中考数学知识分类练习卷 代数式

合集下载

2024年深圳市中考数学模拟题汇编:代数式(附答案解析)

2024年深圳市中考数学模拟题汇编:代数式(附答案解析)

2024年深圳市中考数学模拟题汇编:代数式
一.选择题(共10小题)
1.下列各式去括号正确的是()
A.﹣(a﹣3b)=﹣a﹣3b
B.a+(5a﹣3b)=a+5a﹣3b
C.﹣2(x﹣y)=﹣2x﹣2y
D.﹣y+3(y﹣2x)=﹣y+3y﹣2x
2.已知:关于x,y的多项式ax2+2bxy+3x2﹣3x﹣4xy+2y不含二次项,则3a﹣4b的值是()
A.﹣3B.2C.﹣17D.18
3.如图,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组

成的大正方形,则这个窗户的外框总长为(
A.6a+πa B.12a C.15a+πa D.6a
4.若x m﹣1y2与x2y n的和仍是单项式,则n m的值()
A.3B.6C.8D.9
5.下列各选项中,不是同类项的是()
A.3a2b和﹣5ba2B.122和12B2
C.6和23D.5x n和−34
6.按如图所示的运算程序,能使运算输出的结果为2的是(

A.x=﹣1,y=﹣1B.x=5,y=﹣1C.x=﹣3,y=1D.x=0,y=﹣2 7.某种商品每件进价为a元,按进价增加50%出售,现“双十二”打折促销按售价的八折
第1页(共19页)。

【最强汇编】各省市中考数学试题按知识点分类汇编(代数式、整式及单项式、多项式的有关概念)

【最强汇编】各省市中考数学试题按知识点分类汇编(代数式、整式及单项式、多项式的有关概念)

知识点5:代数式、整式及单项式、多项式的有关概念一.选择题1.(湖南益阳)有一种石棉瓦(如图4),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为A. 60n厘米B. 50n厘米C. (50n+10)厘米D. (60n-10)厘米答案:C2. (新疆乌鲁木齐市)若且,,则的值为()A.B.1 C.D.答案:C3. (湘潭市)下列命题是假.命题的是()A. 若,则x+<y+B. 单项式的系数是-4C. 若则D. 平移不改变图形的形状和大小答案:B4. (镇江)用代数式表示“的3倍与的差的平方”,正确的是()A. B. C. D.答案:A5. (湖北天门)设计一个商标图案如图中阴影部分,矩形ABCD中,AB=2BC,且AB=8cm,以点A为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积等于()A、(4π+8)cm2B、(4π+16)cm2C、(3π+8)cm2D、(3π+16)cm2答案:A6.二.填空题1. (浙江金华)、如果x+y=-4,x-y=8,那么代数式的值是 cm。

答案:-322.(年四川巴中市)20.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则.答案:3.(年四川巴中市)在长为m,宽为m的一块草坪上修了一条1m宽的笔直小路,则余下草坪的面积可表示为;现为了增加美感,把这条小路改为宽恒为1m的弯曲小路(如图6),则此时余下草坪的面积为.答案:(或)(或)4.年成都市)已知y = x – 1,那么x2– 2xy + 3y2– 2的值是 .答案:15.(年江苏省连云港市)当时,代数式的值为.答案:6. (山东济南).当x=3,y=1时,代数式(x+y)(x-y)+y2的值是__________.答案:37. ( 四川广安)若是同类项,则.答案:-28. (厦门市)一盒铅笔12支,盒铅笔共有支.答案:12n9.(青海西宁)回收废纸用于造纸可以节约木材.根据专家估计,每回收一吨废纸可以节约3立方米木材,那么回收吨废纸可以节约立方米木材.答案:10.(青海)对单项式“”,我们可以这样解释:香蕉每千克5元,某人买了千克,共付款元.请你对“”再给出另一个实际生活方面的合理解释:.某人以5千米/时的速度走了小时,他走的路程是千米。

中考数学专题复习训练代数式及整式

中考数学专题复习训练代数式及整式

代数式及整式一、选择题1. 计算x x ÷)2(3的结果正确的是( )A )28xB )26xC )38xD )36x 2.下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3 3.下列命题中,正确的是( )A .若a ·b >0,则a >0,b >0B .若a ·b <0,则a <0,b <0C .若a ·b =0,则a =0,且b =0D .若a ·b =0,则a =0,或b =0 4. 34a a ⋅的结果是( )A. 4aB. 7aC.6aD. 12a6. 图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( ) A .22()()4m n m n mn +--= B .222()()2m n m n mn +-+=C .222()2m n mn m n -+=+ D .22()()m n m n m n +-=-7.如果33-=-b a ,那么代数式b a 35+-的值是( ) A .0 B .2 C .5 D .88.由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b -ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3.我们把等式①叫做多项式乘法的立方公式。

下列应用这个立方公式进行的变形不正确...的是(A )(x +4y )(x 2-4xy +16y 2)=x 3+64y 3 (B )(2x+y )(4x 2-2xy+y 2)=8x 3+y 3(C )(a +1)(a 2+a +1)=a 3+1 (D )x 3+27=(x +3)(x 2-3x +9) 9.下列运算正确的是A .xy y x 532=+B .a a a =-23C .b b a a -=--)(D .2)2(12-+=+-a a a a )( 10.已知1=-b a ,则a 2-b 2-2b 的值为( )A .4B .3C .1D .0 11.下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+12.已知有一多项式与(2x 2+5x -2)的和为(2x 2+5x +4),求此多项式为何?(A) 2 (B) 6 (C) 10x +6 (D) 4x 2+10x +2 。

中考数学专题《代数式》复习试卷(含解析)

中考数学专题《代数式》复习试卷(含解析)

中考数学专题《代数式》复习试卷(含解析) 2022年中考数学专题复习卷:代数式一、选择题1.以下各式不是代数式的是()A.0B.C.D.2.若单项式am﹣1b2与的和仍是单项式,则nm的值是()A.3B.6C.8D.93.某一餐桌的表面如图所示(单位:m),设图中阴影部分面积S1,餐桌面积为S2,则(A.B.C.D.4.若M=3某2﹣8某y+9y2﹣4某+6y+13(某,y是实数),则M的值一定是()A.零B.负数C.正数D.整数5.代数式相乘,其积是一个多项式,它的次数是()A.3B.5C.6D.26.已知a+b=5,ab=1,则(a-b)2=()A.23B.21C.19D.177.若|某+2y+3|与(2某+y)2互为相反数,则某2﹣某y+y2的值是()A.1B.3C.5D.78.已知a、b满足方程组,则3a+b的值为()A.8B.4C.﹣4D.﹣89.黎老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A.6aB.6a+bC.3aD.10a-b)10.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A.B.C.D.无法计算11.如图,都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有7个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆;…;则第⑦个图形中圆的个数为()A.121B.113C.105D.9212.如图,已知,点A(0,0)、B(4,0)、C(0,4),在△ABC内依次作等边三角形,使一边在某轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2022个等边三角形的边长等于()A.B.C.D.二、填空题13.若是方程的一个根,则的值为________.14.已知-2某3m+1y2n与7某n-6y-3-m的积与某4y是同类项,则m2+n的值是________15.若a某=2,b某=3,则(ab)3某=________16.如图是一个运算程序的示意图,若开始输入的值为625,则第2022次输出的结果为________.17.若3a2﹣a﹣3=0,则5﹣3a2+a=________.18.已知+|b﹣1|=0,则a+1=________.19.已知某=2m+n+2和某=m+2n时,多项式某2+4某+6的值相等,且m ﹣n+2≠0,则当某=3(m+n+1)时,多项2式某+4某+6的值等于________.20.若规定一种特殊运算为:ab=ab-,则(﹣1)(﹣2)________.,,,,按照这样的规律,这组21.按照某一规律排列的一组数据,它的前五个数是:1,数据的第10项应该是________.22.已知的奇数时,,,,,,,…(即当为大于1________.;当为大于1的偶数时,),按此规律,三、解答题23.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.24.先化简,再求值:已知a2—a=5,求(3a2-7a)-2(a2-3a+2)的值.25.某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)答案解析一、选择题1.【答案】C【解析】:A、是整式,是代数式,故不符合题意;B、是分式,是代数式,故不符合题意;C、是不等式,不是代数式,故符合题意;D、是二次根式,是无理式,是代数式,故不符合题意。

