人教版七年级数学上册第二章 《整式的加减》 单元检测B卷

合集下载

人教版七年级数学上册第二章 《整式的加减》 单元检测B卷

人教版七年级数学上册第二章 《整式的加减》 单元检测B卷

第二章《整式的加减》单元检测B卷满分:100分时间:90分钟班级:______姓名:_______得分:______一.选择题(每题3分,共30分)1.下列各式,,,,1,xy﹣1,中,单项式有()A.2 个B.3 个C.4 个D.5 个2.下列计算正确的是()A.a+a=a2B.6x3﹣5x2=xC.3x2+2x3=5x5D.3a2b﹣4ba2=﹣a2b3.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是4.当x=2时,代数式px3+qx+1的值为﹣2018,求当x=﹣2时,代数式的px3+qx+1值是()A.2017 B.2018 C.2019 D.20205.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度是60km/h,水流速度是akm/h,3h后两船相距()A.6a千米B.3a千米C.360千米D.180千米6.若A为五次多项式,B为四次多项式,则A+B一定是()A.次数不高于九次多项式B.四次多项式C.五次多项式或五次单项式D.次数不定7.按如图所示的运算程序,若输入x=﹣4,y=﹣2,则输出的结果为()A.12 B.﹣12 C.20 D.﹣208.已知﹣25a2m b和7a4b3﹣n是同类项,则2m﹣n的值是()A.6 B.4 C.3 D.29.一个两位数,个位数字为a,十位数字比个位数字大1,则这个两位数可表示为()A.11a﹣1 B.11a﹣10 C.11a+1 D.11a+1010.一项工程甲单独完成需要m天,乙单独完成需要10天,甲单独做a(a<m)天后,剩下的工程由乙完成,那么乙完成工程需要的天数()A.10(1﹣)B.10﹣a C.10(1﹣)D.m(1﹣)二.填空题(每题4分,共24分)11.若2a+b=5,则4a+2b﹣2=.12.如果y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,则m的值是.13.关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含二次项,则k=.14.如图,用含a、b的代数式表示图中阴影部分的面积.15.某种商品原价每件b元,第一次降价打八折,第二次降价每件又减10元,第二次降价后的售价是元.16.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为20cm,宽为16cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是.三.解答题(共46分)17.先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=2、b =﹣.18.新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本书的高度为cm,课桌的高度为cm;(2)当课本数为x(本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离(用含x的代数式表示);(3)桌面上有55本与题(1)中相同的数学课本,整齐叠放成一摞,若有18名同学各从中取走1本,求余下的数学课本高出地面的距离.19.“十一”黄金周期间,某市外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)日期1日2日3日4日5日6日7日人数变化单位:万人+1.6 +0.8 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.2(1)9月30日外出旅游人数记为a,请用含字母a的代数式表示10月2日外出旅游的人数:(2)请判断八天内外出旅游人数最多的是10月日,最少是10月日.(3)如果最多一天出游人数有3万人,且平均每人消费2000元,试问该城市10月5日外出旅游消费总额为万元.20.如图,长为60cm,宽为x(cm)的大长方形被分割为7小块,除阴影A、B外,其余5块是形状、大小完全相同的小长方形,其较短一边长为y(cm).(1)分别用含x,y的代数式表示阴影A,阴影B的面积,并计算阴影A与阴影B的面积差.(2)当y为何值时,阴影A与阴影B的面积差与x的取值无关.21.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价60元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案①:买一套西装送一条领带方案②:西装和领带都打9折现某客户要到该服装厂购买西装30套,领带x条(x>30).(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=100,通过计算说明此时按哪种方案购买较为合算?参考答案一.选择题1.解:根据单项式的定义可知,,,,1,xy﹣1,中,单项式有,,1,单项式有3个.故选:B.2.解:A、a+a=2a,故本选项错误;B、6x3与5x2不是同类项,不能合并,故本选项错误;C、3x2与2x3不是同类项,不能合并,故本选项错误;D、3a2b﹣4ba2=﹣a2b,故本选项正确;故选:D.3.解:A、1﹣a﹣ab是二次三项式,正确,不合题意;B、﹣a2b2c是单项式,正确,不合题意;C、是多项式,正确,不合题意;D、πr2中,系数是:π,故此选项错误,符合题意.故选:D.4.解:当x=2时,8p+2q+1=﹣2018,所以8p+2q=﹣2019,当x=﹣2时,﹣8p﹣2q+1=2019+1=2020.故选:D.5.解:由题意知甲顺水航行的速度为(60+a)km/h,乙逆水航行的速度为(60﹣a)km/h,则3h后两船相距3(60+a)+3(60﹣a)=360(km),故选:C.6.解:∵A是五次多项式,B是四次多项式,∴A+B的次数是5.∴A+B一定是五次多项式或五次单项式,故选:C.7.解:∵x=﹣4,y=﹣2<0,∴输出结果为x2﹣2y=(﹣4)2﹣2×(﹣2)=16+4=20,故选:C.8.解:由题意得:2m=4,3﹣n=1,解得:m=2,n=2,2m﹣n=2.故选:D.9.解:由于个位数字为a,十位数字比个位数字大1,则十位数字为a+1,∴这个两位数可表示为10(a+1)+a=11a+10.故选D.10.解:由题意可得:10(1﹣a•)=10(1﹣).故选:A.二.填空题(共6小题)11.解:∵2a+b=5,∴4a+2b﹣2,=2(2a+b)﹣2,=2×5﹣2,=10﹣2,=8.故答案为:8.12.解:∵y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,∴|m|﹣3=2,m﹣5≠0,∴m=﹣5,故答案为:﹣5.13.解:原式=﹣3kxy+3y+9xy﹣8x+1=(﹣3k+9)xy+3y﹣8x+1,由题意知﹣3k+9=0,解得k=3,故答案为:3.14.解:阴影部分面积=ab﹣=ab﹣.故答案为:ab﹣πb2.15.解:∵某种商品原价每件b元,第一次降价打八折,∴第一次降价后的售价为:0.8b.∵第二次降价每件又减10元,∴第二次降价后的售价是0.8b﹣10.故答案为:0.8b﹣10.16.解:设小长方形长为xcm,宽为ycm,由题意得:x+3y=20,阴影部分周长的和是:20×2+(16﹣3y+16﹣x)×2=104﹣6y﹣2x=104﹣2(3y+x)=104﹣40=64(cm),故答案为:64cm.三.解答题(共5小题)17.解:原式=7a2b﹣4a2b+5ab2﹣2a2b+3ab2=a2b+8ab2,当a=2,b=﹣时,原式=﹣2+4=2.18.解:(1)书的厚度为:(88﹣86.5)÷(6﹣3)=0.5cm;课桌的高度为:86.5﹣3×0.5=85cm.故答案为:0.5;85;(2)∵x本书的高度为0.5x,课桌的高度为85,∴高出地面的距离为85+0.5x(cm).故答案为:(85+0.5x)cm;(3)当x=55﹣18=37时,85+0.5x=103.5cm.故余下的数学课本高出地面的距离是103.5cm.19.解:(1)根据题意得:∵9月30日外出旅游人数记为a,∴10月1日外出旅游人数为:a+1.6,∴10月2日外出旅游人数为:a+1.6+0.8=a+2.4;故答案为a+2.4;(2)∵9月30日外出旅游人数记为a,∴10月1日外出旅游人数为:a+1.6,∴10月2日外出旅游人数为:a+1.6+0.8=a+2.4;∴10月3日外出旅游人数为:a+1.6+0.8+0.4=a+2.8;∴10月4号外出旅游人数为:a+2.8﹣0.4=a+2.4;∴10月5号外出旅游人数为:a+2.4﹣0.8=a+1.6;∴10月6号外出旅游人数为:a+1.6+0.2=a+1.8;∴10月7号外出旅游人数为:a+1.8﹣1.2=a+0.6;∴10月3号外出旅游人数最多;7号最少;故答案为3,7;(3)∵最多一天有出游人数3万人,即:a+2.8=3万,∴a=0.2(万).∵10月5号外出旅游人数为a+1.6=1.8,∴1.8×2000=3600(万元).故答案为3600.20.解:(1)S A=(x﹣2y)(60﹣3y)=60x﹣3xy﹣120y+6y2,S=3y[x﹣(60﹣3y)]=3xy﹣180y+9y2,BS﹣S B=(60x﹣3xy﹣120y+6y2)﹣( 3xy﹣180y+9y2)=60x﹣6xy+60y﹣3y2;A(2)∵S A﹣S B与x的取值无关,∴60x﹣6xy=0,∴60﹣6y=0,∴y=10.答:当y=10时,阴影A与阴影B的面积差与x的取值无关.21.解:(1)若该客户按方案①购买,需付款30×200+60(x﹣30)=60x+4200(元)若该客户按方案②购买,需付款0.9×(200×30+60x)=54x+5400(元),故答案为:(60x+4200),(54x+5400);(2)当x=100时,按方案①购买,需付款60x+4200=60×100+4200=10200(元),按方案②购买,需付款54x+5400=54×100+5400=10800(元),∵10200<10800,∴当x=100时,按方案①购买合算.。

人教版数学七年级上册第二章整式的加减单元检测题(含答案)

