表示的数为8﹣5t ;(2)设t 秒时P 、Q 之间的距离恰好等于2.分①点P 、Q 相遇之前和②点P 、Q 相遇之后两种情况求t 值即可;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,根据AC ﹣BC =AB ,列出方程求解即可;(3)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB =22,∴点B 表示的数是8﹣22=﹣14,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8﹣5t .故答案为:﹣14,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2.分两种情况: ①点P 、Q 相遇之前,由题意得3t +2+5t =22,解得t =2.5;②点P 、Q 相遇之后,由题意得3t ﹣2+5t =22,解得t =3.答:若点P 、Q 同时出发,2.5或3秒时P 、Q 之间的距离恰好等于2;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,∵AC ﹣BC =AB ,∴5x ﹣3x =22,解得:x =11, ∴点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,都等于11;理由如下:①当点P 在点A 、B 两点之间运动时:MN =MP +NP =12AP +12BP =12(AP +BP )=12AB =12×22=11; ②当点P 运动到点B 的左侧时:MN =MP ﹣NP =12AP ﹣12BP =12(AP ﹣BP )=12AB =11, ∴线段MN 的长度不发生变化,其值为11.【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.32.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠,所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-.解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.33.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC 第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC =∠AOC -∠AON =90°-∠MOC 即可得到结论;(3)分别根据转动速度关系和OC 平分∠MON 列方程求解即可.【详解】(1)①∵∠AOC =30°,OM 平分∠BOC ,∴∠BOC =2∠COM =2∠BOM =150°,∴∠COM =∠BOM =75°.∵∠MON =90°,∴∠CON =15°,∠AON +∠BOM =90°,∴∠AON =∠AOC ﹣∠CON =30°﹣15°=15°,∴∠AON =∠CON ,∴t =15°÷3°=5秒;②∵∠CON =15°,∠AON =15°,∴ON 平分∠AOC .(2)∵∠AOC =30°,∴∠NOC =∠AOC -∠AON =90°-∠MOC ,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t 秒,∠AON =5t ,∠AOC =30°+8t ,∠CON =45°,∴30°+8t =5t +45°,∴t =5.即t =5时,射线OC 第一次平分∠MON .【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.。

四川成都石室联合中学初一上学期期末数学试卷及解析

四川成都石室联合中学初一上学期期末数学试卷及解析

1 2答案解析考点A. B. C. D.B由图可知,主视图为答案.投影与视图视图简单组合体的三视图答案解析考点A.B.C.D.年月的某一天,参观天安门广场的人数达到,用科学记数法表示这个数为( ).3D.数有理数科学记数法:表示较大的数A. B. C. D.有理数,在数轴上的位置如图所示,下列各式正确的是( ).4答案解析考点D,∴.数有理数数轴答案解析考点A.和B.和C.和D.和下列各组中的两项不是同类项的是( ).5B底数不同,不属于同类项.式整式同类项同类项的基本概念答案解析A.是一次单项式B.单项式的系数是,次数是C.单项式的次数是,系数是D.单项式的系数是,次数是下列说法正确的是( ).6B是常数项,的次数为,系数为,单项式系数为,次数为.考点式整式单项式答案解析考点A. B. C. D.将一张长方形纸片按如图所示的方式折叠,,为折痕,则的度数为( ).7C由折叠的性质知.几何变换图形的对称翻折变换(折叠问题)答案A.B.C.D.以下问题,不适合普查的是( ).了解一批灯泡的使用寿命学校招聘教师,对应聘人员的面试了解全班学生每周体育锻炼时间上飞机前对旅客的安检8A解析考点普查即全面调查,了解灯泡的使用寿命应该采取抽样调查的方式.统计与概率数据收集与处理全面调查与抽样调查抽样调查全面调查答案解析考点A.∵,∴B.∵,∴C.∵,∴D.∵,∴如图所示,下列推理正确的是( )9C平行线的判定方法.几何初步相交线与平行线平行线的判定甲班有人,乙班有人,要使甲班人数是乙班的倍,设从乙班调往甲班人,可列方程().10答案解析考点A. B.C.D.A根据条件可知现在甲班人数人,乙班人数,∴.方程与不等式一元一次方程一元一次方程的应用答案解析考点.11负数的绝对值等于它的相反数.数有理数绝对值求一个数的绝对值答案把化成度的形式,则 .12二、填空题(本大题共6个小题,每小题3分,共18分)解析考点.几何初步角度分秒的换算答案解析考点如图是的中点,是的中点,,则= .13∵,,∴.函数二次函数二次函数与线段和差最值问题某住宅小区十月份日至日每天用水量变化情况如图所示,那么这天中用水量最多的一天比最少的一天多 吨.14答案解析考点最多为吨,最少为吨.统计与概率数据分析极差答案解析考点如果是方程的解,那么= .15∵,∴,∴.方程与不等式一元一次方程含字母参数的一元一次方程含参一元一次方程求参数答案解析考点一个自然数的立方,可以分裂成若干个连续奇数的和,例如:和分别可以如图所示的方式“分裂”成个,个和个连续奇数,若也按照此规律进行“分裂”,则分裂出的最大的那个奇数是 .16;;;.式探究规律数字的变化类数字找规律答案解析考点计算:.17..数有理数有理数的混合运算三、解答题(本大题共7个小题,共52分)答案解析考点计算:.18..数有理数有理数的混合运算答案解析考点化简:.19..式整式整式混合运算的化简求值先化简再求值答案解方程:.20.解析考点,,.方程与不等式一元一次方程解一元一次方程常规方法解一元一次方程答案解析考点先化简,再求值:,其中.21.原式,当时,原式=.式整式整式混合运算的化简求值某中学组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量(小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按,,,分为四个等级,并分别用、、、表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:22答案解析本次随机抽取的学生人数为__________人;(1)求出值,并将不完整的条形统计图补充完整(2)若该校共有学生人,试估计每周课外阅读量满足的人数.