2020年初三中考数学复习:代数式含答案

2020年初三中考数学复习:代数式含答案

2020年初三中考数学复习:代数式一、单选题1.“a与b的的差”,用代数式表示为( )A. B. C. D.2.a+1的相反数是()A. -a+1B. -(a+1)C. a-1D.3.每100千克小麦可出x千克面粉,y千克小麦可出面粉的千克数为()A. B. C. D.4.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A. 4B. ﹣4C. 16D. ﹣165.设,则代数式的值为( ).A. -6B. 24C.D.6.某冰箱降价30%后,每台售价a元,则该冰箱每台原价应为()A. 0.3a元B. 0.7a元C. 元D. 元7.x的2倍加上y的和乘以x的2倍减去y的差,所得的积写成代数式为()A. (2x+y)·2x-yB. 2x+y·(2x-y)C. 2x+y·2x-yD. (2x+y)(2x-y)8.下列图案是我国古代窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第10个图中所贴剪纸“○”的个数为()A. 32个B. 33个C. 34个D. 35个9.观察图中正方形四个顶点所标的数字规律,可得出数2017应标在()A. 第504个正方形的左下角B. 第504个正方形的右上角C. 第505个正方形的左下角D. 第505个正方形的右上角10.下列代数式中符合书写要求的是()A. ab2×4B. xyC. 2a2bD. 6xy2÷311.有理数a,b在数轴上对应的位置如图所示,那么代数式的值是()A. ﹣1B. 0C. 1D. 212.如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为()A. 231πB. 210πC. 190πD. 171π13.已知:,则的值是()A. B. C. 3 D. -314.若正整数按如图所示的规律排列,则第8行第5列的数字是()A. 64B. 56C. 58D. 6015.图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的)后,得图③,④,…,记第n(n≥3)块纸板的周长为P n,则P2018﹣P2017的值为()A. B. C. D.二、填空题16.用同样大小的黑色棋子按如图所示的规律摆放,则第2 017个图共有________枚棋子.17.已知a—2b的值是2018,则1—2a+4b的值等于________.18.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n个图案有1499个黑棋子,则n=________.19.如果定义新运算“※”,满足a※b=a×b﹣a÷b,那么1※2=________.20.已知的值为,则代数式的值为________.三、计算题21.当x=3,y= –2时,求下列代数式的值.(1)(2)22.计算:已知|x|= ,|y|= ,且x<y<0,求6÷(x﹣y)的值.23.观察下列等式:,,,……(1)按此规律写出第5个等式;(2)猜想第n个等式,并说明等式成立的理由.24.已知a2+b2=5,ab=-2,求代数式2(4a2+2ab-b2)-3(5a2-3ab+2b2)+b2的值.25.如果有理数、满足,试求…… 的值.四、解答题26.如图,试用字母,表示阴影部分的面积,并求出当a=12cm,b=4cm,π≈3时各自阴影部分的面积.27.根据你的生活与学习经验,对代数式2(x+y)表示的实际意义作出两种不同的解释.28.说出下列代数式的意义:(1)2a﹣3c;(2);(3)ab;(4)a2﹣b2.五、综合题29.观察下面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:① 1× =1-② 2× =2-③ 3× =3-……(1)在下面给出的四个正方形中画出第四个图形,并在右边写出与之对应的等式;________;________(2)猜想并写出与第n个图形相对应的等式:________。

中考数学代数式复习专题(附答案)

中考数学代数式复习专题(附答案)

中考数学代数式复习专题(附答案)一、单选题(共12题;共24分)1.我校给某“希望小学”邮寄每册a元的图书1000册,若每册图书的邮费为书价的5%,则共需邮费()元.A. 5%aB. 5%×1000aC. 1000a(1+5%)D. 502.已知,则代数式的值是()A. -1B. 2C. 1D. -73.对于任意两个有理数a、b,规定a⊗b=3a﹣b,若(2x+3)⊗(3x﹣1)=4,则x的值为()A. 1B. ﹣1C. 2D. ﹣24.某厂去年产值为m万元,今年产值是n万元(m<n),则今年的产值比去年的产值增加的百分比是( )A. ×100%B. ×100%C. ×100%D. ×100%5.若x1和x2为一元二次方程x2+2x-1=0的两个根。

则x12x2+x1x22值为()A. 4B. 2C. 4D. 36.买一个笔盒需要m元,买一支铅笔需要n元,则买4个笔盒、7支铅笔共需要()元A. 4m+7nB. 28mC. 7m+4nD. 11m7.一个三位数的各数位上的数字之和等于12,且个位数字为a,十位数字为b,则这个三位数可表示为()A. 12+10b+aB. 12000+10b+aC. 100(12-a-b)+10b+aD. 112+10b+a8.用火柴棒按如图中的方式搭图形,则搭第7个图形所需火柴棒的根数为()A. 28B. 29C. 34D. 359.若m+n=7,2n﹣p=4,则2m+4n﹣p的值为()A. ﹣11B. ﹣3C. 3D. 1810.若a为方程x²-x-5=0的解,则-a²+a+11的值为( )A. 16B. 12C. 9D. 611.观察下列等式:,,,,,,…,根据这个规律…+的末位数字是()A. 0B. 2C. 4D. 612.在平面直角坐标系中,对于点P(x,y),我们把点Q(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,A2的伴随点为A3……这样依次得到点A1,A2,A3……A n,若点A1(2,2),则点A2019的坐标为()A. (-2,0)B. (-1,3)C. (1,-1)D. (2,2)二、填空题(共6题;共6分)13.若x﹣y﹣1=0,则代数式(y﹣x)2﹣2x+2y+1的值是________.14.若a,b互为相反数,c,d互为倒数,m的平方等于25,则的值是________.15.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4>0的解集为________.16.如图,下列图形都是由同样大小的小圆圈按一定规律所组成的,则第n个图形中小圆圈的个数为________.17.如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2);再分别连接图(2)中间小三角形三边中点得到图(3),按上面的方法继续下去,第n个图形中有________个三角形?18.任意写出一个3的倍数例如:,首先把这个数各数位上的数字都立方,再相加,得到一个新数,然后把这个新数重复上述运算,运算结果最终会得到一个固定不变的数M,它会掉入一个数字“黑洞” 那么最终掉入“黑洞”的那个数M是________.三、计算题(共3题;共30分)19. (1)已知=5,=4,且m,n异号,求m2-mn+n2的值.(2)已知,m和n互为相反数,p和q互为倒数,a是绝对值最小的有理数,求的值. 20.阅读材料:规定一种新的运算:=ad-bc。

苏科版中考数学复习基础必练习题:第三章-代数式(含解析)

苏科版中考数学复习基础必练习题:第三章-代数式(含解析)

2019备战中考数学基础必练(苏科版)-第三章-代数式(含解析)一、单选题1.多项式﹣y2﹣y﹣1的一次项是()A. 1B. ﹣1C.D.2.若x=2,y=﹣1,那么代数式x2+2xy+y2的值是()A. 0B. 1C. 2D. 43.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A. m = 2,n = 2B. m =-2,n = 2C. m = -1,n = 2D. m = 2 ,n =-14.下列代数式书写规范的是()A. 8x2yB. 1 bC. ax3D. 2m÷n5.如图,它是一个程序计算器,如果输入m=6,那么输出的结果为()A. 3.8B. 2.4C. 36.2D. 37.26.已知a+b=7,ab=10,则代数式(5ab+4a+7b)+(3a-4ab)的值为( )A. 49B. 59C. 77D. 1397.下面的式子中正确的是()A. 3a2﹣2a2=1B. 5a+2b=7abC. 3a2﹣2a2=2aD. 5xy2﹣6xy2=﹣xy28.如图是一个数值运算程序,当输入值为﹣2时,则输出的数值为()A. 3B. 8C. 64D. 639.下列合并同类项的结果正确的是( )A. a+3a=3a2B. 3a-a=2C. 3a+b=3abD. a2-3a2=-2a2二、填空题10.县化肥厂第一季度增产a吨化肥,以后每季度比上一季度增产x%,则第三季度化肥增产的吨数为________ 。

11.若单项式2x2y m与-的和仍为单项式,则m+n的值是________ .12.a与3的和的4倍,用代数式表示为________.13.若n表示整数,则奇数用n的代数式表示为________。

14.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k=________;当m=2,n=﹣3时代数式的值是________.15.单项式﹣的系数是________,次数是________.16.多项式-x3y2+3x2y4-2xy2的次数是________.17.根据如图所示的程序计算,若输入x的值为1,则输出y的值为________.18.如果多项式x4-(a-1)x3+3x2-(b+1)x-1中不含x3和x项,则a=________,b=________.三、计算题19.化简:3a2+2a-4a2-7a20.已知2x a y b+1+(a-1)x2是关于x,y的四次单项式,求a,b的值.四、解答题21.若单项式5x2y和42x m y n是同类项,求m+n的值.22.先化简,再求值:,其中x=2.五、综合题23.综合题。

2018年中考数学真题知识分类练习试卷:代数式(有答案)

2018年中考数学真题知识分类练习试卷:代数式(有答案)

代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得. 【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略11。

2022年中考数学分类复习强化练 -第二讲 代数式(含答案)

2022年中考数学分类复习强化练 -第二讲  代数式(含答案)

