贵州省遵义市数学中考模拟试卷

合集下载

2019-2020学年贵州省遵义市中考数学模拟试卷(有标准答案)(Word版)

2019-2020学年贵州省遵义市中考数学模拟试卷(有标准答案)(Word版)

贵州省遵义市中考数学试卷一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3.00分)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣52.(3.00分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A. B.C.D.3.(3.00分)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×10104.(3.00分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=15.(3.00分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°6.(3.00分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数7.(3.00分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤28.(3.00分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60πB.65πC.78πD.120π9.(3.00分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣310.(3.00分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.1811.(3.00分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=12.(3.00分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3D.2二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4.00分)计算﹣1的结果是.14.(4.00分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为度.15.(4.00分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.16.(4.00分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为.17.(4.00分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.18.(4.00分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD 上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6.00分)2﹣1+|1﹣|+(﹣2)0﹣cos60°20.(8.00分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.21.(8.00分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水(计算结果精确到0.1m,参考数据sin64°≈0.90,平线的夹角为64°,吊臂底部A距地面1.5m.cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)22.(10.00分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中A部分的圆心角是度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?23.(10.00分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.24.(10.00分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.25.(12.00分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?26.(12.00分)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.27.(14.00分)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D (4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3.00分)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣5【分析】直接利用电梯上升5层记为+5,则电梯下降记为负数,进而得出答案.【解答】解:∵电梯上升5层记为+5,∴电梯下降2层应记为:﹣2.故选:B.2.(3.00分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A. B.C.D.【分析】根据等腰三角形,平行四边形、矩形、圆的性质即可判断;【解答】解:∵等腰三角形是轴对称图形,平行四边形是中心对称图形,半圆是轴对称图形,矩形既是轴对称图形又是中心对称图形;故选:C.3.(3.00分)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数532亿用科学记数法表示为5.32×1010.故选:D.4.(3.00分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、(﹣a2)3=﹣a6,故此选项错误;B、a3•a5=a8,故此选项错误;C、(﹣a2b3)2=a4b6,正确;D、3a2﹣2a2=a2,故此选项错误;故选:C.5.(3.00分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°【分析】利用两直线平行同位角相等得到一对角相等,再由对顶角相等及直角三角形两锐角互余求出所求角度数即可.【解答】解:∵a∥b,∴∠3=∠4,∵∠3=∠1,∴∠1=∠4,∵∠5+∠4=90°,且∠5=∠2,∴∠1+∠2=90°,∵∠1=35°,∴∠2=55°,故选:B.6.(3.00分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数【分析】根据方差的意义得出即可.【解答】解:如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的方差,故选:A.7.(3.00分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤2【分析】先根据一次函数图象上点的坐标特征得到2k+3=0,解得k=﹣1.5,然后解不等式﹣1.5x+3>0即可.【解答】解:∵直线y=kx+3经过点P(2,0)∴2k+3=0,解得k=﹣1.5,∴直线解析式为y=﹣1.5x+3,解不等式﹣1.5x+3>0,得x<2,即关于x的不等式kx+3>0的解集为x<2,故选:B.8.(3.00分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60πB.65πC.78πD.120π【分析】直接得出圆锥的母线长,再利用圆锥侧面及求法得出答案.【解答】解:由题意可得:圆锥的底面半径为5,母线长为:=13,该圆锥的侧面积为:π×5×13=65π.故选:B.9.(3.00分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣3【分析】直接利用根与系数的关系得出x1+x2=﹣b,x1x2=﹣3,进而求出答案.【解答】解:∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x 1x2=﹣3,则x1+x2﹣3x1x2=5,﹣b﹣3×(﹣3)=5,解得:b=4.故选:A.10.(3.00分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18【分析】想办法证明S△PEB =S△PFD解答即可.【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC =S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP =S△PBE=×2×8=8,∴S阴=8+8=16,故选:C.11.(3.00分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【分析】直接利用相似三角形的判定与性质得出=,进而得出S△AOD=2,即可得出答案.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,∴S△BCO =×BC×CO=S△AOD=1,∴S△AOD=2,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.12.(3.00分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3D.2【分析】先求出AC,进而判断出△ADF∽△CAB,即可设DF=x,AD=x,利用勾股定理求出BD,再判断出△DEF∽△DBA,得出比例式建立方程即可得出结论.【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4.00分)计算﹣1的结果是 2 .【分析】首先计算9的算术平方根,再算减法即可.【解答】解:原式=3﹣1=2,故答案为:2.14.(4.00分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为37 度.【分析】先判断出∠AEC=90°,进而求出∠ADC=∠C=74°,最后用等腰三角形的外角等于底角的2倍即可得出结论.【解答】解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.15.(4.00分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金二两.【分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:,(①+②)÷7,得:x+y=2.故答案为:二.16.(4.00分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为4035 .【分析】根据题意和图形可以发现随着层数的变化三角形个数的变化规律,从而可以解答本题.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.17.(4.00分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.【分析】直接利用轴对称求最短路线的方法得出P 点位置,再求出AO ,CO 的长,进而利用勾股定理得出答案.【解答】解:连接AC ,交对称轴于点P ,则此时PC+PB 最小,∵点D 、E 、F 分别是BC 、BP 、PC 的中点,∴DE=PC ,DF=PB ,∵抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,∴0=x 2+2x ﹣3解得:x 1=﹣3,x 2=1,x=0时,y=3,故CO=3,则AO=3,可得:AC=PB+PC=3, 故DE+DF 的最小值为:. 故答案为:.18.(4.00分)如图,在菱形ABCD 中,∠ABC=120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G 处(不与B 、D 重合),折痕为EF ,若DG=2,BG=6,则BE 的长为 2.8 .【分析】作EH⊥BD于H,根据折叠的性质得到EG=EA,根据菱形的性质、等边三角形的判定定理得到△ABD为等边三角形,得到AB=BD,根据勾股定理列出方程,解方程即可.【解答】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6.00分)2﹣1+|1﹣|+(﹣2)0﹣cos60°【分析】直接利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=+2﹣1+1﹣=2.20.(8.00分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.【分析】先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义的a的值代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=•=a+3,∵a≠﹣3、2、3,∴a=4或a=5,则a=4时,原式=7.21.(8.00分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水(计算结果精确到0.1m,参考数据sin64°≈0.90,平线的夹角为64°,吊臂底部A距地面1.5m.cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为11.4 m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.22.(10.00分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为160 人,扇形统计图中A部分的圆心角是54 度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?【分析】(1)根据:该项所占的百分比=,圆心角=该项的百分比×360°.两图给出了D的数据,代入即可算出调查的总人数,然后再算出A的圆心角;(2)根据条形图中数据和调查总人数,先计算出喜欢“科学探究”的人数,再补全条形图;(3)根据:喜欢某项人数=总人数×该项所占的百分比,计算即得.【解答】解:(1)由条形图、扇形图知:喜欢趣味数学的有48人,占调查总人数的30%.所以调查总人数:48÷30%=160(人)图中A部分的圆心角为:=54°故答案为:160,54(2)喜欢“科学探究”的人数:160﹣24﹣32﹣48=56(人)补全如图所示(3)840×=294(名)答:该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名.23.(10.00分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.【分析】(1)由转动转盘甲共有四种等可能结果,其中指针指向A区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【解答】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A区域只有1种情况,∴享受9折优惠的概率为,故答案为:;(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.24.(10.00分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.25.(12.00分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x ﹣20)(﹣2x+80)=150,解得:x 1=35,x 2=25.∵20≤x ≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.26.(12.00分)如图,AB 是半圆O 的直径,C 是AB 延长线上的点,AC 的垂直平分线交半圆于点D ,交AC 于点E ,连接DA ,DC .已知半圆O 的半径为3,BC=2.(1)求AD 的长.(2)点P 是线段AC 上一动点,连接DP ,作∠DPF=∠DAC ,PF 交线段CD 于点F .当△DPF 为等腰三角形时,求AP 的长.【分析】(1)先求出AC ,进而求出AE=4,再用勾股定理求出DE 即可得出结论;(2)分三种情况,利用相似三角形得出比例式,即可得出结论.【解答】解:(1)如图1,连接OD ,∵OA=OD=3,BC=2,∴AC=8,∵DE 是AC 的垂直平分线,∴AE=AC=4,∴OE=AE ﹣OA=1,在Rt △ODE 中,DE==2; 在Rt △ADE 中,AD==2;(2)当DP=DF 时,如图2,点P 与A 重合,F 与C 重合,则AP=0;当DP=PF 时,如图4,∴∠CDP=∠PFD ,∵DE 是AC 的垂直平分线,∠DPF=∠DAC ,∴∠DPF=∠C ,∵∠PDF=∠CDP ,∴△PDF∽△CDP,∴∠DFP=∠DPC,∴∠CDP=∠CPD,∴CP=CD,∴AP=AC﹣CP=AC﹣CD=AC﹣AD=8﹣2;当PF=DF时,如图3,∴∠FDP=∠FPD,∵∠DPF=∠DAC=∠C,∴△DAC∽△PDC,∴,∴,∴AP=5,即:当△DPF是等腰三角形时,AP的长为0或5或8﹣2.27.(14.00分)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【分析】(1)把C与D坐标代入二次函数解析式求出a与c的值,确定出二次函数解析式,与一次函数解析式联立求出E坐标即可;(2)过M作MH垂直于x轴,与直线CE交于点H,四边形COEM面积最大即为三角形CME面积最大,构造出二次函数求出最大值,并求出此时M坐标即可;(3)令y=0,求出x的值,得出A与B坐标,由圆周角定理及相似的性质得到三角形AOC与三角形BOF相似,由相似得比例求出OF的长,即可确定出F坐标.【解答】解:(1)把C(0,2),D(4,﹣2)代入二次函数解析式得:,解得:,即二次函数解析式为y=﹣x2+x+2,联立一次函数解析式得:,消去y得:﹣x+2=﹣x2+x+2,解得:x=0或x=3,则E(3,1);(2)如图①,过M作MH∥y轴,交CE于点H,设M(m,﹣m2+m+2),则H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四边形COEM =S△OCE+S△CME=×2×3+MH•3=﹣m2+3m+3,当m=﹣=时,S最大=,此时M坐标为(,3);(3)连接BF,如图②所示,当﹣x2+x+20=0时,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴=,即=,解得:OF=,则F坐标为(0,﹣).。

【最新】贵州省遵义市中考数学模拟试卷(含答案解析)

【最新】贵州省遵义市中考数学模拟试卷(含答案解析)

贵州省遵义市中考数学模拟试卷(含答案)(时间120分钟满分:150分)一、选择题(本题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)4的平方根是()A.2 B.±2 C.﹣2 D.42.(3分)如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是()A.①②③B.②①③C.③①②D.①③②3.(3分)关于x的不等式组的解集中至少有5个整数解,则整数a的最小值是()A.3 B.2 C.1 D.4.(3分)如图,在△ABC中,D、E分别是AB、AC上的点,点F在BC的延长线上,DE∥BC,若∠A=48°,∠1=54°,则∠2的度数是()A.102° B.54°C.48°D.78°5.(3分)一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元 B.105元 C.108元 D.118元6.(3分)为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),请根据统计图计算成绩在20~30次的频率是()A.0.4 B.0.5 C.0.6 D.0.77.(3分)关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2 B.1 C.0 D.﹣1(3分)下列函数中,当x>0时,y值随x值的增大而减小的是()8.A.y=x B.y=2x﹣1 C.y=D.y=x2(3分)一个等腰三角形的两边长分别为2和5,则它的周长为()9.A.7 B.9 C.12 D.9或1210.(3分)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.611.(3分)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A.B.C.D.12.(3分)如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x ≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x 轴分别与y轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y 轴和抛物线C1交于点E,F,则的值为()A. B. C. D.二、填空题(本题共6小题,每小题4分,共24分)13.(4分)因式分解:2x2﹣18= .14.(4分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系.去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为.15.(4分)直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是.16.(4分)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD ⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为.17.(4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.18.(4分)在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2017的坐标为.三、(本大题共2小题,每小题8分,满分16分.)19.解方程:x(x+2)=0.20.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.四、(本大题共2小题,每小题8分,满分16分.)21.某地区2020年投入教育经费2500万元,2022年投入教育经费3025万元,求2020年至2022年该地区投入教育经费的年平均增长率.22.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?五、(本大题共2小题,每小题10分,满分20分.)23.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.24.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B两点(点A在点B的左侧).(1)求m的取值范围;(2)当m取最大整数时,求△ABC的面积.六、(本题满分12分)25.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.七、(本题满分12分)26.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F和E.已知点B的坐标为(1,3).(1)填空:k=;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.八、(本题满分14分)27.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A和点C作直线BP的垂线,垂足为点E和点F.(1)证明:△ABE∽△BCF;(2)若=,求的值;(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG的长.答案一、选择题(本题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)4的平方根是()A.2 B.±2 C.﹣2 D.4【解答】解:4的平方根是±2.故选:B.2.(3分)如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是()A.①②③B.②①③C.③①②D.①③②【解答】解:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,故选:D.3.(3分)关于x的不等式组的解集中至少有5个整数解,则整数a的最小值是()A.3 B.2 C.1 D.【解答】解:,解①得x≤a,解②得x>﹣a.则不等式组的解集是﹣a<x≤a.∵不等式至少有5个整数解,则a+a>4,解得a>.a的最小值是2.故选:B.4.(3分)如图,在△ABC中,D、E分别是AB、AC上的点,点F在BC的延长线上,DE∥BC,若∠A=48°,∠1=54°,则∠2的度数是()A.102° B.54°C.48°D.78°【解答】解:∵∠DEC是△ADE的外角,∠A=48°,∠1=54°,∴∠DEC=∠A+∠1=48°+54°=102°,∵DE∥BC,∴∠2=∠DEC=102°.故选:A.5.(3分)一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元【解答】解:设这件服装的进价为x元,依题意得:(1+20%)x=200×60%,解得:x=100,则这件服装的进价是100元.故选:A.6.(3分)为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),请根据统计图计算成绩在20~30次的频率是()A.0.4 B.0.5 C.0.6 D.0.7【解答】解:(15+20)÷(5+10+15+20)=0.7,故选:D.7.(3分)关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2 B.1 C.0 D.﹣1【解答】解:根据题意得:△=4﹣12(a﹣1)≥0,且a﹣1≠0,解得:a≤,a≠1,则整数a的最大值为0.故选:C.(3分)下列函数中,当x>0时,y值随x值的增大而减小的是()8.A.y=x B.y=2x﹣1 C.y=D.y=x2【解答】解:A、y=x,y随x的增大而增大,故A选项错误;B、y=2x﹣1,y随x的增大而增大,故B选项错误;C、y=,当x>0时,y值随x值的增大而减小,此C选项正确;D、y=x2,当x>0时,y值随x值的增大而增大,此D选项错误.故选:C.(3分)一个等腰三角形的两边长分别为2和5,则它的周长为()9.A. 7 B.9 C.12 D.9或12【解答】解:当腰为5时,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;根据三角形三边关系可知:等腰三角形的腰长只能为5,这个三角形的周长是12.故选:C.10.(3分)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.11.(3分)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A.B.C.D.【解答】解:如图,连接OB、OC,∵∠BAC=30°,∴∠BOC=2∠BAC=60°,又OB=OC,∴△OBC是等边三角形,∴BC=OB=OC=2,∴劣弧的长为: =.故选:A.12.(3分)如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x ≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x 轴分别与y轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y 轴和抛物线C1交于点E,F,则的值为()A.B.C.D.【解答】解:设点A、B横坐标为a,则点A纵坐标为a2,点B的纵坐标为,∵BE∥x轴,∴点F纵坐标为,∵点F是抛物线y=x2上的点,∴点F横坐标为x==,∵CD∥x轴,∴点D纵坐标为a2,∵点D是抛物线y=上的点,∴点D横坐标为x==2a,∴AD=a,BF=a,CE=a2,OE=a2,∴则==×=,故选:D.二、填空题(本题共6小题,每小题4分,共24分)13.(4分)因式分解:2x2﹣18= 2(x+3)(x﹣3).【解答】解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3).14.(4分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系.去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为8.2×106.【解答】解:将8200000用科学记数法表示为8.2×106.故答案为:8.2×106.15.(4分)直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是.【解答】解:根据题意,BE=AE.设BE=x,则CE=8﹣x.在Rt△BCE中,x2=(8﹣x)2+62,解得x=,故CE=8﹣=,∴tan∠CBE==.故答案为:.16.(4分)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD ⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为 4 .【解答】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=4,∴DP=4.故答案为:4.17.(4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN最大=.故答案为:.18.(4分)在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2017的坐标为(2,0).【解答】解:P1坐标为(2,0),则P2坐标为(1,4),P3坐标为(﹣3,3),P4坐标为(﹣2,﹣1),P5坐标为(2,0),∴P n的坐标为(2,0),(1,4),(﹣3,3),(﹣2,﹣1)循环,∵2017=2016+1=4×504+1,∴P2017坐标与P1点重合,故答案为(2,0).三、(本大题共2小题,每小题8分,满分16分.)19.解方程:x(x+2)=0.【分析】原方程转化为x=0或x+2=0,然后解一次方程即可.【解答】解:∵x=0或x+2=0,∴x1=0,x2=﹣2.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.20.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【解答】解:(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点评】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.四、(本大题共2小题,每小题8分,满分16分.)21.某地区2020年投入教育经费2500万元,2022年投入教育经费3025万元,求2020年至2022年该地区投入教育经费的年平均增长率.【分析】一般用增长后的量=增长前的量×(1+增长率),2021年要投入教育经费是2500(1+x)万元,在2021年的基础上再增长x,就是2022年的教育经费数额,即可列出方程求解.【解答】解:设增长率为x,根据题意2021年为2500(1+x)万元,2022年为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.22.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【解答】解:设宽度AB为x米,∵DE∥BC,∴△ABC∽△ADE,∴=,又∵BC=24,BD=12,DE=40代入得∴=,解得x=18,答:河的宽度为18米.【点评】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分.)23.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.【分析】(1)根据圆周角定理得到∠D=∠B,证明△DMA∽△BMC,根据相似三角形的性质列出比例式,即可证明结论;(2)连接OA,OC,过O作OH⊥AC于H点,根据圆周角定理、垂径定理计算即可.【解答】(1)证明:∵=,∴∠D=∠B,又∵∠DMA=∠BMC,∴△DMA∽△BMC,∴=,∴DM•MC=BM•MA;(2)连接OA,OC,过O作OH⊥AC于H点,∵∠D=60°,∴∠AOC=120°,∠OAH=30°,AH=CH,∵⊙O半径为2,∴AH=∵AC=2AH,∴AC=2.【点评】本题考查的是相似三角形的判定和性质、圆周角定理、垂径定理,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.24.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B两点(点A在点B的左侧).(1)求m的取值范围;(2)当m取最大整数时,求△ABC的面积.【分析】(1)根据抛物线与x轴有两个交点,得到△>0,由此求得m的取值范围.(2)利用(1)中m的取值范围确定m=2,然后根据抛物线解析式求得点A、B的坐标,利用三角形的面积公式解答即可.【解答】解:(1)∵抛物线y=x2﹣4x+2m﹣1与x轴有两个交点,令y=0.∴x2﹣4x+2m﹣1=0.∵与x轴有两个交点,∴方程有两个不等的实数根.∴△>0.即△=(﹣4)2﹣4•(2m﹣1)>0,∴m<2.5.(2)∵m<2.5,且m取最大整数,∴m=2.当m=2时,抛物线y=x2﹣4x+2m﹣1=x2﹣4x+3=(x﹣2)2﹣1.∴C坐标为(2,﹣1).令y=0,得x2﹣4x+3=0,解得x1=1,x2=3.∴抛物线与x轴两个交点的坐标为A(1,0),B(3,0),∴△ABC的面积为=1.【点评】考查了抛物线与x轴的交点坐标,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点,解题时,注意二次函数与一元二次方程间的转化关系.六、(本题满分12分)25.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.【分析】(1)列表得出所有等可能的情况数即可;(2)找出点(x,y)落在反比例函数y=的图象上的情况数,即可求出所求的概率;(3)找出所确定的数x,y满足y的情况数,即可求出所求的概率.【解答】解:(1)列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的结果有16种,分别为(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(2,3);(2,4);(3,1);(3,2);(3,3);(3,4);(4,1);(4,2);(4,3);(4,4);(2)其中点(x,y)落在反比例函数y=的图象上的情况有:(2,3);(3,2)共2种,则P(点(x,y)落在反比例函数y=的图象上)==;(3)所确定的数x,y满足y的情况有:(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(3,1);(4,1)共8种,则P(所确定的数x,y满足y)==.【点评】此题考查了列表法与树状图法,以及反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)26.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F和E.已知点B的坐标为(1,3).(1)填空:k= 3 ;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.【分析】(1)由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;(2)设A点坐标为(a,),则D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),进而可得出PB,PC,PA,PD 的长度,由四条线段的长度可得出,结合∠P=∠P可得出△PDC∽△PAB,由相似三角形的性质可得出∠CDP=∠A,再利用“同位角相等,两直线平行”可证出CD∥AB;(3)由四边形ABCD的面积和△PCD的面积相等可得出S△PAB=2S△PCD,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论.【解答】(1)解:∵B点(1,3)在反比例函数y=的图象,∴k=1×3=3.故答案为:3.(2)证明:∵反比例函数解析式为,∴设A点坐标为(a,).∵PB⊥x轴于点C,PA⊥y轴于点D,∴D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),∴PB=3﹣,PC=﹣,PA=1﹣a,PD=1,∴,,∴.又∵∠P=∠P,∴△PDC∽△PAB,∴∠CDP=∠A,∴CD∥AB.(3)解:∵四边形ABCD的面积和△PCD的面积相等,∴S△PAB=2S△PCD,∴×(3﹣)×(1﹣a)=2××1×(﹣),整理得:(a﹣1)2=2,解得:a1=1﹣,a2=1+(舍去),∴P点坐标为(1,﹣3﹣3).【点评】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题的关键是:(1)根据点的坐标,利用反比例函数图象上点的坐标特征求出k 值;(2)利用相似三角形的判定定理找出△PDC∽△PAB;(3)由三角形的面积公式,找出关于a的方程.八、(本题满分14分)27.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A和点C作直线BP的垂线,垂足为点E和点F.(1)证明:△ABE∽△BCF;(2)若=,求的值;(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG的长.【分析】(1)由余角的性质可得∠ABE=∠BCF,即可证△ABE∽△BCF;(2)由相似三角形的性质可得==,由等腰三角形的性质可得BP=2BE,即可求的值;(3)由题意可证△DPH∽△CPB,可得==,可求AE=,由等腰三角形的性质可得AE平分∠BAP,可证∠EAG=∠BAH=45°,可得△AEG是等腰直角三角形,即可求AG的长.【解答】证明:(1)∵AB⊥BC,∴∠ABE+∠FBC=90°又∵CF⊥BF,∴∠BCF+∠FBC=90°∴∠ABE=∠BCF又∵∠AEB=∠BFC=90°,∴△ABE∽△BCF(2)∵△ABE∽△BCF,∴==又∵AP=AB,AE⊥BF,∴BP=2BE∴==(3)如图,延长AD与BG的延长线交于H点∵AD∥BC,∴△DPH∽△CPB∴==∵AB=BC,由(1)可知△ABE≌△BCF∴CF=BE=EP=1,∴BP=2,代入上式可得HP=,HE=1+=∵△ABE∽△HAE,∴=,=,∴AE=∵AP=AB,AE⊥BF,∴AE平分∠BAP又∵AG平分∠DAP,∴∠EAG=∠BAH=45°,∴△AEG是等腰直角三角形.∴AG=AE=3【点评】本题是相似综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.。