(3)(1)(2)(3)抽查的学生总数人(1)∵,∴;等级的人数人,等级的人数人,(2)人,(3)考点所以估计每周课外阅读时间量满足的人数为人.故答案为.统计与概率数据收集与处理总体、个体、样本、样本容量用样本估计总体条形统计图答案如图,已知,,试说明:.证明:( ),( ),(已知),( ),( ),( ).23∵(已知),∴(两直线平行,同位角相等),∵(已知),∴(等量代换),∴(同位角相等,两直线平行),解析考点∴(两直线平行,内错角相等).根据平行线的性质和判定方法证明,∵(已知),∴(两直线平行,同位角相等),∵(已知),∴(等量代换),∴(同位角相等,两直线平行),∴(两直线平行,内错角相等).几何初步相交线与平行线平行线的判定平行线的性质答案解析考点甲、乙两矿原计划共产煤万吨,由于引进新技术,使得采矿效率明显提高,甲矿实际产煤比原计划增加了,乙矿产煤比原计划增加了,结果两矿实际产煤万吨,求甲、乙两矿实际产煤各为多少万吨?24甲吨;乙吨.设原计划甲生产吨,乙生产吨,列方程组如下:,;解得:,;∴,.方程与不等式一元一次方程一元一次方程的应用答案解析考点如图,已知内作两条射线和,使,平分,平分.25当时,①求的度数;②求的大小.(1)设,试直接用含的式子表示的大小.(2),.(1).(2);∵,,∴.(1),,.(2)几何初步角角的计算与证明有图形的角的计算B 卷(50分)答案解析考点已知,则.26原式.式整式整式加减的化简求值整体思想求值答案解析考点如图,是一个正方形纸盒的展开图,折成正方体后,相对面上的两个数互为相反数,则.27∵,,,∴.几何初步几何图形正方体相对两个面上的文字四、填空题(本大题共6个小题,每小题3分,共18分)答案解析考点已知有理数表示在数轴上的位置如图,化简 .28∵;∴原式.数有理数绝对值化简结合数轴化简绝对值答案解析考点如图所示,是直线上一点,是一条射线,平分,在内,,,则的大小是 度.29设,∴,,∴,∴.几何初步角角平分线的定义答案解析考点对于两个不相等的有理数,我们规定符号表示,中的较大值,如,按照这个规定可得:;方程的解为 .301:2:当时,有,,舍去;当时,有,,.式探究规律定义新运算答案解析考点设一列数中任意三个相邻数之和都是,已知,,,那么.31∵,∴,,;所以是每三个一轮,∴,,,.式探究规律数字的变化类数字找规律答案解析考点若与互为相反数,与互为倒数,的平方与它本身相等,请你求的值.32或.,,或;∴原式或.数有理数相反数相反数的几何意义倒数倒数定义式整式整式加减的化简求值结合非负性化简求值33五、解答题(本大题共4个小题,共32分)答案解析考点已知:关于,的多项式与多项式的差的值与字母的取值无关.求字母的值.(1)求代数式的值.(2),.(1)原式.(2)∵,∴,.(1)代数式.(2)式整式整式的加减整式的加减运算整式加减的化简求值列方程解应用题:某社区超市第一次用元购进甲、乙两种商品,其中甲商品的件数比乙商品件数的倍少件,甲、乙两种商品的进价和售价如下表: 甲乙进价(元/件)售价(元/件)34该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(1)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的倍;甲商品按原售价销售,乙商品在原售价上打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多元,求第二次乙种商品是按原价打几折销售?(2)答案解析考点1950元利润(1)第二次乙种商品是按原价打九折销售.(2)设第一次购进乙种商品件,则甲种商品的件数是件,根据题意列方程,得:,解得:,所以甲商品的件数为:(件),可获得的利润为:(元).(1)设第二次乙种商品是按原价打折销售,根据题意列方程,得:,解得:.(2)方程与不等式一元一次方程一元一次方程的应用打折销售问题点在数轴上对应的数为,点对应的数为,且满足:.35求线段的长.(1)如图,点在数轴上对应的数为,且是方程的根,在数轴上是否存在点使?若存在,求出点对应的数;若不存在,说明理由.(2)图如图,若点是点右侧一点,的中点为,为的五等分点且靠近于点,当在的右侧运动时,有两个结论:①的值不变;②的值不变,其中只有一个结论正确,请判断出正确的结论,并求出其值.(3)。

成都石室联合中学人教版七年级数学上册期末试卷及答案

成都石室联合中学人教版七年级数学上册期末试卷及答案

成都石室联合中学人教版七年级数学上册期末试卷及答案一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .123.﹣3的相反数是( ) A .13-B .13C .3-D .34.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .22C .2D .325.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+6.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°7.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个 8.估算15在下列哪两个整数之间( ) A .1,2 B .2,3C .3,4D .4,59.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯ B .51510⨯C .70.1510⨯D .61.510⨯10.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+11.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm12.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离二、填空题13.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____. 14.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.15.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.16.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.17.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.18.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.19.若a a -=,则a 应满足的条件为______. 20.52.42°=_____°___′___″. 21.已知二元一次方程2x-3y=5的一组解为x ay b =⎧⎨=⎩,则2a-3b+3=______. 22.计算:3+2×(﹣4)=_____.23.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题25.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.26.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.27.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