第二讲代数式专项一列代数式知识清单代数式:用________把数和表示数的字母连接起来的式子叫做代数式.注意代数式不含等号,单独一个数或一个字母也是代数式.考点例析例1 如图1,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球的总数,则表达错误的是()A.12(m-1)B.4m+8(m-2)C.12(m-2)+8 D.12m-16分析:正方体有12条棱,每条棱上的小球数为m,则有12m个小球,而每个顶点处的小球算了3次,多计算2次,则正方体棱长上的所有小球个数为12m-8×2=12m-16.将各选项化简即可.解:例2 (2021•模考海南)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图2是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有个菱形,第n个图中有个菱形(用含n的代数式表示).分析:根据已知图形可得,图形中菱形的个数为序数的平方与序数减1的平方的和,据此求解可得.解:归纳:在一些实际问题中,有时表示数量的代数式有单位,如果代数式是和或差的形式,则必须先把代数式用括号括起来,单位写在式子后面.跟踪训练1.(2021•模考重庆)已知a+b=4,则代数式1++的值为()A.3 B.1 C.0 D.﹣12.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,共需花费元.3. (2021•模考鸡西)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……依此规律排列下去,第9个图形中圆的个数是个.第3题图专项二整式知识清单一、整式的加减1. __________与__________统称为整式(注意整式的分母中不含有字母).2. 同类项:所含__________相同,并且相同字母的__________也相同的项叫做同类项.3. 合并同类项法则:同类项的__________相加,所得的结果作为_________,字母和字母的__________保持不变.4. 整式的加减运算:先去括号,再合并同类项(当括号前面是“+”时,把括号和它前面的“+”去掉,括号内各项都__________符号;当括号前面是“-”时,把括号和它前面的“-”去掉,括号内各项都__________符号).二、幂的运算1. 同底数幂的乘法:a m·a n=___________(m,n都是正整数);2. 幂的乘方:(a m)n=___________(m,n都是正整数);3. 积的乘方:(ab)n=___________(n是正整数);4. 同底数幂的除法:a m÷a n=___________(a≠0,m,n为正整数).三、整式的乘法1. 单项式乘以单项式:把它们的___________、___________分别相乘,对于只在一个单项式里出现的字母,则连同它的___________作为积的一个因式.2. 单项式乘以多项式:a(a+b+c)=a2+ab+ac.3. 多项式乘以多项式:(a+b)(b+c)=ab+b2+ac+bc.4. 乘法公式:①平方差公式:(a+b)(a-b)=___________;②完全平方公式:(a±b)2=___________.四、整式的除法1. 单项式相除,把___________、___________分别相除作为商的一个因式,对于只在被除式里出现的字母,则连同它的___________作为商的一个因式.2. 多项式除以单项式,先把这个多项式的___________除以这个单项式,再把所得的商___________.考点例析例1 (2021•模考鄂尔多斯)下列计算错误的是()A.(﹣3ab2)2=9a2b4B.﹣6a3b÷3ab=﹣2a2C.(a2)3﹣(﹣a3)2=0 D.(x+1)2=x2+1分析:(x+1)2=x2+2x+1是完全平方式,故选项D错误.解:例2 已知3m=4,32m-4n=2,若9n=x,则x的值为()A.8 B.4 C. D.分析:先逆用幂的乘方及同底数幂的除法法则将32m-4n=2变形为(3m)2÷(3n)4,再将9n变形为(3n)2,代入求得n的值.再开平方求得x 的值,注意x在本题中应为正数.解:归纳:幂的运算首先要分清运算法则,再选择相应法则进行计算.在解答利用幂的运算性质求值类的题目时,需注意幂的运算的逆向运用.例3 (2021•模考郴州)如图①,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图②所示的长方形.这两个图能解释的等式是()A.x2﹣2x+1=(x﹣1)2B.x2﹣1=(x+1)(x﹣1)C.x2+2x+1=(x+1)2D.x2﹣x=x(x﹣1)分析:左边两个长方形面积等于大正方形的面积减去阴影正方形的面积,即x2﹣1,右边大长方形的面积可以表示为(x+1)(x﹣1),根据空白部分面积相等列等式.解:例4 已知5x2-x-1=0,求代数式(3x+2)(3x-2)+x(x-2)的值.分析:直接利用乘法公式以及单项式乘多项式运算法则化简,这里不要着急求解x的值,可以将条件式变形,整体代入求得.解:归纳:整式的运算主要是整式的加减运算和乘除运算.进行加减运算时要注意去括号时的符号问题;进行乘法运算时,首先要观察是否可以运用乘法公式,其次运算时注意不要重复或遗漏.跟踪训练1.(2021•模考日照)单项式﹣3ab的系数是()A.3 B.﹣3 C.3a D.﹣3a2. (2021•模考济南)下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3D.(a﹣b)2=a2﹣b23. (2021•模考河北)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+ B.﹣C.×D.÷4. (2021•模考淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205 B.250 C.502 D.5205. (2021•模考绵阳)若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.6. 化简:(x+y)2-x(x+2y).7. (2021•模考襄阳)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y)﹣2y(3x+5y),其中x=,y=﹣1.专项三因式分解知识清单1. 因式分解:把一个多项式化为几个整式的_________的形式,像这样的式子变形叫做把这个多项式因式分解.2. 因式分解的基本方法:(1)提公因式法:ma+mb+mc=_______________.(2)公式法:①平方差公式:a2-b2=_______________.②完全平方公式:a2±2ab+b2=_______________.考点例析例1 (2021•模考西藏)下列分解因式正确的是()A.x2﹣9=(x+3)(x﹣3)B.2xy+4x=2(xy+2x)C.x2﹣2x﹣1=(x﹣1)2D.x2+y2=(x+y)2分析:2xy+4x=2x(y+2),选项B提公因式不彻底;选项C,D不是完全平方公式,不能用公式法因式分解.解:归纳:判断因式分解是否正确,一看等式右边是否是整式的积的形式,二看左右两边是否相等.例2 (2021•模考自贡)分解因式:3a2﹣6ab+3b2=.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解.解:归纳:一个多项式有公因式先提取公因式,再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.多项式是二项式优先考虑平方差公式分解,三项式优先考虑完全平方公式分解.跟踪训练1. (2021•模考河北)若=8×10×12,则k的值是()A.12 B.10 C.8 D.62. (2021•模考眉山)已知a2+b2=2a﹣b﹣2,则3a﹣b的值为()A.4 B.2 C.﹣2 D.﹣43.(2021•模考盐城)因式分解:x2﹣y2=.4. (2021•模考营口)ax2﹣2axy+ay2=.5. (2021•模考深圳)分解因式:m3﹣m=.6. (2021•模考常德)【阅读理解】对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx ﹣1).【理解运用】如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.【解决问题】求方程x3﹣5x+2=0的解是__________________________.专项四分式知识清单一、分式的相关概念1. 定义:用A ,B(B≠0)表示两个整式,A÷B就可以表示成.如果B中含有____________,式子叫做分式.2. 分式有意义、值为0的条件:分式的分母____________,分式有意义;分式的____________不为0,____________为0时,分式的值为0.二、分式的基本性质分式的分子与分母都乘(或除以)同一个__________的整式,分式的值不变.三、分式的运算1. 最简分式:分子与分母没有____________的分式,叫做最简分式.2. 分式的约分、通分:把分式的分子与分母的_____________约去,叫做约分;把几个____________的分式分别化为与原来的分式相等的____________的分式,叫做通分.3. 分式的乘法运算法则:分式乘分式,用分子的积作为积的_____________,分母的积作为积的____________,即·=____________.4. 分式的除法运算法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即÷=____________.5. 分式的乘方:分式的乘方等于分子的乘方除以分母的乘方,即=____________.6. 分式的加减运算法则:同分母的分式相加减,____________不变,把____________相加减;异分母分式相加减,先通分,化为_________分式,然后再按同分母分式的加减法则进行运算.考点例析例1 (2021•模考河北)若a≠b,则下列分式化简正确的是()A.B.C.D.分析:根据分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变来判断. 选项A,B 是同加或同减,不是同乘除,不符合分式的基本性质;选项C中,分子、分母同乘的整式不相同,也不符合分式的基本性质;选项D中,分式的分子与分母同乘2,分式的值不变.解:归纳:根据分式的基本性质对分式变形,要注意:①分子与分母必须同乘(或除以)同一个整式;②该整式不等于0.例2 (2021•模考雅安)若分式=0,则x的值是()A.1 B.﹣1 C.±1 D.0分析:根据分式的值为0的条件,得x2-1=0且x+1≠0.解:归纳:判断分式值等于0时,要从两方面来考虑:一是分子等于0,二是分母不等于0.例3 (2021•模考娄底)先化简,然后从﹣3,0,1,3中选一个合适的数代入求值.分析:本题可以先将括号中的两项通分,再利用除法法则变形,约分得到最简结果,最后把m的值代入计算.还可以先把除法变为乘法,利用乘法分配律计算.化简时可以根据题目选择最简便的方法. 解:归纳:分式化简的最后结果,一定是最简分式或整式,求值所选数值要使原分式有意义.跟踪训练1. (2021•模考衡阳)要使分式有意义,则x的取值范围是()A.x>1 B.x≠1C.x=1 D.x≠02. (2021•模考金华)分式的值是零,则x的值为()A.2 B.5 C.-2 D.-53.(2021•模考淄博)化简的结果是()A.a+b B.a﹣b C.D.4.(2021•模考随州)的计算结果为()A. B. C. D.5. (2021•模考阜新)先化简,再求值:,其中x=﹣1.6. (2021•模考自贡)先化简,再求值:,其中x是不等式组的整数解.专项五二次根式知识清单1. 二次根式:形如_________(a≥0)的式子叫做二次根式.2. 最简二次根式:(1)被开方数不含__________;(2)被开方数中不含能_________的因数或因式.同时满足上述两个条件的二次根式,叫做最简二次根式.3.二次根式的性质:(1)=____________(a≥0);(2)=|a|=(3)=____________(a≥0,b≥0);(4)=____________(a≥0,b>0).4. 二次根式的运算(1)二次根式的乘法:=____________(a≥0,b≥0);(2)二次根式的除法:=____________(a≥0,b>0);(3)二次根式的加减:先把每个二次根式化成____________,再把__________相同的二次根式进行合并.考点例析例1 若代数式在实数范围内有意义,则x的取值范围是________________.分析:根据二次根式有意义的条件和分母不为零的性质,可得2x-6>0,求解即可.解:归纳:二次根式有意义的条件是被开方数是非负数,若二次根式在分母上,则被开方数不能为0,由此可确定字母的取值范围.例2 (2021•模考攀枝花)实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣2 B.0 C.﹣2a D.2b分析:根据数轴,知﹣2<a<﹣1,1<b<2,故a+1<0,b﹣1>0,a﹣b<0,原式可转化为-(a+1)+b﹣1+(a﹣b),去括号合并即可.解:例3 (2021•模考包头)计算:=.分析:本题可以把原式化为,再将中括号内的部分利用平方差公式计算,运算更简便.解:归纳:进行二次根式的混合运算,应注意先化简,后合并,还要注意乘法公式的灵活应用.跟踪训练1.(2021•模考广东)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣22. (2021•模考济宁)下列各式是最简二次根式的是()A.B.C.D.3. (2021•模考南通)下列运算结果正确的是()A.B.3+=C.÷=3 D.×=4. (2021•模考朝阳)计算的结果是()A.0 B.C.D.5.(2021•模考荆州)若x为实数,在“(+1)□x”的“□”中填入一种运算符号(在“+,﹣,×,÷”中选择)后,其运算的结果为有理数,则x不可能是()A.+1 B.﹣1 C.D.1﹣6. (2021•模考益阳)若计算m的结果为正整数,则无理数m的值可以是(写一个).7. (2021•模考河北)已知﹣=a﹣=b,则ab=.8. (2021•模考株洲)计算的结果是.专项六代数式中的数学思想1. 整体思想整体思想是指在解决某些问题时,把一些组合式子作为一个“整体”,并把这个“整体”直接代入另一个式子,避免局部运算烦琐的方法.在分解因式、求代数式的值时,恰当使用整体思想,可以提高解题效率,减少复杂的计算.例1 (2021•模考临沂)若a+b=1,则a2﹣b2+2b﹣2=.分析:把a+b看做一个整体,由于a+b=1,将a2﹣b2+2b﹣2变形为含有a+b的形式,整体代入计算即可求解.解:归纳:在代数式的化简与求值过程中,如果不能确定整式中字母的具体值,可以考虑将该整式看做一个整体代入求值.2. 数形结合思想数形结合就是把抽象难懂的数学语言、数量关系与直观形象的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.例2 (2021•模考呼伦贝尔)已知实数a在数轴上对应点的位置如图所示,则化简|a﹣1|﹣的结果是()A.3﹣2a B.﹣1 C.1 D.2a﹣3分析:先根据数轴上a的位置,确定绝对值符号内式子的正负,然后再用去绝对值符号的方法进行化简.解:归纳:实数与数轴上的点之间具有一一对应关系,平面上的点与有序实数对之间具有一一对应关系,这些都是“数”和“形”转化的桥梁.3. 归纳推理思想由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征,或者由个别事实概括出一般的结论.例3 (2021•模考青海)观察下列各式的规律:①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1.请按以上规律写出第4个算式:,用含有字母的式子表示第n个算式:.分析:观察发现,和算式序号相等的数与比序号大2的数的积减去比序号大1的数的平方,等于﹣1,根据此规律写出即可.解:跟踪训练1.(2021•模考枣庄)图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②所示拼成一个正方形,则中间空余部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2第1题图第5题图2.(2021•模考西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n的值是()A.18 B.19 C.20 D.213.(2021•模考十堰)已知x+2y=3,则1+2x+4y=.4.(2021•模考雅安)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.5.(2021•模考赤峰)一个电子跳蚤在数轴上做跳跃运动.设原点处为O,第一次从点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;…;如此跳跃下去,最后落点为OA2019的中点A2020,则点A2020表示的数为.参考答案专项一列代数式考点例析:例1 A 例2 41 (2n2﹣2n+1)跟踪训练:1. A 2.(30m+15n) 3. 92专项二整式考点例析:例1 D 例2 C 例3 B例4 原式=9x2-4+x2-2x=10x2-2x-4.因为5x2-x-1=0,所以5x2-x=1.所以原式=2(5x2-x)-4=2×1-4=-2.跟踪训练:1. B 2. A 3. D 4. D 5. 0或86.解:原式=x2+2xy+y2-x2-2xy=y2.7.解:原式=4x2+12xy+9y2﹣4x2+y2﹣6xy﹣10y2=6xy.当x =,y =﹣1时,原式=6××=﹣.专项三因式分解考点例析:例1 A 例2 3(a﹣b)2跟踪训练:1. B 2. A 3.(x+y)(x﹣y) 4. a(x﹣y)2 5. m(m+1)(m﹣1)6.x=2或x=﹣1+或x=﹣1﹣提示:将x3﹣5x+2=0变形为x3﹣4x﹣x+2=0,则x(x2﹣4)﹣(x﹣2)=0,x(x+2)(x﹣2)﹣(x﹣2)=0,即(x﹣2)(x2+2x﹣1)=0.所以x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1±.专项四分式考点例析:例1 D 例2 A例3 原式=•=(m﹣3)﹣2(m+3)=﹣m﹣9.因为m的值为﹣3,0,3时,原分式没有意义,所以m只能取1.当m=1时,原式=﹣1﹣9=﹣10.跟踪训练:1. B 2. D 3. C 4. B5. 解:原式==.当x =-1时,原式==1﹣.6. 解:==.解不等式组得﹣1≤x<1.因为x是不等式组的整数解,所以x的值为﹣1,0.11因为x=﹣1时,原分式无意义,所以x=0.当x=0时,原式==.专项五二次根式考点例析:例1 x>3 例2 A 例3 ﹣跟踪训练:1. B 2. A 3. D 4. B 5.C 6. 答案不唯一,如7. 6 8.2专项六代数式中的数学思想考点例析:例1 ﹣1 例2 D 例3 4×6﹣52=24﹣25=﹣1 n(n+2)﹣(n+1)2=﹣1 跟踪训练:1. C 2. A 3. 7 4. 6 5.12。