初中数学贵州省遵义市中考模拟数学考试卷及答案Word版

初中数学贵州省遵义市中考模拟数学考试卷及答案Word版

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:在0,﹣2,5,,﹣0.3中,负数的个数是()A. 1 B. 2 C. 3 D. 4试题2:下列图形中,是轴对称图形的是()A.B.C.D.试题3:据有关资料显示,2014年通过国家科技支撑计划,遵义市获得国家级科技专项重点项目资金5533万元,将5533万用科学记数法可表示为()A. 5.533×108B. 5.533×107C. 5.533×106D.55.33×106试题4:如图,直线l1∥l2,∠1=62°,则∠2的度数为()A.152°B.118°C.28°D.62°试题5:下列运算正确的是()A.4a﹣a=3 B.2(2a﹣b)=4a﹣bC.(a+b)2=a2+b2D.(a+2)(a﹣2)=a2﹣4试题6:下列几何体的主视图与其他三个不同的是()A.B.C.D.试题7:若x=3是分式方程﹣=0的根,则a的值是()试题8:不等式3x﹣1>x+1的解集在数轴上表示为()A.B.C.D.试题9:已知点A(﹣2,y1),B(3,y2)是反比例函数y=(k<0)图象上的两点,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<0试题10:如果一组数据x1,x2,…,x n的方差是4,则另一组数据x1+3,x2+3,…,x n+3的方差是()A. 4 B.7 C.8 D.19试题11:如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()试题12:将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1,B1C1交CD于点E,A B=,则四边形AB1ED的内切圆半径为()A.B.C.D.试题13:使二次根式有意义的x的取值范围是.试题14:如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015= .试题15:2015年1月20日遵义市政府工作报告公布:2013年全市生产总值约为1585亿元,经过连续两年增长后,预计2015年将达到2180亿元.设平均每年增长的百分率为x,可列方程为.试题16:我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3= .试题17:按一定规律排列的一列数依次为:,,,,…,按此规律,这列数中的第10个数与第16个数的积是.试题18:如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2.试题19:计算:(3.14﹣π)0﹣﹣|﹣3|+4sin60°.试题20:先化简,再求值:,其中a=2.试题21:如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、CB为三根垂直于AB的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)试题22:有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.试题23:遵义市某中学为了搞好“创建全国文明城市”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.试题24:在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.试题25:某工厂生产一种产品,当产量至少为10吨,但不超过55吨时,每吨的成本y(万元)与产量x(吨)之间是一次函数关系,函数y与自变量x的部分对应值如表:x(吨)10 20 30y(万元/吨)45 40 35(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)当投入生产这种产品的总成本为1200万元时,求该产品的总产量;(注:总成本=每吨成本×总产量)(3)市场调查发现,这种产品每月销售量m(吨)与销售单价n(万元/吨)之间满足如图所示的函数关系,该厂第一个月按同一销售单价卖出这种产品25吨.请求出该厂第一个月销售这种产品获得的利润.(注:利润=售价﹣成本)试题26:如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.试题27:如图,抛物线y=a x2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求抛物线的解析式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A、C、D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积;(3)以AB为直径作⊙M,直线经过点E(﹣1,﹣5),并且与⊙M相切,求该直线的解析式.试题1答案: B试题2答案: A试题3答案: B试题4答案: D试题5答案: D试题6答案: C试题7答案: A试题8答案: C试题9答案: B试题10答案:A试题11答案:D试题12答案:B试题13答案:x≥试题14答案:1试题15答案: 1585(1+x)2=2180 试题16答案:12试题17答案:试题18答案: (π+-)试题19答案:-2试题20答案:试题21答案: 试题22答案:试题23答案: 400C试题24答案: 试题25答案: 试题26答案: 试题27答案:。