人教版数学七年级上册第二章整式的加减单元检测题(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题1.化简-16(x-0.5)的结果是( )A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+82.以下判断正确的是( )A. 单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D. 是单项式3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是( )A. -4B. -2C. 2D. 44.单项式-32xy2z3的系数和次数分别是( )A. -1,8B. -3,8C. -9,6D. -9,35.如果-33a m b2是7次单项式,则m的值是( )A. 6B. 5C. 4D. 26.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为( )A. 29B. -6C. 14D. 247.已知a<b,那么a-b和它的相反数的差的绝对值是( )A. b-aB. 2b-2aC. -2aD. 2b8.下面不是同类项的是( )A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2二、填空题9.若单项式2x2y m与−x n y3的和仍为单项式,则m+n的值是___________.10.若单项式-a2x b m与a n b y-1可合并为a2b4,则xy-mn=___________.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.14.如果在数轴上表示a,b 两个实数的点的位置如图所示,那么|a﹣b|+|a+b|化简的结果为_____.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.16.化简:-2a2-[3a2-(a-2)]=___________.三、解答题17.完成下表18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.答案与解析一、选择题1.化简-16(x-0.5)的结果是( )A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+8【答案】D【解析】【分析】根据去括号法则及乘法分配律解答即可.【详解】由去括号法则及乘法分配律可得:-16(x-0.5)=-16x+8.故选D.【点睛】本题考查了去括号法则及乘法分配律,熟练运用去括号法则及乘法分配律是解决问题的关键.2.以下判断正确的是( )A. 单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D. 是单项式【答案】B【解析】【分析】根据单项式的有关概念进行解答即可.【详解】A、单项式xy的系数是1,故错误;B、-1是单项式,故正确;C、23x2是2次单项式,故错误;D、是分式,故错误.故选:B.【点睛】本题考查了单项式,单项式的系数,次数,熟记单项式的系数,次数的定义是解题的关键.3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是( )A. -4B. -2C. 2D. 4【答案】C【解析】【分析】原式去括号合并后,将已知整式的值代入计算即可求出值.【详解】∵x2y=2,∴原式=5x2y+5xy-7x-4x2y-5xy+7x=x2y=2.故选:C.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.4.单项式-32xy2z3的系数和次数分别是( )A. -1,8B. -3,8C. -9,6D. -9,3【答案】C【解析】分析:根据单项式系数和次数的定义求解.详解:单项式﹣32xy2z3的系数和次数分别是﹣9,6.故选C.点睛:本题考查了单项式的系数和次数,注意单项式中数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.如果-33a m b2是7次单项式,则m的值是( )A. 6B. 5C. 4D. 2【答案】B【解析】【分析】根据单项式次数的定义来求解.所有字母的指数和叫做单项式的次数.【详解】根据单项式次数的定义,所有字母的指数和为7,即m+2=7,则m=5.故选:B.【点睛】灵活掌握单项式次数的定义,根据题意列方程,是解题的关键.6.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为( )A. 29B. -6C. 14D. 24【答案】B【解析】【分析】先对原式合并同类项,再把a=-5代入化简后的式子计算即可.【详解】原式=a-1,当a=-5时,原式=-5-1=-6.故选:B.【点睛】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.7.已知a<b,那么a-b和它的相反数的差的绝对值是( )A. b-aB. 2b-2aC. -2aD. 2b【答案】B【解析】试题分析:a﹣b的相反数是b﹣a,可得a﹣b和它的相反数为:(a﹣b)﹣(b﹣a)=2a﹣2b,又因为a<b,可知2a ﹣2b<0,所以|(a﹣b)﹣(b﹣a)|=2b﹣2a.解:依题意可得:|(a﹣b)﹣(b﹣a)|=2b﹣2a.故选B.考点:整式的加减.8.下面不是同类项的是( )A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2【答案】B【解析】【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,结合选项即可得出答案.【详解】A、-2与12是同类项,所以A选项错误;B、在2m与2n中,字母不相同,它们不是同类项,所以B选项正确;C、﹣2a2b与a2b是同类项,所以C选项错误;D、与是同类项,所以D选项错误.故选B.【点睛】此题考查同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,难度一般.二、填空题9.若单项式2x2y m与−x n y3的和仍为单项式,则m+n的值是___________.【答案】5【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m=3,n=2,再代入代数式计算即可.【详解】由题意知单项式2x2y m与−x n y3是同类项,∴n=2,m=3,∴m+n=5,故答案为:5.【点睛】本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.若单项式-a2x b m与a n b y-1可合并为a2b4,则xy-mn=___________.【答案】-3【解析】【分析】因为单项式-a2x b m与a n b y-1可合并为a2b4,而只有几个同类项才能合并成一项,非同类项不能合并,可知此三个单项式为同类项,由同类项的定义可先求得x、y、m和n的值,从而求出xy-mn的值.【详解】∵单项式-a2x b m与a n b y-1可合并为a2b4,则此三个单项式为同类项,则m=4,n=2,2x=2,y-1=4,x=1,y=5,则xy-mn=1×5-4×2=-3.【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.【答案】-5a2b【解析】【分析】先把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,然后找出符合条件的项即可.【详解】多项式2ab2-5a2b-7+a3b3按字母b的降幂排列为:a3b3+2ab2-5a2b-7.故答案为:-5a2b.【点睛】本题主要考查的是多项式概念,掌握多项式按照某一字母的升降幂排列的方法是解题的关键.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.【答案】4【解析】【分析】直接利用合并同类项法则得出关于m,n的等式进而求出答案.【详解】∵a2m−5b2与-3ab3-n的和为单项式,∴2m-5=1,2=3-n,解得:m=3,n=1.故m+n=4.故答案为:4.【点睛】此题主要考查了单项式,正确把握合并同类项法则是解题关键.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.【答案】-2(x-1)2-3(x-1)3【解析】【分析】根据互为相反数的偶次幂相等,互为相反数的奇次幂互为相反数,可化成同类项,根据合并同类项,可得答案.【详解】原式=3(x-1)2-2(x-1)3-5(x-1)2-(x-1)3=-2(x-1)2-3(x-1)3,故答案为:-2(x-1)2-3(x-1)3.【点睛】本题考查了合并同类项,利用互为相反数的偶次幂相等,互为相反数的奇次幂互为相反数化成同类项是解题关键.14.如果在数轴上表示a,b 两个实数的点的位置如图所示,那么|a﹣b|+|a+b|化简的结果为_____.【答案】-2a【解析】【分析】先由数轴上a,b的位置判断出其符号,再根据其与原点的距离距离判断出a,b绝对值的大小,代入原式求值即可.【详解】由数轴可a<0,b>0,a<b,|a|>b,所以a-b<0,a+b<0,∴|a-b|+|a+b|=-a+b-a-b=-2a,故答案为:-2a.【点睛】本题考查了数轴的概念、整式的加减、绝对值的性质等,熟练掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0是解题的关键.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.【答案】1【解析】先根据点a在数轴上的位置判断出a的符号,再去绝对值符号,合并同类项即可.解:∵由图可知,a<0,∴a﹣1<0,∴原式=1﹣a+a=1.故答案为:1.16.化简:-2a2-[3a2-(a-2)]=___________.【答案】-5a2+a-2【解析】【分析】去括号,然后合并同类项即可.【详解】-2a2-[3a2-(a-2)]= -2a2-[3a2-a+2]= -2a2-3a2+a-2=-5a2+a-2.故答案为:-5a2+a-2【点睛】本题考查整式的化简,注意去括号时符号的变化.三、解答题17.完成下表【答案】详见解析.【解析】【分析】根据单项式的系数和次数的定义解答即可.【详解】x的系数是1,次数是1;-2mn的系数是-2,次数是2;的系数是,次数是4.填表如下:【点睛】此题考查了单项式的有关定义,熟练掌握单项式的系数和次数的的定义是解答此题的关键.18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.【答案】m+n=3或m+n=-13.【解析】【分析】利用单项式的定义得出m的值,进而利用单项式次数的定义得出n的值,进而得出答案.【详解】因为-mx2y|n-3|是关于x、y的10次单项式,且系数是8,所以m=-8,且2+|n-3|=10,解得n=11或-5,则m+n=3或m+n=-13.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数的定义是解题关键.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.【答案】(1)4x-3y;(2)a2-a+1.【解析】【分析】(1)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变;(2)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.【详解】(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(a−3)+2a2]+4=3a2−(5a−a+3+2a2)+4=3a2−5a+a-3-2a2+4=a2-a+1.【点睛】解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和【答案】这三名同学的年龄的和是(4m-5)岁.【解析】解:因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为岁.又因为小华的年龄比小红的年龄的还多1岁,所以小华的年龄为(岁),则这三名同学的年龄的和为答:这三名同学的年龄的和是岁.21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.【答案】-5.【解析】【分析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.【详解】∵(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,∴,解得:,则a2-3ab+b2=9-18+4=-5.【点睛】本题考查了单项式的知识,属于基础题,掌握单项式的定义及单项式次数的定义是解答本题的关键。

人教版数学七年级上学期单元测试卷-第二章 整式的加减【B卷】(原卷版+解析版)

人教版数学七年级上学期单元测试卷-第二章 整式的加减【B卷】(原卷版+解析版)

同步必刷基础拓展单元卷第二章整式的加减B卷一、单选题(共10题;共30分)1. ( 3分) 下列运算正确的是()A.a2·a3=a6B.(–a)4=a4C.a2+a3=a5D.(a2)3=a52. ( 3分) 下列每组中的两个单项式,属于同类项的是()A.2a与-3a2B. -ab与2ab3C.3abc与-2ab D.12a2b与ab23. ( 3分) 单项式﹣2xy的系数为()A.﹣2B.﹣1C.1D.24. ( 3分) 下列计算正确的是()A.2a2+2a2=2a4B.a2⋅a3=a6C.(-2a2)3=-6a6D.a3·a3=a65. ( 3分) 若x:y=2:3,则下列各式不成立的是().A. B. C. D.6. ( 3分) A是一个五次多项式,B是一个五次单项式,则A-B一定是()A.十次多项式B.五次多项式C.四次多项式D.不高于五次的整式7. ( 3分) 下列运算正确的是()A. B.C. D.8. ( 3分) a、b在数轴上的位置如图所示,则|a−b|等于()A. -b-aB.a-bC.a+bD. -a+b9. ( 3分) 下列计算正确的是()A.(2a)2=2a2B.(a2)3=a5C.a2+a3=a5D.a2⋅a3=a510. ( 3分) 某厂原来生产一种边长为a厘米的正方形地砖,现将地砖的一边扩大3厘米,另一边缩短3厘米,改成生产长方形地砖.若材料的成本价为每平方厘米b元,则这种长方形地砖每块的材料成本价与正方形地砖相比()A.增加了9b元B.增加了3ab元C.减少了9b元D.减少了3ab元二、填空题(共6题;共24分)11. ( 4分) 计算2a+3a=________13. ( 4分) 观察下列运算过程:S=1+3+32+33+…+32017+32018①,①×3得3S=3+32+33+…+32018+32019①,①﹣①得2S=32019﹣1,S= 32019−12.运用上面计算方法计算:1+5+52+53+…+52018=________.14. ( 4分) 如果3x3y m+1与﹣5x n-2y2是同类项,则m﹣n的值等于________.15. ( 4分) 若多项式x2﹣2kxy﹣3y2+ 12xy﹣x﹣100中不含xy项,则k=________.16. ( 4分) 已知x+1x =3,则分式x2+1x2=________。

人教版2020七年级数学上册第二章整式的加减能力达标测试卷B卷(附答案详解)

人教版2020七年级数学上册第二章整式的加减能力达标测试卷B卷(附答案详解)

人教版2020七年级数学上册第二章整式的加减能力达标测试卷B 卷(附答案详解) 1.下列结论正确的是( )A .单项式 m 的次数是 1,没有系数B .多项式﹣x²y +3y²﹣xy +4π 是四次四项式C .单项式237xy π-的系数为37-,次数为 4D .单项式﹣x²yz 的系数为﹣1,次数为 42.单项式4x 2的系数是( )A .4B .3C .2D .13.下列各组单项式中,不是同类项的是( )A .1和﹣6B .b 2a 和ab 2C .abc 和abD .6a 和a4.若关于a ,b 的多项式3(a 2﹣2ab ﹣b 2)﹣(a 2+mab+2b 2)不含ab 项,则m 的值是( ) A .4 B .0 C .﹣6 D .﹣85.下列添括号错误的是( )A .-x +5=-(x +5)B .-7m -2n =-(7m +2n )C .a 2-3=+(a 2-3)D .-a -b -2c =-(a +b +2c )6.某校去年初一招收新生x 人,今年比去年增加20%,今年该校初一学生人数用代数式表示为( )A .(20%+x )人B .20%x 人C .(1+20%)x 人D .00120x +人 7.下面是小明同学做的四道题:①3m+2m=5m ;②5x﹣4x =1;③﹣p 2﹣2p 2=﹣3p 2;④3+x =3x .你认为他做正确了( )A .1道B .2道C .3道D .4道8.下列运算中,正确的是( )A .x+x =x 2B .3x 2﹣2x =xC .(x 2)3=x 6D .x 2•x 3=x 69.边长为a 和2a 的两个正方形按如图所示的样式摆放,则图中阴影部分的面积为( )222210.对于代数式2a b+,下列描述正确的是()A.a与2b的平方的和B.a与b的平方和C.a与b的和的平方D.a与b平方的和11.观察下面三行数:﹣1,2,﹣3,4,﹣5,…3,﹣6,9,﹣12,15,…﹣1,8,﹣27,64,﹣125,…(1)第一行的第7个数是_____,第二行的第8个数是_____,第三行的第6个数是_____;(2)取每行数的第10个数,这三个数的和为_____.12.如图,图①,图②,图③,……是用围棋棋子摆成的一列具有一定规律的“山”字,则第n个“山”字中的棋子个数是__________.13.多项式24a b-的项是2a,-b.(____)14.观察下列各数:12345,,,,23456---…,根据它们的排列规律写出第2 019个数为______15.对于有理数a、b,定义a*b=3a+2b,化简x*(x﹣y)=_____.16.若-a2x2y|n-3|是关于x、y的单项式,且系数为54,次数为3,则a=____,n=____.17.一个多项式与231x x--的和是23x x-++,则这个多项式是________.18.单项式3x2y n﹣1是关于x、y的五次单项式,则n=_____.19.从A地乘火车到北京,普通票的价格为40元/人,学生票的价格为20元/人.星期天,A地某学校组织部分师生到天安门广场观看升旗仪式.(1)如果有教师14人,学生180人,那么买单程火车票共需多少元?(2)如果有教师x人,学生y人,那么买单程火车票共需多少元?20.阅读材料,回答问题. 1132(1)(1)12323+⨯-=⨯=; 111135243254(1)(1)(1)(1)()()111243524352345+⨯+⨯-⨯-=⨯⨯⨯=⨯⨯⨯=⨯=. 根据以上信息,请求出下式的结果.11111111(1)(1)(1)(1)(1)(1)(1)(1)2462035721+⨯+⨯+⨯⨯+⨯-⨯-⨯-⨯⨯-. 21.已知A=223x xy y ++,B=2x xy -.若()2230x y ++-=;(1)求,x y 的值.(2)求A-2B 的值,22.(1)先化简再求值:7a 2b+(4a 2b ﹣9ab 2)﹣2(5a 2b ﹣3ab 2),其中a =2,b =﹣1.(2)已知代数式 A =x 2+xy ﹣2y ,B =2x 2﹣2xy+x ﹣1①求 2A ﹣B .②若 2A ﹣B 的值与 x 的取值无关,求 y 的值.23.化简求值:求代数式2222213824333535x x xy y x xy y ⎛⎫⎛⎫-+-+++ ⎪ ⎪⎝⎭⎝⎭的值,其中x ,y 满足()2310x y ++-=.24.先化简,再求值:(1)14(-4x 2+2x -8)-(12x -1),其中x =12. (2)已知()2120x y -++=,求()()22222361x y xy xy x y --++的值. 25.先化简,后求值:3(a 2-ab+7)-2(3ab-a 2 +1)+3,其中a=2,b=1326.一串图形按如图所示的规律排列.(说明:下列所指的小正方形都是与第1个图形一样大小的正方形)(1)第5个图形中有几个小正方形?第6个图形呢?(2)求出第n 个图形中小正方形的个数.(3)求出第20个图形中小正方形的个数.(4)是否存在某个图形,其小正方形的个数恰好是下列各数:① 5050;②1000.给出你的判断,并说明理由.27.小黄做一道题“已知两个多项式A ,B ,计算A -B ”.小黄误将A -B 看作A +B ,求得结果是2927x x -+.若B =232+-x x ,请你帮助小黄求出A -B 的正确答案。