专题02:代数式和因式分解(中考数学精品复习真题专题分类训练系列)

专题02:代数式和因式分解(中考数学精品复习真题专题分类训练系列)

温馨提醒:【每个题的详细解析在试题后!】1中考数学精品复习专题分类训练系列专题2:代数式和因式分解一、选择题【版权归江苏泰州锦元数学工作室邹强所有,转载必究】1. (2013佛山)下列计算正确的是【】A .3412aaaB .347(a )aC .2363(a b)a bD .34aaa (a 0)2. (2013深圳)下列计算正确的是【】A.222ababB.22ababC. 235aaD.23a aa3. (2013湛江)下列运算正确的是【】A. 236aaaB. 426aaC. 43a a aD. 222x yxy4. (2013广州)计算:23m n的结果是【】A. 6m nB. 62m n C. 52m nD. 32m n5. (2013佛山)多项式212xy 3xy 的次数及最高次项的系数分别是【】A. 33, B. 32, C. 35, D. 32,6. (2013佛山)分解因式3aa 的结果是【】13.A .2a(a1)B .2a(a 1)C .a(a 1)(a 1)D .2(aa)(a 1)7. (2013茂名)下列各式由左边到右边的变形中,属于分解因式的是【】A .a (x+y )=ax+ayB .x 2﹣4x+4=x (x ﹣4)+4 C .10x 2﹣5x=5x (2x ﹣1)D .x 2﹣16+6x=(x+4)(x ﹣4)+6x8. (2013深圳)分式2x4x2的值为0,则【】A. x=-2B. x=±2C. x=2D. x=09. (2013湛江)计算2x x2x2的结果是【】A. 0B.1C. -1D. x真题再现。

代数式及整式(46题)(原卷版)—2024年中考数学真题分类汇编(全国通用)

代数式及整式(46题)(原卷版)—2024年中考数学真题分类汇编(全国通用)