成都石室中学初中学校人教版七年级上册数学期末试卷及答案

成都石室中学初中学校人教版七年级上册数学期末试卷及答案

成都石室中学初中学校人教版七年级上册数学期末试卷及答案.doc一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( )A .2B .2C 2D 323.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( )A .1个B .2个C .3个D .4个4.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30 C .32 D .345.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .③D .④ 6.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A .8cmB .2cmC .8cm 或2cmD .以上答案不对 7.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米B .向北走3米C .向东走3米D .向南走3米 8.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,2 9.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( )A .300-0.2x =60B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =60 10.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=yC .若x y m m =,则x y =D .若x y =,则x y m m= 11.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯12.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题13.一个角的余角等于这个角的13,这个角的度数为________. 14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.16.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.17.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.18.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;19.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)20.将520000用科学记数法表示为_____.21.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)22.已知代数式235x -与233x -互为相反数,则x 的值是_______. 23.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、解答题25.足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问:(1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场?26.解方程:(1)()43203x x --= (2)23211510x x -+-= 27.先化简, 再求值. 已知222213,222A x xy y B x y =-+=- ()1求2A B -()2当3,1x y时,求2A B -的值 28.“十一”期间,小聪跟爸爸一起去A 市旅游,出发前小聪从网上了解到A 市出租车收费标准如下:()1若甲、乙两地相距8千米,乘出租车从甲地到乙地需要付款多少元?()2小聪和爸爸从火车站乘出租车到旅馆,下车时计费表显示17.2元,请你帮小聪算一算从火车站到旅馆的距离有多远?()3小聪的妈妈乘飞机来到A 市,小聪和爸爸从旅馆乘出租车到机场去接妈妈,到达机场时计费表显示70元,接完妈妈,立即沿原路返回旅馆(接人时间忽略不计),请帮小聪算一下乘原车返回和换乘另外的出租车,哪种更便宜?29.解方程:223146x x +--=. 30.如图,点,,A O B 在同一条直线上,OE 平分BOC ∠,OD OE ⊥于点O ,如果66COD ∠=︒,求AOE ∠的度数.四、压轴题31.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长.(2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒,①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由.(3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?32.如图,A 、B 、P 是数轴上的三个点,P 是AB 的中点,A 、B 所对应的数值分别为-20和40.(1)试求P 点对应的数值;若点A 、B 对应的数值分别是a 和b ,试用a 、b 的代数式表示P 点在数轴上所对应的数值;(2)若A 、B 、P 三点同时一起在数轴上做匀速直线运动,A 、B 两点相向而行,P 点在动点A 和B 之间做触点折返运动(即P 点在运动过程中触碰到A 、B 任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A 、B 两点相遇,停止运动.如果A 、B 、P 运动的速度分别是1个单位长度/s ,2个单位长度/s ,3个单位长度/s ,设运动时间为t .①求整个运动过程中,P 点所运动的路程.②若P 点用最短的时间首次碰到A 点,且与B 点未碰到,试写出该过程中,P 点经过t 秒钟后,在数轴上对应的数值(用含t 的式子表示);③在②的条件下,是否存在时间t ,使P 点刚好在A 、B 两点间距离的中点上,如果存在,请求出t 值,如果不存在,请说明理由.33.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.C解析:C【解析】【分析】把64代入转换器,根据要求计算,得到输出的数值即可.【详解】,是有理数,∴继续转换,,是有理数,∴继续转换,∵2,是无理数,∴输出,故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.3.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.5.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.6.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.7.