时间序列分析试卷及答案

合集下载

时间序列分析考试卷及答案

时间序列分析考试卷及答案

考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子,使得1-=t t Y BY ;∇为差分算子,。

一、单项选择题(每小题3 分,共24 分。

)1. 若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。

A. MA(2)B.ARMA(1,1)C.AR(2)D.MA(1)2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。

A. )1(MAB.)1(ARC.)1,1(ARMAD.)2(MA3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。

(A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C )5.2221==λλ, (D ) 5.2221=-=λλ,4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B )。

A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1)5. AR(2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。

A.0 B.64.0 C. 16.0 D. 2.06.对于一阶滑动平均模型MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。

A.5.0- B. 25.0 C. 4.0- D. 8.07. 若零均值平稳序列{}t X ∇,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。

A. MA(2)B.)2,1(IMAC.)1,2(ARID.ARIMA(2,1,2)8. 记∇为差分算子,则下列不正确的是( C )。

2010《时间序列分析》试卷A答案精选全文完整版

2010《时间序列分析》试卷A答案精选全文完整版

可编辑修改精选全文完整版2010—2011学年第一学期2007应用数学《时间序列分析》试卷A 答案一 (18分,每空1分)1 112211t t t t t X X X a a ϕϕθ-----=-2 偏自相关函数;自相关函数3 矩估计法、最小二乘估计法、极大似然估计法4 B51ϕ;0 6 1,1,2,i i n λ<=7 m8利用序列图进行判断;利用样本自相关函数ˆk ρ进行平稳性检验;利用单位根检验进行判断9 12222011ˆ 1.96()t l a l X G G G σ+-±+++ 10 存在 11 使得预测误差的均方値达到最小10 (1)S DB -二 (8分,每小题1分)1 错;2错;3对;4对;5 错;6 错;7 错;8对三 (12分,每小题2分)1 (1)2(10.80.5)t t X B B a =-+;(2) 21(10.5)(1 1.20.4)t t B X B B a --=-+2 (1) 稳定;(2)稳定3 (1)120.5,0.25G G ==; (2) 120.5,0G G =-=四 (4分)AR{1}(1)34321324321ˆ(1)(,,)([100.60.3],,)100.697.20.39696.12X E X X X X E X X a X X X ==+++=+⨯+⨯=;(2分)35321435321ˆ(2)(,,)([100.60.3],,)100.697.120.397.297.432X E X X X X E X X a X X X ==+++=+⨯+⨯=;(2分)36321546321ˆ(3)(,,)([100.60.3],,)100.697.4320.397.1297.5952X E X X X X E X X a X X X ==+++=+⨯+⨯= (2分)(2)010110.6G G G ϕ===221/21/2011.96() 1.966 1.3613.7144G G σ+=⨯⨯=五月份销售额的 95%的置信区间为(83.7176,111.1464) (2分)六 (50分)1 (1)AR(1)模型:10.667831t t t X X a -=+ (5分)疏系数的ARMA(1,6)模型:160.5578970.47526t t t t X X a a --=++ (5分)(2)上边AR(1)模型的AIC 值为-0.804969,第二个模型的AIC 值为-0.876542,根据AIC 准则可知,第二个模型拟合效果更好。

时间序列期末试题及答案

时间序列期末试题及答案

时间序列期末试题及答案1. 试题考试时间:3小时考试形式:闭卷注意:请将答案写在答题纸上,不要在试卷上直接作答。

题目一:简答题(每题10分)1. 什么是时间序列分析?时间序列分析具有哪些应用领域?2. 请解释平稳时间序列的概念,并提供一个平稳时间序列的例子。

3. 什么是季节性、趋势性和周期性?请分别举一个例子。

4. 时间序列分析的步骤是什么?5. 请解释自相关函数(ACF)和偏自相关函数(PACF)的概念,并说明它们在时间序列分析中的作用。

题目二:计算题(每题20分)1. 从某超市取得了一组销售额数据,包括2004年到2019年的年度销售额。

请计算该时间序列的移动平均值,并绘制移动平均图。

2. 下表是某公司2005年到2019年每个季度的销售额数据,请利用季节性指数法预测2020年第一季度的销售额。

| 年份 | 第一季度销售额 ||-------|--------------|| 2005 | 100 || 2006 | 120 || 2007 | 140 || 2008 | 160 || 2009 | 180 || 2010 | 200 || 2011 | 220 || 2012 | 240 || 2013 | 260 || 2014 | 280 || 2015 | 300 || 2016 | 320 || 2017 | 340 || 2018 | 360 || 2019 | 380 |3. 通过对某股票每周收益率进行分析,发现其自相关系数和偏自相关系数都在95%置信区间之外。

该时间序列数据是否呈现ARCH效应?请解释原因。

4. 将某商品销售额数据建模为自回归移动平均模型(ARMA),请给出该模型的阶数,并解释原因。

2. 答案题目一:简答题1. 时间序列分析是一种研究时间相关数据的统计方法,通过对时间序列的特征进行分析,揭示其随时间变化的规律和趋势。

时间序列分析广泛应用于经济学、金融学、气象学、社会学等领域。

时间序列分析试卷及答案

时间序列分析试卷及答案

时间序列分析试卷及答案时间序列分析试卷1一、填空题(每小题2分,共计20分)1.ARMA(p,q)模型是一种常用的时间序列模型,其中模型参数为p和q。

2.设时间序列{Xt},则其一阶差分为Xt-Xt-1.3.设ARMA (2.1):Xt=0.5Xt-1+0.4Xt-2+εt-0.3εt-1,则所对应的特征方程为1-0.5B-0.4B^2+0.3B。

4.对于一阶自回归模型AR(1):Xt=10+φXt-1+εt,其特征根为φ,平稳域是|φ|<1.5.设ARMA(2.1):Xt=0.5Xt-1+aXt-2+εt-0.1εt-1,当a满足|a|<1时,模型平稳。