七年级数学(上)第二章《整式的加减》章节检测含答案

七年级数学(上)第二章《整式的加减》章节检测含答案

七年级数学(上)第二章《整式的加减》章节检测一、选择题(每小题3分,共30分)1.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a2.在下列式子3ab ,-4x ,75abc -,π,2m n -,0.81,1y ,0中,单项式共有( ) A .5个 B .6个 C .7个 D .8个3.下列整式中,去括号后得a-b+c 的是( )A .a-(b+c )B .-(a-b )+cC .-a-(b+c )D .a-(b-c )4.下列说法中正确的是( )A .a 的指数是0B .a 没有系数C .87-是单项式D .-32x 2y 3 的次数是7 5.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x -26.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .24 7.已知a ,b 为自然数,则多项式122a b a b x y +-+的次数应当是( ) A .a B .b C .a+b D .a ,b 中较大的数8.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2C .1D .无法确定9.有理数m ,n 在数轴上的位置如图1所示,则化简│n │-│m-n │的结果是( )A .mB .2n -mC .-mD .m -2n图110.某企业今年3月份的产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月 份的产值是( )A .(a-10%)(a+15%)万元B .a (1-10%)(1+15%)万元C .(a-10%+15%)万元D .a (1-10%+15%)万元二、填空题(每小题4分,共24分)11.计算:3(2x+1)-6x= .12.-πx2y的系数是,次数是.13.如果单项式x a+1y3与2x3y b是同类项,那么a b= .14.某厂第一年生产a件产品,第二年比第一年增加了20%,则两年共生产产品件.15.按图2所示的程序计算,若开始输入的值为x=5,则最后输出的结果是.图216.用大小相同的小三角形摆成如图3所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形个.图3三、解答题(共66分)17.(每小题4分,共8分)计算:(1)3ab-4ab-(-2ab);(2)3x2+x3-(2x2-2x)+(3x-x2).18.(8分)先化简,再求值:2(a2b+ab2)-2(a2b-1)-3(ab2+1),其中a=-2,b=2.19.(8分)已知多项式7x m+kx2-(3n+1)x+5是关于x的三次三项式,并且一次项系数为-7,求m+n-k的值.20.(10分)小明做一道数学题:“已知两个多项式A,B,A=……,B=x2+3x-2,计算2A+B的值.”小明误把“2A+B”看成“A+2B”,求得的结果为5x2-2x+3,请求出2A+B的正确结果.21.(10分)学校多功能报告厅共有20排座位,其中第一排有a个座位,后面每排比前一排多2个座位.(1)用式子表示最后一排的座位数.(2)若最后一排有60个座位,则第一排有多少个座位?22.(10分)有这样一道题“计算:(2m4-4m3n-2m2n2)-(m4-2m2n2)+(-m4+4m3n-n3)的值,其中14 m=,n=-1.”小强不小心把14m=错抄成了14m=-,但他的计算结果却也是正确的,你能说出这是为什么吗?23.(12分)已知一个三角形的第一条边长为(a+2b)厘米,第二条边比第一条边短(b-2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长.(2)当a=2,b=3时,求此三角形的周长.(3)当a=2,三角形的周长为27时,求此三角形各边的长.参考答案一、1.D 2.B 3.D 4.C 5.C 6.C 7.D 8.A 9.C 10.B二、11.3 12.-π 3 13.8 14.2.2a 15.120 16.(3n+4)三、17.解:(1)3ab-4ab-(-2ab)=3ab-4ab+2ab=ab;(2)3x2+x3-(2x2-2x)+(3x-x2)=3x2+x3-2x2+2x+3x-x2=x3+5x.18.解:2(a2b+ab2)-2(a2b-1)-3(ab2+1)=2a2b+2ab2-2a2b+2-3ab2-3=-ab2-1.当a=-2,b=2时,原式=-(-2)×22-1=8-1=7.19.解:由题意,得m=3,k=0,-(3n+1)=-7.解得n=2.所以m+n-k=3+2-0=5.20.解:由题意,得A=(5x2-2x+3)-2(x2+3x-2)=5x2-2x+3-2x2-6x+4=3x2-8x+7.所以2A+B=2(3x2-8x+7)+(x2+3x-2)=6x2-16x+14+x2+3x-2=7x2-13x+12.21.解:(1)最后一排的座位数(单位:个)为a+2×19=a+38.(2)由题意,得a+38=60,解得a=22.若最后一排有60个座位,则第一排有22个座位.22.解:(2m4-4m3n-2m2n2)-(m4-2m2n2)+(-m4+4m3n-n3)=2m4-4m3n-2m2n2-m4+2m2n2-m4+4m3n-n3=-n3.由于原式化简后不存在含m的项,14m=错抄成了14m=-不影响计算结果,所以才会出现小强计算结果也是正确的.23.解:(1)第二条边长(单位:厘米)为(a+2b)-(b-2)=a+b+2;第三条边长(单位:厘米)为a+b+2-3=a+b-1;周长(单位:厘米)为(a+2b)+(a+b+2)+(a+b-1)=3a+4b+1.(2)当a=2,b=3时,此三角形的周长为3a+4b+1=3×2+4×3+1=19(厘米).(3)当a=2,三角形的周长为27时,3×2+4b+1=27.解得b=5.所以a+2b=12,a+b+2=9,a+b-1=6.第一条边长12厘米,第二条边长9厘米,第三条边长6厘米.。

人教版七年级数学上册 第二章整式的加减 单元检测b卷

人教版七年级数学上册 第二章整式的加减 单元检测b卷

人教版七年级数学上册第二章整式的加减单元检测b卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·思茅期中) 单项式﹣3πxy2z3的系数和次数分别是()A . ﹣3π,5B . ﹣3,6C . ﹣3π,7D . ﹣3π,62. (2分) (2019七上·深圳期中) 在式子a2+2,,ab2 ,,﹣8x,0中,整式有()A . 3个B . 4个C . 5个D . 6个3. (2分)如果单项式﹣x4a﹣by2与是同类项,那么这两个单项式的积是()A . x6y4B . ﹣x3y2C .D .4. (2分) (2020七上·德城期末) 下列计算正确的是A .B .C .D .5. (2分) (2019七上·萧山月考) 下列变形或化简正确的是()A .B .C .D .6. (2分)不改变式子a﹣(2b﹣3c)的值,把它括号前面的符号变成相反的符号应为()A . a+(﹣2b+3c)B . a+(﹣2b)﹣3cC . a+(2b+3c)D . a+[﹣(2b+3c)]7. (2分) (2017七上·顺德期末) 下面给出的四条数轴中画得正确的是()A .B .C .D .8. (2分)代数式5abc,﹣7x2+1,﹣x,21,中,单项式共有()A . 1个B . 2个C . 3个D . 4个9. (2分)下列运算正确的是()A . 3a2﹣a=2aB . a﹣(1﹣2a)=a﹣1C . ﹣5(1﹣a2)=﹣5﹣5a2D . a3+7a3﹣5a3=3a310. (2分)(2018·遵义模拟) 将正整数1、2、3、4、5…,按以下方式排放:则根据排放规律,从2016到2018的箭头依次为()A . ↓,→B . →,↑C . ↑,→D . →,↓二、填空题 (共8题;共14分)11. (5分) (2019七上·南浔月考) 一动点从数轴上的原点出发,沿数轴的正方向以每前进个单位、后退个单位的程序运动,已知点每秒前进或后退个单位,设表示第秒点在数轴上的位置所对应的数(如,,),求所对应的数.12. (1分) (2019七上·黑龙江期末) 若,则 =________.13. (2分) (2019七上·天台期中) 若一个多项式与多项式4x2﹣4xy﹣2y2的和是5x2﹣6xy﹣y2 .则这个多项式是________ .当x=,y=时,这个多项式的值是________.14. (1分) (2020七上·新乡期末) 一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长3a﹣b,则长方形的周长为________.15. (1分) (2018八上·东台月考) 如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC 的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是________。

七年级数学上册《第二章 整式的加减》单元测试卷带答案(人教版)

七年级数学上册《第二章 整式的加减》单元测试卷带答案(人教版)

七年级数学上册《第二章 整式的加减》单元测试卷带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.单项式πxy 4的系数和次数分别是( )A .14,1B .14,2C .π4,1D .π4,2 2.下列代数式中,不是整式的是( )A .a 2b 3B .a+14C .0D .a 2+b a 3.下列代数式中多项式的个数有( )2a ;m−n 6;3π+a ;5a−b ;2(x 2−4).A .2B .3C .4D .5 4.下列关于多项式5ab 2−2a 2bc −1的说法中,正确的是( )A .它是三次三项式B .它是二次四项式C .它的最高次项是−2a 2bcD .它的常数项是15.下列各选项中的两个项是同类项的是( )A .a 3b 2和a 2b 3B .−5a 3b 和3ba 3C .3abc 2和3a 2bcD .2a 和a 2 6.若关于x ,y 的单项式3x 5y m 与−2x n y 7的和仍为単项式,则m −n 的值为() A .2 B .5 C .7D .9 7.下列计算中,正确的是( )A .6a +4b =10abB .7x 2y −3x 2y =4C .7a 2b −8ba 2=−ba 2D .8x 2+8x 2=16x 48.若一个多项式减去a 2−3b 2等于a 2+2b 2,则这个多项式是( )A .−2a 2+b 2B .2a 2−b 2C .a 2−2b 2D .−2a 2−b 2二、填空题9.单项式3a 2b 3的次数是 .10.多项式2x 3−x 2y 2−3xy +x −1是四次 项式11.合并同类项2x −7y −5x +11y −1= .12.把多项式5+x 2y −2xy 2按x 的升幂排列为 .13.若a比b大1,则代数式(a+b)+2(a−2b)的值为.三、解答题14.化简(1)5x−3x2+4x2+6x;(2)4(a2+b2)−(3a2−5b2).15.已知多项式5x m+1y2+2xy2-4x3+1是六次四项式,单项式26x2n y5-m的次数与该多项式的次数相同求(-m)3+2n的值.16.先化简,再求值:5a−2b+3b−4a−1,其中a=−1,b=2.17.先化简,再求值:(4x2+1)−2(x2+3x−1),其中x2−3x=5.y+3)−(3x−2y+1−nx2).18.已知多项式(x2+mx−12(1)若多项式的值与字母x的取值无关,求m、n的值;(2)在(1)的条件下,先化简多项式(3m2+mn+n2)−3(m2−mn−n2),再求它的值.参考答案1.D2.D3.B4.C5.B6.A7.C8.B9.510.五11.-3x+4y-112.5−2xy2+x2y13.314.(1)解:原式=-3x2+4x2+5x+6x=x2+11x(2)原式=4a2+4b2-3a2+5b2=a2+9b215.解:由于多项式是六次四项式所以m+1+2=6解得m=3因为,单项式26x2n y5-m的次数与该多项式的次数相同所以,由题意可知2n+5-m=6,即:2n+5-3=6解得n=2所以(-m)3+2n=(-3)3+2×2=-23.16.解:5a−2b+3b−4a−1=(5a−4a)+(3b−2b)−1;=a+b−1;∵a=−1∴原式=−1+2−1=0.17.解:(4x2+1)−2(x2+3x−1)=4x2+1−2x2−6x+2;=2x2−6x+3;=2(x2−3x)+3当x2−3x=5时原式=2×5+3=13.y+3)−(3x−2y+1−nx2) 18.(1)解:(x2+mx−12y+3−3x+2y−1+nx2;=x2+mx−12y+2;=(1+n)x2+(m−3)x+32∵多项式的值与字母x的取值无关∴1+n=0,m−3=0解得:m=3(2)解:(3m2+mn+n2)−3(m2−mn−n2)=3m2+mn+n2−3m2+3mn+3n2;=4mn+4n2.当m=3,n=−1时,原式=4×3×(−1)+4×(−1)2=−8。