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.8.D解析:D【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.9.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价,可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.10.D解析:D【解析】【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y两边同时加3,可得到x+3=y+3,故A选项正确;B. -2x=-2y两边同时除以-2,可得到x=y,故B选项正确;C. 等式x ym m=中,m≠0,两边同时乘以m得x y=,故C选项正确;D. 当m=0时,x y =两边同除以m 无意义,则x y m m=不成立,故D 选项错误; 故选:D .【点睛】 本题考查等式的变形,熟记等式的基本性质是解题的关键.11.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.12.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题13.【解析】【分析】设这个角度的度数为x 度,根据题意列出方程即可求解.【详解】设这个角度的度数为x 度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.14.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 15.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;16.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.17.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.18.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.19.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.20.2×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.21.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.22.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.23.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.24.-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a和b是解决问题的关键.三、解答题25.(1)前8场比赛中胜了5场;(2)这支球队打满14场后最高得35分;(3)在后6场比赛中这个球队至少胜3场.【解析】【分析】(1)设这个球队胜x场,则平(8﹣1﹣x)场,根据题意可得等量关系:胜场得分+平场得分=17分,根据等量关系列出方程,再解即可;(2)由题意得:前8场得17分,后6场全部胜,求和即可;(3)根据题意可列出不等式进行分组讨论可解答.由已知比赛8场得分17分,可知后6场比赛得分不低于12分就可以,所以胜场≥4一定可以达标,而如果胜场是3场,平场是3场,得分3×3+3×1=12刚好也行,因此在以后的比赛中至少要胜3场.【详解】(1)设这个球队胜x场,则平(8﹣1﹣x)场,依题意可得3x+(8﹣1﹣x)=17,解得x=5.答:这支球队共胜了5场;(2)打满14场最高得分17+(14﹣8)×3=35(分).答:最高能得35分;(3)由题意可知,在以后的6场比赛中,只要得分不低于12分即可,所以胜场不少于4场,一定可达到预定目标.而胜3场,平3场,正好也达到预定目标.因此在以后的比赛中至少要胜3场.答:至少胜3场.【点睛】本题考查了一元一次方程的应用、逻辑分析.根据题意准确的列出方程和不等关系,通过分析即可求解,要把所有的情况都考虑进去是解题的关键.26.(1)x=9;(2)x=8.5【解析】【分析】(1)先去括号,再移项得到移项得4x+3x=3+60,然后合并、把x 的系数化为1即可; (2)方程两边都乘以10得到()()2232110x x --+=,再去括号得462110x x ---=,然后合并得到合并得217x =,最后把x 的系数化为1即可.【详解】解:(1)()43203x x --=,46033x x -+=,763x =,9x =;(2)23211510x x -+-=, ()()2232110x x --+=,462110x x ---=,217x =,8.5x =.27.(1)2264x xy y --+;(2)13.【解析】【分析】(1)将A,B 代入2A B -后化简即可;(2)将x,y 的值代入2A B -化简后的式子求值即可.【详解】 解:(1)222222221223)(22)62222A B x xy y x y x xy y x y -=-+--=-+-+(2264x xy y =--+;(2)当3,1x y 时,222-3-63(1)4(1)13A B -=⨯⨯-+⨯-=. 【点睛】本题主要考查整式的化简求值,解题的关键是利用法则化简整式.28.(1)22;(2)6;(3)换乘另外出租车更便宜【解析】【分析】(1)根据图表分3千米以内以及超过3千米但不足8千米两部分列式,再进行计算即可;(2)根据(1)得出的费用,得出火车站到旅馆的距离超过3千米,但不超过8千米,再根据图表列出方程,求出x的值即可;(3)根据(1)得出的费用,得出出租车行驶的路程超过8千米,设出租车行驶的路程为y千米,根据图表中的数量,列出方程,求出y的值,从而得出乘原车返回需要的花费,再与换乘另一辆出租车需要的花费进行比较,即可得出答案.【详解】解:(1)10+2.4×(8-3)=22(元).答:乘出租车从甲地到乙地需要付款22元.(2)设火车站到旅馆的距离为x米,∵10﹤17.2﹤22,∴3≤x≤8.∴10+2.4(x-3)=17.2,∴x=6.答:从火车站到旅馆的距离6千米.(3)设旅馆到机场的距离为y米,∵70﹥22,∴y﹥8.10+2.4×(8-3)+3(y-8)=70,∴y=24.所以乘原车返回的费用为:10+2.4×(8-3)+3×(24×2-8)=142(元);换乘另外车辆的费用为:70×2=140(元).所以换乘另外出租车更便宜.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.29.x=0【解析】试题分析:方程去分母,去括号,移项合并,将x系数化为1,即可求出解;试题解析:去分母得:3(x+2)-12=2(2x-3)去括号得: 3x+6 -12= 4x-6移项得: 3x-4x=-6+12-6合并同类项得: -x=0系数化为1得: x=030.156°【解析】【分析】根据垂直的意义和性质,判断出∠DOE的度数,根据∠COE与∠COD的关系,求出∠COE的度数,然后利用角平分线的性质得出∠BOE,再根据互补角的意义,即可求出∠AOE的度数.