6.对于一阶自回归模型Xt=φXt-1+εt,其平稳条件是|φ|<1.7.对于二阶自回归模型AR(2):MA(1):Xt=εt-0.3εt-1,其自相关函数为Xt=0.5Xt-1+0.2Xt-2+εt,则模型所满足的XXX-Walker方程是ρ1-0.5ρ2=0.2,ρ2-0.5ρ1=1.8.设时间序列{Xt}为来自ARMA(p,q)模型:Xt=φ1Xt-1+。

+φpXt-p+εt+θ1εt-1+。

+θqεt-q,则预测方差为σ^2(1+θ1^2+。

+θq^2)。

9.对于时间序列{Xt},如果它的差分序列{ΔXt}是平稳的,则Xt~I(d)。

10.设时间序列{Xt}为来自GARCH(p,q)模型,则其模型结构可写为σt^2=α0+α1εt-1^2+。

+αpεt-p^2+β1σt-1^2+。

+βqσt-q^2.二、(10分)设时间序列{Xt}来自ARMA(2,1)过程,满足(1-B+0.5B^2)Xt=(1+0.4B)εt,其中{εt}是白噪声序列,并且E(εt)=0,Var(εt)=σ^2.1)判断ARMA(2,1)模型的平稳性。

根据特征方程1-φ1B-φ2B^2,求得其根为0.5±0.5i,因此模型的平稳条件是|φ1-0.5i|<1和|φ1+0.5i|<1,即-1<φ1<1.因为0.5i不在实轴上,所以模型不是严平稳的,但是是宽平稳的。

时间序列习题答案

时间序列习题答案

时间序列习题答案时间序列习题答案时间序列分析是一种用来研究随时间变化的数据模式和趋势的方法。

它在经济学、金融学、统计学等领域中被广泛应用。

下面我将给出一些时间序列分析的习题,并附上详细的答案解析。

习题一:某公司过去一年的销售额如下:100, 120, 130, 140, 150, 160, 170, 180, 190, 200。

请计算该公司的平均销售额和年度增长率。

答案解析:首先,计算平均销售额的方法是将所有销售额相加,然后除以销售额的个数。

在这个例子中,销售额的个数为10,总销售额为100+120+130+140+150+160+170+180+190+200=1540。

因此,平均销售额为1540/10=154。

接下来,计算年度增长率的方法是将最后一年的销售额减去第一年的销售额,然后除以第一年的销售额,并乘以100%。

在这个例子中,最后一年的销售额为200,第一年的销售额为100。

因此,年度增长率为(200-100)/100*100%=100%。

习题二:某股票的每日收盘价如下:10.2, 10.5, 10.7, 10.9, 11.1, 11.3, 11.5, 11.7, 11.9, 12.1。

请计算该股票的平均收盘价和收益率。

答案解析:计算平均收盘价的方法与计算平均销售额的方法相同。

将所有收盘价相加,然后除以收盘价的个数。

在这个例子中,收盘价的个数为10,总收盘价为10.2+10.5+10.7+10.9+11.1+11.3+11.5+11.7+11.9+12.1=113.9。

因此,平均收盘价为113.9/10=11.39。

计算收益率的方法是将每日的收盘价减去前一日的收盘价,然后除以前一日的收盘价,并乘以100%。

在这个例子中,第二天的收盘价为10.5,第一天的收盘价为10.2。

因此,第二天的收益率为(10.5-10.2)/10.2*100%=2.94%。

习题三:某城市过去十年的月度平均气温如下:15, 18, 20, 22, 25, 28, 30, 29, 26, 23。

时间序列分析试卷及标准答案

时间序列分析试卷及标准答案

时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列{}t X ,则其一阶差分为_________________________。

3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________。

4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________。

5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳。

6. 对于一阶自回归模型MA(1):10.3t t t X εε-=-,其自相关函数为______________________。

7. 对于二阶自回归模型AR(2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。

8. 设时间序列{}t X 为来自ARMA(p,q)模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++L L则预测方差为___________________。

9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。

10. 设时间序列{}t X 为来自GARCH(p ,q)模型,则其模型结构可写为_____________。

二、(10分)设时间序列{}t X 来自()2,1ARMA 过程,满足()()210.510.4ttB B X B ε-+=+,其中{}t ε是白噪声序列,并且()()2t t 0,E Var εεσ==。

时间序列分析试题-时间序列分析试卷及答案

时间序列分析试题-时间序列分析试卷及答案

第九章 时间序列分析一、单项选择题1、乘法模型是分析时间序列最常用的理论模型。

这种模型将时间序列按构成分解为 ( ) 等四种成分,各种成分之间 ( ) ,要测定某种成分的变动,只须从原时间序列中 ( )。

A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他 影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其 他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他 影响成分的变动D. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其 他影响成分的变动答案: C2、加法模型是分析时间序列的一种理论模型。

这种模型将时间序列按构成分解为 ( ) 等四种成分,各种成分之间 ( ),要测定某种成分的变动,只须从原时间序列中( )。

A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其 他影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去 其他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其 他影响成分的变动D. . 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去 其他影响成分的变动答案: B3、利用最小二乘法求解趋势方程最基本的数学要求是( )。

A.(Y Y ?t )2 任意值 B. (Y Y ?t ) 2 min C. (Y Y ?t )2 max D. (Y Y ?t )2 0答案: B4、从下列趋势方程 Y ?t 125 0.86t 可以得出( )。