代数式及整式(46题)一、单选题1.(2024·辽宁·中考真题)下列计算正确的是( )A .2352a a a +=B .236a a a ×=C .()325a a =D .2(1)a a a a +=+2.(2024·江苏常州·中考真题)计算222a a -的结果是( )A .2B .2aC .23aD .42a 3.(2024·四川巴中·中考真题)下列运算正确的是( )A .33a b ab+=B .325a a a ×=C .()8240a a a a ÷=≠D .()222a b a b -=-4.(2024·四川雅安·中考真题)下列运算正确的是( )A .34a b ab +=B .()325a a =C .326a a a ×=D .54a a a ÷=5.(2024·四川资阳·中考真题)下列计算正确的是( )A .325a a a +=B .32a a a -=C .()325a a =D .523a a a ÷=6.(2024·湖北·中考真题)223x x ×的值是( )A .25xB .35xC .26xD .36x 7.(2024·湖北武汉·中考真题)下列计算正确的是( )A .236a a a ×=B .()1432a a =C .()2236a a =D .()2211a a +=+8.(2024·福建·中考真题)下列运算正确的是( )A .339a a a ×=B .422a a a ÷=C .()235a a =D .2222a a -=9.(2024·广东·中考真题)下列计算正确的是( )A .2510a a a ×=B .824a a a ÷=C .257a a a -+=D .()5210a a =10.(2024·云南·中考真题)按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是( )A .2n xB .()1n n x -C .1n nx +D .()1n n x +11.(2024·山东济宁·中考真题)如图,用大小相等的小正方形按照一定规律拼正方形.第一幅图有1个正方形,第二幅图有5个正方形,第三幅图有14个正方形……按照此规律,第六幅图中正方形的个数为( )A .90B .91C .92D .9312.(2024·甘肃兰州·中考真题)计算:22(1)2a a a --=( )A .aB .a -C .2aD .2a-13.(2024·四川成都·中考真题)下列计算正确的是( )A .()2233x x =B .336x y xy +=C .()222x y x y +=+D .()()2224x x x +-=-14.(2024·湖南长沙·中考真题)下列计算正确的是( )A .642x x x ÷=B =C .325()x x =D .222()x y x y +=+15.(2024·山东·中考真题)下列运算正确的是( )A .437a a a +=B .()2211a a -=-C .()2332a b a b =D .()2212a a a a +=+16.(2024·山东泰安·中考真题)下列运算正确的是( )A .22223x y xy x y-=-B .82224422x y x y x ÷=C .()()22x y x y x y ---=-D .()22346x y x y =17.(2024·四川·中考真题)下列计算正确的是( )A .()2222a a +=+B .2a a a +=C .23515a a a ×=D .()222a b a b +=+18.(2024·四川眉山·中考真题)如图,图1是北京国际数学家大会的会标,它取材于我国古代数学家赵爽的“弦图”,是由四个全等的直角三角形拼成.若图1中大正方形的面积为24,小正方形的面积为4,现将这四个直角三角形拼成图2,则图2中大正方形的面积为( )A .24B .36C .40D .4419.(2024·内蒙古呼伦贝尔·中考真题)下列计算正确的是( )A .()341226a a -=-B .253a a a -÷=C .111a a a a +-=D .()()2233a b a ab b a b +-+=+20.(2024·吉林长春·中考真题)下列运算一定正确的是( )A .236a a a ×=B .236a a a ×=C .()222ab a b =D .()235a a =21.(2024·青海·中考真题)计算1220x x -的结果是( )A .8xB .8x -C .8-D .2x 22.(2024·四川广安·中考真题)下列运算中,正确的是( )A .235a a a +=B .()32628a a -=-C .22(1)1a a -=-D .842a a a ÷=23.(2024·四川德阳·中考真题)下列计算正确的是( )A .236a a a ×=B .()a b a b--=-+C .()211a a a +=+D .222()a b a b +=+24.(2024·四川南充·中考真题)下列计算正确的是( )A .235a a a +=B .842a a a ÷=C .236a a a ×=D .()326327a a =25.(2024·四川泸州·中考真题)下列运算正确的是( )A .34325a a a +=B .236326a a a ×=C .()23624a a -=D .62344a a a ÷=26.(2024·四川达州·中考真题)下列计算正确的是( )A .235a a a +=B .()22224a a a +=++C .()3236928ab a b -=-D .1262a a a ÷=27.(2024·四川宜宾·中考真题)下列计算正确的是( )A .2a a a +=B .532a a -=C .2326x x x ×=D .32()()x x x-÷-=28.(2024·四川遂宁·中考真题)下列运算结果正确的是( )A .321a a -=B .236a a a ×=C .()44a a -=-D .()()2339a a a +-=-29.(2024·四川广安·中考真题)代数式3x -的意义可以是( )A .3-与x 的和B .3-与x 的差C .3-与x 的积D .3-与x 的商二、填空题30.(2024·四川雅安·中考真题)如图是1个纸杯和若干个叠放在一起的纸杯的示意图,在探究纸杯叠放在一起后的总高度H 与杯子数量n 的变化规律的活动中,我们可以获得以下数据(字母),请选用适当的字母表示H = .①杯子底部到杯沿底边的高h ;②杯口直径D ;③杯底直径d ;④杯沿高a .31.(2024·四川德阳·中考真题)若一个多项式加上234y xy +-,结果是2325xy y +-,则这个多项式为 .32.(2024·山东济宁·中考真题)已知2210a b -+=,则241b a +的值是 .33.(2024·四川广安·中考真题)若2230x x --=,则2241x x -+= .34.(2024·吉林长春·中考真题)单项式22a b -的次数是 .35.(2024·上海·中考真题)计算()()a b b a +-= .36.(2024·江苏苏州·中考真题)计算:32x x ×= .37.(2024·黑龙江大庆·中考真题)已知1a a +=,则221a a +的值是 .38.(2024·四川·中考真题)已知223x x +=,那么2245x x +-的值是 .39.(2024·山东泰安·中考真题)单项式23ab -的次数是 .40.(2024·四川乐山·中考真题)计算:2a a += .三、解答题41.(2024·江苏常州·中考真题)先化简,再求值:()()211x x x +-+,其中1x =.42.(2024·山东济宁·中考真题)先化简,再求值:(4)(2)(2)x y x x y x y -++-,其中12x =,2y =.43.(2024·重庆·中考真题)计算:(1)()()()312a a a a -+-+;(2)22241244x x x x -æö+÷ç÷--+èø.44.(2024·四川南充·中考真题)先化简,再求值:()23(2)3x x x x +-+÷,其中2 x =-.45.(2024·内蒙古通辽·中考真题)先化简,再求值:()()()()224+--+-a b a b a b a b ,其中2==a b .46.(2024·湖南长沙·中考真题)先化简,再求值:()()()2233m m m m m --++-,其中52m =.。

中考数学试题分类汇总《代数式与整式》练习题及答案

中考数学试题分类汇总《代数式与整式》练习题及答案