七年级数学上册《第二章-整式的加减》单元测试卷附答案-人教版

七年级数学上册《第二章-整式的加减》单元测试卷附答案-人教版

七年级数学上册《第二章整式的加减》单元测试卷附答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1. 多项式x2−2xy3−12y−1是( )A. 三次四项式B. 三次三项式C. 四次四项式D. 四次三项式2. 代数式x2+2,1a +4,3ab27,abc,5,1π,−x中,整式的个数是( )A. 7B. 6C. 5D. 43. 若13桶油漆可以刷2m2的墙,则a桶油漆可以刷m2的墙.( )A. 13a B. 2a C. 23a D. 6a4. 下列说法正确的是( )A. 3πx4的系数是34B. x3y+x2−1是三次三项式C. x2−2x−1的常数项是1D. 1−x2是多项式5. 若3a2b n−1与−12a m+1b2的是同类项,则m n的值为.( )A. 3B. 2C. 1D. 06. 若关于x,y的单项式3x a y4和x3y b可以合并成一项,则a−b的值为( )A. 1B. −1C. 2D. −27. 探索规律:观察下面的一列单项式:x、−2x2、4x3、−8x4、16x5、…根据其中的规律得出的第8个单项式是( )A. −64x8B. 64x8C. 128x8D. −128x88. 某校举办的知识竞赛,共10道题,规定答对一道题加x分,答错一道题(不答按错)扣(x−2)分,小明答错了2道题,他得到的分数是( )A. 6x+4B. 6x−4C. 8x+4D. 8x−49. 鸿星尔克某件商品的成本价为a元,按成本价提高10%后标价,又以八折销售,这件商品的售价( )A. 比成本价低了0.12a元B. 比成本价低了0.08a元C. 比成本价高了0.1a元D. 与成本价相同10. 把如图1的两张大小相同的长方形卡片放置在图2与图3中的两个相同大长方形中,已知这两个大长方形的长比宽长20cm ,若记图2中阴影部分的周长为C 1,图3中阴影部分的周长为C 2,那么C 1−C 2=( )A. 10cmB. 20cmC. 30cmD. 40cm二、填空题11. 单项式3x 2y 5的次数是______ .12. 若m 2−n 2=24,且m −n =3,则m +n = ______ .13. 如图是一组有规律的图案,第1个图案中有6个涂有阴影的小矩形,第2个图案中有10个涂有阴影的小矩形,第3个图案中有14个涂有阴影的小矩形……按此规律,第n 个图案中涂有阴影的小矩形的个数为______ .(用含n 的代数式表示)14. 按照如图所示的流程图,若输出的M =−1,则输入的m = ______ .15. 已知方程组{x +y =73x −5y =−3,则4(x +y)−2(3x −5y)的值是______ .16. 化学中直链烷烃的名称用“碳原子数+烷”来表示,当碳原子数为1~10时,依次用天干——甲、乙、丙、丁、戊、己、庚、辛、千、癸——表示,其中甲烷、乙烷、丙烷的分子结构式如图所示,则庚烷分子结构式中“H ”的个数是______ .17. 国家规定初中每班的标准人数为a人,某中学七年级共有六个班,各班人数情况如下表:班级七(1)班七(2)班七(3)班七(4)班七(5)班七(6)班与每班标准人数的差值/人+5+3−5+40−2用含a的式子表示该中学七年级学生总人数为________人.18. 如图为某三岔路口交通环岛的简化模型.在某高峰时段,单位时间进出路口A,B,C的机动车辆数如图所示,图中x1,x2,x3分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则x1,x2,x3的大小关系是.(用“>”、“<”或“=”连接)19. 若a、b、c、d是正整数,且a+b=22,a+c=26,a+d=28则a+b+c+d的最小值为______ .20. 如图,有两个矩形的纸片面积分别为26和9,其中有一部分重叠,剩余空白部分的面积分别为m和n(m>n),则m−n=.三、解答题21. 有一个整数x,它同时满足以下的条件:①小于π;②大于−434;③在数轴上,与表示−1的点的距离不大于3.(1)将满足的整数x代入代数式−2(x+1)2+7,求出相应的值;(2)观察上题的计算结果,你有什么发现?将你的发现写出来.22. 已知:A=2a2+3ab−2a−1,B=−a2+ab−1(1)求A+2B的值;(2)若A+2B的值与a的取值无关,求b的值.23. 规定:对于确定位置的三个数:a,b,c计算a−b,a−c2,b−c3将这三个数的最小值称为a,b,c的“白马数”,例如,对于1,−2,3因为1−(−2)=3,1−32=−1,−2−33=−53所以1,−2,3的“白马数”为−53.(1)−2,−4,1的“白马数”为______ ;(2)调整“−2,−4,1”这三个数的位置,得到不同的“白马数”,那么这些不同“白马数”中的最大值是______ ;(3)调整−1,6,x这三个数的位置,得到不同的“白马数”,若其中的一个“白马数”为2,求x的值.24. 已知有理数a、b、c在数轴上的位置如图所示(1)用“>”或“<”填空:c______0,|a|______|c|;(2)若m=|a+b|−|b−1|−|a−c|,试化简等式的右边;(3)在(2)的条件下,求|b|b +|a|a+|c|c−2017⋅(m+c)2017的值.25. 对于代数式,不同的表达形式能表现出它不同的性质.若代数式A=x2+4x+3,代数式B=(x−1)2+4(x−1)+3.改变x的值,代数式A,B有不同的取值,如下表:x−101234 A=x2+4x+3038152435B=(x−1)2+4(x−1)+3−10381524观察表格发现:当x=m时A=x2+4x+3=n,当x=m+1时B=(x−1)2+4(x−1)+3=n.我们把这种现象称为代数式B参照代数式A取值延后,相应的延后值为1.(1)若代数式D参照代数式A取值延后,相应的延后值为2.求代数式D;(2)若代数式x2−2x参照代数式A的取值延后,求相应的延后值;(3)若代数式4x2−3x+b参照代数式ax2−6x+c取值延后,求b−c的值.参考答案1、C2、C3、D4、D5、C6、B7、D8、A9、A10、D 11、312、813、4n+214、−5或215、3416、1617、(6a+5)18、x3>x1>x219、3420、1721、(1)由题意得,满足的整数x为:−4,−3,−2,−1,0,1,2当x=−4时,原式=−11.当x=−3时,原式=−1.当x=−2时,原式=5.当x=−1时,原式=7.当x=0时,原式=5.当x=1时,原式=−1.当x=2时,原式=−11.(2)发现:当x=−1时,代数式有最大值,x距离−1越远,代数式的值越小.22、解:(1)原式=A+2B=2a2+3ab−2a−1+2(−a2+ab−1)=2a2+3ab−2a−1−2a2+2ab−2=5ab−2a−3 (2)若A+2B的值与a的取值无关则5b−2=0解得:b=0.4.23、−532 324、解:(1)>>(2)∵从数轴可知:b<a<−1<0<c<1∴a+b<0,b−1<0,a−c<0∴m=|a+b|−|b−1|−|a−c|=−(a+b)+(b−1)+(a−c)=−a−b+b−1+a−c=−c−1(3)∵从数轴可知:b<a<−1<0<c<1∴|b|b +|a|a+|c|c−2017⋅(m+c)2017=−bb+−aa+cc−2017×(−c−1+c)2017=−1+(−1)+1+2017=2016.25、(1)解:根据题意,D=(x−2)2+4(x−2)+3=x2−1(2)解:设相应的延后值为k,得:(x−k)2+ 4(x−k)+3=x2−2x化简得:x2−2kx+k2+4x−4k+3=x2−2x∴x2−(2k−4)x+k2−4k+3=x2−2x∴2k−4=2,解得k=3当k=3时,k2−4k+3=0∴原式成立∴相应的延后值是3.(3)解:设相应的延后值为m,得:a(x−m)2−6(x−m)+c=4x2−3x+b化简得:ax2−(2am+ 6)x+am2+6m+c=4x2−3x+b∴a=4则上式为:−(8m+6)x+4m2+6m+c=−3x+b∴{8m+6=34m2+6m+c=b∴m=−38∴b−c=4×(−38)2+6×(−38)=−2716.。