Y 增加 0.86 个单位Y 减少 0.86 个单位Y 平均增加 0.86 个单位Y 平均减少 0.86 个单位 答案: D. )。

B. 只能是相对数 D. 上述三种指标均可以 答案: D.6、下列时间序列中,属于时点序列的有( )。

时间序列分析期末试卷AB卷

时间序列分析期末试卷AB卷

卷A一、 判定下列模型的稳定性和可逆性。

(10)1.t t t a X X =--11.12.14.0--=t t t a a X3.1218.04.03.1----=+-t t t t t a a X X X二、简述(25)1.宽平稳的定义是什么?它和严平稳有什么联系?(10)2.写出AR (1),MA (1),ARMA (2,1)模型的表达式,并分别说明它们的基本假设。

(15)三、计算(65)1.根据下面AR (4)模型的估计值求关于一个ARMA (2,1)模型的可逆初始猜测值6.01=ϕ,2.02-=ϕ,2.03-=ϕ,8.04=ϕ (10)2. 求模型2114.03.15.0---+-=-t t t t t a a a X X 的前5个格林函数和逆函数。

(10)3.对于ARMA (2,1)模型 1214.03.0---+=+-t t t t t a a X X X ,t a ~NID (0,100),给定345=-t X ,364=-t X ,=-3t X 12=-t X ,3.01=-t X ,10-=t X ,并假定1-t a =-25(a )计算)(ˆl X t )2,1(=l 及)1(ˆtX 的95%的概率限。

(b )给定09.111-=+t X ,4.11=G ,修正)2(ˆtX 。

4. 有t=1,2,3,4,5的数据序列如下:7.0,6.8,7.2,6.9,7.1 (a )求零均值化后的序列t X(b )用AR(1)模型拟合t X ,求1ϕ的估计。

5. 某过程的逆函数2,)7.0(3.0,5.021≥==-j I I j j ,试求相应的ARMA 模型的表达式。

卷B二、 判定下列模型的稳定性和可逆性。

(10)1.t t t a X X =--15.02.12.1--=t t t a a X3.21216.07.11.07.0----+-=+-t t t t t t a a a X X X二、简述(25)1.宽平稳的定义是什么?它和严平稳有什么联系?(10)2.写出AR (1),MA (1),ARMA (2,1)模型的表达式,并分别说明它们的基本假设。

时间序列练习题

时间序列练习题

时间序列练习题时间序列分析是一种用于研究以时间为顺序的数据变动规律的方法。

它可以帮助我们理解和预测未来的趋势,对于决策和规划具有重要的意义。

本文将通过一些时间序列练习题,帮助读者更好地理解和应用时间序列分析。

练习题一:季度销售数据分析某公司的销售数据按照季度记录如下:季度销售额Q1 100Q2 200Q3 300Q4 400请你根据这些数据,进行以下的分析和预测:1. 绘制季度销售额的时间序列图。

2. 计算季度销售额的平均值。

3. 判断季度销售额是否存在趋势性,并进行趋势线的拟合。

4. 判断季度销售额是否存在季节性,如果存在,请进行季节性分解。

5. 使用你认为最适合的模型进行未来一年季度销售额的预测,并给出预测结果。

练习题二:月度股票收益率分析某股票连续12个月的收益率数据如下:月份收益率1 0.032 0.053 -0.024 0.025 -0.016 0.047 -0.038 0.019 0.0210 -0.0511 0.0112 0.03请你根据这些数据,进行以下的分析和预测:1. 绘制月度股票收益率的时间序列图。

2. 计算月度收益率的平均值和标准差。

3. 判断股票收益率是否存在趋势性,并进行趋势线的拟合。

4. 判断股票收益率是否存在季节性,如果存在,请进行季节性分解。

5. 使用你认为最适合的模型进行未来三个月股票收益率的预测,并给出预测结果。

练习题三:年度气温分析某城市过去10年(2011年至2020年)的年度平均气温数据如下:年份平均气温(摄氏度)2011 192012 212013 202014 182015 172016 182017 202018 222019 232020 21请你根据这些数据,进行以下的分析和预测:1. 绘制年度平均气温的时间序列图。

2. 计算年度平均气温的平均值、中位数和极差。

3. 判断气温是否存在趋势性,并进行趋势线的拟合。

4. 判断气温是否存在季节性,如果存在,请进行季节性分解。

时间序列分析期末题库试题及答案

时间序列分析期末题库试题及答案

时间序列分析期末题库试题及答案(以下是一个范例,您可以根据需要进行修改和调整)时间序列分析期末题库试题及答案时间序列分析是一门研究随时间变化的数据模式和规律的统计学方法,广泛应用于物理学、经济学、环境科学等领域。

在进行时间序列分析时,掌握相关的试题及其答案是提高分析能力和应对考试的重要途径。

本文将为您提供一份时间序列分析期末题库试题及答案,希望能帮助您更好地掌握这门学科。

一、简答题1. 请解释什么是时间序列分析。

答:时间序列分析是一种统计学方法,用于研究随时间变化的数据。

它可以揭示出数据内在的趋势、季节性和周期性等模式,帮助我们进行预测和决策。

2. 时间序列分析的主要步骤有哪些?答:时间序列分析的主要步骤包括:数据收集和整理、数据可视化、确定模型、模型识别和拟合、模型检验和评估、模型预测和应用。

3. 请解释平稳时间序列的概念。

答:平稳时间序列是指其数学期望、方差和自协方差不随时间的变化而发生显著变化的时间序列。

平稳时间序列的均值和方差不依赖于时间,具有稳定的趋势和季节性。

4. 如何进行时间序列的平稳性检验?答:常见的平稳性检验方法包括ADF检验、KPSS检验和单位根检验。

这些方法可以通过检验时间序列数据的单位根是否存在来判断其是否平稳。

5. 时间序列分析中的自相关和偏自相关函数有什么作用?答:自相关函数(ACF)和偏自相关函数(PACF)用于分析时间序列数据的相关性。

ACF可以帮助确定数据的季节性和周期性,而PACF可以帮助确定数据的自回归阶数。

二、计算题请根据以下时间序列数据,回答下面的问题:年份 | 销售额(万元)-----------------------2015 | 2002016 | 2302017 | 2502018 | 2802019 | 3002020 | 3201. 请绘制销售额的时间序列图。