中考数学试题分类汇总《代数式与整式》练习题及答案1.若ab≠0,且2b=3a,则的值是.【解答】解:由2b=3a,得到a=b,则原式==,2.已知a、b、c都是实数,若+|2b+|+(c+2a)2=0,则=1.【解答】解:∵+|2b+|+(c+2a)2=0,≥0,|2b+|≥0,(c+2a)2≥0,∴a﹣2=0,2b+=0,c+2a=0,∴a=2,b=﹣,c=﹣4.∴===1.3.若=,则=.4.若x2+2x的值是6,则2x2+4x﹣7的值是5.5.若x=+1,则代数式x2﹣2x+2的值为()A.7B.4C.3D.3﹣2【解答】解:∵x=+1,∴x﹣1=,∴(x﹣1)2=2,即x2﹣2x+1=2,∴x2﹣2x=1,∴x2﹣2x+2=1+2=3.幂的运算6.下列计算正确的是()A.(﹣a3)2=a6B.3a+2b=5abC.a6÷a3=a2D.(a+b)2=a2+b2【解答】解:A.(﹣a3)2=a6,故此选项符合题意;B.3a+2b无法合并,故此选项不合题意;C.a6÷a3=a3,故此选项不合题意;D.(a+b)2=a2+2ab+b2,故此选项不合题意,7.下列运算正确的是()A.x5﹣x3=x2B.(x+2)2=x2+4C.(m2n)3=m5n3D.3x2y÷3xy=x【解答】解:A、x5与x3不是同类项,故不能合并,故A不符合题意.B、原式=x2+4x+4,故B不符合题意.C、原式=m6n3,故C不符合题意.D、原式=x,故D符合题意.8.下列运算结果正确的是()A.2a+a=2a2B.a5•a2=a10C.(a2)3=a5D.a3÷a=a2【解答】解:A、2a+a=3a,故A不符合题意;B、a5•a2=a7,故B不符合题意;C、(a2)3=a6,故C不符合题意;D、a3÷a=a2,故D符合题意;9.下列运算中,正确的是()A.(﹣a)6÷(﹣a)3=﹣a3B.a3•a2=a6C.(ab2)3=ab6D.(﹣3a3)2=6a6【解答】解:∵(﹣a)6÷(﹣a)3=a6÷(﹣a3)=﹣a3,∴选项A符合题意;∵a3•a2=a5≠a6,∴选项B不符合题意;∵(ab2)3=a3b6≠ab6,∴选项C不符合题意;∵(﹣3a3)2=9a6≠6a6,∴选项D不符合题意;10.下列运算中,计算正确的是()A.a3+a3=a6B.(2a2)3=6a6C.a2•a3=a6D.(2a3)2=4a6【解答】解:A.a3+a3=2a3,故本选项不合题意;B.(2a2)3=8a6,故本选项不合题意;C.a2•a3=a5,故本选项不合题意;D.(2a3)2=4a6,故本选项符合题意.11.下列运算正确的是()A.a2•a3=a6B.6a÷3a=2aC.(a﹣b)3=a3﹣b3D.(﹣ab2)2=a2b4【分析】根据整式的除法,幂的乘方与积的乘方,同底数幂的乘法运算法则进行计算即可判断.【解答】解:A.a2•a3=a5,故A不符合题意;B.6a÷3a=2,故B不符合题意;C.(a﹣b)3=a3﹣3a2b+3ab2﹣b3,故C不符合题意;D.(﹣ab2)2=a2b4,故D符合题意;12.下列运算中,计算正确的是()A.a3+a3=a6B.(2a2)3=6a6C.a2•a3=a6D.(2a3)2=4a6【分析】分别根据合并同类项法则,幂的乘方与积的乘方运算法则,同底数幂的乘法法则逐一判断即可.【解答】解:A.a3+a3=2a3,故本选项不合题意;B.(2a2)3=8a6,故本选项不合题意;C.a2•a3=a5,故本选项不合题意;D.(2a3)2=4a6,故本选项符合题意.13.下列计算中,正确的是()A.(3a3)2=9a9B.3a+3b=6ab C.a6÷a3=a2D.﹣5a+3a =﹣2a【分析】利用同底数幂的除法的法则,合并同类项的法则,同底数幂的乘法的法则,积的乘方的法则对各项进行运算即可.【解答】解:A、(3a3)2=9a6,故A不符合题意;B、3a与3b不属于同类项,不能合并,故B不符合题意;C、a6÷a3=a3,故C不符合题意;D、﹣5a+3a=﹣2a,故D符合题意;14.已知3m=4,32m﹣4n=2.若9n=x,则x的值为()A.8B.4C.2D.【分析】根据幂的乘方以及同底数幂的除法法则计算即可求出n的值,再根据算术平方根的定义即可求出x的值.【解答】解:∵3m=4,32m﹣4n=(3m)2÷(3n)4=2.∴42÷(3n)4=2,∴(3n)4=42÷2=8,又∵9n=32n=x,∴(3n)4=(32n)2=x2,∴x2=8,∴x==.15.下列运算中,正确的是()A.a8÷a2=a4B.(a3)4=a12C.(﹣3a)2=a6D.3a2•a3=3a6【分析】根据同底数幂的除法判断A选项;根据幂的乘方判断B选项;根据积的乘方判断C选项;根据单项式乘单项式判断D选项.【解答】解:A选项,原式=a6,故该选项不符合题意;B选项,原式=a12,故该选项符合题意;C选项,原式=9a2,故该选项不符合题意;D选项,原式=3a5,故该选项不符合题意;16.下列运算中,结果正确的是()A.(a3)2=a5B.(a﹣1)(a+1)=a2+1C.2a•a=2a2D.a8÷a2=a4【解答】解:A.(α3)2=α6,此选项错误,不符合题意;B.(α﹣1)(α+1)=α2+1,此选项错误,不符合题意;C.2α⋅α=2α2,此选项正确,符合题意;D.α8÷α2=α6,此选项错误,不符合题意;17.下列运算正确的是()A.(a2)3=a8B.a2•a3=a5C.(﹣3a)2=6a2D.2ab2+3ab2=5a2b4【解答】解:选项A、(a2)3=a2×3=a6,故本选项不符合题意;选项B、a2•a3=a2+3=a5,故本选项符合题意;选项C、(﹣3a)2=9a2,故本选项不符合题意;选项D、2ab2+3ab2=5ab2,故本选项不符合题意;整式的有关概念18.若﹣a x+y b3与2a3b y是同类项,则y﹣x=3.【解答】解:由同类项的定义可知:x+y=3,y=3,∴x=0,y=3,所以y﹣x=3﹣0=3.19.单项式﹣3x2y的次数是3.整式的运算20.化简m+n﹣(m﹣n)的结果为()A.2m B.2n C.0D.﹣2n【分析】原式去括号合并即可得到结果.【解答】解:原式=m+n﹣m+n=2n,21.下列计算正确的是()A.4a2÷2a2=2a2B.3a2+2a=5a3C.﹣(a3)2=a5D.(a﹣b)(﹣a﹣b)=b2﹣a2【分析】根据单项式除以单项式可以判断A;根据合并同类项的方法可以判断B;根据积的乘方可以判断C;根据平方差公式可以判断D.【解答】解:4a2÷2a2=2,故选项A错误,不符合题意;3a2+2a不能合并,故选项B错误,不符合题意;﹣(a3)2=﹣a6,故选项C错误,不符合题意;(a﹣b)(﹣a﹣b)=b2﹣a2,故选项D正确,符合题意;22.下列算式中,正确的是()A.(a+b)2=a2+b2B.5a2﹣3a2=2a2C.D.因式分解23.因式分解:2x2﹣4x+2=2(x﹣1)2.24.因式分解:3x2﹣12=3(x+2)(x﹣2).25.已知x+y=﹣6,xy=,则x3y+2x2y2+xy3的值为9.【解答】解:原式=xy(x2+2xy+y2)=xy(x+y)2,∵x+y=﹣6,xy=,∴原式===9.26.分解因式:2a3﹣8a=2a(a+2)(a﹣2).27.分解因式:a2﹣2ab=a(a﹣2b).28.分解因式:m2﹣6m=m(m﹣6).29.分解因式:a2b﹣18ab+81b=b(a﹣9)2.30.分解因式:2m2﹣18=.31.分解因式:2x2﹣12x+18=2(x﹣3)2.32.分解因式:m2﹣6m=m(m﹣6).33.分解因式:a3﹣9a=.34.分解因式:a2﹣9=(a+3)(a﹣3).35.分解因式:x2﹣y2=(x+y)(x﹣y).36.分解因式:x3﹣4x=x(x+2)(x﹣2).37.分解因式:3a2﹣12=3(a+2)(a﹣2).38.分解因式:x2﹣1=(x+1)(x﹣1).39.因式分解:a3﹣4a=a(a+2)(a﹣2).40.分解因式:4a2﹣16=4(a+2)(a﹣2).41.因式分解:x3﹣2x2=x2(x﹣2).42.因式分解:ab2﹣2ab+a=a(b﹣1)2.43.分解因式:3﹣3x2=3(1+x)(1﹣x).44.分解因式:x2﹣9y2=(x+3y)(x﹣3y).45.分解因式:ax2﹣4a=a(x+2)(x﹣2).整式的化简求值46.已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.【解答】解:(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2﹣2xy+y2+1,当x﹣y=时,原式=(x﹣y)2+1=()2+1=5+1=6.47.先化简,再求值:(2a﹣3b)2﹣(3b+a)(3b﹣a),其中a=,.【解答】解:(2a﹣3b)2﹣(3b+a)(3b﹣a)=4a2﹣12ab+9b2﹣9b2+a2=5a2﹣12ab,当a=,时,原式=5×()2﹣12××=10﹣12.平方差公式的应用48.(2022·广州黄浦区二模)若m﹣=3,则m2+=11.。