初中数学贵州省遵义市中考模拟数学考试卷及答案解析

初中数学贵州省遵义市中考模拟数学考试卷及答案解析

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:﹣3的绝对值是()A.3 B.﹣3 C. D.±3试题2:在文化旅游大融合的背景下,享受文化成为旅游业的新趋势.今年“五一”假期,我市为游客和市民提供了丰富多彩的文化享受,各艺术表演馆美术馆、公共图书馆、群众文化机构、非遗机构及文物机构累计接待游客18.25万人次,将18.25万用科学记数法表示为()A.1.825×105 B.1.825×106 C.1.825×107 D.1.825×108试题3:一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为()A.30° B.45° C.55° D.60°试题4:下列计算正确的是()A.x2+x=x3 B.(﹣3x)2=6x2评卷人得分C.8x4÷2x2=4x2 D.(x﹣2y)(x+2y)=x2﹣2y2试题5:某校7名学生在某次测量体温(单位:℃)时得到如下数据:36.3,36.4,36.5,36.7,36.6,36.5,36.5,对这组数据描述正确的是()A.众数是36.5 B.中位数是36.7C.平均数是36.6 D.方差是0.4试题6:已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为()A.5 B.10 C.11D.13试题7:如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则可列方程为()A.(30﹣2x)(40﹣x)=600 B.(30﹣x)(40﹣x)=600C.(30﹣x)(40﹣2x)=600 D.(30﹣2x)(40﹣2x)=600试题8:新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A. B.C. D.试题9:如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E,则线段DE的长为()A. B. C.4 D.试题10:构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°====2﹣.类比这种方法,计算tan22.5°的值为()A.+1 B.﹣1 C. D.试题11:如图,△ABO的顶点A在函数y=(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB 于点P、Q.若四边形MNQP的面积为3,则k的值为()A.9 B.12 C.15D.18试题12:抛物线y=ax2+bx+c的对称轴是直线x=﹣2.抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,下列结论中正确的个数有()①4a﹣b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等实数根;④b2+2b>4ac.A.1个 B.2个 C.3个 D.4个试题13:计算:﹣的结果是.试题14:如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为.试题15:如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD上一点,将△ABE沿BE折叠,使点A 的对应点A′落在MN上.若CD=5,则BE的长是.试题16:如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是.试题17:(1)sin30°﹣(π﹣3.14)0+(﹣)﹣2;(2)解方程;=.试题18:化简式子,从0,1,2中取一个合适的数作为x的值代入求值.试题19:某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门截面示意图,已知测温门AD的顶部A处距地面高为2.2m,为了解自己的有效测温区间.身高1.6m的小聪做了如下实验:当他在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为18°;在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60°.求小聪在地面的有效测温区间MN的长度.(额头到地面的距离以身高计,计算精确到0.1m,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)试题20:如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.试题21:遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:h)的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.课外劳动时间频数分布表劳动时间分组频数频率0≤t<20 2 0.120≤t<40 4 m40≤t<60 6 0.360≤t<80 a0.2580≤t<100 3 0.15解答下列问题:(1)频数分布表中a=,m=;将频数分布直方图补充完整;(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)已知课外劳动时间在60h≤t<80h的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.试题22:为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元/个,乙种型号水杯进价为45元/个,下表是前两月两种型号水杯的销售情况:时间销售数量(个)销售收入(元)(销售收入=售价×销售数量)甲种型号乙种型号第一月22 8 1100第二月38 24 2460(1)求甲、乙两种型号水杯的售价;(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种号水杯a个,利润为w元,写出w与a的函数关系式,并求出第三月的最大利润.试题23:如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A,C不重合),连接DE,作EF⊥DE交射线BA于点F,过点E作MN∥BC分别交CD,AB于点M、N,作射线DF交射线CA于点G.(1)求证:EF=DE;(2)当AF=2时,求GE的长.试题24:如图,抛物线y=ax2+x+c经过点A(﹣1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.(1)求该抛物线的解析式;(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.试题1答案:A【分析】根据绝对值的概念可得﹣3的绝对值就是数轴上表示﹣2的点与原点的距离.进而得到答案.解:﹣3的绝对值是3,故选:A.试题2答案:A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:18.25万=182500,用科学记数法表示为:1.825×105.故选:A.试题3答案:B【分析】根据平行线的性质即可得到结论.解:∵AB∥CD,∴∠1=∠D=45°,故选:B.试题4答案:C【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.解:x2+x不能合并,故选项A错误;(﹣3x)2=9x2,故选项B错误;8x4÷2x2=4x2,故选项C正确;(x﹣2y)(x+2y)=x2﹣4y2,故选项D错误;故选:C.试题5答案:A【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.解:7个数中36.5出现了三次,次数最多,即众数为36.5,故A选项正确,符合题意;将7个数按从小到大的顺序排列为:36.3,36.4,36.5,36.5,36.5,36.6,36.7,第4个数为36.5,即中位数为36.5,故B选项错误,不符合题意;=×(36.3+36.4+36.5+36.5+36.5+36.6+36.7)=36.5,故C选项错误,不符合题意;S2=[(36.3﹣36.5)2+(36.4﹣36.5)2+3×(36.5﹣36.5)2+(36.6﹣36.5)2+(36.7﹣36.5)2]=,故D选项错误,不符合题意;故选:A.试题6答案:D【分析】利用根与系数的关系得到x1+x2=3,x1x2=﹣2,再利用完全平方公式得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故选:D.试题7答案:D【分析】设剪去小正方形的边长是xcm,则纸盒底面的长为(40﹣2x)cm,宽为(30﹣2x)cm,根据长方形的面积公式结合纸盒的底面积是600cm2,即可得出关于x的一元二次方程,此题得解.解:设剪去小正方形的边长是xcm,则纸盒底面的长为(40﹣2x)cm,宽为(30﹣2x)cm,根据题意得:(40﹣2x)(30﹣2x)=32.故选:D.试题8答案:C【分析】乌龟是匀速行走的,图象为线段.兔子是:跑﹣停﹣急跑,图象由三条折线组成;最后同时到达终点,即到达终点花的时间相同.解:A.此函数图象中,S2先达到最大值,即兔子先到终点,不符合题意;B.此函数图象中,S2第2段随时间增加其路程一直保持不变,与“当它一觉醒来,发现乌龟已经超过它,于是奋力直追”不符,不符合题意;C.此函数图象中,S1、S2同时到达终点,符合题意;D.此函数图象中,S1先达到最大值,即乌龟先到终点,不符合题意.故选:C.试题9答案:D【分析】由在菱形ABCD中,AB=5,AC=6,利用菱形的性质以及勾股定理,求得OB的长,继而可求得BD的长,然后由菱形的面积公式可求得线段DE的长.解:如图.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,OA=AC=3,BD=2OB,∵AB=5,∴OB==4,∴BD=2OB=8,∵S菱形ABCD=AB•DE=AC•BD,∴DE===.故选:D.试题10答案:B【分析】在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°,设AC=BC=1,则AB =BD=,根据tan22.5°=计算即可.解:在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°,设AC=BC=1,则AB=BD=,∴tan22.5°===﹣1,故选:B.试题11答案:D【分析】易证△ANQ∽△AMP∽△AOB,由相似三角形的性质:面积比等于相似比的平方可求出△ANQ的面积,进而可求出△AOB的面积,则k的值也可求出.解:∵NQ∥MP∥OB,∴△ANQ∽△AMP∽△AOB,∵M、N是OA的三等分点,∴=,=,∴=,∵四边形MNQP的面积为3,∴=,∴S△ANQ=1,∵=()2=,∴S△AOB=9,∴k=2S△AOB=18,故选:D.试题12答案:C【分析】根据抛物线的对称轴可判断①;由抛物线与x轴的交点及抛物线的对称性以及由x=﹣1时y>0可判断②,由抛物线与x轴有两个交点,且顶点为(﹣2,3),即可判断③;利用抛物线的顶点的纵坐标为3得到=3,即可判断④.解:∵抛物线的对称轴为直线x=﹣=﹣2,∴4a﹣b=0,所以①正确;∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,∴c>3a,所以②错误;∵抛物线与x轴有两个交点,且顶点为(﹣2,3),∴抛物线与直线y=2有两个交点,∴关于x的方程ax2+bx+c=2有两个不相等实数根,所以③正确;∵抛物线的顶点坐标为(﹣2,3),∴=3,∴b2+12a=4ac,∵4a﹣b=0,∴b=4a,∴b2+3b=4ac,∵a<0,∴b=4a<0,∴b2+2b>4ac,所以④正确;故选:C.试题13答案:【分析】首先化简,然后根据实数的运算法则计算.解:=2﹣=.故答案为:.试题14答案:x<4【分析】结合函数图象,写出直线y=kx+2在直线y=2下方所对应的自变量的范围即可.解:∵直线y=kx+b与直线y=2交于点A(4,2),∴x<4时,y<2,∴关于x的不等式kx+b<2的解集为x<4.故答案为x<4.试题15答案:【分析】在Rt△A'BM中,解直角三角形求出∠BA′M=30°,再证明∠ABE=30°即可解决问题.解:∵将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,∴AB=2BM,∠A′MB=90°,MN∥BC.∵将△ABE沿BE折叠,使点A的对应点A′落在MN上.∴A′B=AB=2BM.在Rt△A′MB中,∵∠A′MB=90°,∴sin∠MA′B=,∴∠MA′B=30°,∵MN∥BC,∴∠CBA′=∠MA′B=30°,∵∠ABC=90°,∴∠ABA′=60°,∴∠ABE=∠EBA′=30°,∴BE=.故答案为:.试题16答案:【分析】连结OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,根据圆周角定理可得∠BOC=90°,根据等腰直角三角形的性质和勾股定理可得DG,AG,可求AD,再根据相交弦定理可求DE.解:连结OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,∵⊙O是△ABC的外接圆,∠BAC=45°,∴∠BOC=90°,∵BD=4,CD=1,∴BC=4+1=5,∴OB=OC=,∴OA=,OF=BF=,∴DF=BD﹣BF=,∴OG=,GD=,在Rt△AGO中,AG==,∴AD=AG+GD=,∴AD×DE=BD×CD,DE==.故答案为:.试题17答案:解:(1)原式=﹣1+4=;(2)去分母得:2x﹣3=3x﹣6,解得:x=3,经检验x=3是分式方程的解.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题18答案:解:原式==,∵x≠0,2,∴当x=1时,原式=﹣1.【分析】直接利用分式的性质进行通分运算,进而结合分式的混合运算法则分别化简得出答案.试题19答案:解:延长BC交AD于点E,则AE=AD﹣DE=0.6m.BE=≈1.875m,CE=≈0.374m.所以BC=BE﹣CE=1.528m.所以MN=BC≈1.5m.答:小聪在地面的有效测温区间MN的长度约为1.5m.【分析】延长BC交AD于点E,构造直角△ABE和矩形EDNB,通过解直角三角形分别求得BE、CE的长度,易得BC的值;然后根据矩形的性质知MN=BC.试题20答案:解:(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴=,∴BD2=BF•BA=2×6=12.∴BD=2.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.试题21答案:解:(1)a=(2÷0.1)×0.25=5,m=4÷20=0.2,补全的直方图如图所示:故答案为:5,0.2;(2)400×(0.25+0.15)=160(人);(3)根据题意画出树状图,由树状图可知:共有20种等可能的情况,1男1女有12种,故所选学生为1男1女的概率为:P==.【分析】(1)根据频数分布表所给数据即可求出a,m;进而可以补充完整频数分布直方图;(2)根据样本估计总体的方法即可估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)根据题意画出用树状图即可求所选学生为1男1女的概率.试题22答案:解:(1)设甲、乙两种型号水杯的销售单价分别为x元、y元,,解得,,答:甲、乙两种型号水杯的销售单价分别为30元、55元;(2)由题意可得,,解得:50≤a≤55,w=(30﹣25)a+(55﹣45)(80﹣a)=﹣5a+800,故当a=50时,W有最大值,最大为550,答:第三月的最大利润为550元.【分析】(1)根据表格中的数据可以列出相应的二元一次方程组,从而可以求得甲、乙两种型号水杯的销售单价;(2)根据题意,可以得到w与a的函数关系式.试题23答案:【解答】(1)证明:∵四边形ABCD是正方形,AC是对角线,∴∠ECM=45°,∵MN∥BC,∠BCM=90°,∴∠NMC+∠BCM=180°,∠MNB+∠B=180°,∴∠NMC=90°,∠MNB=90°,∴∠MEC=∠MCE=45°,∠DME=∠ENF=90°,∴MC=ME,∵CD=MN,∴DM=EN,∵DE⊥EF,∠EDM+∠DEM=90°,∴∠DEF=90°,∴∠DEM+∠FEN=90°,∴∠EDM=∠FEN,在△DME和△ENF中,,∴△DME≌△ENF(ASA),∴EF=DE;(2)由(1)知,△DME≌△ENF,∴ME=NF,∵四边形MNBC是矩形,∴MC=BN,又∵ME=MC,AB=4,AF=2,∴BN=MC=NF=1,∵∠EMC=90°,∴CE=,∵AF∥CD,∴△DGC∽△FGA,∴,∴,∵AB=BC=4,∠B=90°,∴AC=4,∵AC=AG+GC,∴AG=,CG=,∴GE=GC﹣CE==.【分析】(1)要证明EF=DE,只要证明△DME≌△ENF即可,然后根据题目中的条件和正方形的性质,可以得到△DME≌△ENF的条件,从而可以证明结论成立;(2)根据勾股定理和三角形相似,可以得到AG和CG、CE的长,然后即可得到GE的长.试题24答案:解:(1)把点A(﹣1,0)和点C(0,3)代入y=ax2+x+c得:,解得:,∴抛物线的解析式为:y=﹣x2+x+3;(2)不存在,理由如下:①当点Q在y轴右边时,如图1所示:假设△QCO为等边三角形,过点Q作QH⊥OC于H,∵点C(0,3),∴OC=3,则OH=OC=,tan60°=,∴QH=OH•tan60°=×=,∴Q(,),把x=代入y=﹣x2+x+3,得:y=﹣≠,∴假设不成立,∴当点Q在y轴右边时,不存在△QCO为等边三角形;②当点Q在y轴的左边时,如图2所示:假设△QCO为等边三角形,过点Q作QT⊥OC于T,∵点C(0,3),∴OC=3,则OT=OC=,tan60°=,∴QT=OT•tan60°=×=,∴Q(﹣,),把x=﹣代入y=﹣x2+x+3,得:y=﹣﹣≠,∴假设不成立,∴当点Q在y轴左边时,不存在△QCO为等边三角形;综上所述,在抛物线上不存在一点Q,使得△QCO是等边三角形;(3)令﹣x2+x+3=0,解得:x1=﹣1,x2=4,∴B(4,0),设BC直线的解析式为:y=kx+b,把B、C的坐标代入则,解得:,∴BC直线的解析式为:y=﹣x+3,当⊙M与x轴相切时,如图3所示:延长PM交AB于点D,则点D为⊙M与x轴的切点,即PM=MD,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=﹣x2+x+3,MD=﹣x+3,∴(﹣x2+x+3)﹣(﹣x+3)=﹣x+3,解得:x1=1,x2=4(不合题意舍去),∴⊙M的半径为:MD=﹣+3=;当⊙M与y轴相切时,如图4所示:延长PM交AB于点D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=﹣x2+x+3,MD=﹣x+3,∴(﹣x2+x+3)﹣(﹣x+3)=x,解得:x1=,x2=0(不合题意舍去),∴⊙M的半径为:EM=;综上所述,⊙M的半径为或.【分析】(1)把点A(﹣1,0)和点C(0,3)代入y=ax2+x+c求出a与c的值即可得出抛物线的解析式;(2)①当点Q在y轴右边时,假设△QCO为等边三角形,过点Q作QH⊥OC于H,OC=3,则OH=,tan60°=,求出Q(,),把x=代入y=﹣x2+x+3,得y=﹣≠,则假设不成立;②当点Q在y轴的左边时,假设△QCO为等边三角形,过点Q作QT⊥OC于T,OC=3,则OT=,tan60°=,求出Q (﹣,),把x=﹣代入y=﹣x2+x+3,得y=﹣﹣≠,则假设不成立;(3)求出B(4,0),待定系数法得出BC直线的解析式y=﹣x+3,当⊙M与x轴相切时,延长PM交AB于点D,则点D为⊙M与x轴的切点,即PM=MD,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=﹣x2+x+3,MD=﹣x+3,由PD﹣MD=MD,求出x=1,即可得出结果;当⊙M与y轴相切时,延长PM交AB于点D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,﹣x2+x+3),M(x,﹣x+3),则PD=﹣x2+x+3,MD =﹣x+3,代入即可得出结果.。

初中数学贵州省遵义市中考模拟数学考试题及答案[]

初中数学贵州省遵义市中考模拟数学考试题及答案[]

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx 题总分得分一、xx题(每空xx 分,共xx分)试题1:下列各数中,比-1小的数是A.0 B.-2 C. D.1试题2:如图是一个正六棱柱,它的俯视图是试题3:某种生物细胞的直径约为0.00056,将0.00056用科学记数法表示为A.0.56 B. 5.6 C. 5.6 D. 56试题4:把一块直尺与一块三角板如图放置,若o,则的度数为A. 115oB. 120oC. 145oD. 135o 评卷人得分试题5:下列运算正确的是A. B. C. D.试题6:今年5月,某校举行“唱红歌”歌咏比赛,有17位同学参加选拔赛,所得分数互不相同,按成绩取前8名进入决赛,若知道某同学分数,要判断他能否进入决赛,只需知道17位同学分数的A.中位数B.众数C.平均数D.方差试题7:若一次函数的函数值随的增大而减小,则的取值范围是A. B. C. D.试题8:若、均为正整数,且,则的最小值是A. 3B. 4C. 5D. 6试题9:如图,是⊙的直径,交⊙于点,⊥于点,要使是⊙的切线,还需补充一个条件,则补充的条件不正确的是A. B. C. D. ∥试题10:如图,在直角三角形中(∠=90o),放置边长分别3,4,的三个正方形,则的值为A. 5B. 6C. 7D. 12试题11:计算:=试题12:方程的解为试题13:将点P(-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P/,则点P/的坐标为试题14:若、为实数,且,则=试题15:如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△,则△中边上的高是.试题16:如图,⊙是边长为2的等边△的内切圆,则⊙的半径为.试题17:有一数值转换器,原理如图所示,若开始输入的值是5,可发现第一次输出的结果是8,第二次输出的结果是4,……,请你探索第2011次输出的结果是.试题18:如图,已知双曲线,,点P为双曲线上的一点,且PA⊥轴于点A,PB⊥轴于点B,PA、PB分别交双曲线于D、C两点,则△PCD的面积为.试题19:计算:试题20:先化简,再求值:,其中.试题21:某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6,∠ABC=45o,后考虑到安全因素,将楼梯脚B 移到CB延长线上点D处,使(如图所示).(1)求调整后楼梯AD的长;(2)求BD的长.(结果保留根号)试题22:第六次全国人口普查工作圆满结束,2011年5月20日《遵义晚报》报到了遵义市人口普查结果,并根据我市常住人口情况,绘制出不同年龄段的扇形统计图;普查结果显示,2010年我市常住人口中,每10万人就有4402人具有大学文化程度,与2000年第五次人口普查相比,是2000年每10万人具有大学文化程度人数的3倍少473人,请根据以上信息,解答下列问题.(1)65岁及以上人口占全市常住人口的百分比是;(2)我市2010年常住人口约为万人(结果保留四个有效数字);(3)与2000年我市常住人口654.4万人相比,10年间我市常住人口减少万人;(4)2010年我市每10万人口中具有大学文化程度人数比2000年增加了多少人?试题23:把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG的长.试题24:有四张卡片(背面完全相同),分别写有数字1、2、-1、-2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b、c分别表示甲、乙两同学抽出的数字.(1)用列表法求关于的方程有实数解的概率;(2)求(1)中方程有两个相等实数解的概率.试题25:“六·一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批玩具每套的进价是多少元?(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?试题26:如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).(1)当t为何值时,四边形PCDQ为平行四边形?(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.试题27:已知抛物线经过A(3,0), B(4,1)两点,且与y轴交于点C.(1)求抛物线的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF 的面积取得最小值时,求点E的坐标.试题1答案:B试题2答案:C试题3答案:B试题4答案:D试题5答案:C试题6答案:A试题7答案:D试题8答案:B试题9答案:A试题10答案: C试题11答案: 2试题12答案:试题13答案: (-3,3)试题14答案: -1试题15答案:试题16答案:试题17答案: 1试题18答案:试题19答案: 解:原式 ==4(说明:第一步中每计算正确一项得1分)试题20答案:原式====当,时原式=试题21答案:解法一:(1)在Rt△ABC中,∠ABC=45o∵sin∠ABC=,AB=6∴AC=AB·sin45o=又∵∠ACD=90O,∠ADC=30OAD=2AC=答:调整后楼梯AD的长为(2)(4分)由(1)知:AC=BC=,AD=∵∠ACD=90O,∠ADC=30O∴DC=AD·cos30o=∴BD=DC-BC=答:BD的长为解法二:(1)∵∠ACB=90O,∠ABC=45O∴AC=BC设AC=BC=,又AB=6,∴解得,∴AC=BC=∵∠ACB=90O, ∠ADC=30O∴AD=2AC=答:调整后楼梯AD的长为(2)∵∠ACD=90O,AC=,AD=∴DC2=AD2-AC2=∴DC=(负值舍去)∴BD=DC-BC=答:BD的长为试题22答案:解法一:(1)(2分)9.27%(2)(2分)612.7(3)(2分)41.7(4)(4分)设2000年我市每10万人中具有大学文化程度的人数为人.由题意得:3-473=4402=1625∴4402-1625=2777(人)答: 2010年我市每10万人中具有大学文化程度人数比2000年增加了2777(人)解法二:(4)(4分)设2010年我市每10万人中具有大学文化程度比2000年增加了人, 由题意得3(4402-)-473=4402=2777答: 2010年我市每10万人中具有大学文化程度人数比2000年增加了2777(人)试题23答案:解:(1)∵四边形ABCD是矩形∴∠A=∠C=90O,AB CD∴∠ABD=∠CDB∵△BHE、△DGF分别是由△BHA、△DGC折叠所得∴BE=AB,DF=CD, ∠HEB=∠A, ∠GFD=∠C∠HBE=∠ABD, ∠GDF=∠CDB∴∠HBE=∠GDF, ∠HEB=∠GFD,BE=DF∴△BHE≌△DGF(2) 在Rt△BCD中,∵AB=CD=6,BC=8∴BD=∴BF=BD-DF=BD-CD=4设FG=,则BG=BC-CG=BC-FG=8-,则有:解得=3∴线段FG的长为3.试题24答案:解:(1)(7分)用列表法:由上表可知:有16种可能出现的结果.若关于的方程有实数解,则需,而满足条件有10种结果.∴P(方程有实数解)=(2)(3分)要使方程有两个相等的实数解,则需,而满足条件有2种结果.∴P(方程有两相等实数解)=试题25答案:解:(1)(6分)设第一批玩具每套的进价为元,则解得:=50经检验:=50是原方程的解.答: 第一批玩具每套的进价为50元.(2)(4分) 设每套玩具的售价为元,则解得答: 每套玩具的售价至少为70元.试题26答案:解: (1)(5分)设t秒后,四边形PCDQ为平行四边形则 DQ=t,BP=2t, ∴PC=20-2t当DQ=PC时,即t=20-2t, t=(秒)∴当t=秒时, 四边形PCDQ为平行四边形.(2)(7分)∵DQ∥BH,∴△DEQ∽△BEP∴①同理:由EF∥BH.得:②由DQ∥CH. 得:③由①②③得:∴BP=CH∴PH=PC+CH=PC+BP=BC=20()∴PH的长不变,为20.试题27答案:解:(1)(3分)将A(3,0),B(4,1)代人得∴∴∴C(0,3)(2)(7分)假设存在,分两种情况,如图.①连接AC,∵OA=OC=3, ∴∠OAC=∠OCA=45O. ……1分过B作BD⊥轴于D,则有BD=1,,∴BD=AD, ∴∠DAB=∠DBA=45O.∴∠BAC=180O-45O-45O=90O……………2分∴△ABC是直角三角形. ∴C(0,3)符合条件.∴P1(0,3)为所求.②当∠ABP=90O时,过B作BP∥AC,BP交抛物线于点P.∵A(3,0),C(0,3)∴直线AC的函数关系式为将直线AC向上平移2个单位与直线BP重合.则直线BP的函数关系式为由,得又B(4,1), ∴P2(-1,6).综上所述,存在两点P1(0,3), P2(-1,6).另解②当∠ABP=90O时, 过B作BP∥AC,BP交抛物线于点P.∵A(3,0),C(0,3)∴直线AC的函数关系式为将直线AC向上平移2个单位与直线BP重合.则直线BP的函数关系式为∵点P在直线上,又在上.∴设点P为∴解得∴P1(-1,6), P2(4,1)(舍)综上所述,存在两点P1(0,3), P2(-1,6).(3)(4分) ∵∠OAE=∠OAF=45O,而∠OEF=∠OAF=45O,∠OFE=∠OAE=45O,∴∠OEF=∠OFE=45O,∴OE=OF, ∠EOF=90O∵点E在线段AC上,∴设E∴=∴===∴当时, 取最小值,此时, ∴。