答:(在此插入相应的时间序列图)2. 根据观察的时间序列图,总结该时间序列的趋势和季节性。

时间序列分析试卷

时间序列分析试卷

时间序列分析一、名词解释ARMAARCHGARCH自协方差函数偏自相关函数频域分析时域分析二、简答1、严平稳、宽平稳以及两者之间的关系2、平稳时间序列的统计性质3、时序图检验、自相关图检验的依据原理4、DF 检验定义及类型5、ADF 检验定义及检验三、分析题从特征根和平稳域两个方面分析判断模型的平稳域四、简答题1、AR (2)模型t ε+=2-t 1-t t 0.4X -X X 的偏自相关函数2、某过程的格林函数)1(9.09.01≥⨯=-j G j j ,试求相互的ARMA 模型的域3、根据资料显示的数据{t X }由N=200样本组成,经计算,样本自相关函数k ρ^和样本偏自相关函数kk ρ^如下表,用Box-Jenkins 相关分析法判断模型4、已知AR (2)模型12215.1--=--t t t X X εϕϕ,),0(~2εσεN t ,2,,21εσϕϕ未知,利用样本自相关函数0^2^1^,γρρ及估计模型参数εσϕϕ^,2^1^,5、求一个给定ARMA (1,1)模型的Green 函数j G ,自协方差函数k γ,自相关函数k ρ6、对于AR (2)模型,t t t t X X X ε=+---211.05.0,45.222=εσ,50.4250=X ,60.3249=X ,计算:)(l X t ,l=1,2,3,及95%的置信区间,假设251X =2.00,修正)(^l t X (l=1,2,3)的置信区间7、已知ARIMA (1,1,1)模型为t t B X B ε)4.01()6.01(-=-,且,1,8.0,0.5,0.421====-εσεt t t X X 求3+t X 的95%的置信区间8、对一个观察值序列(N=80)拟ARMA (2,1)模型,得到残差自相关函数,检验该模型是否显著。

时间序第三章试卷题

时间序第三章试卷题

时间序列分析第三章试卷一、选择题(每题2分,共20分)1. 在时间序列分析中,下列哪个模型是通过样本自相关函数和偏自相关函数进行识别的?A. MA(q)模型B. AR(p)模型C. ARMA(p,q)模型D. 以上都是2. 下列关于平稳性的说法,正确的是?A. 强平稳意味着随机过程的分布随时间变化B. 弱平稳仅假设随机过程的前两阶矩随时间变化C. 平稳性可以通过样本均值和方差进行检验D. 平稳性是统计推断的基础3. 在AR(p)模型的参数估计中,常用的方法是?A. 最小二乘法(OLS)B. 迭代法C. Yule-Walker方程D. 以上都是4. 下列哪个统计量用于检验残差序列是否为白噪声?A. AICB. BICC. Q统计量D. R方5. 在ARMA模型的识别中,如果自相关系数和偏自相关系数都表现出拖尾性质,那么最可能的模型是?A. MA(q)模型B. AR(p)模型C. ARMA(p,q)模型D. 无法确定6. 下列关于时间序列图的说法,错误的是?A. 可以用来判断序列的平稳性B. 可以用来判断序列的纯随机性C. 总是能准确反映序列的真实趋势D. 可以作为模型选择的参考7. 在时间序列分析中,白噪声是指?A. 序列的均值和方差都不随时间变化B. 序列的自相关系数始终为零C. 序列的偏自相关系数始终为零D. 以上都是8. 下列哪个模型在参数估计时,需要用到非线性方程组?A. AR(p)模型B. MA(q)模型C. ARMA(p,q)模型D. 以上都不是9. 在平稳性检验中,常用的方法包括?A. 时序图法B. 自相关图法C. 混成检验法D. 以上都是10. 下列关于AIC和BIC的说法,正确的是?A. AIC和BIC都用于模型选择B. AIC值越小,模型越好C. BIC值越大,模型越好D. 以上都是二、填空题(每题2分,共20分)1. 在时间序列分析中,样本自相关函数用于衡量序列在不同时间点上的______关系。

《时间序列》试卷

《时间序列》试卷

《时间序列分析》试卷注意:请将答案直接写在试卷上一、填空题(1分*20空=20分)1. 德国药剂师、业余天文学家施瓦尔发现太阳黑子的活动具有11年周期依靠的是 时序分析方法。

2. 时间序列预处理包括 和 。

3. 平稳时间序列有两种定义,根据限制条件的严格程度,分为和 。

使用序列的特征统计量来定义的平稳性属于 。

4. 统计时序分析方法分为 和 。

5. 为了判断一个平稳的序列中是否含有信息,即是否可以继续分析,需对该序列进行 检验,该检验用到的统计量服从 分布;原假设和备择假设分别是 和 。

6. 图1为2000年1月——2007年12月中国社会消费品零售总额时间序列图,据此判断,该序列{}t X 是否平稳(填“是”或者“否”) ;要使其平稳化,应该对原序列进行 和 差分处理。

用Eviews 软件对该序列做差分运算的表达式是 。

7. ARIMA 模型的实质 是和的结合。

8. 差分运算的实质是使用的方式提取确定性信息。

9. 用延迟算子表示中心化的AR(P)模型是 。

二、不定项选择题(下列每小题至少有一个答案是正确的,请将正确答班级 姓名 学号50010001500200025003000350040009394959697989900图1案代码填入相应括号内,2分*5题=10分)1.下列属于白噪声序列{}t ε所满足的条件的是( )A. 任取T t ∈,有με=)(t E (μ为常数)B. 任取T t ∈,有0)(=t E εC.)(0),(s t Cov s t ≠∀=εεD. 2)(εσε=t Var (2εσ为常数) 2.使用n 期中心移动平均法对序列{}t x 进行平滑时,下列表达式正确的是( ) A.n x x x x x n x n t n t t n t n t t ),(1~2112112121-+--++----++++++= 为奇数;B. n x x x x x n x n t n t t n t n t t),(1~212122+-++--++++++= 为偶数;C. )(1~11+--+++=n t t t t x x x n x ; D. n x x x x x n x n t n t t n t n t t),2121(1~212122+-++--++++++= 为偶数。