七年级数学上册《第二章 整式的加减》单元检测卷带答案-人教版

七年级数学上册《第二章 整式的加减》单元检测卷带答案-人教版

七年级数学上册《第二章整式的加减》单元检测卷带答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.若数m增加它的x%后得到数n,则n等于( )A.m·x%B.m(1+x%)C.m+x%D.m(1+x)%2.单项式-ab2c3的系数和次数分别是 ( )A.-1、5B.-1、6C.1、5D.1、63.多项式1-x3+x2是( )A.二次三项式B.三次三项式C.三次二项式D.五次三项式4.整式x2-3x的值是4,则3x2-9x+8的值是( )A.20B.4C.16D.-45.在下列单项式中,与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x6.下列各式从左到右的变形中,正确的是( )A.a-(b-c)=a-b-cB.7ab+6ab=13a2b2C.32a2b-12a2b=a2b D.3a2b+4b2a=7a2b7.在等式1﹣a2+2ab﹣b2=1﹣( )中,括号里应填( )A.a2﹣2ab+b2B.a2﹣2ab﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b28.化简5(2x﹣3)+4(3﹣2x)结果为( )A.2x﹣3B.2x+9C.8x﹣3D.18x﹣39.已知-4x a y+x2y b=-3x2y,则a+b的值为( )A.1B.2C.3D.410.下列各组代数式中,互为相反数的有()①a-b与-a-b;②a+b与-a-b;③a+1与1-a;④-a+b 与a-b.A.①②④B.②④C.①③D.③④11.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A.甲B.乙C.丙D.一样12.下列图形都是由同样大小的长方形按一定的规律组成的,其中第①个图形的面积为2cm2,第②个图形的面积为8cm2,第③个图形的面积为18cm2……则第⑩个图形的面积为( )A.196cm2B.200cm2C.216cm2D.256cm2二、填空题13.﹣2xy2的次数为 .14.若代数式-4x6y与x2n y是同类项,则常数n的值为_______.15.已知2a﹣3b2=5,则10﹣2a+3b2的值是 .16.多项式xy2﹣9xy+5x2y﹣25的二次项系数是 .17.{-[-(a+b)])-{-[-(a-b)])去掉括号得_______.18.下图是某同学一次旅游时在沙滩上用石子摆成的小房子.观察图形的变化规律,写出第n个小房子用了块石子.三、解答题19.化简:2(3a2+4b)+3(﹣6a2﹣5b)20.化简:2(m2+2n2)﹣3(3m2﹣n2)21.化简:(8xy﹣x2+y2)﹣3(﹣x2+y2+5xy)22.化简:﹣3(2x2﹣xy)+4(x2+xy﹣6).23.如图,在一块长为a,宽为2b的长方形铁皮中,以2b为直径分别剪掉两个半圆.(1)求剩下铁皮的面积(用含a,b的式子表示);(2)当a=4,b=1时,求剩下铁皮的面积是多少?(π取3.14)24.阅读下面例题的解题过程,再解答后面的题目.例题:已知代数式9﹣6y﹣4y2=7,求2y2+3y+7的值.解:由9﹣6y﹣4y2=7得﹣6y﹣4y2=7﹣9即6y+4y2=2因此2y2+3y=1,所以2y2+3y+7=8.问题:已知代数式14x﹣21x2=﹣14,求9x2﹣6x﹣5的值.25.已知a、b、c这三个有理数在数轴上的位置如图所示,化简:|b﹣c|﹣|a﹣b|+|a+c|.26.小明做一道数学题:“已知两个多项式A,B,A=……,B=x2+3x﹣2,计算2A+B 的值.”小明误把“2A+B”看成“A+2B”,求得的结果为5x2﹣2x+3,请求出2A+B的正确结果.27.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):①买一套西装送一条领带;②西装按原价的9折收费,领带按原价的8折收费.在促销活动期间,某客户要到该服装厂购买x套西装,y条领带(y>x).(1)该客户选择两种不同的方案所需总费用分别是多少元?(用含x、y的式子表示并化简)(2)若该客户需要购买10套西装,22条领带,则他选择哪种方案更划算?(3)若该客户需要购买15套西装,40条领带,则他选择哪种方案更划算?答案1.B.2.B3.B.4.A5.C6.C7.A8.A9.C10.B11.C12.B13.答案为:314.答案为:315.答案为:5.16.答案为:﹣917.答案为:2b18.答案为:(n2+4n).19.解:原式=6a2+8b﹣18a2﹣15b=﹣12a2﹣7b.20.解:原式=2m2+4n2﹣9m2+3n2=7n2﹣7m2.21.解:原式=8xy﹣x2+y2+3x2﹣3y2﹣15xy=2x2﹣2y2﹣7xy.22.解:﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣24.23.解:(1)长方形的面积为:a×2b=2ab两个半圆的面积为:π×b2=πb2∴阴影部分面积为:2ab﹣πb2(2)当a=4,b=1时∴2ab﹣πb2=2×4×1﹣3.14×1=4.8624.解:由14x﹣21x2=﹣14得到21x2﹣14x=14即3x2﹣2x=2则原式=3(3x2﹣2x)﹣5=6﹣5=1.25.解:根据数轴上点的位置得:c<b<0<a,且|a|<|b|<|c|∴b﹣c>0,a﹣b>0,a+c<0则原式=b﹣a﹣a+b﹣a﹣c=2b﹣3a﹣c.26.解:由题意,得A=(5x2﹣2x+3)﹣2(x2+3x﹣2)=5x2﹣2x+3﹣2x2﹣6x+4=3x2﹣8x+7.所以2A+B=2(3x2﹣8x+7)+(x2+3x﹣2)=6x2﹣16x+14+x2+3x﹣2=7x2﹣13x+12.27.解:(1)按方案①购买,需付款:200x+(y﹣x)×40=(40y+160x)元;该客户按方案②购买,需付款:200x•90%+40y•80%=(180x+32y)(元);(2)当x=10,y=22时,按方案①购买,需付款:40×22+160×10=2480(元);该客户按方案②购买,需付款:180×10+32×22=2504(元);∵2480<2504∴按方案①更划算;(3)当x=15,y=40时,按方案①购买,需付款:40×40+160×15=4000(元);该客户按方案②购买,需付款:180×15+32×40=3980(元);∵4000>3980∴按方案②更划算.。

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷一.选择题(每题3分,共30分)1.下列代数式中,符合书写规则的是( )A .xB .x ÷yC .m ×2D .32.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .B .C .D .3关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+14.若x+y=1,则代数式3(4x-1)-2(3-6y )的值为( )A .-8B .8C .-3D .35.下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=1A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣17.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 等于( )A .x 2-5y 2+1B .x 2-3y 2+1C .5x 2-3y 2-1D .5x 2-3y 2+18.两船从同一港口同时反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h ,水流的速度为a km/h ,3h 后,甲船比乙船多航行的路程是( )A .1.5a kmB .3a kmC .6a kmD .(150+3a )km 9.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面.(﹣x 2+3xy 12-y 2)﹣(12-x 2+4xy 12-y 2)12=-x 2●,黑点处即为被墨迹弄污的部分,那么被墨汁遮住的一项应是( )A .﹣xyB .+xyC .﹣7xyD .+7xy10.如图,阴影部分的面积为A.B.C.D.二、填空题(共24分)11.减去3m后,等于3m2+m﹣1的多项式是.12.已知3a n b n﹣1与﹣5a2b2m(m是正整数)是同类项,那么(2m﹣1)2=.13.计算:(m+3m+5m+…+2019m)﹣(2m+4m+6m+…+2020m)=.14.小华在计算多项式P加上x2﹣3x+6时,因误认为加上x2+3x+6,得到的答案是2x2﹣4x,则P应是.15.如图,把五个长为b、宽为a的小长方形,按图1和图2两种方式放在一个宽为m的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为C1,图2中阴影部分的周长为C2,若大长方形的长比宽大(6﹣a),则C2﹣C1的值为.16.如图,将图①中的四边形剪开得到图②,图中共有4个四边形;将图②中的一个四边形剪开得到图③,图中共有7个四边形;如此剪下去,第5个图中共有________个四边形,第n(n为正整数)个图中共有________个四边形.。

七年级数学上册《第二章 整式的加减》单元检测卷及答案-人教版

七年级数学上册《第二章 整式的加减》单元检测卷及答案-人教版

七年级数学上册《第二章整式的加减》单元检测卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.代数式5x2﹣x,x2y和3x,x+y中是单项式的是()A.5x2﹣x B.x2y C.3xD.x+y2.在下列单项式23xy2,13πrℎ,5x,1中,次数是0的是()A.23xy2B.13πrℎC.5x D.13.在−3,0,2x,1x ,x+y7,−5x+22y,a2−3ab+b2这些代数式中,整式的个数为()A.2个B.3个C.4个D.5个4.对于多项式x2−3x+1的项数和次数,下列说法正确的是()A.项数是2,次数是2 B.项数是2,次数是3C.项数是3,次数是2 D.项数是3,次数是35.下列选项中的单项式,与−ab2是同类项的是()A.−a2b B.3ab2C.3ab D.ab2c 6.下面计算正确的是()A.3x2y−2y2x=xy B.ab−ba2=12abC.2a2+a=3a3D.m4+m4=m87.若整式−100a−m b2+100a3b n+4经过化简后结果等于4,则m n的值为()A.−8B.8 C.−9D.9 8.若x−2y=3,则2(x−2y)−x+2y−5的值是()A.−2B.2 C.4 D.−4二、填空题9.多项式3a2−6a−5中的常数项是.10.将多项式x2−2x4+3−4x按x的降幂排列:.11.关于x,y的多项式2x|m|y2+(m+2)xy+3是四次三项式,则m等于. 12.若4x2m y n+1与﹣3x4y3的和是单项式,则m+n=.13.若关于x 、y 的多项式x 2−2kxy +y 2+6xy −6中不含xy 项,则k = .三、解答题14.计算:(1)(6a ﹣b )+5a ﹣2b(2)(7mn ﹣4m 2)﹣2(﹣mn+3m 2)15.先化简,再求值:(4ab −3a 2+3)−3(ab −a 2),其中a =−1,b =2.16.当x =12,y =−3时,求代数式3(x 2−2xy)−[3x 2−2y +2(xy +y)]的值.17.已知﹣2a n b m 和8b 2a 4m ﹣2是同类项,先化简﹣5mn ﹣2(3n ﹣2mn+12m )+13(6mn ﹣2n+3m ),再求值.18.已知:A =2a 2+3ab −1,B =a 2+ab +1.(1)求A −2B 的值;(2)若(a −1)2000+|b +2|=0,求(1)中A −2B 的值.1.B2.D3.D4.C5.B6.B7.D8.A9.−510.−2x 4+x 2−4x +311.212.413.314.(1)解:原式=6a-b+5a-2b=11a-3b(2)解:原式=7mn-4m 2+2mn-6m 2=9mn-10m 215.解:原式=4ab −3a 2+3−3ab +3a 2=ab +3当a =−1,b =2时,原式=−1×2+3=116.解:原式=3x 2−6xy −3x 2+2y −2xy −2y=−8xy当x =12,y =−3时,原式=1217.解:原式=﹣5mn ﹣6n+4mn ﹣m+2mn ﹣23n+m =mn ﹣203n 由﹣2a n b m 和8b 2a 4m ﹣2是同类项,得到n =4m ﹣2,m =2 解得:m =2,n =6则原式=12﹣40=﹣28.18.(1)解:由题意可得A −2B =2a 2+3ab −1−2(a 2+ab +1)=2a 2+3ab −1−2a 2−2ab −2(2)解:∵(a−1)2000+|b+2|=0,|b+2|≥0,(a−1)2000=[(a−1)1000]2≥0∴a−1=0,|b+2|=0∴a=1,b=−2∴A−2B=ab−3=1×(−2)−3=−5.。

第2章 整式的加减单元测试(B卷提升篇)-2019-2020学年七年级数学同步单元双基双测AB卷(人教版)(解析)

第2章 整式的加减单元测试(B卷提升篇)-2019-2020学年七年级数学同步单元双基双测AB卷(人教版)(解析)