初中数学贵州省遵义市中考模拟数学考试题及答案

初中数学贵州省遵义市中考模拟数学考试题及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如果+30m表示向东走30m,那么向西走40米表示为()A.+40m B.-40m C.+30m D.-30m试题2:一个几何体的三视图如图所示,则这个几何体是()试题3:遵义市是国家级红色旅游市,每年都吸引众多海内外游客前来观光、旅游,据有关部门统计报道:2012年全市共接待游客3354万人次,将3354万用科学计数法表示为()A、 B、 C、 D、试题4:如图,直线∥,若∠1=140°,∠2=70°,则∠3的度数是()A、70°B、80°C、65°D、60°评卷人得分试题5:计算(-)的结果是()A、 B、 C、 D、试题6:如图,在4×4正方形网格中,任取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是( A )A、 B、 C、 D、试题7:),是正比例函数图象上的两点,下列判断中,正确的是()A、 B、 C、当时 D、当时,试题8:如图,A、B两点在数轴上表示的数分别是a、b。

则下列式子中成立的是( )A、a+b<0B、-a<-bC、1-2a>1-2bD、|a|-|b|>0试题9:如图,将边长1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过的长度为( )A、 B、C、 D、3cm试题10:二次函数y=ax+bx+c(x≠0)的图象如图所示,若M=a+b-c,N=4a-2b+c,P=2a-b,则M、N、P中,值小于0的数有( ) A、3个 B、2个 C、1个 D、0个试题11:计算:.试题12:已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则a的值为 .试题13:分解因式:x-x= .试题14:如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC= .试题15:已知x=-2是方程x+mx-6=0的一个根,则方程的另一个根是 .试题16:如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= .试题17:如图,在Rt△ABC 中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交于点D,交AC的延长线于点F,若图中两个阴影部分的面积相等,则AF的长为 .试题18:如图,已知直线与双曲线(k>0)交于点A,B两点,点B的坐标为(-4,-2)C为双曲线(k>0)上一点,且在第一象限内,若△AOC的面积为6,则点C的坐标为。

2023年贵州省遵义市中考一模数学试题(含答案解析)

2023年贵州省遵义市中考一模数学试题(含答案解析)

2023年贵州省遵义市中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知数列:2-,4+,6-,8+,______,在横线上填上最合适的数是()A .9-B .10+C .10-D .12-2.如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是()A .B .C .D .3.小明用一面放大镜观察一个三角形,则这个三角形没有发生变化的是()A .三角形的边长B .三角形的各内角度数C .三角形的面积D .三角形的周长4.下列计算正确的是()A .()257a a =B .321x x -=C .222()a b a b -=-D5.如图,将一块直角三角板的直角顶点放在直尺的一边上,若160∠=︒,则2∠的度数是()A .30︒B .40︒C .50︒D .60︒6.设m ,n 是方程2320230x x +-=的两个不相等实数根,则m n +的值为()A .3B .3-C .2023D .2023-7.如图,点A 、B 、C 、D 在O 上,160BOD ∠=︒,则C ∠的度数是()A .20︒B .80︒C .100︒D .160︒8.《孙子算经》是南北朝时期重要的数学专著,包含“鸡兔同笼”等许多有趣的数学问题.如:“今有木,不知长短,引绳度之,余绳四尺五寸:屈绳量大,不足一尺,木长几何?”大意是:“用一根绳量一根木,绳剩余4.5尺;将绳对折再量木,木剩余1尺,问木长多少?”设木长x 尺,绳长y 尺,则依题意可列方程()A . 4.521y x y x =+⎧⎨=-⎩B . 4.50.51y x y x =-⎧⎨=+⎩C . 4.521y x y x =-⎧⎨=-⎩D . 4.50.51y x y x =+⎧⎨=-⎩9.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是()A .B .C .D .10.如图,在ABC 中,90BAC ∠>︒,AB 的垂直平分线交BC 于点E ,AC 的垂直平分线交BC 于点F ,连接AE AF ,,若10BC =,则AEF △的周长是()A .5B .10C .15D .2011.如图,在33⨯的正方形网格中,点A ,B 在格点(网格线的交点)上,在其余14个点上任取一个点C ,使ABC 成为以AB 为腰的等腰三角形的概率是()A .17B .27C .314D .3712.某组数据的方差计算公式为()()()2222223325x x xS n-+-+-=,由公式提供的信息如下:①样本容量为3;②样本中位数为3;③样本众数为3;④样本平均数为103;其说法正确的有()A .①②④B .②④C .②③D .③④二、填空题13.据统计,红花岗区2022年1月—12月地区生产总值为340.71亿元,340.71亿用科学计数法可表示为______.14.在实数范围内分解因式:x 3﹣2x =_____.15.为测量一铁球的直径,将该铁球放入工件槽内,测得有关数据如图所示(单位:cm ),则该铁球的直径为_____.16.如图,矩形ABCD 中,6AB =,7BC =,M ,N 分别是直线AB ,BC 上的两个动点,2AE =,AEM ∆沿EM 翻折形成FEM ∆,连接NF ,ND ,则DN NF +的最小值为______.三、解答题17.(1)计算:(02sin451π︒+-(2)解方程:()()2222x x +=+.18.先化简22343244x x x x x -⎛⎫-÷ ⎪+++⎝⎭,然后选择一个合适的x 值代入,求出代数式的值.19.按照国家视力健康标准,学生视力状况分为:视力正常、轻度视力不良、中度视力不良、重度视力不良四个类别,分别用A B C D 、、、表示,某数学兴趣小组为了解本校学生的视力健康状况,从全校2000名学生中随机抽取部分学生,进行视力状况调查,根据调查结果,绘制如下两个统计图.抽取的学生视力状况统计表类别ABC D人数140mn50(1)m =______;n =______;(2)该校共有学生2000人,请估算该校学生中,视力不良的总人数;(3)为更好的保护视力,结合上述统计数据分析,请你提出一条合理化的建议;20.速滑运动受到许多年轻人的喜爱,如图,四边形BCDG 是某速滑场馆建造的滑台,已知CD EG ∥,滑台的高DG 为6米,且坡面BC 的坡度为1:1,为了提高安全性,决定降低坡度,改造后的新坡面的坡度37CAG ∠=︒.(参考数据:3sin375︒≈,cos3745︒≈,3tan374︒≈)(1)求新坡面AC 的长;(2)原坡面底部BG 的正前方10米处(10EB =米)是护墙EF ,为保证安全,体育管理部门规定,坡面底部至少距护墙7米,请问新的设计方案是否符合规定,试说明理由.21.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机,某自行车行经营A 、B 两种型号的自行车.(1)该车行今年计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍,求A 型车最少进货多少辆?(2)若该车行经营的A 型自行车去年销售总额为6万元,今年该型自行车每辆售价预计比去年降低300元,若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少20%,求A 型自行车今年每辆售价多少元?22.如图,已知O 过菱形ABOD 的三个顶点A ,B ,D ,连接BD ,过点A 作AE BD 交OB 的延长线于点E .(1)求证:AE 为O 的切线;(2)若O 的半径为2,求图中阴影部分的面积.23.如图,二次函数22y ax ax c =-+的图象与x 轴交于A 、()3,0B 两点,与y 轴相交于点()0,3C -.(1)求二次函数的解析式;(2)若点P 是对称轴上一动点,当PB PC -有最大值时,求点P 的坐标.24.如图,在直角坐标系中,直线13y x =-与反比例函数ky x=的图象交于(),1A m 、B 两点.(1)求反比例函数的表达式;(2)根据图象直接写出13kx x-<的解集______;(3)将直线13y x =-向上平移后与y 轴交于点C ,与双曲线在第二象限内的部分交于点D ,如果ABD △的面积为12,求平移后的直线表达式.25.综合与实践新定义:我们把两个面积相等但不全等的三角形叫做积等三角形.(1)【初步尝试】如图1,已知Rt ABC △中,90C ∠=︒,5AB =,4BC =,P 为AC 上一点,当AP =______时,ABP 与CBP 为积等三角形;(2)【理解运用】如图2,ABD △与ACD 为积等三角形;若3AB =,5AC =,且线段AD 的长度为正整数,求AD 的长;(3)【综合应用】如图3,已知Rt ABC △中,90ACB ∠=︒,分别以AC ,AB 为边向外作正方形ABDE 和正方形ACFG ,连接EG ,求证:AEG △与ABC 为积等三角形.参考答案:1.C【分析】根据所给的数列可知:奇数项是负数,偶数项是正数,每项的绝对值为2n ,据此即可求解.【详解】解:()2121-=-⨯⨯,()24122+=-⨯⨯,()36123-=-⨯⨯,()48124+=-⨯⨯,故第5个数为:()512510-⨯⨯=-,故选:C .【点睛】本题考查了数字类规律探究,找到规律是解决本题的关键.2.B【分析】左视图有1列,含有2个正方形.【详解】解:该几何体的左视图只有一列,含有两个正方形.故选B .【点睛】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.3.B【分析】根据相似三角形的性质解答即可.【详解】∵小明用一面放大镜观察一个三角形,∴看到的三角形和原三角形相似,∴这个三角形没有发生变化的是三角形的各内角度数.故选:B .【点睛】本题考查了相似三角形的性质,熟练掌握知识点是解题的关键.4.D【分析】根据幂的乘方、合并同类项、完全平方公式、二次根式加减运算,进行运算,即可一一判定.【详解】解:A.()2510a a =,故该选项错误,不符合题意;B.32x x x -=,故该选项错误,不符合题意;C.222()2a b a ab b -=-+,故该选项错误,不符合题意;=故选:D .【点睛】本题考查了幂的乘方、合并同类项、完全平方公式、二次根式加减运算,熟练掌握和运用各运算法则是解决本题的关键.5.A【分析】首先可求得3∠的度数,再根据平行线的性质,即可求解.【详解】解:如图,1903180∠+︒+∠=︒ ,160∠=︒,3180901180906030∴∠=︒-︒-∠=︒-︒-︒=︒,∵直尺两边互相平行,2330∴∠=∠=︒,故选:A .【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.6.B【分析】利用一元二次方程根与系数的关系,即可求解.【详解】解:∵m ,n 是方程2320230x x +-=的两个不相等实数根,∴3m n +=-.故选:B【点睛】本题主要考查了一元二次方程的根与系数的关系,熟练掌握若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两个实数根,则12b x x a+=-,12cx x a ⋅=是解题的关键.7.C【分析】根据圆周角定理求得80A ∠=︒,根据圆内接四边形对角互补即可求解.【详解】解:∵ BDBD =,160BOD ∠=︒,∴80A ∠=︒,∵点A 、B 、C 、D 在O 上,∴180100C A ∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理,圆内接四边形对角互补,掌握圆周角定理是解题的关键.8.D【分析】根据“用一根绳量一根木,绳剩余4.5尺;将绳对折再量木,木剩余1尺,即可得出关于x ,y 的二元一次方程.【详解】解:∵用一根绳量一根木,绳剩余4.5尺,= 4.5y x ∴+;∵将绳对折再量木,木剩余1尺,0.5=1y x ∴-,∴根据题意可列方程组 4.50.51y x y x =+⎧⎨=-⎩,故选;D .【点睛】本题考查了由实际问题抽象出二元一次方程组以及数学常识,明确题意,找等量关系,正确列出二元一次方程是解题的关键.9.C【详解】∵小路的正中间有一路灯,晚上小红由A 处径直走到B 处,她在灯光照射下的影长l 与行走的路程S 之间的变化关系应为:当小红走到灯下以前:l 随S 的增大而减小;当小红走到灯下以后再往前走时:l 随S 的增大而增大,∴用图象刻画出来应为C .故选:C .【点睛】考点:1.函数的图象;2.中心投影;3.数形结合.10.B【分析】根据线段的垂直平分线的性质得到EA EB FA FC ==,,根据三角形的周长公式即可求解.【详解】解:∵AB 的垂直平分线交BC 于点E ,AC 的垂直平分线交BC 于点F ,∴EA EB FA FC ==,,∴AEF △的周长10AE EF AF BE EF FC BC =++=++==.故选:B .【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11.B【分析】画出ABC 以AB 为腰的等腰三角形时C 点位置,然后根据概率公式求解即可.【详解】解:C 点落在如图所示网格中的4个格点时,ABC 是以AB 为腰的等腰三角形,∴在其余14个点上任取一个点C ,使ABC 成为以AB 为腰的等腰三角形的概率是42147=.故选:B【点睛】本题考查了等腰三角形的定义、概率公式,解本题的关键在正确找出所有符合条件的点C .12.C【分析】根据题意可得该组数据为2,2,3,3,3,5,5,再由样本容量,中位数,众数,平均数的意义,即可求解.【详解】解:根据题意得:该组数据为2,2,3,3,3,5,5,∴样本容量为7,故①错误;把这一组数据从小到大排列后,位于正中间的数为3,∴样本中位数为3,故②正确;3出现的次数最多,∴样本众数为3,故③正确;样本平均数为()123223335577++++++=,故④错误;故选:C【点睛】本题主要考查了求样本容量,中位数,众数,平均数,熟练掌握样本容量,中位数,众数,平均数的意义是解题的关键.13.103.407110⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:340.71亿810340.7110 3.407110=⨯=⨯,故答案为:103.407110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.x (x(x ).【分析】提取公因式x 后运用平方差公式进行二次分解即可.【详解】解:x 3﹣2x =x (x 2﹣2)=x (x )(x .【点睛】本题考查提公因式法、平方差公式分解因式,把2)2是继续利用平方差公式进行因式分解的关键.15.10cm【详解】解:如图,作OE ⊥AB 于F ,连接OA ,OF ,则OA 2=OF 2+AF 2,∴OA 2=(OA ﹣2)2+42,解得OA=5,∴直径=5×2=10cm .故答案为10cm .【点睛】本题主要考查远的垂径定理,解此题的关键是作辅助线构造直角三角形,再利用勾股定理列方程求解即可.16.11【分析】作点D 关于BC 的对称点D ¢,连接ND ',ED ',由DN ND '=,推出DN NF ND NF '+=+,又2EF EA ==是定值,即可推出当E 、F 、N 、D ¢共线时,DN NF +的值最小,最小值为ED EF '-.【详解】解:如图作点D 关于BC 的对称点D ¢,连接ND ',ED ',则DN ND '=,四边形ABCD 是矩形,6CD AB ∴==,7AD BC ==,在Rt EDD '△中,725DE AD AE =-=-= ,212DD CD '==,13ED '∴===,′DN ND '=Q ,DN NF ND NF '∴+=+,2EF EA ==Q 是定值,∴当E 、F 、N 、D ¢共线时,NF ND '+的值最小,最小值13211=-=,DN NF ∴+的最小值为11,故答案为:11.【点睛】本题考查了翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.17.(1)12;(2)10x =,22x =-.【分析】(1)先求立方根、特殊角三角函数值、零指数幂和绝对值,再计算即可;(2)用因式分解法解方程即可.【详解】解:(1)(02sin451π+︒+-11212=+--1112=+-12=;(2)∵()()2222x x +=+,∴()()22220x x +-+=,∴()20x x +=,则0x =,20x +=,∴10x =,22x =-.【点睛】本题考查了实数的运算和解一元二次方程,解题关键是熟记特殊角三角函数值,熟练运用因式分解法解方程.18.化简结果62x -,取0x =,则分式的值为3-【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x 的值代入进行计算即可.【详解】22343244x x x x x -⎛⎫-÷ ⎪+++⎝⎭()()()()232223222x x x x x x x ⎡⎤++-=-÷⎢⎥+++⎣⎦()()()223632222x x x x x x x ++⎛⎫=-⨯ ⎪+++-⎝⎭()()()226222x x x x +=⨯++-62x =-,根据分式有意义的条件可知:20x +≠,240x -≠,2440x x ++≠,即2x ≠,2x ≠-,取0x =,即原式632x ==--.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键,最后再选择合适的x 求值时要保证选取的x 不能使得分母为0.19.(1)110;100(2)1300(3)见解析【分析】(1)先根据A 的人数和所占的百分数求得调查的总人数,再求得m 值,进而可求得n 值;(2)利用总人数乘以中度视力不良和重度视力不良在样本中所占的百分比即可求解;(3)该校学生视力正常的仅占35%,说明该校学生近视程度较为严重,建议学校加强电子产品进校园及使用的管控,即可.【详解】(1)解:调查的总人数为14035%400÷=(人),则40027.5%110m =⨯=,∴40014011050100n =---=,故答案为:110;100;(2)解:1101005020001300400++⨯=(人),答:该校学生中,视力不良的的总人数为1300人.(3)解:该校学生视力正常的仅占35%,说明该校学生近视程度较为严重,建议学校加强电子产品进校园及使用的管控(答案不唯一).【点睛】本题考查扇形统计图、统计表以及用样本估计总体等知识,关键是从扇形统计图和统计表中找出相应的数据.20.(1)新坡面AC 的长10米(2)此次改造符合规定,理由见详解【分析】(1)过C 点作CH BG ⊥于H 点,证明四边形CDGH 是矩形,即有6CH DG ==,根据610sin sin 37CH AC CAG ===∠︒,即可作答;(2)根据坡面BC 的坡度为1:1,可得6CH BH ==,利用勾股定理8AH ==,即有862AB AH BH =-=-=,即可得1028AE EB AB =-=-=,问题随之得解.【详解】(1)过C 点作CH BG ⊥于H 点,如图,根据题意有:DG BG ⊥,6DG =,∵CD EG ∥,CH BG ⊥,∴四边形CDGH 是矩形,∴6CH DG ==,∵新坡面的坡度37CAG ∠=︒,sin CH CAG AC ∠=,∴610sin sin 37CH AC CAG ===∠︒(米),答:新坡面AC 的长10米;(2)此次改造符合规定,理由如下:∵坡面BC 的坡度为1:1,∴6CH BH ==,∵10AC =,6CH =,∴8AH ==,∴862AB AH BH =-=-=,∵10EB =,∴1028AE EB AB =-=-=(米),∵87AE =>,∴此次改造符合规定.【点睛】本题考查了解直角三角形的应用,明确题意,理解坡度的含义是解答本题的关键.21.(1)A 型车最少进货20辆(2)1500【分析】(1)设A 型车最少进货x 辆,根据B 型车的进货数量不超过A 型车数量的两倍,列出不等式,求解即可;(2)设A 型自行车今年每辆售价为y 元,则去年每辆售价为()300y +元,根据该型车的销售数量与去年相同可得方程,求解即可.【详解】(1)解:设A 型车最少进货x 辆,由题意可得:602x x -≤,解得:20x ≥,∴A 型车最少进货20辆.(2)解:设A 型自行车今年每辆售价为y 元,由题意可得:()60000120%60000=300y y ++,解得=1500y ,经检验,1500y =是原分式方程的解,答:A 型自行车今年每辆售价为1500元.【点睛】本题考查分式方程的应用,一元一次不等式的应用,明确题意找关系式是解题的关键.22.(1)见解析(2)23π【分析】(1)连接OA 交BD 于点P ,根据菱形的性质得出90BPO ∠=︒,根据平行线的性质得出90EAO BPO ∠=∠=︒,进而得出AO AE ⊥,即可得出结论;(2)根据菱形的性质得出AB BO =,证明ABO 是等边三角形,得出30E ∠=︒,进而24EO AO ==,AE =,再根据AOE OAB S S S =-△阴影扇形求解即可.【详解】(1)证明:连接OA 交BD 于点P ,∵四边形ABOD 是菱形,∴AO BD ⊥,∴90BPO ∠=︒,∵AE BD ∥,∴90EAO BPO ∠=∠=︒,∴AO AE ⊥,∵AO 为O 的半径,∴AE 为O 的切线;(2)解:∵四边形ABOD 是菱形,∴AB BO =,∵AO BO =,∴AB BO AO ==,∴ABO 是等边三角形,∴60AOB ∠=︒,∵90EAO ∠=︒,∴30E ∠=︒,∴24EO AO ==,∴AE =,∴216022223603AOE OAB S S S ππ⨯⨯=-=⨯⨯-=-△阴影扇形.【点睛】本题考查切线的判定,扇形面积,菱形的性质,等边三角形的判定,正确理解题意是解题的关键.23.(1)2=23y x x --(2)()1,6-【分析】(1)把点B 、C 的坐标分别代入解析式,解方程组,即可求解;(2)连接PA ,则PA PB =,根据三角形三边的关系得PB PC PA PC AC -=-≤(当点A 、C 、P 共线时取等号),延长AC 交直线1x =于点P ',即P '点为所求,再利用待定系数法求出直线AC 的解析式,从而可得P '点坐标.【详解】(1)解:点B 、C 的坐标分别代入解析式,得9603a a c c -+=⎧⎨=-⎩解得13a c =⎧⎨=-⎩故二次函数的解析式为2=23y x x --;(2)解:()222314y x x x =--=--,故该二次函数图象的对称轴为直线1x =,()3,0B ,()1,0A ∴-,如图,连接PA ,则PA PB =,PB PC PA PC AC ∴-=-≤(当点A 、C 、P 共线时取等号),延长AC 交直线1x =于点P ',设直线AC 的解析式为y mx n =+,把()1,0A -,()0,3C -代入得:03m n n -+=⎧⎨=-⎩解得33m n =-⎧⎨=-⎩,∴直线AC 的解析式为33y x =--,当1x =时,336y x =--=-,即()1,6P '-,∴当PB PC -达到最大值时,点P 的坐标为()1,6-.【点睛】本题考查了利用待定系数法求一次函数及二次函数的解析式,抛物线与x 轴的交点,利用轴对称和三角形三边的关系解决最短路径问题,找到点P '的位置是解决本题的关键.24.(1)3y x=-(2)30x -<<或3x >(3)143y x =-+【分析】(1)将1y =代入一次函数解析式中,求出x 的值,即可得出点A 的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式;(2)通过解方程组133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得(3,1)B -,然后利用函数图象写出反比例函数图象在一次函数13y x =-上方所对应的自变量的范围,从而得到13k x x-<的解集;(3)设平移后直线于y 轴交于点C ,连接AC 、BC ,设平移后的解析式为13y x b =-+,由平行线的性质可得出ABC ABF S S =△△,结合正、反比例函数的对称性以及点A 的坐标,即可得出关于b 的一元一次方程,解方程即可得出结论.【详解】(1)解:令一次函数13y x =-中1y =,则113x =-,解得:3x =-,即点A 的坐标为()3,1-.点()3,1A -在反比例函数k y x=的图象上,313k ∴=-⨯=-,∴反比例函数的表达式为3y x=-.(2)解方程组:133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得:31x y =-⎧⎨=⎩或31x y =⎧⎨=-⎩,则(3,1)B -,结合图象:当30x -<<或3x >时,13k x x -<,即13k x x-<的解集为30x -<<或3x >;(3)设平移后直线于y 轴交于点C ,连接AC 、BC ,如图所示,设平移后的解析式为13y x b =-+,当0x =时,即有y b =,OC b ∴=,该直线平行直线AB ,ABC ABD S S ∴= ,ABD 的面积为12,()1122ABC B A S OC x x ∴=⋅-=△,()3,1A - ,(3,1)B -,OC b=∴6B A x x -=,16122b ∴⨯=,4b ∴=.∴平移后的直线的函数表达式为143y x =-+.【点睛】本题考查了反比例函数与一次函数交点的问题、反比例函数图象上点的坐标特征.三角形的面积公式以及平行线间的距离公式,解题的关键是:(1)求出点A 的坐标;(2)把两个函数关系式联立成方程组求解;(3)找出关于b 的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,巧妙的利用面积法要比找相似三角形简单明了的多.25.(1)1.5(2)2或3(3)见详解【分析】(1)利用三角形中线的性质即可解决问题(2)证明()AAS ADB EDC ≅ ,推出AD DE =,3AB EC ==,利用三角形的三边关系即可解决问题.(3)过点E 作EH GA ⊥,交延长线于点H ,先证明ABH ACD ≅△△,则AC AH =,ABC AEH S S = ,然后再依据积等三角形的定义进行证明即可.【详解】(1)如图,在Rt ABC △中,90C ∠=︒,∵5AB =,4BC =,∴3AC ==,∴12ABP S AP BC =⋅△,12CBP S CP BC =⋅ ,∵ABP 与CBP 不全等ABP 与CBP 为积等三角形,∴.1122ABP CBP S AP BC S CP BC =⋅==⋅ ,∴1 1.52AP CP AC ===.当 1.5AP =时,ABP 与CBP 为积等三角形.(2)如图,过点C 作CE AB ∥,交AD 的延长线于点E ,∵ABD △与ACD 为积等三角形,∴BD CD =,∵AB EC ∥,∵ADB EDC ∠=∠,∴()AAS ADB EDC ≅ ,∴AD DE =,3AB EC ==,∴2AE AD =,∵5AC =,∵AC CE AE AC CE -<<+,∴53253AD -<<+,∴228AD <<,∴14AD <<,∵AD 为正整数,∴23AD =或.∴AD 的长为2或3.(3)如图,过点E 作EH GA ⊥,交延长线于点H,∵四边形ABDE 和四边形ACFG 均为正方形,∴AB AE =,AG AC =,=90GAC ∠︒,∴90HAE BAH ∠+∠=︒,90BAH BAC ∠+∠=︒,∴BAC EAH ∠=∠,在ABC 和AEH △中,90ACB AHE BAC EAH AB AE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴ABH ACD ≅△△,∴AH AC =,ABC AEH S S = ,∵AG AC =,∴AGE AHE S S = ,∴ABC AGE S S =△△,∴AEG △与ABC 为积等三角形.【点睛】本题考查了正方形的性质、三角形中位线、全等三角形的判定与性质.理解并掌握积等三角形的定义,是解题的关键.。