应用统计硕士(时间序列分析和预测)模拟试卷1(题后含答案及解析)

应用统计硕士(时间序列分析和预测)模拟试卷1(题后含答案及解析)

应用统计硕士(时间序列分析和预测)模拟试卷1(题后含答案及解析)题型有:1. 单选选择题 3. 简答题 4. 计算与分析题单选选择题1.2003年末某市人口为120万人,2013年末达到153万人,则人口的平均发展速度为( )。

A.2.46%B.2.23%C.102.23%D.102.46%正确答案:D解析:计算平均发展速度通常采用几何平均法。

若6表示平均发展速度,n 表示环比发展速度的时期数,则:b=,故人口的平均发展速度的计算公式为:b=≈102.46%知识模块:时间序列分析和预测2.时间序列编制的基本原则是( )。

A.无偏性B.及时性C.完整性D.可比性正确答案:D解析:编制时间序列的目的是为了通过对各时间的变量数值进行对比,研究现象发展变化的过程和规律。

因此,保证序列中各变量数值在所属时间、总体范围、经济内容、计算口径、计算方法等方面具有充分的可比性,是编制时间序列的基本原则。

知识模块:时间序列分析和预测3.时间序列在一年内重复出现的周期性波动称为( )。

A.趋势B.季节性C.周期性D.随机性正确答案:B解析:季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动。

A项趋势是时间序列在长时期内呈现出来的某种持续向上或持续下降的变动;C 项周期性也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动;D项随机性也称不规则波动,它是时间序列中除去趋势、周期性和季节性之后的偶然性波动。

知识模块:时间序列分析和预测4.下列关于时点时间序列特征的描述,错误的是( )。

A.时点时间序列具有可加性B.时点时间序列是一种基本时间序列C.时点时间序列的每一项数据都是绝对数D.时点时间序列的每一项数据都是采用间断统计方法获得的正确答案:A解析:时点指标是反映现象在某一时刻上的绝对数量,由时点指标构成的时间序列就是时点时间序列,它是一种基本时间序列。

时点时间序列主要特点有:①不可加性;②指标数值的大小与时点间隔的长短一般没有直接关系;③指标值采用间断统计的方式获得。

时间序列分析习题及答案

时间序列分析习题及答案

时间序列分析第一题:1、绘制时序图:data ex1_1;input x@@ ;time=intnx('month','01jul2004'd,_n_-1);format time date. ;cards;153 134 145 117 187 175 203 178 234 243 189 149 212 227 214 178 300 298 295 248 221 256 220 202 201 237 231 162 175 165 174 135 123 124 119 120 104 106 85 96 85 87 67 90 78 74 75 63;proc gplot data=ex1_1;plot x*time=1;symbol1 c=black v=star i=join;run;时序图:2、绘制自相关图:data ex1_1;input x@@ ;time=intnx('month','01jul2004'd,_n_-1);format time date. ;cards;153 134 145 117 187 175 203 178 234 243 189 149 212 227 214 178 300 298 295 248 221 256 220 202 201 237 231 162 175 165 174 135 123 124 119 120 104 106 85 96 85 87 67 90 78 74 75 63;proc arima data=ex1_1;identify var=x;run;样本自相关图:白噪声检验输出结果:因为P值小于α,所以该序列为非白噪声序列,根据时序图看出数据并不在一个常数值附近随机波动,后期有递减的趋势,所以不是平稳序列。

第二题:1、选择拟合模型方法一:首先绘制该序列的时序图,直观检验序列平稳性。

时间序列习题(含答案)

时间序列习题(含答案)