第2章整式的加减单元测试(B卷提升篇)(人教版)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•锦江区校级期中)下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5千克;其中,不符合代数式书写要求的有()A.5个B.4个C.3个D.2个【解答】解:①1x x,不符合要求;②2•3应为2×3,不符合要求;③20%x,符合要求;④a﹣b÷c=a,不符合要求;⑤,符合要求;⑥(x﹣5)千克,不符合要求,不符合代数式书写要求的有4个,故选:B.【点评】此题考查了代数式,弄清代数式的书写要求是解本题的关键.2.(2018秋•宁波期中)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予4a实际意义的例子中不正确的是()A.若4和a分别表示一个两位数中的十位数字和个位数字,则4a表示这个两位数B.正方形的边长为a,则4a表示正方形的周长C.若葡萄的价格是4元/千克,则4a表示买a千克葡萄的金额D.若三角形的底边长为3,面积为6a,则4a表示这边上的高【解答】解:A.若4和a分别表示一个两位数中的十位数字和个位数字,则40+a表示这个两位数,此选项错误;B.正方形的边长为a,则4a表示正方形的周长,此选项正确;C.若葡萄的价格是4元/千克,则4a表示买a千克葡萄的金额,此选项正确;D.若三角形的底边长为3,面积为6a,则4a表示这边上的高,此选项正确;【点评】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.3.(2018秋•新吴区校级期中)在代数式:ab,0,,,,中,单项式有()A.6个B.5个C.4个D.3个【解答】解:在代数式:ab,0,,,,中,是单项式的有:ab,0,,共4个.故选:C.【点评】此题主要考查了单项式,正确把握定义是解题关键.4.(2018秋•海淀区校级期中)当x=2时,代数式px3+qx+1的值为﹣2018,求当x=﹣2时,代数式的px3+qx+1值是()A.2017 B.2018 C.2019 D.2020【解答】解:当x=2时,8p+2q+1=﹣2018,所以8p+2q=﹣2019,当x=﹣2时,﹣8p﹣2q+1=2019+1=2020.故选:D.【点评】本题考查代数式求值,涉及整体的思想.5.(2018秋•嘉祥县期中)下列结论中正确的是()A.单项式的系数是,次数是4B.单项式m的次数是1,没有系数C.多项式2x2+xy2+3是二次三项式D.在,2x+y,a2b,,,0,中,整式有4个【解答】解:A、单项式的系数是π,次数是4,错误;B、单项式m的次数是1,系数是1,错误;C、多项式2x2+xy2+3是三次三项式,错误;D、在,2x+y,a2b,,,0,中,整式有4个,正确;【点评】此题考查多项式与单项式问题,关键是根据单项式的系数、次数和多项式的命名以及整式的概念解答.6.(2018秋•洪山区期中)下列去括号或添括号:①3a2﹣6a﹣4ab+1=3a2﹣[6a﹣(4ab﹣1)]②2a﹣2(﹣3x+2y﹣1)=2a+6x﹣4y+2③a2﹣5a﹣ab+3=(a2﹣ab)﹣(5a+3)④3ab﹣[5ab2﹣(2a2b﹣2)﹣a2b2]=3ab﹣5ab2+2a2b﹣2+a2b2其中正确的有()个A.1 B.2 C.3 D.4【解答】解:①3a2﹣6a﹣4ab+1=3a2﹣[6a+(4ab﹣1)]故本选项错误;②2a﹣2(﹣3x+2y﹣1)=2a+6x﹣4y+2,故本选项正确;③a2﹣5a﹣ab+3=(a2﹣ab)﹣(5a﹣3),故本选项错误;④3ab﹣[5ab2﹣(2a2b﹣2)﹣a2b2]=3ab﹣[5ab2﹣2a2b+2﹣a2b2]=3ab﹣5ab2+2a2b﹣2+a2b2,故本选项正确;故选:B.【点评】本题考查了添括号和去括号,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号;去括号的方法:去括号时,括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.7.(2018秋•新吴区校级期中)已知多项式x2﹣kxy﹣3(x2﹣12xy+y)不含xy项,则k的值为()A.﹣36 B.36 C.0 D.12【解答】解:x2﹣kxy﹣3(x2﹣12xy+y),=x2﹣kxy﹣3x2+36xy﹣3y,=﹣2x2+(k﹣36)xy﹣3y,因为不含xy项,故k﹣36=0,解得:k=36.故选:B.【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.8.(2018秋•如东县期中)若代数式x2+ax+9y﹣(bx2﹣x+9y+3)的值恒为定值,则﹣a+b的值为()A.0 B.﹣1 C.﹣2 D.2【解答】解:x2+ax+9y﹣(bx2﹣x+9y+3)=x2+ax+9y﹣bx2+x﹣9y﹣3=(1﹣b)x2+(a+1)x﹣3,∵代数式x2+ax+9y﹣(bx2﹣x+9y+3)的值恒为定值,∴1﹣b=0且a+1=0,解得:a=﹣1,b=1,则﹣a+b=1+1=2,故选:D.【点评】本题主要考查整式的加减运算,关键在于通过正确的去括号和合并同类项对整式进行化简,并根据代数式的值恒为定值得出a,b的值.9.(2018秋•锡山区校级期中)根据如图所示的计算程序,若输出的值y=﹣1,则输入的值x为()A.2 B.﹣4或1或﹣1 C.﹣4或1 D.﹣4或﹣1【解答】解:当x>0时,|x|﹣2=﹣1,解得x=1;当x<0时,x+3=﹣1,解得x=﹣4,所以输入的值x为1或﹣4.故选:C.【点评】本题考查了代数式求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.10.(2018秋•兰陵县期中)甲、乙两个水桶中装有少量且重量相等的水,先把甲桶的水倒出三分之一给乙桶,再把乙桶的水倒出四分之一给甲桶(假设不会溢出),最后甲、乙两桶中水的重量的大小是()A.甲桶中水的重量>乙桶中水的重量B.甲桶中水的重量=乙桶中水的重量C.甲桶中水的重量<乙桶中水的重量D.不能确定,与桶中原有水的重量有关【解答】解:设甲、乙两个水桶中水的重量是a,∵甲桶的水倒三分之一给乙桶后乙桶的水=(1)a,甲桶为(1)a,∴把乙桶的水倒出四分之一给甲桶时,甲桶有(1)a+(1)a a a=a;乙桶有水=(1)a×(1)=a,∴甲桶中水的重量=乙桶中水的重量.故选:B.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.二.填空题(共8小题,满分24分,每小题3分)11.(2018秋•江都区期中)体育委员带了100元钱去买体育用品,已知一个足球a元,一个篮球b元,则代数式100﹣3a﹣2b表示的意义为买了3个足球,2个篮球,还剩多少元.【解答】解:∵一个足球a元,一个篮球b元,∴100﹣3a﹣2b表示的意义为体育委员买了3个足球,2个篮球b元后所剩下的钱,故答案为:买了3个足球,2个篮球,还剩多少元.【点评】本题考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.12.(2018秋•澧县期中)若关于x的整式(3x2﹣6bx+16)﹣(3x2﹣6x+5)的值与x无关,则b的值是1【解答】解:原式=3x2﹣6bx+16﹣3x2+6x﹣5=6x﹣6bx+11令6﹣6b=0,∴b=1,故答案为:1【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.13.(2018秋•沙坪坝区校级期中)若(a﹣2)x2y|a|+1是关于x、y的五次单项式,则(a+1)3=﹣1.【解答】解:由(a﹣2)x2y|a|+1是关于x,y的五次单项式,得|a|+1+2=5且a﹣2≠0,解得a=﹣2.把a=﹣2代入(a+1)3=﹣1,故答案为:﹣1.【点评】本题考查了单项式,利用单项式的次数得出关于a的方程是解题关键.14.(2018春•陈仓区期中)如图,某专业合作社计划将长2x米,宽x米的长方形草莓种植大棚进行扩建,阴影部分表示扩建的区域,其余部分为原种植区域,则扩建后的大棚面积增加(6xy+4y2)米2.【解答】解:依题意得:(2x+2y)(x+2y)﹣2x•x=2x2+4xy+2xy+4y2﹣2x2=6xy+4y2(米2)故答案是:(6xy+4y2).【点评】考查了列代数式,解题的关键是掌握矩形的面积公式,多项式乘多项式的计算法则,难度不大.15.(2018秋•海淀区校级期中)定义新运算a#b=3a﹣2b,则[(x+y)#(x﹣y)]#3x=﹣3x+15y.【解答】解:由题意得,(x+y)#(x﹣y)=3(x+y)﹣2(x﹣y)=3x+3y﹣2x+2y=x+5y,[(x+y)#(x﹣y)]#3x=(x+5y)#3x=3(x+5y)﹣2•3x=3x+15y﹣6x=﹣3x+15y.故答案为:﹣3x+15y.【点评】此题考查了整式的加减,解答本题的关键是理解新运算符号所代表的运算法则,另外要求掌握去括号及合并同类项的法则.16.(2018秋•武侯区校级期中)定义:若a+b=n,则称a与b是关于数n的“平衡数”.比如3与﹣4是关于﹣1的“平衡数”,5与12是关于17的“平衡数”.现有a=8x2﹣6kx+14与b=﹣2(4x2﹣3x+k)(k 为常数)始终是数n的“平衡数”,则它们是关于12的“平衡数”.【解答】解:∵a=8x2﹣6kx+14与b=﹣2(4x2﹣3x+k)(k为常数)始终是数n的“平衡数”,∴a+b=8x2﹣6kx+14﹣2(4x2﹣3x+k)=8x2﹣6kx+14﹣8x2+6x﹣2k=(6﹣6k)x+14﹣2k=n,即6﹣6k=0,解得:k=1,即n=12,故答案为:12【点评】此题考查了整式的加减,弄清题中的新定义是解本题的关键.17.(2018秋•台州期中)为确保信息安全,信息需要加密传输,其原理如下:现将10个数字按图所示排成一个圈,并设置了一种数字信息的加密规则:加密钥匙为“n&3”,“n&3”代表“把明文n换成图中从它开始顺时针跳过3个数字的那个数字”,例如明文是5时,对应的密文为9.若收到的密文是6452,那么通过解密,它对应的明文是2018.【解答】解:∵“n&3”代表“把明文n换成图中从它开始顺时针跳过3个数字的那个数字”,6﹣4=2,4﹣4=0,5﹣4=1,2+10﹣4=8.故它对应的明文是2018.故答案为:2018.【点评】考查了整式的加减,关键是理解并且熟练掌握“n&3”的加密规则.18.(2018秋•邳州市期中)如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…,第2019次输出的结果为﹣8【解答】解:∵第1次输出的结果为24,第2次输出的结果为12,第3次输出的结果为6,第4次输出的结果为3,第5次输出的结果为﹣2,第6次输出的结果为﹣1,第7次输出的结果为﹣6,第8次输出的结果为﹣3,第9次输出的结果为﹣8,第10次输出的结果为﹣4,第11次输出的结果为﹣2,……∴除去前4次的输出结果,后面每输出六次为一个周期循环,∵(2019﹣4)÷6=335…5,∴第2019次输出的结果为﹣8,故答案为:﹣8.【点评】此题考查了代数式求值,弄清题中的规律是解本题的关键.三.解答题(共7小题,满分46分)19.(8分)(2018秋•海淀区校级期中)计算(1)(2x23x)﹣4(x﹣x2)(2)4a2﹣[a2+(7a2﹣2a)﹣(a2﹣3a)]【解答】解:(1)原式=2x23x﹣4x+4x2﹣2=6x2﹣7x;(2)原式=4a2﹣a2﹣7a2+2a+a2﹣3a=﹣3a2﹣a.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.(6分)(2018秋•渝中区校级期中)先化简再求值:3,其中x=4,y.【解答】解:原式=3x3xy2+4xy﹣6x3﹣xy xy2=﹣3x3+xy2+3xy,当x=4,y时,原式=﹣3×43+4×()2+3×4×()=﹣3×64+9﹣18=﹣201.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.21.(6分)(2016秋•灌南县期中)按照规律填上所缺的单项式并回答问题:(1)a,﹣2a2,3a3,﹣4a4,5a5,﹣6a6(2)试写出第2016个和第2017个单项式;(3)试写出第n个单项式.【解答】解:(1)由前几项的规律可得:第五项、第六项依次为:5a5,﹣6a6;故答案为:5a5,﹣6a6;(2)第2016个单项式为:﹣2016a2016,第2017个单项式为:2017a2017;(3)第n个单项式的系数为:n×(﹣1)n+1,次数为n,故第n个单项式为:(﹣1)n+1na n.【点评】此题考查了找规律的单项式题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.22.(6分)(2018秋•淮安期中)如图,正方形ABCD和正方形ECGF的边长分别为a和6.(1)写出表示阴影部分面积的代数式(结果要求化简);(2)求a=4时,阴影部分的面积.【解答】解:(1)由图可得,阴影部分的面积是:,即阴影部分的面积是;(2)当a=4时,=8﹣12+18=14,即=4时,阴影部分的面积是14.【点评】本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式.23.(6分)(2018秋•江都区期中)阅读材料:对于任何实数,我们规定符号的意义是ad﹣bc.例如:1×4﹣2×3=﹣2,(﹣2)×5﹣4×3=﹣22.(1)按照这个规定请你计算的值;(2)按照这个规定请你计算:当|x﹣2|=0时,的值.【解答】解:(1)原式=5×(﹣2)﹣(﹣3)×(﹣4)=﹣10﹣12=﹣22;(2)∵|x﹣2|=0,∴x﹣2=0,解得:x=2,则原式=3×(﹣2)﹣2×14=﹣34.【点评】此题考查了整式的加减﹣化简求值,以及有理数的混合运算,弄清题中的新定义是解本题的关键.24.(7分)(2018秋•黄陂区期中)某同学做一道数学题,已知两个多项式A、B,B=3x2y﹣5xy+x+7,试求A+B.这位同学把A+B误看成A﹣B,结果求出的答案为6x2y+12xy﹣2x﹣9(1)请你替这位同学求出A+B的正确答案;(2)当x的取任意数值,A﹣3B的值是一个定值时,求y的值.【解答】解(1)∵B=3x2y﹣5xy+x+7,A﹣B=6x2y+12xy﹣2x﹣9,∴A+B=(A﹣B)+2B=6x2y+12xy﹣2x﹣9+2(3x2y﹣5xy+x+7)=6x2y+12xy﹣2x﹣9+6x2y﹣10xy+2x+14=12x2y+2xy+5;(2)A﹣3B=A+B﹣4B=12x2y+2xy+5﹣4(3x2y﹣5xy+x+7)=12x2y+2xy+5﹣12x2y+20xy﹣4x﹣28=22xy﹣4x﹣23=(22y﹣4)x﹣23.∵当x的取任意数值,A﹣3B的值是一个定值,∴22y﹣4=0,∴y.【点评】本题考查的是整式的加减,熟知整式加减的实质是去括号、合并同类项是解答此题的关键.25.(7分)(2018秋•上杭县期中)某商场电器销售一种微波炉和电磁炉,微波炉每台定价700元,电磁炉每台定价200元.“11/11”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的80%付款.现某客户要到该卖场购买微波炉20台,电磁炉x台(x>20).(1)若该客户按方案一购买,需付款200x+10000元.(用含x的代数式表示),若该客户按方案二购买,需付款160x+11200元.(用含x的代数式表示)(2)若x=40,通过计算说明此时按哪种方案购买较为合算?(3)当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.【解答】解:(1)800×20+200(x﹣20)=200x+10000(元),(800×20+200x)×80%=160x+11200(元);故答案为:200x+10000;160x+11200;(2)方案一:当x=40时,原式=200×40+10000=18000(元)方案二:当x=40时,原式=11200+160×40=17600(元)∵18000>17600∴按方案二购买较为合算(3)按方案一购买20台微波炉,则可送20台电磁炉;再按方案二购买20台电磁炉.总金额为:20×700+20×200×80%=17200(元)【点评】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.11。