【详解】解:∵OD⊥OE于O,∴∠DOE=90°,又∵因为∠COD=66°,∴∠COE=∠DOE-∠COD=90°-66°=24°,∵OE平分∠BOC,∴∠BOE=∠COE=24°,又∵点A,O,B在同一条直线上,∴∠AOB=180°,∴∠AOE=∠AOB-∠BOE=180°-24°=156°.【点睛】本题考查了垂直的意义,角平分线的性质,解决本题关键是正确理解题意,能够根据题意找到角与角之间的关系.四、压轴题31.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5【解析】【分析】(1)先求出线段AB的长,然后根据线段中点的定义解答即可;(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.【详解】(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.∵点C是线段AB的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解得:m=3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得:t=22.5;②如图2,根据题意得:6t+90=360+2t,解得:t=67.5.综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.【点睛】本题考查了一元一次方程的应用.解题的关键是分类讨论.32.(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【解析】【分析】(1)根据数轴上两点间的距离公式结合A、B两点表示的数,即可得出结论;(2)①点P运动的时间与A、B相遇所用时间相等,根据路程=速度×时间即可求得;②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的;③点P与点A的距离越来越小,而点P与点B的距离越来越大,不存在PA=PB的时候.【详解】解:(1)∵A、B所对应的数值分别为-20和40,∴AB=40-(-20)=60,∵P是AB的中点,∴AP=60=30,∴点P表示的数是-20+30=10;∵如图,点A、B对应的数值分别是a和b,∴AB=b-a,∵P是AB的中点,∴AP=(b-a)∴点P表示的数是a+(b-a) =(a+b).(2)①点A和点B相向而行,相遇的时间为=20(秒),此即整个过程中点P运动的时间.所以,点P的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中0≤t≤7.5.P点经过t秒钟后,在数轴上对应的数值为10-3t.故答案是:10-3t,0≤t≤7.5.③不存在.由②可知,点P是和点A相向而行的,整个过程中,点P与点A的距离越来越小,而点P 与点B的距离越来越大,所以不存在相等的时候.故答案为:(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【点睛】本题考查了数轴上点与点的距离和动点问题.33.2+t6-2t或2t-6【解析】。

成都石室联合中学金沙校区人教版七年级上册数学期末试卷及答案-百度文库

成都石室联合中学金沙校区人教版七年级上册数学期末试卷及答案-百度文库

成都石室联合中学金沙校区人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.若34(0)x y y =≠,则( ) A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 3.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.4.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,35.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3806.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+7.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°8.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2B .8C .6D .09.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .1202010.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 11.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣112.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =13.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60 B .300-0.8x =60 C .300×0.2-x =60 D .300×0.8-x =60 14.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=115.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题16.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 17.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………18.已知单项式245225n m xy x y ++与是同类项,则m n =______.19.如果向东走60m 记为60m +,那么向西走80m 应记为______m. 20.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.21.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.22.化简:2x+1﹣(x+1)=_____.23.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.24.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.25.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.26.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.27.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.28.观察“田”字中各数之间的关系:则c 的值为____________________.29.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .30.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、压轴题31.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).32.