贵州省遵义市市级名校2024届中考数学仿真试卷含解析

贵州省遵义市市级名校2024届中考数学仿真试卷含解析

贵州省遵义市市级名校2024届中考数学仿真试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.方程(2)0x x+=的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=22.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.16B.13C.12D.233.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.74.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是()A.40°B.43°C.46°D.54°5.如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.6.下列二次根式中,最简二次根式是()A9a B35a C22a b+D1 2 a+7.若关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y+=的解,则k的值为()A.34-B.34C.43D.43-8.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°9.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C.D.10.﹣6的倒数是()A.﹣B.C.﹣6 D.611.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图B.俯视图C.左视图D.一样大12.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()A .52B .512-C .12D .1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,若∠ABE =20°,则∠DBC 为_____度.14.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.15.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG 是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H 位于GD 的中点,南门K 位于ED 的中点,出东门15步的A 处有一树木,求出南门多少步恰好看到位于A 处的树木(即点D 在直线AC 上)?请你计算KC 的长为__________步.16.如图,▱ABCD 中,对角线AC ,BD 相交于点O ,且AC ⊥BD ,请你添加一个适当的条件________,使ABCD 成为正方形.17.如图,在梯形ABCD 中,AB ∥CD ,∠C=90°,BC=CD=4,5,若,AD a DC b ==,用a 、b 表示DB =_____.18.计算:3﹣1﹣30=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知一次函数y=32x﹣3与反比例函数kyx=的图象相交于点A(4,n),与x轴相交于点B.填空:n的值为,k的值为;以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;考察反比函数kyx=的图象,当2y≥-时,请直接写出自变量x的取值范围.20.(6分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星6C 卫星发射升空,卫星进入预定轨道.如图,火星从地面C处发射,当火箭达到A点时,从位于地面雷达站D处测得DA 的距离是6km,仰角为42.4︒;1秒后火箭到达B点,测得DB的仰角为45.5︒.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)求发射台与雷达站之间的距离CD;求这枚火箭从A到B 的平均速度是多少(结果精确到0.01)?21.(6分)在等边△ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求∠BEC的度数;(2)如图2,当∠MAC=30°时,判断线段BE与DE之间的数量关系,并加以证明;(3)若0°<∠MAC<120°,当线段DE=2BE时,直接写出∠MAC的度数.22.(8分)发现如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……A n中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠A n﹣(n﹣4)×180°.验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……A n中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠A n﹣(n﹣)×180°.23.(8分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=15.24.(10分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.25.(10分)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=13AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形.26.(12分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.(1)求证:△ACM∽△ABE.(2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.(3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积.27.(12分)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】试题解析:x(x+1)=0,⇒x=0或x+1=0,解得x1=0,x1=-1.故选C.【解题分析】直接得出两位数是3的倍数的个数,再利用概率公式求出答案.【题目详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,十位数为3,则两位数是3的倍数的个数为2.∴得到的两位数是3的倍数的概率为:26=13.故答案选:B.【题目点拨】本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.3、C【解题分析】如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=4,OD⊥AB,∴BD=12AB=12×4=2,在Rt△BOD中,OD2222325OB BD-=-=故选C.4、C【解题分析】根据DE∥AB可求得∠CDE=∠B解答即可.【题目详解】解:∵DE∥AB,∴∠CDE=∠B=46°,故选:C.【题目点拨】本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.【解题分析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A 为轴对称图形.故选A .考点:轴对称图形6、C【解题分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】A.被开方数含能开得尽方的因数或因式,故A 不符合题意,B.被开方数含能开得尽方的因数或因式,故B 不符合题意,C.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C 符合题意,D.被开方数含分母,故D 不符合题意.故选C .【题目点拨】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.7、B【解题分析】将k 看做已知数求出用k 表示的x 与y ,代入2x+3y=6中计算即可得到k 的值.【题目详解】解:59x y k x y k +=⎧⎨-=⎩①②, ①+②得:214x k =,即7x k =,将7x k =代入①得:75k y k +=,即2y k =-,将7x k =,2y k =-代入236x y +=得:1466k k -=, 解得:34k =. 故选:B .【题目点拨】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.8、C【解题分析】试题分析:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.考点:1矩形;2平行线的性质.9、C【解题分析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C10、A【解题分析】解:﹣6的倒数是﹣.故选A.11、C【解题分析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C.12、B【解题分析】分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.详解:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC=2215122⎛⎫+=⎪⎝⎭,∴CP=QC-QP=512-,故选B.点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1︒【解题分析】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.14、73°【解题分析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=12∠CBE=73°.15、2000 3【解题分析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=20003.故答案为:20003.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.16、∠BAD=90°(不唯一)【解题分析】根据正方形的判定定理添加条件即可.【题目详解】解:∵平行四边形ABCD的对角线AC与BD相交于点O,且AC⊥BD,∴四边形ABCD是菱形,当∠BAD=90°时,四边形ABCD为正方形.故答案为:∠BAD=90°.【题目点拨】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.17、12b a-【解题分析】过点A作AE⊥DC,利用向量知识解题. 【题目详解】解:过点A作AE⊥DC于E,∵AE⊥DC,BC⊥DC,∴AE∥BC,又∵AB∥CD,∴四边形AECB是矩形,∴AB=EC,AE=BC=4,∴,∴AB=EC=2=12 DC,∵DC b=,∴12AB b=,∵AD a =,∴DA a =-, ∴12DB DA AB a b =+=-+,故答案为12b a -. 【题目点拨】向量知识只有使用沪教版(上海)教材的学生才学过,全国绝大部分地区将向量放在高中阶段学习.18、﹣23. 【解题分析】原式利用零指数幂、负整数指数幂法则计算即可求出值. 【题目详解】原式=13﹣1=﹣23. 故答案是:﹣23. 【题目点拨】考查了实数的运算,熟练掌握运算法则是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、 (1)3,1;133);(3) x 6≤-或x 0>【解题分析】(1)把点A (4,n )代入一次函数y=32x-3,得到n 的值为3;再把点A (4,3)代入反比例函数k y x=,得到k 的值为1;(2)根据坐标轴上点的坐标特征可得点B 的坐标为(2,3),过点A 作AE ⊥x 轴,垂足为E ,过点D 作DF ⊥x 轴,垂足为F ,根据勾股定理得到13AAS 可得△ABE ≌△DCF ,根据菱形的性质和全等三角形的性质可得点D的坐标;(3)根据反比函数的性质即可得到当y≥-2时,自变量x的取值范围.【题目详解】解:(1)把点A(4,n)代入一次函数y=32x-3,可得n=32×4-3=3;把点A(4,3)代入反比例函数kyx=,可得3=4k,解得k=1.(2)∵一次函数y=32x-3与x轴相交于点B,∴32x-3=3,解得x=2,∴点B的坐标为(2,3),如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,3),∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2,在Rt△ABE中,22223123AE BE++==∵四边形ABCD是菱形,∴13AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=93°,在△ABE与△DCF中,AEB DFC ABE DCF AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCF (ASA ),∴CF=BE=2,DF=AE=3,∴∴点D 的坐标为(3).(3)当y=-2时,-2=12x,解得x=-2. 故当y≥-2时,自变量x 的取值范围是x≤-2或x >3.20、 (Ⅰ)发射台与雷达站之间的距离CD 约为4.44km ;(Ⅱ)这枚火箭从A 到B 的平均速度大约是0.51/km s .【解题分析】(Ⅰ)在Rt △ACD 中,根据锐角三角函数的定义,利用∠ADC 的余弦值解直角三角形即可;(Ⅱ)在Rt △BCD 和Rt △ACD 中,利用∠BDC 的正切值求出BC 的长,利用∠ADC 的正弦值求出AC 的长,进而可得AB 的长,即可得答案.【题目详解】(Ⅰ)在Rt ACD 中,6DA km =,42.4A CD ADC cos DC AD∠∠=︒=,≈0.74, ∴()642.4 4.44km CD AD cos ADC cos ∠=⋅=⨯︒≈.答:发射台与雷达站之间的距离CD 约为4.44km . (Ⅱ)在Rt BCD 中, 4.44km 45.5,BC CD BDC tan BDC CD∠∠==︒=,, ∴()4.4445.5 4.44 1.02 4.5288km BC CD tan BDC tan ∠=⋅=⨯︒≈⨯=.∵在Rt ACD 中,AC sin ADC AD∠=, ∴()642.4 4.02km AC AD sin ADC sin ∠=⋅=⨯︒≈.∴()4.5288 4.020.50880.51km AB BC AC =-=-=≈.答:这枚火箭从A 到B 的平均速度大约是0.51/km s .【题目点拨】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.21、(1)补全图形如图1所示,见解析,∠BEC =60°;(2)BE =2DE ,见解析;(3)∠MAC =90°. 【解题分析】(1)根据轴对称作出图形,先判断出∠ABD =∠ADB =y ,再利用三角形的内角和得出x +y 即可得出结论;(2)同(1)的方法判断出四边形ABCD是菱形,进而得出∠CBD=30°,进而得出∠BCD=90°,即可得出结论;(3)先作出EF=2BE,进而判断出EF=CE,再判断出∠CBE=90°,进而得出∠BCE=30°,得出∠AEC=60°,即可得出结论.【题目详解】(1)补全图形如图1所示,根据轴对称得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y.在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,证明:∵△ABC是等边三角形,∴AB=BC=AC,由对称知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等边三角形,∴CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如图3,(本身点C,A,D在同一条直线上,为了说明∠CBD=90°,画图时,没画在一条直线上)延长EB至F使BE=BF,∴EF=2BE,由轴对称得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,连接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等边三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【题目点拨】此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.22、(1)见解析;(2)见解析;(3)1.【解题分析】(1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1A n于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答【题目详解】(1)如图2,延长AB交CD于E,则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1A n于B,则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠A n),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠A n)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠A n﹣(n﹣1)×180°.故答案为1.【题目点拨】此题考查多边形的内角和外角,,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型23、2x2﹣7xy,1【解题分析】根据完全平方公式及多项式的乘法法则展开,然后合并同类项进行化简,然后把x、y的值代入求值即可. 【题目详解】原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,当x=5,y=15时,原式=50﹣7=1.【题目点拨】完全平方公式和多项式的乘法法则是本题的考点,能够正确化简多项式是解题的关键.24、m的值是12.1.【解题分析】根据去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,可以列出相应的方程,从而可以求得m的值【题目详解】由题意可得,1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%)解得,m1=0(舍去),m2=12.1,即m的值是12.1.【题目点拨】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出m的值,注意解答中是m%,最终求得的是m的值.25、(1)证明见解析;(2)从运动开始经过2s或53s或125s或682215s时,△BEP为等腰三角形.【解题分析】(1)根据内错角相等,得到两边平行,然后再根据三角形内角和等于180度得到另一对内错角相等,从而证得原四边形是平行四边形;(2)分别考虑P在BC和DA上的情况求出t的值. 【题目详解】解:(1)∵∠BAC=∠ACD=90°,∴AB∥CD,∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB,∴AD∥BC,∴四边形ABCD是平行四边形.(2)∵∠BAC=90°,BC=5cm,AB=3cm,′由勾股定理得:AC=4cm,即AB、CD间的最短距离是4cm,∵AB=3cm,AE=13 AB,∴AE=1cm,BE=2cm,设经过ts时,△BEP是等腰三角形,当P在BC上时,①BP=EB=2cm,t=2时,△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=12BE=1cm∵cos∠ABC=35 AB BMBC BP==,∴BP=53 cm,t=53时,△BEP是等腰三角形;③BE=PE=2cm,作EN⊥BC于N,则BP=2BN,∴cosB=35 BNBE=,∴3 25 BN=,BN=65 cm,∴BP=125,∴t=125时,△BEP是等腰三角形;当P在CD上不能得出等腰三角形,∵AB、CD间的最短距离是4cm,CA⊥AB,CA=4cm,当P在AD上时,只能BE=EP=2cm,过P作PQ⊥BA于Q,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠QAD=∠ABC,∵∠BAC=∠Q=90°,∴△QAP∽△ABC,∴PQ:AQ:AP=4:3:5,设PQ=4xcm,AQ=3xcm,在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,∴,AP=5x=35cm,∴t=5+5+3﹣35=685-,答:从运动开始经过2s或53s或125s或685-s时,△BEP为等腰三角形.【题目点拨】本题主要考查平行四边形的判定定理及一元二次方程的解法,要求学生能够熟练利用边角关系解三角形.26、(1)证明见解析;(2)证明见解析;(3)74.【解题分析】(1)根据四边形ABCD和四边形AEMN都是正方形得12AB ACAC AM==,∠CAB=∠MAC=45°,∠BAE=∠CAM,可证△ACM∽△ABE;(2)连结AC,由△ACM∽△ABE得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD∥CM,由MC=2BE,FC=2CE,得MF=BD,从而可以证明四边形BFMD是平行四边形;(3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【题目详解】(1)证明:∵四边形ABCD和四边形AEMN都是正方形,∴12AB ACAC AM==,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)证明:连结AC因为△ACM∽△ABE,则∠ACM=∠B=90°,因为∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因为2BE,2CE,所以2,所以四边形BFMD是平行四边形(3)S 五边形ABFMN =S 正方形AEMN +S 梯形ABFE +S 三角形EFM=62+42+12(2+6)⨯4+12 ⨯2⨯6 =74.【题目点拨】本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度. 27、x =60【解题分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【题目详解】解:设有x 个客人,则 65234x x x ++= 解得:x =60;∴有60个客人.【题目点拨】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.。