人教版七年级数学上册《第二章整式的加减》章节测试卷-附答案

人教版七年级数学上册《第二章整式的加减》章节测试卷-附答案

人教版七年级数学上册《第二章整式的加减》章节测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.下列代数式符合书写要求的是( ) A .2213x y B .2ab c ÷ C .xy D .32mn ⋅ 2.下列说法中,错误的是( ) A .单项式与多项式统称为整式B .多项式33a b +的系数是3C .2ab +是二次二项式D .单项式2x yz 的系数是1 3.把代数式“”用文字语言叙述,其中表述不正确的是( )A .比x 的倒数小5的数B .x 的倒数与5的差C .x 与5的差的倒数D .1除以x 的商与5的差 4.下列各组中的两项,不是同类项的是( )A .2a -和2aB .3a bc 和32a bc -C .23x 和33xD .2和0.15.把多项式3221ab a b -++按a 的降幂排列,正确的是( )A .3221ab a b -++B .2321a b ab -+C .2312a b ab +-D .3212ab a b -+6.下列各式运算,结果正确的是( )A .21a a -=B .2x y xy +=C .2222347m n mn m n +=D .222910x x x += 7.设a ,b 互为相反数,c ,d 互为倒数,则2018(a +b )﹣cd 的值是( )A .2018B .﹣1C .1D .08.有一列数1234,,,,,n a a a a a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a =,则2021a 值为( ).A .2B .-1C .12D .200二、填空题9.单项式-xy 3的次数是————.10.计算:()31a -= .11.用代数式表示:“a 的平方的倒数减去b 的差”是 .12.若710x y -与125m n x y -是同类项,则m = ,n = .13.若23m <<,化简32m m ---的结果是 .14.已知21m m -=,则代数式22020m m ++的值为 .15.如图是一组有规律的图案,它由若干个大小相同的圆组成.第1个图案中有6个白色的圆,第2个图案中有10个白色的圆,第3个图案中有14个白色的圆,依此规律,第10个图案中有 个白色的圆.三、解答题16.化简(1)()835x x ---(2)()()2221322a a a a --+++ (3)()()193213y y -++ (4)221523452ab ab ab ab ab ⎡⎤⎛⎫--+- ⎪⎢⎥⎝⎭⎣⎦17.有数a b c 、、在数轴上的大致位置如图所示:(1)a c +__________0,b c -__________0,a b -__________0(用“>”、“<”、“=”);(2)化简||||||a c b c a b ++---.18.已知2231A x xy y =++-和2B x xy =-.(1)若()2230x y ++-=,求2A B -的值.(2)若2A B -的值与y 的值无关,求x 的值.(3)若3A mB x --的值与x 的值无关,求y 的值.19.为了丰富校园体育生活,某学校准备举行运动会,学校需要采购秩序册x 份,他们的报价相同. 甲厂的优惠条件是:按每份定价6元的八折收费,另收500元制版费;乙厂的优惠条件是:每份定价6元的价格不变,而500元的制版费四折优惠.问:(1)请用含x 的式子表示,到甲厂采购需要支付________元,到乙厂采购需要支付________元;(2)当印制200份秩序册时,选哪个印刷厂所付费用较少,为什么?20.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前4天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负.文具店记录了这四天该钢笔的售价情况和售出情况,如下表所示:第1天第2天第3天第4天每支价格相对标准价格(元)1-+01-2售出支数(支)12153233(1)填空:第一天售价是___________元,该天赚了___________元;(2)求新华文具用品店这四天出售这种钢笔一共赚了多少元;(3)新华文具用品店为了促销这种钢笔,决定从下周一起推出两种促销方式:方式一:购买不超过5支钢笔,每支12元;若购买超过5支钢笔,则5支钢笔,每支12元,超过5支钢笔的部分,每支降价4元;方式二:每支售价9元.x>)支钢笔作为奖品时,如果用方式一购买需要花费___________元,若在该店购买林老师在该店购买x(510支钢笔作为奖品,选择上述两种促销方式中哪种方式购买更省钱?___________(直接填写方式一或方式二).参考答案1.C2.B3.C4.C5.B6.D7.B8.C9.410.33a -11.21b a -12.8 1213.25m -+/5-2m14.202115.4216.(1)115x +(2)241a +(3)51y +(4)23ab17.(1)>,<,>;(2)2c .18.(1)10-;(2)=1x -;(3)1y =. 19.(1)4.8500,6200x x ++(2)选乙厂的付费较少 20.(1)11,60(2)282元(3)()820x +,方式二.。

人教版七年级数学上册 第二章整式的加减 单元检测b卷学生版

人教版七年级数学上册 第二章整式的加减 单元检测b卷学生版

人教版七年级数学上册第二章整式的加减单元检测b卷一、选择题1.代数式a+12a ,4xy,a+b3,a,2009,12a2bc,−3mn4中单项式的个数是()A. 3B. 4C. 5D. 62.下列代数式:x2,xm,2x﹣y,(1﹣20%)x,√2ab,x x+y,√a,其中是整式的个数是()A. 5B. 4C. 3D. 23.如果12a3x b y与﹣a2y b3同类项,则()A. x=﹣2,y=3B. x=2,y=3C. x=﹣2,y=﹣3D. x=2,y=-34.将(a+1)﹣(﹣b+c)去括号,应该等于()A. a+1﹣b﹣cB. a+1﹣b+cC. a+1+b+cD. a+1+b﹣c5.若M=4x2﹣5x﹣11,N=﹣x2+5x﹣2,则2M﹣N的结果是()A. 9x2﹣15x﹣20B. 9x2﹣15x﹣9C. 7x2﹣15x﹣20D. 7x2﹣10x﹣206.已知x+y=﹣10,xy=﹣2,则代数式7x﹣15xy+7y的值是()A. ﹣100B. ﹣40C. 210D. ﹣2107.有理数a、b在数轴上的位置如图,则|a﹣b|﹣2|a﹣c|﹣|b+c|=()A. a+cB. a﹣cC. 2a﹣2bD. 3a﹣c8.观察下列关于x的单项式,探究其规律:2x,4x2,6x3,8x4,10x5,12x6,…,按照上述规律,第2016个单项式是()A. 2016x2015B. 2016x2016C. 4032x2015D. 4032x20169.下列各式中,正确的是()A. 3a+2b=5abB. 4+5x=9xC. ﹣3(x2﹣4)=﹣3x2+4D. ﹣0.25ab+ 14ab=010.小明按如图所示设计树形图,设计规则如下:第一层是一条与水平线垂直的线段,长度为1;第二层在第一层线段的前端作两条与该线段均成120°的线段,长度为其一半;第三层按第二层的方法,在每一条线段的前端生成两条线段;重复前面的作法作到第10层.则树形图第10层的最高点到水平线的距离为()A. 11024B. 17041024C. 17051024D. 211.观察下列单项式:﹣x,3x2,﹣5x3,7x4,…﹣37x19,39x20的特点,写出第n个单项式.为了解决这个问题,特提供下面的解题思路:(1)先观察这组单项式系数的符号及绝对值的规律;(2)再看这组单项式次数的规律.请根据你的经验,猜想第n个单项式可表示为________.(用含n的式子表示)12.若关于x的五次四项式ax5+bx3+(x﹣6),当x=﹣2时的值是7,则当x=2时的值是________.13.若关于x,y的多项式x2+ax﹣y+6和bx2﹣3x+6y﹣3的差的值与字母x的取值无关,a=________,b=________.14.根据如图所示的计算程序,若输入的值x=﹣1,则输出的值y=________.15.用同样大小的黑色棋子按如图所示的规律摆放,按照这样的规律摆下去,则第n个图形有________颗黑色棋子(用含n的代数式表示).16.先化简,再求值。

人教版七年级数学上册--第二章 整式的加减 单元检测 B卷(含答案)

人教版七年级数学上册--第二章 整式的加减 单元检测 B卷(含答案)
【详解】
∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,
∴正方形和等边三角形的和=6+6=12=9+3;
∵第2个图由11个正方形和10个等边三角形组成,
∴正方形和等边三角形的和=11+10=21=9×2+3;
∵第3个图由16个正方形和14个等边三角形组成,
∴正方形和等边三角形的和=16+14=30=9×3+3,
人教版七年级上第二章整式的加减单元测试B卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题(每题3分,共30分)
1.下列各式﹣ mn,m,8, ,x2+2x+6, , , 中,整式有( )
A.3 个B.4 个C.6 个D.7 个
14.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.
15.已知2a﹣3b=7,则8+6b﹣4a=_____.
16.化简:-[-(a+b)]-[-(a-b)]=_____.
17.已知a,b互为相反数,c,d互为倒数, .则代数式(a+b+1)x2+cdy2+x2y-xy2的值是.
它的系数是(﹣1)n+12n﹣1,次数是n+1.
25、(1)10a+b,11,9;(2) ①123不是“友好数”,理由见解析;②32;③既是“和平数”又是“友好数”的数是396,264,132.
【详解】
(1)这个两位数用多项式表示为10a+b,
(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),

人教版七年级上册数学《整式的加减》试卷B(含答案)

人教版七年级上册数学《整式的加减》试卷B(含答案)