一、单项选择题1.时间数列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值大小排列的C 前者是根据时间顺序排列的,后者是根据变量值大小排列的D 前者是根据变量值大小排列的,后者是根据时间顺序排列的 2.时间数列中,数值大小与时间长短有直接关系的是( )A 平均数时间数列B 时期数列C 时点数列D 相对数时间数列 3.发展速度属于( )A 比例相对数B 比较相对数C 动态相对数D 强度相对数 4.计算发展速度的分母是( )A 报告期水平B 基期水平C 实际水平D 计划水平5.某车间月初工人人数资料如下:则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A150万人 B150.2万人 C150.1万人 D 无法确定 7.由一个9项的时间数列可以计算的环比发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 8.采用几何平均法计算平均发展速度的依据是( )A 各年环比发展速度之积等于总速度B 各年环比发展速度之和等于总速度C 各年环比增长速度之积等于总速度D 各年环比增长速度之和等于总速度 9.某企业的产值2005年比2000年增长了58.6%,则该企业2001—2005年间产值的平均发展速度为( )A 5%6.58 B 5%6.158 C 6%6.58 D 6%6.158 10.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( )A 简单平均法B 几何平均法C 加权序时平均法D 首末折半法 11、时间序列在一年内重复出现的周期性波动称为( )A 、长期趋势B 、季节变动C 、循环变动D 、随机变动1.C 2.B 3.C 4.B 5.C 6.C 7.A 8.A 9.B 10.D 11、B 二、多项选择题1.对于时间数列,下列说法正确的有( )A 数列是按数值大小顺序排列的B 数列是按时间顺序排列的C 数列中的数值都有可加性D 数列是进行动态分析的基础E 编制时应注意数值间的可比性 2.时点数列的特点有( )A 数值大小与间隔长短有关B 数值大小与间隔长短无关C 数值相加有实际意义D 数值相加没有实际意义E 数值是连续登记得到的3.下列说法正确的有( )A 平均增长速度大于平均发展速度B 平均增长速度小于平均发展速度C 平均增长速度=平均发展速度-1D 平均发展速度=平均增长速度-1E 平均发展速度×平均增长速度=14.下列计算增长速度的公式正确的有( )A %100⨯=基期水平增长量增长速度 B %100⨯=报告期水平增长量增长速度C 增长速度= 发展速度—100%D %100⨯-=基期水平基期水平报告期水平增长速度E %100⨯=基期水平报告期水平增长速度 5.采用几何平均法计算平均发展速度的公式有( )A1231201-⨯⨯⨯⨯=n n a a a a a a a a nx Ba a nx n =C 1a a nx n= D nR x = E n x x ∑=6.某公司连续五年的销售额资料如下:根据上述资料计算的下列数据正确的有( )A 第二年的环比增长速度=定基增长速度=10%B 第三年的累计增长量=逐期增长量=200万元C 第四年的定基发展速度为135%D 第五年增长1%绝对值为14万元E 第五年增长1%绝对值为13.5万元 7.下列关系正确的有( )A 环比发展速度的连乘积等于相应的定基发展速度B 定基发展速度的连乘积等于相应的环比发展速度C 环比增长速度的连乘积等于相应的定基增长速度D 环比发展速度的连乘积等于相应的定基增长速度E 平均增长速度=平均发展速度-1 8.测定长期趋势的方法主要有( )A 时距扩大法B 方程法C 最小平方法D 移动平均法E 几何平均法9.关于季节变动的测定,下列说法正确的是( ) A 目的在于掌握事物变动的季节周期性 B 常用的方法是按月(季)平均法 C 需要计算季节比率D 按月计算的季节比率之和应等于400%E 季节比率越大,说明事物的变动越处于淡季 10.时间数列的可比性原则主要指( )A时间长度要一致 B经济内容要一致 C计算方法要一致 D总体范围要一致E计算价格和单位要一致1.BDE 2.BD 3.BC 4.ACD 5.ABD 6.ACE 7.AE8.ACD 9.ABC 10.ABCDE三、判断题1.时间数列中的发展水平都是统计绝对数。

时间序列分析试卷

时间序列分析试卷

时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列{}t X ,则其一阶差分为_________________________。

3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________。

4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________。

5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳。

6. 对于一阶自回归模型MA(1):10.3t t t X εε-=-,其自相关函数为______________________。

7. 对于二阶自回归模型AR(2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。

8. 设时间序列{}t X 为来自ARMA(p,q)模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++则预测方差为___________________。

9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。

10. 设时间序列{}t X 为来自GARCH(p ,q)模型,则其模型结构可写为_____________。

二、(10分)设时间序列{}t X 来自()2,1ARMA 过程,满足()()210.510.4ttB B X B ε-+=+,其中{}t ε是白噪声序列,并且()()2t t 0,E Var εεσ==。

时间序列分析-模拟试卷2套及答案

时间序列分析-模拟试卷2套及答案

《时间序列分析》 期中考试模拟试卷(A )1.问答题(1) 常见的数据有哪些种类? (2) 什么是时间序列数据?(3) 常见的时间序列数据有哪些典型特征? (4)如何度量序列相依性?2.名词解释 (1) 平稳性 (2) 遍历性 (3) ACF(4) 长期协方差 (5) 白噪声3.下列自回归过程是否平稳? 若平稳,计算其均值和方差、以及自相关函数。

(1)r t =3+0.95r t−1+a t . (2)r t =1+1.05r t−1+a t .4.下列滑动平均过程是否可逆? (a )若可逆,求出其可逆表示;(b )计算其均值和方差、以及自相关函数。

(1)r t =3+0.95a t−1+a t . (2)r t =1+1.05a t−1+a t .5.证明:若y t =y t−1+u t ,u t 为i.i.d.N(0,σ2),则有T−2∑y t−12d →Tt=1σ2⋅∫[W (r )]2dr 1,T −1∑y t−1u t Tt=1d→σ22{[W (1)]2 −1}.参考答案1. (1)横截面数据、时间序列数据和面板数据;(2)时间序列数据是指同一个个体的一个或者多个特征在一系列时间观测点上的数据;(3) 序列平稳、非平稳、差分平稳、结构变化、季节性、协整、波动率聚集等;(4) 可以使用Pearson 相关系数度量变量之间的线性相关性,以及非线性相关系数,例如Spearman 秩相关系数和Kendall τ相关系数,来度量变量之间的非线性相关关系。

以上度量的共同点在于均为数据之间相依性的度量,并对样本数据得到相应的统计量,进行假设检验;但当时间序列数据之间存在非线性关系时,线性相关度量可能无法反应变量之间的相依性。

2. (1)平稳性分为严平稳和弱平稳,参考定义1.1和定义1.2;(2)遍历性刻画的是时间序列数据之间的相依程度随着数据之间时间间隔的增加而逐渐减弱的特征; (3)序列自相关系数关于阶数的变化的函数即为自相关函数,记为ACF ; (4)长期协方差为平稳时间序列的样本均值乘以√T (即√Ty ̅=√Ty t T t=1)的方差的极限; (5)白噪声是指均值为0、方差有限、且不存在时间维度上的相关性的平稳时间序列;。