中考数学专项练习 代数式(含解析)-人教版初中九年级全册数学试题

中考数学专项练习 代数式(含解析)-人教版初中九年级全册数学试题

代数式一、选择题1.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2016个这样的三角形镶嵌而成的四边形的周长是()A.2018 B.2019 C.2017 D.20162.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3n B.3n(n+1)C.6n D.6n(n+1)3.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是()A.x+y=12 B.x﹣y=2 C.xy=35 D.x2+y2=144二、填空题4.一组按规律排列的式子:.(ab≠0),其中第7个式子是,第n个式子是(n为正整数).5.搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要根钢管.6.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,﹣1的差倒数是.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2009=.7.把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;…依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有个边长是1的正六边形.8.一盒铅笔12支,n盒铅笔共有支.9.观察下列等式:1、32﹣12=4×2;2、42﹣22=4×3;3、52﹣32=4×4;4、()2﹣()2=()×();…则第4个等式为,第n个等式为.(n是正整数)10.观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b的值为.表一:0 1 2 3 …1 3 5 7 …2 5 8 11 …3 7 11 15 ………………表二:1114a表三:11 1317 b11.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.12.已知21=2,22=4,23=8,24=16,25=32,…,观察上面规律,试猜22008的末位数是.13.用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式表示)14.观察下列图形它们是按一定规律排列的,依照此规律,第20个图形共有个★.15.下列给出的一串数:2,5,10,17,26,□,50.仔细观察后回答:缺少的数是.16.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是.17.观察右表,依据表格数据排列的规律,数2008在表格中出现的次数共有次.1 2 3 4 …2 4 6 8 …3 6 9 12 …4 8 12 16 ………………三、解答题18.先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.代数式参考答案与试题解析一、选择题1.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2016个这样的三角形镶嵌而成的四边形的周长是()A.2018 B.2019 C.2017 D.2016【考点】平面镶嵌(密铺).【专题】压轴题;规律型.【分析】根据图象显示的规律找到,1个三角形,2个三角形,3个三角形组成的周长,得到规律为第n个三角形的周长为3+(n﹣1),所以可求得2016个这样的三角形镶嵌而成的四边形的周长.【解答】解:由图中可知:1个三角形组成的图形的周长是3;2个三角形组成的图形的周长是3+1=4;3个三角形组成的图形的周长是3+2=5;…那么2016个这样的三角形镶嵌而成的四边形的周长是3+2015=2018.故选A.【点评】本题需注意要以第一图为基数来找规律.2.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3n B.3n(n+1)C.6n D.6n(n+1)【考点】平行四边形的性质.【专题】压轴题;规律型.【分析】从图中这三个图形中找出规律,可以先找出这三个图形中平行四边形的个数,分析三个数字之间的关系.从而求出第n个图中平行四边形的个数.【解答】解:从图中我们发现(1)中有6个平行四边形,6=1×6,(2)中有18个平行四边形,18=(1+2)×6,(3)中有36个平行四边形,36=(1+2+3)×6,∴第n个中有3n(n+1)个平行四边形.故选B.【点评】本题为找规律题,从前三个图形各自找出有多少个平行四边形,从中观察出规律,然后写出与n有关的代数式来表示第n个中的平行四边形的数目.3.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是()A.x+y=12 B.x﹣y=2 C.xy=35 D.x2+y2=144【考点】由实际问题抽象出二元一次方程组.【专题】几何图形问题;压轴题.【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别列方程,根据4个矩形的面积和等于两个正方形的面积的差列方程.【解答】解:A、根据大正方形的面积求得该正方形的边长是12,则x+y=12,故A选项正确;B、根据小正方形的面积可以求得该正方形的边长是2,则x﹣y=2,故B选项正确;C、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即4xy=144﹣4=140,xy=35,故C选项正确;D、(x+y)2=x2+y2+2xy=144,故D选项错误.故选:D.【点评】此题关键是能够结合图形和图形的面积公式正确分析,运用排除法进行选择.二、填空题4.一组按规律排列的式子:.(ab≠0),其中第7个式子是﹣,第n个式子是(﹣1)n(n为正整数).【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】观察给出的一列数,发现这一列数的分母a的指数分别是1、2、3、4…,与这列数的项数相同,故第7个式子的分母是a7,第n个式子的分母是a n;这一列数的分子b的指数分别是2、5、8、11,…即第一个数是3×1﹣1=2,第二个数是3×2﹣1=5,第三个数是3×3﹣1=8,第四个数是3×4﹣1=11,…每个数都比项数的3倍少1,故第7个式子的分子是b3×7﹣1=b20,第n个式子的分子是b3n﹣1;特别要注意的是这列数字每一项的符号,它们的规律是奇数项为负,偶数项为正,故第7个式子的符号为负,第n个式子的符号为(﹣1)n.【解答】解:第7个式子是﹣,第n个式子是(﹣1)n.故答案为:﹣,(﹣1)n.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.对于本题而言难点就是变化的部分太多,有三处发生变化:分子、分母、分式的符号.学生很容易发现各部分的变化规律,但是如何用一个统一的式子表示出分式的符号的变化规律是难点中的难点.5.搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要83 根钢管.【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】根据题意分析可得:搭建如图①的单顶帐篷需要17根钢管,从串第2顶帐篷开始,每多串一顶帐篷需多用11根钢管.【解答】解:第一顶帐篷用钢管数为17根;串二顶帐篷用钢管数为17+11×1=28根;串三顶帐篷用钢管数为17+11×2=39根;以此类推,串七顶帐篷用钢管数为17+11×6=83根.故答案为:83.【点评】本题考查图形中的计数规律,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.6.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,﹣1的差倒数是.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2009=.【考点】规律型:数字的变化类;倒数.【专题】压轴题;规律型.【分析】理解差倒数的概念,要根据定义去做.通过计算,寻找差倒数出现的规律,依据规律解答即可.【解答】解:根据差倒数定义可得: ==, =4,.显然每三个循环一次,又2009÷3=669余2,故a2009和a2的值相等.【点评】此类题型要严格根据定义做,这也是近几年出现的新类型题之一,同时注意分析循环的规律.7.把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;…依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有15 个边长是1的正六边形.【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】分割含有边长是1的正六边形,其实你可以看个底部,要数六边形,可以看出三角形的三个顶点小三角形是不包含在内的,一开始你可以忽略它们,而底部每个小三角形都由一个正六边形所独有的底三角形,当大的正三角形边长为N时,所以底部有六边形有N﹣2个,上一层的两个顶点小三角形又可以忽略,而第二层有小三角形N﹣1个,所以第二层有六边形有N﹣1﹣2个,即N﹣3个,如此类推,再上几层就是N﹣4,N﹣5,N﹣6个,一直到从上数下第三层,再上一层的三角形已经不能再当六边形的底了,所以到此为止,所以共有的六边形是N﹣2+N﹣3+N﹣4+…+2+1=[(1+N﹣2)(N﹣2)]÷2=.【解答】解:故当N=7时, =15个.【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.8.一盒铅笔12支,n盒铅笔共有12n 支.【考点】列代数式.【专题】应用题.【分析】本题考查列代数式,要注意文字中的数学关系,一盒12支,n盒则共有12n支.【解答】解:12•n=12n.【点评】本题考查列代数式,要明确一盒12支与n盒的关系.解决问题的关键是读懂题意,找到所求的量的等量关系.9.观察下列等式:1、32﹣12=4×2;2、42﹣22=4×3;3、52﹣32=4×4;4、()2﹣()2=()×();…则第4个等式为62﹣42=4×5 ,第n个等式为(n+2)2﹣n2=4×(n+1).(n是正整数)【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】观察几个式子可得①32﹣12=4×2可化为:(1+2)2﹣12=4×(1+1);②42﹣22=4×3可化为(2+2)2﹣22=4×(2+1);故第4个等式为62﹣42=4×5;第n个等式为(n+2)2﹣n2=4×(n+1).【解答】解:62﹣42=4×5,(n+2)2﹣n2=4×(n+1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.10.观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b的值为37 .表一:0 1 2 3 …1 3 5 7 …2 5 8 11 …3 7 11 15 ………………表二:1114a表三:11 1317 b【考点】规律型:图形的变化类.【专题】压轴题;图表型.【分析】每一竖行相隔的数是相同的,每相邻两个横行之间相隔的数也相隔1.【解答】解:表二从竖行看,下边的数应比上面的数大3,∴a=14+3=17.表三从竖行看,下边的数比上边的数大6,那么后面那行下边的数就该比上边的数大7.∴b=13+7=20∴a+b的值为37.【点评】关键是通过归纳与总结,得到其中的规律.11.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是(6,5).【考点】坐标确定位置.【专题】压轴题;规律型.【分析】寻找规律,然后解答.每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.【解答】解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6排,第5个位置,即其坐标为(6,5).故答案为:(6,5).【点评】考查类比点的坐标解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.12.已知21=2,22=4,23=8,24=16,25=32,…,观察上面规律,试猜22008的末位数是 6 .【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】由题中可以看出,以2为底的幂的末位数字是2,4,8,6顺次循环.那么2008÷4=502,则22008的末位数是应是循环的最后一个6.【解答】解:∵以2为底的幂的末位数字是2,4,8,6顺次循环,且2008÷4=502,∴22008的末位数是应是循环的最后一个6.【点评】解决本题的关键是得到以2为底的幂的末位数字的循环规律.13.用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子3n+1 枚.(用含n的代数式表示)【考点】规律型:图形的变化类.【专题】规律型.【分析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【解答】解:第一个图需棋子4;第二个图需棋子4+3=7;第三个图需棋子4+3+3=10;…第n个图需棋子4+3(n﹣1)=3n+1枚.故答案为:3n+1.【点评】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.14.观察下列图形它们是按一定规律排列的,依照此规律,第20个图形共有60个★.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】排列组成的图形都是三角形.第一个图形中有1×3=3个★,第二个图形中有2×3=6个★,第三个图形中有3×3=9个★,…第20个图形共有20×3=60个★.【解答】解:根据规律可知第n个图形有3n个★,所以第20个图形共有20×3=60个★.【点评】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n个图形有3n个★.15.下列给出的一串数:2,5,10,17,26,□,50.仔细观察后回答:缺少的数是37 .【考点】规律型:数字的变化类.【专题】规律型.【分析】第一个数是12+1=2;第二个数是22+1=2;缺少的是第6个数应为62+1=37.【解答】解:缺少的是第6个数应为62+1=37.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的关键是找到数列中的数和相应的数的平方之间的关系.16.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是.【考点】坐标确定位置.【专题】压轴题;规律型.【分析】观察图表寻找规律:是第几行就有几个分数;每行每个分数的分子都是1;每行第一个分数的分母为行号,如第n行为,第二个的分母为;每行首尾对称.据此规律解答.【解答】解:观察图表可知以下规律:是第几行就有几个分数;每行每个分数的分子都是1;每行第一个分数的分母为行号,如第n行为,第二个的分母为;每行首尾对称.故(9,2)表示第9行,从左到右第2个数,即=.故答案填:.【点评】考查了学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.17.观察右表,依据表格数据排列的规律,数2008在表格中出现的次数共有8 次.1 2 3 4 …2 4 6 8 …3 6 9 12 …4 8 12 16 ………………【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析可得:第一行分别为1的1,2,3,…的倍数;第二行分别为2的1,2,3,…的倍数;第三行分别为3的1,2,3,…的倍数;…;2008=1×2×2×2×251;故2008在表格中出现的次数共有8次.【解答】解:2008=1×2×2×2×251,故2008在表格中出现的次数共有8次.【点评】本题考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.三、解答题18.先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】通过观察数据找到规律,并以规律解题即可.【解答】解:(1)原式=1﹣﹣+﹣+﹣+﹣=1﹣=;(2)原式=1﹣﹣+﹣+﹣+…+﹣=1﹣=;(3)=+…+==由=,解得n=17,经检验n=17是方程的根,∴n=17.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出分式的符号的变化规律是此类题目中的难点.。

2023年中考数学----整式之代数式专项练习题(含答案解析)与知识回顾

2023年中考数学----整式之代数式专项练习题(含答案解析)与知识回顾

2023年中考数学----整式之代数式专项练习题(含答案解析)与知识回顾专项练习题(含答案解析)1.(2022•长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100﹣x )元C .8(100﹣x )元D .(100﹣8x )元 【分析】直接利用乙的单价×乙的本数=乙的费用,进而得出答案.【解答】解:设购买甲种读本x 本,则购买乙种读本的费用为:8(100﹣x )元. 故选:C .2.(2022•杭州)某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( )A .y x 1910=320B .xy 1910=320 C .|10x ﹣19y |=320 D .|19x ﹣10y |=320【分析】直接利用10张A 票的总价与19张B 票的总价相差320元,得出等式求出答案.【解答】解:由题意可得:|10x ﹣19y |=320.故选:C .3.(2022•吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要 元.(用含m 的代数式表示)【分析】根据题意直接列出代数式即可.【解答】解:篮球队要买10个篮球,每个篮球m 元,一共需要10m 元,故答案为:10m .4.(2022•梧州)若x =1,则3x ﹣2= .【分析】把x =1代入3x ﹣2中,计算即可得出答案.【解答】解:把x =1代入3x ﹣2中,原式=3×1﹣2=1.故答案为:1.5.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a ﹣b =2,求代数式6a ﹣2b ﹣1的值.”可以这样解:6a ﹣2b ﹣1=2(3a ﹣b )﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x =2是关于x 的一元一次方程ax +b =3的解,则代数式4a 2+4ab +b 2+4a +2b ﹣1的值是 .【分析】根据x =2是关于x 的一元一次方程ax +b =3的解,可得:b =3﹣2a ,直接代入所求式即可解答.【解答】解:原式=(2a +b )2+2(2a +b )﹣1=32+2×3﹣1=14,故答案为:14.6.(2022•邵阳)已知x 2﹣3x +1=0,则3x 2﹣9x +5= .【分析】原式前两项提取3变形后,把已知等式变形代入计算即可求出值.【解答】解:∵x 2﹣3x +1=0,∴x 2﹣3x =﹣1,则原式=3(x 2﹣3x )+5=﹣3+5=2.故答案为:2.7.(2022•郴州)若32=−b b a ,则ba = . 【分析】对已知式子分析可知,原式可根据比例的基本性质可直接得出比例式的值.【解答】解:根据=得3a=5b,则=.故答案为:.知识回顾1.代数式的定义:由数与字母通过“+,-,×,÷”以及乘方、开方等运算符号连接的式子叫做代数式。

专题07代数式(1) 中考数学真题分项汇编系列2(学生版)

专题07代数式(1)  中考数学真题分项汇编系列2(学生版)