七年级上册数学单元检测题(二)整式的加减一、选择题(每题3分,共30分)1.下列表述中,不能表示代数式“a 4”的意义的是( ) A. 倍的a 4 B.倍的4a C.相加个a 4 D.相乘个a 4 2.在式子3,1,3,,0,2y x x y x a y x ---+中,单项式共有( ) A.5个 B.4个 C.3个 D.2个 3.下列各式中,是二次三项式的是( ) A.3122-+aa B.1332++ C.ab a ++23 D.y x y x +++22 4.如果单项式ba y x y x 323121与-是同类项,那么b a 、的值分别为( ) A.2,2 B.-3,2 C.2,3 D.3,2 5.化简)(n m n m --+的结果为( )A.m 2B.m 2-C.n 2D.n 2- 6.若的值为是同类项,则与n m y x y x nm+-25( ) A.1 B.2 C.3 D.47.当1=x 时,式子13++qx px 的值为2025,则当1-=x 时,式子13++qx px 的值为( ) A.-2023 B.-2022 C.2025 D.20238.下列说法错误的是( )A.单项式a 的系数和次数都是1B.数字1也是单项式C.的二次单项式31是系数为-3xy -D.是多项式a a -29.下列合并同类项的运算结果中正确的是( ) A.x x 22=+ B.3x x x x =++ C.33=-ab ab D.025.041=+-xy xy 10.不改变代数式的值,把y xy x x -+-25的二次项放在前面带有“+”号的括号里,把一次项放在前面带有“-”号的括号里,正确的是( ) A.)5()(2y x xy x --+ B.)5()(2y x xy x ----C.)5()(2x y xy x ----D.)5()(2x y xy x --+-二、填空题(每题4分,共24分)11.练习本每本1.2元,铅笔每支1.5元,买a 本练习本和b 支铅笔共需 元. 12.单项式53103ab ⨯-的系数是 ,次数是 . 13.b a a b 226541--是 次 项式,三次项是 . 14.化简b b a -+2的结果是 .15.已知33=-b a ,则b a 38+-的值是 .16.已知多项式与932+x 的和等于1432-+x x ,则这个多项式为 . 三、解答题一(每题6分,共18分) 17.用单项式表示下列问题,并指出其系数和次数:正方体的棱长为a ,那么它的表面积是多少?体积呢?18.求多项式252322+--y xy x 的各项系数之和.19.合并同类项:.32842222xy y x xy x -+--四、解答题二(每题7分,共21分) 20.求下列多项式的值:.21413262183222=+-+--a a a a a ,其中21.船在静水中的速度为a 千米/小时,水流速度为18千米/小时,船顺流航行5小时的行程比船逆水航行4小时的行程多多少千米?22.已知c b a ,,在数轴上对应的点如图: 化简.b a c a c a c b c b +-+--++--五、解答题三(每题9分,共27分)23.已知天平左边托盘中的物体重量为x ,右边托盘中物体重量为y ,其中-+=)1(302a x[]22231)(234),(3a a a a y a a ----=-.(1)化简;y x 和(2)请你想一想,天平会倾斜吗?如果出现倾斜,将向哪边倾斜?为什么?1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31(1)带阴影的长方形框中的9个数之和与其正中间的数有什么关系? (2)不改变长方形框的大小,如果将带阴影的长方形框移至其他几个位置试一试,你能得出什么结论?你知道为什么吗?(3)这个结论对于任何一个月的日历都成立吗?.421,1)2(42)1(,24,523.252222的值时,求当;化简:已知:B A b a B A a b ab B ab a b A --==---=+-=整式的加减参考答案一、DCCDC CADDD 二、11.)5.12.1(b a + 12.6,1033⨯- 13.三,三,b a a b 22641-和 14.b a + 15.5 16.84-x 三、17.解:正方体的表面积是26a ,系数是6,次数是2;正方体的体积是3a ,系数是1,次数是3.18.解:原多项式各项系数之和为3+(-2)+(-5)+2=-2. 19.解:原式=.1124222xy y x x -+- 四、20.解:原式=412--a ,当21=a 时,原式=4541212-=-⨯-. 21.解:多行)162()18(4)18(5+=--+a a a 千米.22.解:由图可知;0,0,0,0,0<+<+<-<+>-b a c a c a c b c bcb a ba c a c a cbc b b a c a c a c b c b 23)()()()()(++=+++++-++-=++++--++-原式= 五、.,04)2(34333,30333)1(.2322y x y x a a y a a x <<-=-+-=+-=所以,因为会倾斜,将向右边倾斜解:.99)1(.24倍数的个数之和是其正中间的带阴影的长方形框中的解:.)3(.99,9)8()7()6()1()1()6()7()8(9,8,7,6,1,1,6,7,88,.99)2(的日历都成立这个结论对任何一个月倍中间的数的个数之和是其正中的所以带阴影的长方形框个数和为带阴影的长方形框中的个数分别为则其作数为的长方形框的正中间的理由如下:设带阴影倍数的个数之和仍是其正中间带阴影的长方形框中的x x x x x x x x x x x x x x x x x x x =+++++++++-+-+-+-++++----)24(4)523(242)1(.252222a b ab ab a b BA ---+-=-解:.20614614421,1)2(.61448161046222222=+=-=--==-=++-+-=ab b B A b a ab b a b ab ab a b 代入得将。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章《整式的加减》单元检测B卷满分:100分时间:90分钟班级:______姓名:_______得分:______一.选择题(每题3分,共30分)1.下列各式,,,,1,xy﹣1,中,单项式有()A.2 个B.3 个C.4 个D.5 个2.下列计算正确的是()A.a+a=a2B.6x3﹣5x2=xC.3x2+2x3=5x5D.3a2b﹣4ba2=﹣a2b3.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是4.当x=2时,代数式px3+qx+1的值为﹣2018,求当x=﹣2时,代数式的px3+qx+1值是()A.2017 B.2018 C.2019 D.20205.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度是60km/h,水流速度是akm/h,3h后两船相距()A.6a千米B.3a千米C.360千米D.180千米6.若A为五次多项式,B为四次多项式,则A+B一定是()A.次数不高于九次多项式B.四次多项式C.五次多项式或五次单项式D.次数不定7.按如图所示的运算程序,若输入x=﹣4,y=﹣2,则输出的结果为()A.12 B.﹣12 C.20 D.﹣208.已知﹣25a2m b和7a4b3﹣n是同类项,则2m﹣n的值是()A.6 B.4 C.3 D.29.一个两位数,个位数字为a,十位数字比个位数字大1,则这个两位数可表示为()A.11a﹣1 B.11a﹣10 C.11a+1 D.11a+1010.一项工程甲单独完成需要m天,乙单独完成需要10天,甲单独做a(a<m)天后,剩下的工程由乙完成,那么乙完成工程需要的天数()A.10(1﹣)B.10﹣a C.10(1﹣)D.m(1﹣)二.填空题(每题4分,共24分)11.若2a+b=5,则4a+2b﹣2=.12.如果y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,则m的值是.13.关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含二次项,则k=.14.如图,用含a、b的代数式表示图中阴影部分的面积.15.某种商品原价每件b元,第一次降价打八折,第二次降价每件又减10元,第二次降价后的售价是元.16.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为20cm,宽为16cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是.三.解答题(共46分)17.先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=2、b=﹣.18.新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本书的高度为cm,课桌的高度为cm;(2)当课本数为x(本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离(用含x的代数式表示);(3)桌面上有55本与题(1)中相同的数学课本,整齐叠放成一摞,若有18名同学各从中取走1本,求余下的数学课本高出地面的距离.19.“十一”黄金周期间,某市外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)日期1日2日3日4日5日6日7日人数变化单位:万人+1.6 +0.8 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.2(1)9月30日外出旅游人数记为a,请用含字母a的代数式表示10月2日外出旅游的人数:(2)请判断八天内外出旅游人数最多的是10月日,最少是10月日.(3)如果最多一天出游人数有3万人,且平均每人消费2000元,试问该城市10月5日外出旅游消费总额为万元.20.如图,长为60cm,宽为x(cm)的大长方形被分割为7小块,除阴影A、B外,其余5块是形状、大小完全相同的小长方形,其较短一边长为y(cm).(1)分别用含x,y的代数式表示阴影A,阴影B的面积,并计算阴影A与阴影B的面积差.(2)当y为何值时,阴影A与阴影B的面积差与x的取值无关.21.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价60元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案①:买一套西装送一条领带方案②:西装和领带都打9折现某客户要到该服装厂购买西装30套,领带x条(x>30).(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=100,通过计算说明此时按哪种方案购买较为合算?参考答案一.选择题1.解:根据单项式的定义可知,,,,1,xy﹣1,中,单项式有,,1,单项式有3个.故选:B.2.解:A、a+a=2a,故本选项错误;B、6x3与5x2不是同类项,不能合并,故本选项错误;C、3x2与2x3不是同类项,不能合并,故本选项错误;D、3a2b﹣4ba2=﹣a2b,故本选项正确;故选:D.3.解:A、1﹣a﹣ab是二次三项式,正确,不合题意;B、﹣a2b2c是单项式,正确,不合题意;C、是多项式,正确,不合题意;D、πr2中,系数是:π,故此选项错误,符合题意.故选:D.4.解:当x=2时,8p+2q+1=﹣2018,所以8p+2q=﹣2019,当x=﹣2时,﹣8p﹣2q+1=2019+1=2020.故选:D.5.解:由题意知甲顺水航行的速度为(60+a)km/h,乙逆水航行的速度为(60﹣a)km/h,则3h后两船相距3(60+a)+3(60﹣a)=360(km),故选:C.6.解:∵A是五次多项式,B是四次多项式,∴A+B的次数是5.∴A+B一定是五次多项式或五次单项式,故选:C.7.解:∵x=﹣4,y=﹣2<0,∴输出结果为x2﹣2y=(﹣4)2﹣2×(﹣2)=16+4=20,故选:C.8.解:由题意得:2m=4,3﹣n=1,解得:m=2,n=2,2m﹣n=2.故选:D.9.解:由于个位数字为a,十位数字比个位数字大1,则十位数字为a+1,∴这个两位数可表示为10(a+1)+a=11a+10.故选D.10.解:由题意可得:10(1﹣a•)=10(1﹣).故选:A.二.填空题(共6小题)11.解:∵2a+b=5,∴4a+2b﹣2,=2(2a+b)﹣2,=2×5﹣2,=10﹣2,=8.故答案为:8.12.解:∵y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,∴|m|﹣3=2,m﹣5≠0,∴m=﹣5,故答案为:﹣5.13.解:原式=﹣3kxy+3y+9xy﹣8x+1=(﹣3k+9)xy+3y﹣8x+1,由题意知﹣3k+9=0,解得k=3,故答案为:3.14.解:阴影部分面积=ab﹣=ab﹣.故答案为:ab﹣πb2.15.解:∵某种商品原价每件b元,第一次降价打八折,∴第一次降价后的售价为:0.8b.∵第二次降价每件又减10元,∴第二次降价后的售价是0.8b﹣10.故答案为:0.8b﹣10.16.解:设小长方形长为xcm,宽为ycm,由题意得:x+3y=20,阴影部分周长的和是:20×2+(16﹣3y+16﹣x)×2=104﹣6y﹣2x=104﹣2(3y+x)=104﹣40=64(cm),故答案为:64cm.三.解答题(共5小题)17.解:原式=7a2b﹣4a2b+5ab2﹣2a2b+3ab2=a2b+8ab2,当a=2,b=﹣时,原式=﹣2+4=2.18.解:(1)书的厚度为:(88﹣86.5)÷(6﹣3)=0.5cm;课桌的高度为:86.5﹣3×0.5=85cm.故答案为:0.5;85;(2)∵x本书的高度为0.5x,课桌的高度为85,∴高出地面的距离为85+0.5x(cm).故答案为:(85+0.5x)cm;(3)当x=55﹣18=37时,85+0.5x=103.5cm.故余下的数学课本高出地面的距离是103.5cm.19.解:(1)根据题意得:∵9月30日外出旅游人数记为a,∴10月1日外出旅游人数为:a+1.6,∴10月2日外出旅游人数为:a+1.6+0.8=a+2.4;故答案为a+2.4;(2)∵9月30日外出旅游人数记为a,∴10月1日外出旅游人数为:a+1.6,∴10月2日外出旅游人数为:a+1.6+0.8=a+2.4;∴10月3日外出旅游人数为:a+1.6+0.8+0.4=a+2.8;∴10月4号外出旅游人数为:a+2.8﹣0.4=a+2.4;∴10月5号外出旅游人数为:a+2.4﹣0.8=a+1.6;∴10月6号外出旅游人数为:a+1.6+0.2=a+1.8;∴10月7号外出旅游人数为:a+1.8﹣1.2=a+0.6;∴10月3号外出旅游人数最多;7号最少;故答案为3,7;(3)∵最多一天有出游人数3万人,即:a+2.8=3万,∴a=0.2(万).∵10月5号外出旅游人数为a+1.6=1.8,∴1.8×2000=3600(万元).故答案为3600.20.解:(1)S A=(x﹣2y)(60﹣3y)=60x﹣3xy﹣120y+6y2,S=3y[x﹣(60﹣3y)]=3xy﹣180y+9y2,BS﹣S B=(60x﹣3xy﹣120y+6y2)﹣( 3xy﹣180y+9y2)=60x﹣6xy+60y﹣3y2;A(2)∵S A﹣S B与x的取值无关,∴60x﹣6xy=0,∴60﹣6y=0,∴y=10.答:当y=10时,阴影A与阴影B的面积差与x的取值无关.21.解:(1)若该客户按方案①购买,需付款30×200+60(x﹣30)=60x+4200(元)若该客户按方案②购买,需付款0.9×(200×30+60x)=54x+5400(元),故答案为:(60x+4200),(54x+5400);(2)当x=100时,按方案①购买,需付款60x+4200=60×100+4200=10200(元),按方案②购买,需付款54x+5400=54×100+5400=10800(元),∵10200<10800,∴当x=100时,按方案①购买合算.。

相关文档
最新文档