8章时间序列分析练习题参考答案

8章时间序列分析练习题参考答案

8章时间序列分析练习题参考答案第⼋章时间数列分析⼀、单项选择题1.时间序列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值⼤⼩排列的C 前者是根据时间顺序排列的,后者是根据变量值⼤⼩排列的D 前者是根据变量值⼤⼩排列的,后者是根据时间顺序排列的 C2.时间序列中,数值⼤⼩与时间长短有直接关系的是( )A 平均数时间序列B 时期序列C 时点序列D 相对数时间序列 B3.发展速度属于( )A ⽐例相对数B ⽐较相对数C 动态相对数D 强度相对数 C4.计算发展速度的分母是( )A 报告期⽔平B 基期⽔平C 实际⽔平D 计划⽔平 B5.某车间⽉初⼯⼈⼈数资料如下:则该车间上半年的平均⼈数约为( )A 296⼈B 292⼈C 295 ⼈D 300⼈ C6.某地区某年9⽉末的⼈⼝数为150万⼈,10⽉末的⼈⼝数为150.2万⼈,该地区10⽉的⼈⼝平均数为( )A 150万⼈B 150.2万⼈C 150.1万⼈D ⽆法确定 C7.由⼀个9项的时间序列可以计算的环⽐发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 A8.采⽤⼏何平均法计算平均发展速度的依据是( )A 各年环⽐发展速度之积等于总速度B 各年环⽐发展速度之和等于总速度C 各年环⽐增长速度之积等于总速度D 各年环⽐增长速度之和等于总速度 A9.某企业的科技投⼊,2010年⽐2005年增长了58.6%,则该企业2006—2010年间科技投⼊的平均发展速度为( ) A5%6.58 B 5%6.158 C6%6.58 D 6%6.158B10.根据牧区每个⽉初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采⽤的公式是( ) A 简单平均法 B ⼏何平均法 C 加权序时平均法 D ⾸末折半法 D11.在测定长期趋势的⽅法中,可以形成数学模型的是( )A 时距扩⼤法B 移动平均法C 最⼩平⽅法D 季节指数法12.动态数列中,每个指标数值相加有意义的是()。

时间序列总复习题答案

时间序列总复习题答案

时间序列总复习题答案时间序列总复习题答案时间序列分析是一种研究时间上连续观测数据的统计方法,用于揭示数据的内在规律和趋势。

在这篇文章中,我们将回顾一些常见的时间序列分析问题,并给出详细的答案。

1. 什么是时间序列分析?时间序列分析是一种统计学方法,用于研究时间上连续观测数据的模式和趋势。

它可以帮助我们预测未来的趋势,解释过去的变化,并进行决策和规划。

2. 时间序列有哪些常见的模式?时间序列数据可能具有以下几种常见的模式:(1) 趋势:数据在长期内呈现出递增或递减的趋势。

(2) 季节性:数据在一年内呈现出周期性的波动。

(3) 周期性:数据在超过一年的时间尺度上呈现出规律性的波动。

(4) 噪声:数据中的随机波动,无规律可循。

3. 如何检验时间序列的平稳性?平稳性是时间序列分析的基本假设之一。

我们可以通过以下几种方法来检验时间序列的平稳性:(1) 观察法:绘制时间序列图,观察数据是否在长期内保持稳定。

(2) 统计检验:使用单位根检验(如ADF检验)来检验序列是否具有单位根,从而判断平稳性。

4. 如何拟合时间序列模型?常见的时间序列模型包括AR模型(自回归模型)、MA模型(移动平均模型)和ARMA模型(自回归移动平均模型)。

我们可以使用最小二乘法来估计模型的参数,并使用信息准则(如AIC和BIC)来选择最优模型。

5. 如何进行时间序列的预测?时间序列的预测可以使用多种方法,包括简单指数平滑法、移动平均法、ARIMA模型等。

我们可以使用历史数据来训练模型,并使用模型来预测未来的值。

6. 如何评估时间序列模型的准确性?评估时间序列模型的准确性可以使用多种指标,如均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)。

较小的误差值表示模型的预测准确性较高。

7. 如何处理异常值和缺失值?在时间序列分析中,异常值和缺失值可能会影响模型的准确性。

我们可以使用插值法来填补缺失值,如线性插值或样条插值。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列{}t X ,则其一阶差分为_________________________。

3. 设AR MA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________.4. 对于一阶自回归模型A R(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________.5. 设ARM A(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a满足_________时,模型平稳。

6. 对于一阶自回归模型MA(1): 10.3t t t X εε-=-,其自相关函数为______________________.7. 对于二阶自回归模型AR (2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Wal ker 方程是______________________。

8. 设时间序列{}t X 为来自A RMA (p,q)模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++则预测方差为___________________。

9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。

10. 设时间序列{}t X 为来自GARCH (p ,q )模型,则其模型结构可写为_____________。

二、(10分)设时间序列{}t X 来自()2,1ARMA 过程,满足()()210.510.4ttB B X B ε-+=+,其中{}t ε是白噪声序列,并且()()2t t 0,E Var εεσ==。

(1) 判断()2,1ARMA 模型的平稳性。

(5分)(2) 利用递推法计算前三个格林函数012,,G G G 。

(5分)三、(20分)某国1961年1月—2002年8月的16~19岁失业女性的月度数据经过一阶差分后平稳(N=500),经过计算样本其样本自相关系数ˆ{}k ρ及样本偏相关系数ˆ{}kkφ的前10个数值如下表求(1) 利用所学知识,对}{t X 所属的模型进行初步的模型识别.(10分) (2) 对所识别的模型参数和白噪声方差2σ给出其矩估计。

(10分) 四、(20分)设}{t X 服从A RMA (1, 1)模型:110.80.6t t t t X X εε--=+-其中1001000.3,0.01X ε==。

(1) 给出未来3期的预测值;(10分)(2) 给出未来3期的预测值的95%的预测区间(0.975 1.96u =)。

(10分) 五、(10分)设时间序列}{t X 服从AR(1)模型:1t t t X X φε-=+,其中{}t ε为白噪声序列,()()2t t 0,E Var εεσ==,1212,()x x x x ≠为来自上述模型的样本观测值,试求模型参数2,φσ的极大似然估计。