遵义市中考数学模拟试题及答案

遵义市中考数学模拟试题及答案

6题图遵义市中考数学模拟试题(全卷总分150分,考试时间120分钟)注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,将试题卷和答题卡一并交回。

一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目 要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满。

) 1.一个数的相反数是3,则这个数是A.-13B.13C.-3D.32.据新华社北京2012年12月1日电,2012年全国粮食总产量为58957万吨,我国粮食生产实现了连续9年丰收。

用科学记数法表示为A .5.8957×107吨 B .5.8957×108吨 C .5.8957×109吨 D .5.8957×1010吨 3. 如图,a∥b,点A 在直线a 上,点C 在直线b 上,∠BAC=900,AB=AC. 若∠1=200,则∠2的度数为A. 750B. 700C. 650D.2504.下列运算正确的是A .325a a a =· B.22a a -= C .ab ab += D.()239a a =5. 下列调查中,适宜采用全面调查方式的是A.了解遵义市的空气质量情况B.了解乌江流域的水污染情况C.了解遵义市居民的环保意识D.了解全班同学每周体育锻炼的时间 6. 在□ABCD 中,E 为AD 的三等分点,AD AE 32=,连接BE ,交AC 于点F ,AC=12,则AF 为 A.4B.4C.5.2D.67.若一元二次方程220x x m ++=有实数根,则m 的取值范围是A.1m -≤B.1m ≤C.4m ≤D.m 1≤28.若4y kx =-的函数值y 随x 的增大而增大,则k 的值可能是下列的是 A.4- B.0.5 C.0 D.39. 如图,在半径为5的O ⊙中,AB 、CD 是互相垂直的两条弦,垂足为P ,且8AB CD ==,则OP 的长为A.3B.4C.32D.423题图9题图14题图16题图15题图第一个“上”字第二个“上”字第三个“上”字10题图10. 在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1 C,延长C1 B1交x轴于点A2,作正方形A2B2C2C1,……,按这样的规律进行下去,第2013个正方形的面积为A.2010352⎛⎫⎪⎝⎭· B.2011954⎛⎫⎪⎝⎭· C.2012954⎛⎫⎪⎝⎭· D.2013352⎛⎫⎪⎝⎭·二、填空题(本题共5小题,每小题4分,共20分。

贵州省遵义市2023年中考数学全真模拟试题含解析

贵州省遵义市2023年中考数学全真模拟试题含解析

2023年中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是( )A.①②③B.①③⑤C.②③④D.②④⑤2.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC 先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣2﹣3)B.(﹣4,﹣2+3)C.(﹣2,﹣2+3)D.(﹣2,﹣2﹣3)3.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B. C. D.4.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm5.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)26.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=12AB中,一定正确的是()A .①②③B .①②④C .①③④D .②③④7.如图,在平面直角坐标系中,直线y=k1x+2(k1≠0)与x 轴交于点A ,与y 轴交于点B ,与反比例函数y=2k x 在第二象限内的图象交于点C ,连接OC ,若S △OBC=1,tan ∠BOC=13,则k2的值是( )A .3B .﹣12 C .﹣3 D .﹣68.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .9.若点A (2,1y ),B (-3,2y ),C (-1,3y )三点在抛物线24y x x m =--的图象上,则1y 、2y 、3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>10.下列计算,结果等于a4的是( )A .a+3aB .a5﹣aC .(a2)2D .a8÷a211.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。