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6a b x-1-2...(1)可求得x =______,第 2021 个格子中的数为______;(2)若前k 个格子中所填数之和为 2019,求k 的值;(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和.33.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板∠)的顶点与60角画出了直线EF,然后将一副三角板拼接在一起,其中45角(AOB∠)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将(COD三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 34.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.35.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2. ①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.36.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a .请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.37.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).38.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A 【解析】 【分析】依据线段AB 长度为a ,可得AB=AC+CD+DB=a ,依据CD 长度为b ,可得AD+CB=a+b ,进而得出所有线段的长度和. 【详解】∵线段AB 长度为a , ∴AB=AC+CD+DB=a , 又∵CD 长度为b , ∴AD+CB=a+b ,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b , 故选A . 【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.D解析:D 【解析】 【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错;C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.3.C解析:C 【解析】试题解析:A ∵0的绝对值是0,故本选项错误. B ∵互为相反数的两个数的绝对值相等,故本选项正确. C 如果一个数是正数,那么这个数的绝对值是它本身. D ∵0的绝对值是0,故本选项错误. 故选C .4.A解析:A 【解析】 【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项. 【详解】解:单项式2r h π的系数和次数分别是π,3; 故选:A . 【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.5.B解析:B 【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解. 详解:∵第一个图2条直线相交,最多有1个交点, 第二个图3条直线相交最多有3个交点, 第三个图4条直线相交,最多有6个, 而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190. 故选B .点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.6.A解析:A 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.7.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E 作EF ∥AB , ∵AB ∥CD , ∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA , ∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°, ∴∠1=180°﹣∠BAE=180°﹣46°=134°, 故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.8.B解析:B 【解析】 【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可. 【详解】∵2018÷4=504…2, ∴32018﹣1的个位数字是8, 故选B . 【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.9.B解析:B 【解析】 【分析】根据倒数的概念即可解答. 【详解】解:根据倒数的概念可得,﹣2020的倒数是12020-, 故选:B . 【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.10.C解析:C 【解析】 【分析】根据题意可以用代数式表示m 的2倍与n 平方的差. 【详解】用代数式表示“m 的2倍与n 平方的差”是:2m-n 2, 故选:C . 【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.11.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩,121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.12.A解析:A【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A .考点:解一元一次方程.13.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x 元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价, 可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系;(2)打八折的含义.14.A解析:A【解析】解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .15.B解析:B【解析】【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题16.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离. 解:2﹣(﹣1)=3.故答案为3考点:数轴.17.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,解析:83n -【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.18.9【解析】【分析】根据同类项的定义进行解题,则,解出m 、n 的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可.19.