六、(20分)证明下列两题:(1) 设时间序列{}t x 来自()1,1ARMA 过程,满足110.50.25t t t t x x εε---=-,其中()2t ~0,WN εσ, 证明其自相关系数为11,00.2710.52k k k k k ρρ-=⎧⎪==⎨⎪≥⎩(10分) (2) 若t X ~I(0),t Y ~I(0),且{}t X 和{}t Y 不相关,即(,)0,,r s cov X Y r s =∀。

试证明对于任意非零实数a 与b ,有~(0)t t t Z aX bY I =+。

(10分)时间序列分析试卷2七、 填空题(每小题2分,共计20分)1. 设时间序列{}t X ,当__________________________序列{}t X 为严平稳。

2. AR (p)模型为_____________________________,其中自回归参数为______________。

3. A RMA(p ,q)模型_________________________________,其中模型参数为____________________。

4. 设时间序列{}t X ,则其一阶差分为_________________________。

5. 一阶自回归模型AR (1)所对应的特征方程为_______________________。

6. 对于一阶自回归模型AR (1),其特征根为_________,平稳域是_______________________。

7. 对于一阶自回归模型M A(1),其自相关函数为______________________. 8. 对于二阶自回归模型AR(2):1122t t t t X X X φφε--=++,其模型所满足的Yul e—Walke r方程是___________________________. 9. 设时间序列{}t X 为来自ARMA (p ,q)模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++,则预测方差为___________________.10. 设时间序列{}t X 为来自GARCH (p, q)模型,则其模型结构可写为_____________。

八、(20分)设{}t X 是二阶移动平均模型MA(2),即满足t t t-2X εθε=+,ﻩ其中{}t ε是白噪声序列,并且()()2t 0,t E Var εεσ==(1) 当1θ=0.8时,试求{}t X 的自协方差函数和自相关函数。

(2) 当1θ=0.8时,计算样本均值1234(X X X X )4+++的方差。

九、(20分)设}{t X 的长度为10的样本值为0。

8,0.2,0。

9,0。

74,0.82,0.92,0.78,0.86,0。

72,0。

84,试求(1) 样本均值x 。

(2) 样本的自协方差函数值21ˆ,ˆγγ和自相关函数值21ˆ,ˆρρ。

(3) 对AR(2)模型参数给出其矩估计,并且写出模型的表达式。

十、(20分)设}{t X 服从A RMA(1, 1)模型:110.80.6t t t t X X εε--=+-其中1001000.3,0.01X ε==。

(1) 给出未来3期的预测值;(2) 给出未来3期的预测值的95%的预测区间. 十一、 (20分)设平稳时间序列}{t X 服从A R(1)模型:11t t t X X φε-=+,其中{}t ε为白噪声,()()2t 0,t E Var εεσ==,证明:221()1t Var X σφ=-时间序列分析试卷3十二、 单项选择题(每小题4分,共计20分)11. t X 的d 阶差分为(a)=d t t t k X X X -∇- (b)11=d d d t t t k X X X ---∇∇-∇ (c)111=d d d t t t X X X ---∇∇-∇ (d)11-12=d d d t t t X X X ---∇∇-∇12. 记B 是延迟算子,则下列错误的是(a )01B = (b )()1=t t t B c X c BX c X -⋅⋅=⋅ (c )()11=t t t t B X Y X Y --±± (d )()=1ddt t d t X X B X -∇-=-13. 关于差分方程1244t t t X X X --=-,其通解形式为(a )1222t t c c + (b)()122tc c t +(c )()122tc c - (d )2tc ⋅14. 下列哪些不是MA 模型的统计性质(a )()t E X μ= (b)()()22111q t Var X θθσ=+++(c)()(),,0t t t E X E με∀≠≠ (d)1,,0q θθ≠15. 上面左图为自相关系数,右图为偏自相关系数,由此给出初步的模型识别(a)MA(1) (b)A RMA(1, 1) ﻩ(c)AR (2) (d)AR MA(2, 1) 十三、 填空题(每小题2分,共计20分)1. 在下列表中填上选择的的模型类别得分2. 时间序列模型建立后,将要对模型进行显著性检验,那么检验的对象为___________,检验的假设是___________。

3. 时间序列模型参数的显著性检验的目的是____________________。

4. 根据下表,利用AIC 和BIC 准则评判两个模型的相对优劣,你认为______模型优于______模型。

,即为_______检验和_______检验。

十四、 (10分)设{}t ε为正态白噪声序列,()()2t t 0,E Var εεσ==,时间序列}{t X 来自110.8t t t t X X εε--=+-问模型是否平稳?为什么? 十五、 (20分)设}{t X 服从ARMA (1, 1)模型:110.80.6t t t t X X εε--=+-其中1001000.3,0.01X ε==.(3) 给出未来3期的预测值;(10分)(4) 给出未来3期的预测值的95%的预测区间(0.975 1.96u =)。

(10分) 十六、 (20分)下列样本的自相关系数和偏自相关系数是基于零均值的平稳序列样本量为500计算得到的(样本方差为2.997)AC F: 0:340; 0:321; 0:370; 0:106; 0:139; 0:171; 0:081; 0:049; 0:124; 0:088; 0:009; 0:077 P ACF: 0:340; 0:494; 0:058; 0:086; 0:040; 0:008; 0:063; 0:025; 0:030; 0:032; 0:038; 0:030根据所给的信息,给出模型的初步确定,并且根据自己得到的模型给出相应的参数估计,要求写得分得分得分出计算过程。

十七、 (10分)设}{t X 服从AR (2)模型:1121t t t t X X X ααε--=++其中{}t ε为正态白噪声序列,()()2t t 0,E Var εεσ==,假设模型是平稳的,证明其偏自相关系数满足223kk k k αφ=⎧=⎨≥⎩。

相关文档
最新文档