2023年贵州省遵义十二中中考数学一模试卷及答案解析

2023年贵州省遵义十二中中考数学一模试卷及答案解析

2023年贵州省遵义十二中中考数学一模试卷一、单选题(每题3分,共36分)1.(3分)在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1B.1与﹣2C.3与﹣2D.﹣1与﹣2 2.(3分)如图,水平的讲台上放置的圆柱形笔筒和长方体形粉笔盒,其俯视图是()A.B.C.D.3.(3分)据遵义市文化旅游局发布称:今年春节长假期间,遵义市累计实现旅游收入约为16.3亿元,数据16.3亿用科学记数法表示为()A.0.163×1010B.1.63×1010C.1.63×109D.1.63×108 4.(3分)下列二次根式是最简二次根式的是()A.B.C.D.5.(3分)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°6.(3分)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC 与△ABC的面积比是()A.1:B.1:2C.1:3D.1:47.(3分)下列说法正确的是()A.任意掷一枚质地均匀的硬币8次,一定有4次正面向上B.天气预报说“明天的降雨概率为60%”,表明明天有60%的时间在降雨C.“彩票中奖的概率是”表示买100张彩票一定会有一张中奖D.“篮球队员在罚球线上投篮一次,没有投中”为随机事件8.(3分)对于反比例函数y=﹣.下列说法不正确的是()A.图象分布在二,四象限内B.图象经过点(1,﹣2023)C.当x>0时,y随x的增大而增大D.若点A(x1,y1),B(x2,y2)都在函数的图象上,且x1<x2时,则y1<y29.(3分)如图1和图2,已知点P是⊙O上一点,用直尺和圆规过点P作一条直线,使它与⊙O相切于点P.以下是甲、乙两人的作法:甲:如图1,连接OP,以点P为圆心,OP长为半径画弧交⊙O于点A,连接并延长OA,再在OA上截取AB=OP,直线PB即为所求;乙:如图2,作直径PA,在⊙O上取一点B(异于点P,A),连接AB和BP,过点P作∠BPC=∠A,则直线PC即为所求.对于甲、乙两人的作法,下列判断正确的是()A.甲、乙两人的作法都正确B.甲、乙两人的作法都错误C.甲的作法正确,乙的作法错误D.甲的作法错误,乙的作法正确10.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则EF的长为()A.9B.9C.3D.311.(3分)我校《足球》社团有30名成员,下表是社团成员的年龄分布统计表,对于不同的x,下列关于年龄的统计量不会发生改变的是()年龄(单位:岁)1112131415频数(单位:名)512x11﹣x2 A.平均数、中位数B.平均数、方差C.众数、中位数D.众数、方差12.(3分)若二次函数y=ax2﹣2ax+a﹣3(a是不为0的常数)的图象与x轴交于A、B两点.下列结论:①a>0;②当x>﹣1时,y随x的增大而增大;③无论a取任何不为0的数,该函数的图象必经过定点(1,﹣3);④若线段AB(不含端点)上有且只有5个横坐标为整数的点,则a的取值范围是<a<.其中正确的结论是()A.①②③B.②④C.①③D.①③④二.填空题(每题4分,共16分)13.(4分)分解因式3x2﹣3x=.14.(4分)从,0,,π,3.2这五个数中,随机抽取一个,则抽到无理数的概率是.15.(4分)如图,将边长为6cm的正方形纸片ABCD,剪去图中阴影部分的四个全等的直角三角形,再沿图中虚线折起,可以得到一个长方体盒子(A,B,C,D正好重合于上底面一点,且AE=BF)若所得到的长方体盒子的表面积为11cm2,则线段AE=.16.(4分)如图,已知△ABC为等边三角形,AB=6,将边AB绕点A顺时针旋转α(0°<α<120°)得到线段AD,连接CD,CD与AB交于点G,∠BAD的分线交CD于点E,点F为CD上一点,且DF=2CF,则∠AEC=°,连接AF,则BF的最小值为.三.解答题(共98分)17.(10分)(1)计算:+(﹣)﹣2﹣3tan60°+(π﹣)0;(2)先化简,再求值:(1﹣)÷,其中a=﹣1.18.(10分)今年5月,从全国旅游景区质量等级评审会上传来喜讯,我市“风冈茶海之心”、“赤水佛光岩”、“仁怀中国酒文化城”三个景区加入国家“4A”级景区.至此,全市“4A”级景区已达13个.某旅游公司为了了解我市“4A”级景区的知名度情况,特对部分市民进行现场采访,根据市民对13个景区名字的回答情况,按答数多少分为熟悉(A),基本了解(B)、略有知晓(C)、知之甚少(D)四类进行统计,绘制了一下两幅统计图(不完整),请根据图中信息解答以下各题:(1)本次调查活动的样本容量是;(2)调查中属于“基本了解”的市民有人;(3)补全条形统计图;(4)“略有知晓”类占扇形统计图的圆心角是多少度?“知之甚少”类市民占被调查人数的百分比是多少?19.(10分)如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=(k≠0)的图象与AD边交于E(﹣4,),F(m,2)两点.(1)求k,m的值;(2)写出函数y=图象在菱形ABCD内x的取值范围.20.(10分)在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过3600元,则增加购买A型口罩的数量最多是多少个?21.(10分)如图,在▱ABCD中,E为CD边的中点,连接BE并延长,交AD的延长线于点F,延长ED至点G,使DG=DE,分别连接AE,AG,FG.(1)求证:△BCE≌△FDE;(2)当BF平分∠ABC时,四边形AEFG是什么特殊四边形?请说明理由.22.(10分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C 点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E 处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)23.(12分)如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin∠P=,CF =5,求BE的长.24.(12分)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y(米)与其离墙体A的水平距离x(米)之间的关系满足y=﹣x2+bx+c,现测得A,B两墙体之间的水平距离为6米.(1)直接写出b,c的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?25.(14分)【问题发现】(1)如图1所示,△ABC和△ADE均为正三角形,B、D、E三点共线.猜想线段BD、CE之间的数量关系为;∠BEC=°;【类比探究】(2)如图2所示,△ABC和△ADE均为等腰直角三角形,∠ACB=∠AED=90°,AC =BC,AE=DE,B、D、E三点共线,线段BE、AC交于点F.此时,线段BD、CE之间的数量关系是什么?请写出证明过程并求出∠BEC的度数;【拓展延伸】(3)如图3所示,在△ABC中,∠BAC=90°,∠B=30°,BC=8,DE为△ABC的中位线,将△ADE绕点A顺时针方向旋转,当DE所在直线经过点B时,请直接写出CE 的长.2023年贵州省遵义十二中中考数学一模试卷参考答案与试题解析一、单选题(每题3分,共36分)1.【分析】根据相反数的概念解答即可.【解答】解:1与﹣1互为相反数,故选:A.【点评】本题考查了相反数的概念:只有符号不同的两个数叫做互为相反数.2.【分析】根据俯视图是从物体的上面看得到的视图解答即可.【解答】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个正方形,故选:D.【点评】本题考查的是几何体的三视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:16.3亿=1630000000=1.63×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.4.【分析】利用最简二次根式的定义对每个选项进行逐一判断即可得出结论.【解答】解:∵,被开方数含有分母,∴A选项不符合题意;∵中被开方数含有分母,∴B选项不符合题意;∵=,被开方数中含有能开方的因数,∴C选项的结论不符合题意;∵是最简二次根式,∴D选项符合题意,故选:D.【点评】本题主要考查了最简二次根式的定义,利用最简二次根式的定义对每个选项进行判断是解题的关键.5.【分析】先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.【解答】解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°﹣30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°﹣75°=40°,故选:C.【点评】本题主要考查了等腰三角形的性质,平行线的性质,题目比较基础,熟练掌握性质是解题的关键.6.【分析】根据相似三角形的周长之比等于相似比可以解答本题.【解答】解:∵∠B=∠ACD,∠CAD=∠BAC,∴△ACD∽△ABC,∴==,故选:D.【点评】本题考查相似三角形的性质,解答本题的关键是明确相似三角形的面积之比等于相似比的平方.7.【分析】由概率公式和随机事件的概念分别对各个选项进行判断即可.【解答】解:A、任意掷一枚质地均匀的硬币8次,不一定有4次正面向上,故选项A 不符合题意;B、天气预报说“明天的降雨概率为60%”,不是表明明天有60%的时间在降雨,故选项B不符合题意;C、“彩票中奖的概率是”不表示买100张彩票一定会有一张中奖,故选项C不符合题意;D、“篮球队员在罚球线上投篮一次,没有投中”为随机事件,故选项D符合题意.故选:D.【点评】本题考查了概率公式和随机事件的概念,熟练掌握概率公式和随机事件的概念是解题的关键.8.【分析】根据反比例函数的性质,逐一进行判断即可.【解答】解:∵,k=﹣2023<0,∴图象过二,四象限,在每一个象限内,y随x的增大而增大,当x=1时,y=﹣2023,∴图象经过点(1,﹣2023),A、选项正确,不符合题意;B、选项正确,不符合题意;C、选项正确,不符合题意;D、当x1<0<x2时,y1>y2;选项错误,符合题意;故选:D.【点评】本题考查反比例函数的性质.熟练掌握反比例函数的性质,是解题的关键.9.【分析】甲乙都是正确的,根据切线的判定定理证明即可.【解答】解:甲正确.理由:如图1中,连接PA.∵AP=PO=AO,∴△AOP是等边三角形,∴∠OPA=∠OAP=60°,∵AB=OP=AP,∴∠APB=∠ABP,∵∠OAP=∠APB+∠ABP,∴∠APB=∠ABP=30°,∴∠OPB=90°,∴OP⊥PB,∴PB是⊙O的切线,乙正确.理由:∵AP是直径,∴∠ABP=90°,∴∠APB+∠PAB=90°,∵∠BPC=∠BAP,∴∠APB+∠BPC=90°,∴∠APC=90°,∴OP⊥PC,∴PC是⊙O的切线,故选:A.【点评】本题考查作图﹣复杂作图,切线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.10.【分析】分析题意,首先根据已知条件易得,中间小正方形的边长为:a﹣b;接下来根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,从图形中可得,大正方形的面积是4个直角三角形的面积与中间小正方形的面积之和,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,∴EF=3.故选:C.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式.11.【分析】由频数分布表可知年龄13岁和年龄14岁的两组的频数和为11,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15,16个数据的平均数,可得答案.【解答】解:由表可知,年龄为13岁与年龄为14岁的频数和为x+11﹣x=11,12岁人数有12人,该组数据的众数为12岁,中位数为:(12+12)÷2=12(岁).即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数.故选:C.【点评】本题主要考查众数和中位数,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.12.【分析】求得顶点坐标,根据题意即可判断①正确;根据二次函数的性质即可判断②错误;二次函数y=ax2﹣2ax+a﹣3(a是不为0的常数)的顶点(1,﹣3),即可判断③错误;根据题意x=3时y≤0,x=4时y>0,即可判断④正确.【解答】解:∵二次函数y=ax2﹣2ax+a﹣3=a(x﹣1)2﹣3,∴顶点为(1,﹣3),在x轴的下方,∵函数的图象与x轴交于A、B两点,∴抛物线开口向上,a>0,故①正确;∴x>1时,y随x的增大而增大,故②错误;由题意可知当a>0,二次函数y=ax2﹣2ax+a﹣3(a是不为0的常数)的图象一定经过点(1,﹣3),故③正确;∵线段AB上有且只有5个横坐标为整数的点,∴x=3时y≤0,x=4时y>0,∴,解得<a≤,故④错误;故选:C.【点评】本题考查了二次函数的性质,二次函数图象与系数的关系,二次函数图象上点的坐标特征,能够理解题意,利用二次函数的性质解答是解题的关键.二.填空题(每题4分,共16分)13.【分析】原式提取公因式即可得到结果.【解答】解:3x2﹣3x=3x(x﹣1),故答案为:3x(x﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.【分析】直接利用无理数的定义得出无理数的个数,再利用概率公式求出答案.【解答】解:∵、π是无理数,∴从、0、、π、3.2这五个数中,随机抽取一个,则抽到无理数的概率是:.故答案为:.【点评】此题主要考查了无理数的定义以及概率公式的应用,正确把握概率公式是解题关键.15.【分析】设AE=BF=xcm,由题意可得,长方体盒子的底面为正方形,其边长为xcm,长方体盒子的高为cm,根据长方体盒子的表面积为11cm2列出方程,即可得出线段AE的长.【解答】解:设AE=BF=xcm,由题意可得,长方体盒子的底面为正方形,其边长为xcm,长方体盒子的高为cm,∵得到的长方体盒子的表面积为11cm2,∴2[2x2+x(6﹣2x)+x(6﹣2x)]=11,整理得:4x2﹣24x+11=0,解得x=0.5或x=5.5(舍去),故线段AE=0.5cm.故答案为:0.5cm.【点评】本题考查了一元二次方程的应用.解题的关键是用AE的代数式表示出长方体的长、宽、高.16.【分析】先根据旋转的性质和等边三角形得:AD=AC=AB,∠BAC=60°,最后由角平分线的定义和三角形外角的性质可得∠AEC的度数;接下来作辅助线,构建等腰三角形和相似三角形,先证明FH=CH=2,再证明△FHM∽△AHF,得FM=AF,确定当B、F、M三点共线时,BF+FM=BF+AF的长最小,根据勾股定理可得结论.【解答】解:∵将边AB绕点A顺时针旋转α(0°<α<120°)得到线段AD,如图1,∴∠BAD=α,AB=AD,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴AC=AD,∴∠ADC=∠ACD,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠ACD+∠BAE=∠CDA+∠DAE=∠AEC,又∵∠AEC+∠ACD+∠BAE+∠BAC=180°,∴∠AEC=60°;如图2,过F作FH∥AD,交AC于H,取AC的中点M,连接FM,则AM=CM=3,∴△CFH∽△CDA,∴==,∵DF=2FC,∴==,∴CH=FH=2,∴MH=3﹣2=1,∵==,=,∴=,∵∠FHM=∠AHF,∴△FHM∽△AHF,∴==,∴FM=AF,∴当B、F、M三点共线时,BF+FM=BF+AF的长最小,如图3,此时BM⊥AC,∴BM==3,∵AF+2BF=2(AF+BF)=2BM,∴AF+2BF的最小值是6.故答案为:60,6.【点评】本题考查了三角形相似的性质和判定,旋转的性质,等边三角形的性质,等腰三角形的性质,勾股定理等知识,解题的关键是学会构建相似三角形,确定FM=AF 是解本题的关键,有难度,属于中考填空的压轴题.三.解答题(共98分)17.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先利用异分母分式加减法法则计算括号里,再算括号外,然后把a的值代入化简后的式子,进行计算即可解答.【解答】解:(1)+(﹣)﹣2﹣3tan60°+(π﹣)0=3+4﹣3+1=5;(2)(1﹣)÷=•=•=,当a=﹣1时,原式==.【点评】本题考查了分式的化简求值,实数的运算,特殊角的三角函数值,负整数指数幂,零指数幂,准确熟练地进行计算是解题的关键.18.【分析】(1)用熟悉(A)的人数除以所占的百分比,计算即可得解;(2)先求出略有知晓(C)的人数,然后列式计算即可得解;(3)根据(2)的计算补全图形统计图即可;(4)用“略有知晓”C所占的百分比乘以360°计算即可,再根据知之甚少(D)的人数列式计算即可求出所占的百分比.【解答】解:(1)120÷8%=1500;(2)略有知晓(C)的人数为:1500×40%=600人,“基本了解”(B)的人数为:1500﹣120﹣600﹣330=1500﹣1050=450人;(3)补全统计图如图所示;(4)“略有知晓”类:360°×40%=144°,“知之甚少”类:×100%=22%.故答案为:(1)1500;(2)450.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.【分析】(1)利用待定系数法即可解决问题;(2)根据函数图象,写出反比例函数的图象在菱形内部的自变量的取值范围即可;【解答】解:(1)∵点E(﹣4,)在y=上,∴k=﹣2,∴反比例函数的解析式为y=﹣,∵F(m,2)在y=上,∴m=﹣1.(2)函数y=图象在菱形ABCD内x的取值范围为:﹣4<x<﹣1或1<x<4.【点评】本题考查反比例函数图象上点的特征、菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.【分析】(1)设A型口罩的单价为x元,则B型口罩的单价为(x﹣1.5)元,根据“用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同”列出方程并解答;(2)设增加购买A型口罩的数量是m个,根据“增加购买B型口罩数量是A型口罩数量的2倍,若总费用不超过3600元”列出不等式.【解答】解:(1)设A型口罩的单价为x元,则B型口罩的单价为(x﹣1.5)元,根据题意,得:=.解方程,得:x=4.经检验:x=4是原方程的根,且符合题意.所以x﹣1.5=2.5.答:A型口罩的单价为4元,则B型口罩的单价为2.5元;(2)设增加购买A型口罩的数量是m个,根据题意,得:2.5×2m+4m≤3600.解不等式,得:m≤400.因为m为正整数,所以正整数m的最大值为400.答:增加购买A型口罩的数量最多是400个.【点评】本题主要考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.21.【分析】(1)由AAS证明△BCE≌△FDE即可;(2)先证四边形AEFG是平行四边形,再证∠AEF=90°,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DFE=∠CBE,∵E为CD边的中点,∴DE=CE,在△BCE和△FDE中,,∴△BCE≌△FDE(AAS);(2)解:四边形AEFG是矩形,理由如下:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠AFB=∠FBC,由(1)得:△BCE≌△FDE,∴BC=FD,BE=FE,∴FD=AD,∵GD=DE,∴四边形AEFG是平行四边形,∵BF平分∠ABC,∴∠FBC=∠ABF,∴∠AFB=∠ABF,∴AF=AB,∵BE=FE,∴AE⊥FE,∴∠AEF=90°,∴平行四边形AEFG是矩形.【点评】本题考查了平行四边形的判定与性质、矩形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明△BCE≌△FDE是解题的关键.22.【分析】作CF⊥AB于点F,设AF=x米,在直角△ACF中利用三角函数用x表示出CF 的长,在直角△ABE中表示出BE的长,然后根据CF﹣BE=DE即可列方程求得x的值,进而求得AB的长.【解答】解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.【点评】本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度.23.【分析】(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA =90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA =∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到CF=AF,在R t△AFD中,AF=5,sin∠FAD=,求得FD=3,AD=4,CD=8,在R t△OCD中,设OC=r,根据勾股定理得到方程r2=(r﹣4)2+82,解得r=10,得到AB=2r=20,由于AB为⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=,得到,于是求得结论.【解答】(1)证明:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OC=OA,∴∠OCA=∠OAC,∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴CF=AF,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=,∴sin∠FAD=,在R t△AFD中,AF=5,sin∠FAD=,∴FD=3,AD=4,∴CD=8,在R t△OCD中,设OC=r,∴r2=(r﹣4)2+82,∴r=10,∴AB=2r=20,∵AB为⊙O的直径,∴∠AEB=90°,在R t△ABE中,∵sin∠EAD=,∴,∵AB=20,∴BE=12.【点评】本题考查了切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,连接OC构造直角三角形是解题的关键.24.【分析】(1)根据题意可推出点A坐标为(0,1),点B坐标为(6,2),将这两点坐标代入二次函数表达式即可求得b、c的值;(2)将二次函数一般式化为顶点式,即可求得大棚的最高点;(3)先求出大棚内可以搭建支架土地的宽,再求需要搭建支架部分的面积,进而求得需要准备的竹竿.【解答】解:(1)b=,c=1.(2)由y==,可知当x=时,y有最大值,故大棚最高处到地面的距离为米;(3)令y=,则有=,解得x1=,x2=,又∵0≤x≤6,∴大棚内可以搭建支架的土地的宽为6﹣=(米),又大棚的长为16米,∴需要搭建支架部分的土地面积为16×=88(平方米),故共需要88×4=352(根)竹竿,答:共需要准备352根竹竿.【点评】本题主要考查二次函数的应用,不仅要求对二次函数的相关性质很熟练,还要结合具体的实际意义解此类题目.25.【分析】(1)证△ABD≌△ACE,得BD=CE,∠BDA=∠CEA,进而判断出∠BEC的度数为60°即可;(2)证△ABD∽△ACE,得∠ADB=∠AEC=135°,==,则∠BEC=∠AEC ﹣∠AED=45°,再求出==,即可得出结论;(3)分两种情况,根据相似三角形的判定与性质结合勾股定理分别求出BE的长即可.【解答】解:(1)∵△ACB和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∠ADE=∠AED=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠BDA=∠CEA,∵点B,D,E在同一直线上,∴∠ADB=180°﹣60°=120°,∴∠AEC=120°,∴∠BEC=∠AEC﹣∠AED=120°﹣60°=60°,综上所述,∠BEC的度数为60°,线段BD与CE之间的数量关系是BD=CE,故答案为:BD=CE,60;(2)结论:BD=2CE,∠BEC=45°,理由如下:∵△ABC和△ADE均为等腰直角三角形,∴∠BAC=∠ABC=∠ADE=∠DAE=45°,∠ACB=∠AED=90°,∴∠BAD=∠CAE,∠ADB=135°,Rt△ABC和Rt△ADE中,sin∠ABC=,sin∠ADE=,sin45°=,∴==,∴=,又∵∠BAD=∠CAE,∴△ABD∽△ACE,∴∠ADB=∠AEC=135°,BDCE=ABAC=ADAE,∴∠BEC=∠AEC﹣∠AED=45°,∵==,∴=,∴==,∴BD=CE;(3)分两种情况:①如图4,∵∠BAC=90°,∠ABC=30°,BC=8,∴AC=BC=4,∴AB===4,∵DE为△ABC的中位线,∴DE=BC=4,DE∥AB,AE=AC,AD=AB,∴∠CDE=∠ABC=30°,==,由旋转的性质得:∠BAD=∠CAE,∴△BAD∽△CAE,∴==,∠ADB=∠AEC=180°﹣∠ADE=150°,∵∠AED=90°﹣∠CDE=60°,∴∠CEB=∠AEC﹣∠AED=150°﹣60°=90°,设CE=x,则BD=x,BE=BD+DE=x+4,在Rt△ABE中,由勾股定理得:x2+(x+4)2=82,解得:x=或x=﹣﹣(舍去)∴BE=﹣;②如图5,同①得:△ACD∽△BCE,则==,∠AEB=90°,设CE=y,则BD=y,AE=AD﹣DE=y﹣2,在Rt△ABE中,由勾股定理得:y2+(y﹣4)2=82,解得:y=+或y=﹣﹣(舍去),∴CE=+;综上所述,CE的长为﹣或+.【点评】本题考查几何变换综合题,考查了旋转变换的性质、全等三角形的判定和性质、相似三角形的判定和性质、等边三角形的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题。

2024届贵州省遵义地区中考数学全真模拟试题含解析

2024届贵州省遵义地区中考数学全真模拟试题含解析

2024届贵州省遵义地区中考数学全真模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,若∠C =65°,则∠P 的度数为( )A .65°B .130°C .50°D .100°2.已知:a 、b 是不等于0的实数,2a=3b ,那么下列等式中正确的是( )A .B .C .D .3.下列四个几何体,正视图与其它三个不同的几何体是( )A .B .C .D .4.若2a 2a 30--=,代数式a 2a 23-⨯的值是( ) A .0 B .2a 3- C .2 D .12- 5.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 6.下列各式计算正确的是( )A .2223a a +=B .()236b b -=-C .235c c c ⋅=D .()222m n m n -=- 7.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )A .B .C .D .8.在如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .9.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在k y x =的图象上,且点B 在以O 点为圆心,OA 为半径的O 上,则k 的值为( )A .34-B .1-C .32-D .2-10.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )A .B .C .D .11.如图,PA 、PB 是O 的切线,点D 在AB 上运动,且不与A ,B 重合,AC 是O 直径.62P ∠=︒,当//BD AC时,C ∠的度数是( )A .30B .31︒C .32︒D .33︒12.如果2a b =(a ,b 均为非零向量),那么下列结论错误的是( )A .a //bB .a -2b =0C .b =12aD .2a b =二、填空题:(本大题共6个小题,每小题4分,共24分.)13.二次函数y=223x 的图象如图,点A 0位于坐标原点,点A 1,A 2,A 3…A n 在y 轴的正半轴上,点B 1,B 2,B 3…B n 在二次函数位于第一象限的图象上,点C 1,C 2,C 3…C n 在二次函数位于第二象限的图象上,四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,四边形A 2B 3A 3C 3…四边形A n ﹣1B n A n C n 都是菱形,∠A 0B 1A 1=∠A 1B 2A 1=∠A 2B 3A 3…=∠A n1B n A n =60°,菱形A n ﹣1B n A n C n 的周长为 .14.如果抛物线y=﹣x 2+(m ﹣1)x+3经过点(2,1),那么m 的值为_____.15.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为2s 甲________2s 乙.(填“>”或“<”)1638-|﹣2|+(13)﹣1=_____. 17.如图,直线y kx b =+经过(2,1)A 、(1,2)B --两点,则不等式122x kx b >+>-的解集为_______.18.分解因式:a 2-2ab+b 2-1=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数k y x=的图象上,将这两点分别记为A ,B ,另一点记为C ,(1)求出k 的值;(2)求直线AB 对应的一次函数的表达式;(3)设点C 关于直线AB 的对称点为D ,P 是x 轴上的一个动点,直接写出PC +PD 的最小值(不必说明理由).20.(6分)已知关于x 的一元二次方程2(3)0x m x m ---=.求证:方程有两个不相等的实数根;如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值. 21.(6分)如图所示,一堤坝的坡角62ABC ∠=︒,坡面长度25AB =米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角50ADB ∠=︒,则此时应将坝底向外拓宽多少米?(结果保留到0.01 米)(参考数据:sin620.88︒≈,cos620.47︒≈,tan50 1.20︒≈)22.(8分)先化简,再求值:22124()(1)442a a a a a a a -+-÷--+-,其中a 为不等式组72230a a ->⎧⎨->⎩的整数解.23.(8分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数kyx(k>0),它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标_____,写出符合题意的其中一条抛物线解析式_____,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_____.(本小题只需直接写出答案)24.(10分)如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.25.(10分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.26.(12分)解方程21=122xx x---27.(12分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生的成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图中m的值为_______________.(2)求这40个样本数据的平均数、众数和中位数:(3)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生。