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键.21.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.22.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.23.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.24.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案. 【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.25.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.26.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.27.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=12AM=2cm,AQ=12AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=12AM=2cm,AQ=12AB=8cm,∴PQ=AQ-AP=6cm;故答案为:6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.28.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都石室联合中学人教版七年级数学上册期末试卷及答案一、选择题1.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式2.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .3.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1064.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=-D .()2121826x x ⨯=-5.下列选项中,运算正确的是( ) A .532x x -= B .2ab ab ab -= C .23a a a -+=- D .235a b ab += 6.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=7.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个8.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .112 9.下列各数中,绝对值最大的是( )A .2B .﹣1C .0D .﹣310.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱11.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .112.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.14.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 15.5535______.16.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.17.若a 、b 是互为倒数,则2ab ﹣5=_____. 18.若2a +1与212a +互为相反数,则a =_____. 19.方程x +5=12(x +3)的解是________. 20.8点30分时刻,钟表上时针与分针所组成的角为_____度.21.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.22.3.6=_____________________′23.观察“田”字中各数之间的关系:则c的值为____________________.24.若-3x2m+6y3与2x4y n是同类项,则m+n=______.三、解答题25.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90︒).(1)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由;(2)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=60︒,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.26.如图,AB和CD相交于点O,∠A=∠B,∠C=75°求∠D的度数.27.(1)求出下列各数:①2的算术平方根;②﹣27的立方根;③16的平方根.(2)将(1)中求出的每个数准确地表示在数轴上,将这些数按从小到大的顺序排列,并用“<”连接.28.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标准,超出记为正,不足记为负),如表所示:时段8:00~9:0010:00~11:0012:00~13:0014:00~15:0016:00~17:00客流量(人)-21+33-12 +21+54(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位)(2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?29.如图,点P是线段AB上的一点,请在图中完成下列操作.(1)过点P画BC的垂线,垂足为H;(2)过点P画AB的垂线,交BC于Q;(3)线段的长度是点P到直线BC的距离.30.某学校安排学生住宿,若每室住7人,则有10人无法安排;若每室住8人,则恰好空出2个房间.这个学校的住宿生有多少人?四、压轴题31.如图,在数轴上的A1,A2,A3,A4,……A20,这20个点所表示的数分别是a1,a2,a3,a4,……a20.若A1A2=A2A3=……=A19A20,且a3=20,|a1﹣a4|=12.(1)线段A3A4的长度=;a2=;(2)若|a1﹣x|=a2+a4,求x的值;(3)线段MN从O点出发向右运动,当线段MN与线段A1A20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN=5,求线段MN的运动速度.32.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344 ++=-+-+-=⨯⨯⨯.()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.33.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

(2)求运动几秒后甲到A 、B 、C 三点的距离和为40个单位长度?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据同类项的定义,单项式和多项式的定义解答.【详解】A.3d2bc与bca2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B.225m n的系数是25,故本选项错误.C.单项式﹣x3yz的次数是5,故本选项正确.D.3x2﹣y+5xy5是六次三项式,故本选项错误.故选C.【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.2.B解析:B【解析】【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A、5+3×6+1×6×6=59(颗),故本选项错误;B、1+3×6+2×6×6=91(颗),故本选项正确;C、2+3×6+1×6×6=56(颗),故本选项错误;D、1+2×6+3×6×6=121(颗),故本选项错误;故选:B.【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.3.C解析:C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.D解析:D【解析】【分析】设分配x名工人生产螺栓,则(26-x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【详解】解:设分配x名工人生产螺栓,则(26-x)名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个,∴可得2×12x=18(26-x).故选:D.【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.5.B解析:B【解析】【分析】根据整式的加减法法则即可得答案.【详解】A.5x-3x=2x,故该选项计算错误,不符合题意,-=,计算正确,符合题意,B.2ab ab abC.-2a+3a=a,故该选项计算错误,不符合题意,D.2a与3b不是同类项,不能合并,故该选项计算错误,不符合题意,故选:B.【点睛】本题考查整式的加减,熟练掌握合并同类项法则是解题关键.6.C解析:C【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.7.C解析:C 【解析】 【分析】无理数就是无限不循环小数,依据定义即可判断. 【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个, 故选:C . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.B解析:B 【解析】 【分析】观察图形,正确数出个数,再进一步得出规律即可. 【详解】摆成第一个“H”字需要2×3+1=7个棋子, 第二个“H”字需要棋子2×5+2=12个; 第三个“H”字需要2×7+3=17个棋子; 第n 个图中,有2×(2n+1)+n=5n+2(个).∴摆成 第 20 个“H”字需要棋子的个数=5×20+2=102个. 故B. 【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n .9.D解析:D 【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D . 考点:D .10.A解析:A 【解析】试题分析:根据四棱锥的侧面展开图得出答案. 试题解析:如图所示:这个几何体是四棱锥. 故选A.考点:几何体的展开图.11.D解析:D 【解析】 【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案. 【详解】解:因为2|2|(1)0a b ++-=, 所以a +2=0,b -1=0, 所以a =-2,b =1, 所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D. 【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键.12.C解析:C 【解析】 【分析】 根据MN =CM +CN =12AC +12CB =12(AC +BC )=12AB 即可求解. 【详解】解:∵M 、N 分别是AC 、BC 的中点, ∴CM =12AC ,CN =12BC ,∴MN =CM +CN =12AC +12BC =12(AC +BC )=12AB =4. 故选:C . 【点睛】本题考查了线段中点的性质,找到MC 与AC ,CN 与CB 关系,是本题的关键二、填空题13.【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元 解析:(23)a b【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元. 故选C. 【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.14.y =﹣. 【解析】 【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案. 【详解】解:∵关于x 的一元一次方程①的解为x =2020, ∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020, 解解析:y =﹣20183. 【解析】 【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.15.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 16.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.17.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b 是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a 、b 是互为倒数,∴ab =1,∴2ab ﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.18.﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:a2a110 22+++=去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.19.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.20.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.21.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.22.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】=︒+︒=︒+⨯=3°36′.解:3.630.63(0.660)'故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.23.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。

相关文档
最新文档