贵州省遵义市数学中考模拟试卷

贵州省遵义市数学中考模拟试卷

贵州省遵义市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)计算:(-3)3+52-(-2)2=()A . 2B . 5C . -3D . -62. (2分)(2018·潮南模拟) 用科学记数法表示数57000000为()A . 57×106B . 5.7×106C . 5.7×107D . 0.57×1083. (2分) (2017九下·永春期中) 如图所示正三棱柱的正视图是()A .B .C .D .4. (2分) (2019八下·柳州期末) 某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等数个统计量中,该鞋厂最关注的是()A . 平均数B . 中位数C . 众数D . 方差5. (2分) (2019七下·莆田期中) 如图,BC∥DE,∠1="100°," ∠AED="65°," 则∠A的大小是()A . 25°B . 35°C . 40°D . 60°6. (2分)(2017·满洲里模拟) 一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A . A→O→BB . B→A→CC . B→O→CD . C→B→O7. (2分) (2020九上·兴安盟期末) 下列命题中,正确有()①平分弦的直径垂直于弦;②三角形的三个顶点确定一个圆;③圆内接四边形的对角相等;④圆的切线垂直于过切点的半径;⑤过圆外一点所画的圆的两条切线长相等.A . 1个B . 2个C . 3个D . 4个8. (2分)下列说法中,正确的是()A . 等腰梯形的对角线互相垂直B . 菱形的对角线相等C . 矩形的对角线互相垂直D . 正方形的对角线互相垂直且相等9. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A . a>0B . 当-1<x<3时,y>0C . c<0D . 当x≥1时,y随x的增大而增大10. (2分)在△ABC中,∠C=90°,AC=8,BC=6,则sinB的值是()A .B .C .D .二、填空题 (共6题;共8分)11. (1分)(2020·惠山模拟) 把多项式分解因式的结果是________.12. (1分) (2017七下·龙海期中) 若是方程组的解,则3a+b的值为________.13. (1分)扬州园林中有许多花窗,图案中蕴含着对称之美,现从中选取如图的四种窗格图案,其中既是中心对称图形又是轴对称图形的有________个.15. (2分)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.16. (2分) (2017八下·新洲期末) 已知,如图,矩形ABCD边AB=6,BC=8,再沿EF折叠,使D点与B点重合,C点的对应点为G,将△BEF绕着点B顺时针旋转,旋转角为a(0°<a<180°),记旋转这程中的三角形为△BE′F′,在旋转过程中设直线E′F′与射钱EF、射线ED分别交于点M、N,当EN=MN时,则FM的长为________.三、解答题 (共8题;共54分)17. (10分) (2018八上·启东开学考) 对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若关于m的不等式组恰好有2个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?18. (2分)(2018·台州) 如图,在中,,,点,分别在,上,且 .(1)如图1,求证:;(2)如图2,是的中点.求证:;(3)如图3,,分别是,的中点.若,,求的面积.19. (2分)随着我国人民生活水平和质量的提高,百岁寿星日益增多.某市是中国的长寿之乡,截至2008年2月底,该市五个地区的100周岁以上的老人分布如表(单位:人):地区性别一二三四五男性2130384220女性3950737037根据表格中的数据得到条形图如下:解答下列问题:(1)请把统计图中地区二和地区四中缺失的数据、图形补充完整;(2)填空:该市五个地区100周岁以上老人中,男性人数的极差(最大值与最小值的差)是________人,女性人数的最多的是地区________;(3)预计2015年该市100周岁以上的老人将比2008年2月的统计数增加100人,请你估算2015年地区一增加100周岁以上的男性老人多少人?20. (10分) (2019八下·芜湖期中) 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个直角三角形,使它们的三边长都是无理数;(2)在图2中,画一个正方形,使它的面积是10.21. (2分)(2019·云南模拟) 如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A 的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)求抛物线的解析式;(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.22. (2分)(2016·淮安) 问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE= CD,从而得出结论:AC+BC= CD.简单应用:(1)在图①中,若AC= ,BC=2 ,则CD=________.(2)如图③,AB是⊙O的直径,点C、D在⊙上, = ,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE= AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是________.23. (11分)(2017·石家庄模拟) 某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:销售量n(件)n=50﹣x销售单价m(元/件)当1≤x≤20时,m=20+ x当21≤x≤30时,m=10+(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;(3)这30天中第几天获得的利润最大?最大利润是多少?24. (15分)(2017·合肥模拟) 如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF 对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.(1)若∠BEB′=110°,则∠BEC=________°,∠AEN=________°,∠BEC+∠AEN=________°.(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、15-1、16-1、三、解答题 (共8题;共54分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。

2024年贵州省遵义市中考数学模拟试题(五)

2024年贵州省遵义市中考数学模拟试题(五)

2024年贵州省遵义市中考数学模拟试题(五)一、单选题1.-2的绝对值是( )A .2B .12C .12-D .2-2.下列图形既是轴对称图形又是中心对称图形的是( )A .笛卡尔心形图B .三叶玫瑰线C .阿基米德螺旋线D .椭圆3.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A .8-B .3C .13D .3-4.方程32x x -=的解是( )A .1x =-B .1x =C .2x =-D .2x =5.如图,CD 是ECB ∠的平分线,且CD ∥AB ,40B ∠=o ,则ECD ∠的度数为( )A .30oB .40oC .50oD .60o6.下列运算正确的是( )A .2a a a +=B .326a a a ⋅=C .()26324a a =D .222()a b a b -=- 7.某地3月1日至7日每天的最高气温(单位:C o )依次为:10,8,9,9,10,10,11关于这组数据下列说法正确的是( )A .中位数是9B .众数是10C .平均数是9D .方差是1 8.如图,在Rt ABC △中,90ACB ∠=o ,6BC =,8AC =,则点C 到AB 边的距离为( )A .6B .8C .245D .4859.生命在于运动,健康在于锻炼.如图是爱好运动的小聪某天登山过程中所走的路程s (单位:m )与时间t (单位:min )的函数关系图象.则下列结论正确的是( )A .后800m 的速度为32m /minB .中途停留了10minC .后800m 速度在逐渐增加D .整个登山过程的平均速度为48m /min 10.如图,菱形ABCD 的边长为2,60DAB ∠=︒,M ,N 分别是AD ,AC 上的两个动点,则DN MN +的最小值为( )A .1 BC D .211.如图,在ABC V 中,6AB =,4BC =,点D 在边BC 上,点E 在边AB 上,将BDE V 沿直线DE 翻折,点B 恰好落在边AC 上的点F 处,若DF ∥AB ,则CD 的长为( )A .1.6B .2C .2.4D .312.如图,抛物线2y ax bx c =++的部分图像与x 轴的一个交点为 1,0 .有下列四个结论: ①0abc <;②240b ac ->;③930a b c ++>;④30b c +<.其中正确的个数为( )A .1B .2C .3D .4二、填空题13.计算32xy xy -的结果为.14.一个不透明的口袋中有2个红球,1个黄球,x 个白球(小球除颜色外,其它完全相同).随机摸出一个小球,摸出白球的概率大于12,写出一个符合条件的x 的值为. 15.已知1x ,2x 是关于x 的方程230x x m ++=的两个实数根,且()()12114x x ++=-,则m 的值为.16.如图,将长方形ABCD 沿直线MN 翻折,使点A 落在点A '处,点B 的对应点B '恰好落在ND 上,A B ''交AD 于点G .已知10AB =,12AG =,23MG DG =,则ND 的长为.三、解答题17.(1)在20241,tan45o 1中任选两个用“+”连接并计算.(2)先化简22622931a a a a a a -+÷--++,再从40a -<<中选择一个适合的整数代入求值 . 18.O e 是四边形ABCD 的外接圆,对角线AC 与BD 交于点E ,AB AD =,AC 是O e 的直径,过点A 作O e 的切线MN .(1)写出图中一个度数为90o 的圆周角:__________写出一条与BC 相等的线段__________;(2)判断MN 与BD 的位置关系,并说明理由.19.新学期伊始,某校运用今年流行的“A :龙行龘龘(da ),B :前程朤朤(lāng ),C :德行垚垚(yáo ),D :身体骉骉(biāo )”等祝福热词制作贺卡开展“龙年送祝福”活动,为了解学生对这四个热词的喜爱程度,随机对部分学生进行调查,要求每名学生从中选择自己最喜欢的一个,并将结果绘制成如图所示的两幅不完整的统计图.根据图中所给信息解答下列问题:(1)这次抽样调查共抽取__________人;(2)将条形统计图补充完整;(3)学校要从A ,B ,C ,D 四个词制作的四张贺卡中,随机抽出两张送给九(1)班的同学,请用列表或画树状图的方法,求抽出的两张贺卡恰好是“前程朤朤”和“身体骉骉”的概率. 20.小杰在学习了特殊的平行四边形后,对平行四边形ABCD 进行了如下作图:①分别以D ,B 为圆心,DB 长为半径画弧,两弧分别交于点G 和点H ;②连接GH 分别交DC ,BD ,AB 于点F ,O ,E ;③连接BF ,DE .根据以上信息,解答下列问题:(1)求证:DE DF =;(2)若F 恰为DC 的中点,4=AD ,3DE =,求BD 的长.21.如图,在平面直角坐标系中,一次函数26y x =-+的图象与反比例函数(0)k y x x=>的图象交于A ,B 两点,且点A 的坐标为()1,a .(1)求a 的值和反比例函数的解析式;(2)求ABO V 的面积.22.赤水河畔的“美酒河”三个大字,是世界上最大的摩崖石刻汉字.小茜想测量绝壁上“美”字AG 的高度,根据平面镜反射原理可推出入射光线与镜面的夹角等于反射光线与镜面的夹角(如图中DEC AEB ∠=∠,DFC GFB ∠∠=),具体操作如下:将平面镜水平放置于E 处,小茜站在C 处观测,俯角45MDE ∠=︒时,恰好通过平面镜看到“美”字顶端A 处(CD 为小茜眼睛到地面的高度),再将平面镜水平放置于F 处观测,俯角36.9MDF ∠=︒时,恰好通过平面镜看到“美”字底端G 处.测得163.3m BE =,15m CE =.,点C ,E ,F ,B 在同一水平线上,点A ,G ,B 在同一铅垂线上.(参考数据:sin36.90.60︒≈,cos36.90.80︒≈,tan36.90.75︒≈)(1)CD 的高度为__________m ,CF 的长为__________m ;(2)求“美”字AG 的高度.23.某数学兴趣小组在暑假开展社会实践活动,销售某品牌书包,平均每天可以销售20个,每个盈利12元,为了扩大销售,增加盈利,该小组决定采取适当的降价措施,经调查发现,如果每个书包每降价1元,平均每天可以多卖5个.(1)若每个书包降价x 元,则可多卖__________个,每个盈利__________元;(2)若该兴趣小组同学想要一天盈利300元,每个书包应降价多少元;(3)该兴趣小组同学想要一天盈利最大,应降价多少元,所得最大利润是多少元? 24.如图①,在Rt ABC △中,3AB AC ==,90BAC ∠=︒,点D 在BA 边上,连接CD ,点E 在射线CD 上,连接AE .(1)如图,将AE 绕点A 逆时针旋转90︒得到AF ,连接BE ,CF .求证:ABE ACF V V ≌;(2)若点D 是AB 的中点,连接EF ,求EF 的最小值;(3)如图②,若BE CE ⊥于点,E AE =BE 的值.25.抛物线()20y ax bx c a =++≠可以由抛物线()20y ax a =≠平移得到,通常先求出2y ax bx c =++的顶点坐标,再根据2y ax =的顶点坐标()0,0,可发现其图象的平移过程.请根据你对函数图象平移的理解,完成下列问题.【初步感知】(1)将抛物线2y x =-向_______平移_______个单位长度,再向_______平移_______个单位长度可得2(2)3y x =--+的图象;【深入探究】(2)将2y x =-的图象平移,使得平移后的图象始终过点 0,1 ,且对任意的自变量x 的值,所对应的函数值都不大于10,则最多将2y x =-的图象向右平移多少个单位长度?【拓展提升】(3)将212y x =-的图象平移后得到2112y x bx =-++的图象,且使得2112y x bx =-++的图象与直线3y bx =-+在x 轴上方只有一个交点,直接写出b 的取值范围.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州省遵义市数学中考模拟试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共18题;共27分)
1. (2分)(2019·成都模拟) 下列各组数中,互为倒数的是()
A . 与
B . 与
C . 与
D . 与
2. (2分) (2019八下·全椒期末) 要使式子在实数范围内有意义,则x的取值范围是()
A . x=3
B . x<3
C . x≥-3
D . x≤3
3. (2分)代数式的4x﹣4﹣(4x﹣5)+2y﹣1+3(y﹣2)值()
A . 与x,y都无关
B . 只与x有关
C . 只与y有关
D . 与x,y都有关
4. (2分)(2020·北京) 如图是某几何体的三视图,该几何体是()
A . 圆柱
B . 圆锥
C . 三棱锥
D . 长方体
5. (2分) (2016八上·自贡期中) 若一个正n边形的一个外角为45°,则n等于()
A . 6
B . 8
C . 10
D . 12
6. (2分)一家鞋店对上周某一品牌女鞋的销售量统计如下:
尺码/厘米2222.52323.52424.525
销售量/双12511731
该鞋店决定本周进该品牌女鞋时多进一些尺码为23.5厘米的鞋,影响鞋店决策的统计量是()
A . 平均数
B . 众数
C . 中位数
D . 方差
7. (2分) (2020九下·西安月考) 已知二次函数的图象经过点、和,若,则()
A . 且
B . 且
C . 且
D . 且
8. (2分) (2019八上·大庆期末) 如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()
A .
B .
C .
D .
9. (1分)在比例尺为1:3000000的交通图上,距离为4厘米的两地之间的实际距离约为________米(用科学记数法表示).
10. (1分) (2017九上·金华开学考) 数3和12的比例中项是________.
11. (1分) (2017九上·凉州期末) 已知关于x的方程x2﹣4x+a=0有两个相同的实数根,则a的值是________.
12. (1分)(2020·通辽模拟) 不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是________.
13. (2分) (2019七上·鸡西期末) 如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠PMN =________度.
14. (1分)(2020·苏州模拟) 已知圆锥的母线长为6,侧面积为12 ,则圆锥的半径长为________.
15. (1分)(2019·石首模拟) 已知点A、B、C、D均在圆上,AD∥BC,AC 平分∠BCD,∠ADC=120°,四边形的周长为10cm.,则∠ABC的度数为________.
16. (1分)(2018·天河模拟) 若a、b、c为三角形的三边,且a、b满足,则第三边c的取值范围是________.
17. (1分)如图,在直角坐标系中,已知菱形ABCD的面积为5,顶点A在双曲线上,CD与y轴重合,则k的值是________.
18. (1分)如图,△AOB和△ACD均为正三角形,顶点B、D在双曲线y= (x>0)上,线段BC、AD交于点P,则S△OBP=________.
二、解答题 (共10题;共97分)
19. (10分)(2017·海曙模拟) 解不等式:﹣1>6x.
20. (5分)(2017·百色) 已知a= +1,b= .求下列式子的值,.
21. (15分) (2019七下·洛阳期末) 为了解同学们的身体发育情况,学校体卫办公室对七年级全体学生进行了身高测量(精确到1cm),并从中抽取了部分数据进行统计,请根据尚未完成的频数分布表和频数分布直方图解答下列问题:
频率分布表
分组频数百分比
144.5~149.524%
149.5~154.536%
154.5~159.5a16%
159.5~164.51734%
164.5~169.5b n%
169.5~174.5510%
174.5~179.536%
(1)求a、b、n的值;
(2)补全频数分布直方图;
(3)学校准备从七年级学生中选拔护旗手,要求身高不低于170cm,如果七年级有学生350人,护旗手的候选人大概有多少?
22. (15分)(2016·江西) 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:
①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);
②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;
③游戏结束前双方均不知道对方“点数”;
④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.
现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.
(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;
(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.
23. (10分)(2020·甘孜) 如图,在平面直角坐标系中,直线分别交x轴、y轴于A , B 两点,经过A,B两点的抛物线与x轴的正半轴相交于点.
(1)求抛物线的解析式;
(2)若P为线段AB上一点,,求AP的长;
(3)在(2)的条件下,设M是y轴上一点,试问:抛物线上是否存在点N ,使得以A,P,M,N为顶点的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
24. (5分)某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?
25. (10分) (2016八上·上城期末) 如图,在Rt△ABC中,∠ACB=90°.
(1)实践与操作:利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法);
①作AB的垂直平分线交AB于点D,连接CD;
②分别作∠ADC、∠BDC的平分线,交AC、BC于点E、F.
(2)求证:CE=DF.
26. (10分) (2019八上·河南月考) 我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫
做常态三角形例如:某三角形三边长分别是5,6和8,因为,所以这个三角形是常态三角形.
(1)若△ABC三边长分别是2,和4,则此三角形________常态三角形(填“是”或“不是”);
(2)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,连接CD,CD= AB,若△ACD是常态三角形,求△ABC的面积;,
(3)若Rt△ABC是常态△,斜边是,则此三角形的两直角边的和=________.
27. (15分) (2020八下·汉阳期中) 如图,在菱形中,,,点是
边的中点,点是边上一动点(不与点重合),延长交射线于点,连接, .
(1)求证:四边形是平行四边形;
(2)填空:
①当的值为________时,四边形是矩形;
②当的值为________时,四边形是菱形.
28. (2分) (2018九上·柳州期末) 在平面直角坐标系xoy中,抛物线y=ax2+bx+c (a≠O)与x轴交于A、B 两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-4,O),抛物线的对称轴是直线x=-3,且经过A、C 两点的直线为y=kx+4.
(1)求抛物线的函数表达式;
(2)将直线AC向下平移m个单位长度后,得到的直线l与抛物线只有一个交点D,求m的值;
(3)抛物线上是否存在点Q,使点Q到直线AC的距离为?若存在,请直接写出Q的坐标,若不存在,请说明理由.
参考答案一、选择题 (共18题;共27分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
二、解答题 (共10题;共97分)
19-1、
20-1、
21-1、
21-2、
21-3、
22-1、
22-2、23-1、23-2、
24-1、25-1、
25-2、26-1、
26-2、26-3、
27-1、
27-2、
28-1、
28-2、
28-3、。

相关文档
最新文档