专题07代数式(1)(全国一年)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·西藏中考真题)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n 个相同的数是103,则n 等于( )A .18B .19C .20D .212.(2020·广西河池中考真题)下列运算,正确的是( )A .a (﹣a )=﹣a 2B .(a 2)3=a 5C .2a ﹣a =1D .a 2+a =3a3.(2020·湖北黄石中考真题)下列运算正确的是( )A .835a b ab -=B .()325a a =C .933a a a ÷=D .23a a a ⋅=4.(2020·内蒙古通辽中考真题)下列说法不正确...的是( )A .2a 是2个数a 的和B .2a 是2和数a 的积C .2a 是单项式D .2a 是偶数5.(2020·广东深圳中考真题)下列运算正确的是( )A .a+2a=3a 2B .235a a a ⋅=C .33()ab ab =D .326()a a -=-6.(2020·山东东营中考真题)下列运算正确的是( )A .()235x x =B .()222x y x y -=+C .2323522x y xy x y -⋅=-D .()33x y x y -+=-+7.(2020·甘肃金昌中考真题)下列各式中计算结果为6x 的是( )A .24x x +B .82x x -C .24x x ⋅D .122x x ÷8.(2020·山东淄博中考真题)下列运算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 5C .a 3÷a 2=a 5D .(a 2)3=a 59.(2020·辽宁营口中考真题)下列计算正确的是( )A .x 2•x 3=x 6B .xy 2﹣14xy 2=34xy 2C .(x +y )2=x 2+y 2D .(2xy 2)2=4xy 410.(2020·辽宁沈阳中考真题)下列运算正确的是( )A .235a a a +=B .236a a a ⋅=C .()3328a a =D .33a a a ÷=11.(2020·江苏无锡中考真题)若2x y +=,3z y -=-,则x z +的值等于( )A .5B .1C .-1D .-512.(2020·内蒙古呼伦贝尔中考真题)下列计算正确的是( )A .236a a a ⋅=B .222()x y x y +=+C .()2526a a a ÷=D .22(3)9xy xy -=13.(2020·辽宁丹东中考真题)下面计算正确的是( )A .3332a a a ⋅=B .22423a a a +=C .933a a a ÷=D .()326327a a -=-14.(2020·广西玉林中考真题)观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…;若最后三个数之和是3000,则n 等于( )A .499B .500C .501D .100215.(2020·广西玉林中考真题)下列计算正确的是( )A .87a a -=B .2242a a a +=C .2236a a a ⋅=D .623a a a ÷=16.(2020·宁夏中考真题)下列各式中正确的是( )A .326a a a ⋅=B .321ab ab -=C .261213a a a+=+ D .2(3)3a a a a -=- 17.(2020·吉林中考真题)下列运算正确的是( )A .236a a a ⋅=B .()325a a =C .22(2)2a a =D .32a a a ÷=18.(2020·广西中考真题)下列运算正确的是( )A .22422x x x +=B .3232x x x ⋅=C .()322x x =D .75222x x x ÷=19.(2020·山东威海中考真题)下列运算正确的是( )A .32533x x x ⋅=B .236(2)6x x =C .222()x y x y +=+D .325x x x +=20.(2020·重庆中考真题)已知a +b =4,则代数式122a b ++的值为( ) A .3 B .1 C .0 D .-121.(2020·四川雅安中考真题)下列式子运算正确的是( )A .2235x x x +=B .()x y x y -+=-C .235x x xD .44x x x +=22.(2020·|2|0b a -=,则2+a b 的值是( )A .4B .6C .8D .1023.(2020·黑龙江大庆中考真题)若2|2|(3)0x y ++-=,则x y -的值为( )A .-5B .5C .1D .-124.(2020·四川眉山中考真题)下列计算正确的是( )A .222()x y x y +=+B .2233235x y xy x y +=C .()326328a b a b -=-D .523()x x x -÷= 25.(2020·云南昆明中考真题)下列运算中,正确的是( )A 2B .6a 4b ÷2a 3b =3abC .(﹣2a 2b )3=﹣8a 6b 3D .22111-+⋅=--a a a a a a26.(2020·云南中考真题)下列运算正确的是( )A 2=±B .1122-⎛⎫=- ⎪⎝⎭C .()3339a a -=-D .633(0)a a a a ÷=≠27.(2020·江苏无锡中考真题)下列选项错误的是( )A .1cos602︒= B .235a a a ⋅= C 2= D .2(2)22x y x y -=-28.(2020·江苏镇江中考真题)下列计算正确的是( )A .a 3+a 3=a 6B .(a 3)2=a 6C .a 6÷a 2=a 3D .(ab )3=ab 329.(2020·黑龙江鹤岗中考真题)下列各运算中,计算正确的是( )A .22423a a a +=B .826x x x -=C .222()x y x xy y -=-+D .()326327x x -=-30.(2020·江苏泰州中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( ) A .5 B .3 C .3- D .1-31.(2020·辽宁朝阳中考真题)下列运算正确的是( )A .326a a a ⋅=B .()235a a =C .3222a a a ÷=D .2235x x x +=32.(2020·山东枣庄中考真题)图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是A. abB.()2a b +C. ()2a b - D. 22a b -33.(2020·西藏中考真题)下列运算正确的是( )A .2a•5a =10aB .(-a 3)2+(-a 2)3=a 5C .(-2a )3=-6a 3D .a 6÷a 2=a 4(a≠0)34.(2020·贵州遵义中考真题)已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( ) A .5 B .10 C .11 D .13 35.(2020·内蒙古中考真题)下列计算结果正确的是( )A .()235a a =B .4222()()bc bc b c -÷-=-C .121a a +=D .21a a b b b ÷⋅= 36.(2020·青海中考真题)下面是某同学在一次测试中的计算:①22352m n mn mn -=-;②()326224a b a b a b ⋅-=-;③()235a a =;④()32()a a a -÷-=,其中运算正确的个数为( )A .4个B .3个C .2个D .1个37.(2020·广东广州中考真题)下列运算正确的是( )A .a b a b +=+B .236a a a ⨯=C .5630x x x ⋅=D .()5210x x =38.(2020·湖南郴州中考真题)下列运算正确的是( )A .44()a a -=B .236a a a ⋅=C .826-=D .325235a a a +=39.(2020·湖南郴州中考真题)如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式( )A .2221(1)x x x -+=-B .21(1)(1)x x x -=+-C .2221(1)x x x ++=+D .2(1)x x x x -=-40.(2020·内蒙古呼和浩特中考真题)下列运算正确的是( )A 1721722882882==±B .()325ab ab =C .22422()xy xy y x y x y x y x y y x ⎛⎫⎛⎫--+++=+ ⎪ ⎪--⎝⎭⎝⎭ D .223152845c a c c ab ab a-÷=- 41.(2020·贵州毕节中考真题)已知0a ≠,下列运算中正确的是( )A .23325a a a +=B .32623a a a ÷=C .()23636a a =D .325325a a a ÷=42.(2020·湖南永州中考真题)下列计算正确的是( )A .223323a b ab a b +=B .632a a a ÷=C .639a a a ⋅=D .()235a a =43.(2020·重庆中考真题)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A .18B .19C .20D .2144.(2020·浙江衢州中考真题)计算(a 2)3,正确结果是( )A .a 5B .a 6C .a 8D .a 945.(2020·山东烟台中考真题)如图,12OA A △为等腰直角三角形,OA 1=1,以斜边OA 2为直角边作等腰直角三角形OA 2A 3,再以OA 3为直角边作等腰直角三角形OA 3A 4,…,按此规律作下去,则OA n 的长度为( )A .2)nB .2)n ﹣1C .(22)nD .(22)n ﹣1 46.(2020·四川眉山中考真题)已知221224a b a b +=--,则132a b -的值为( ) A .4 B .2 C .2- D .4-47.(2020·江苏宿迁中考真题)下列运算正确的是( )A .m 2•m 3=m 6B .m 8÷m 4=m 2C .3m+2n=5mnD .(m 3)2=m 648.(2020·云南中考真题)按一定规律排列的单项式:a ,2a -,4a ,8a -,16a ,32a -,…,第n 个单项式是( )A .()12n a --B .()2n a -C .12n a -D .2n a49.(2020·内蒙古鄂尔多斯中考真题)下列计算错误的是( )A .(﹣3ab 2)2=9a 2b 4B .﹣6a 3b÷3ab =﹣2a 2C .(a 2)3﹣(﹣a 3)2=0D .(x+1)2=x 2+150.(2020·重庆中考真题)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .2151.(2020·内蒙古赤峰中考真题)下列计算正确的是( )A .a 2+a 3=a 5B .3221=C .(x 2)3=x 5D .m 5÷m 3=m 252.(2020·辽宁铁岭中考真题)下列运算正确的是( )A .236a a a ⋅=B .842a a a ÷=C .532a a a -=D .()2224ab a b -=-53.(2020·辽宁鞍山中考真题)下列各式计算结果中正确的是A .a 2+a 2=a 4B .(a 3)2=a 5C .(a +1)2=a 2+1D .a·a =a 254.(2020·四川乐山中考真题)已知34m =,2432m n -=.若9n x =,则x 的值为( )A .8B .4C .22D 2二、填空题55.(2020·四川成都中考真题)已知73a b =-,则代数式2269a ab b ++的值为_________.56.(2020·江苏镇江中考真题)根据数值转换机的示意图,输出的值为_____.57.(2020·四川绵阳中考真题)若多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,则mn _____.58.(2020·江苏宿迁中考真题)已知a+b=3,a 2+b 2=5,则ab 的值是 59.(2020·云南昆明中考真题)观察下列一组数:﹣23,69,﹣1227,2081,﹣30243,…,它们是按一定规律排列的,那么这一组数的第n 个数是_____.60.(2020·辽宁营口中考真题)(32+6)(32﹣6)=_____.61.(2020·山东烟台中考真题)按如图所示的程序计算函数y 的值,若输入的x 值为﹣3,则输出y 的结果为_____.62.(2020·黑龙江大庆中考真题)如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为_________.63.(2020·山东淄博中考真题)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是_____个. 64.(2020·吉林长春中考真题)长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m 张成人票和n 张儿童票,则共需花费___________元.65.(2020·山东威海中考真题)如图①,某广场地面是用A .B .C 三种类型地砖平铺而成的,三种类型地砖上表面图案如图②所示,现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B 型)地时记作(2,1)…若(,)m n 位置恰好为A 型地砖,则正整数m ,n 须满足的条是__________.66.(2020·广西中考真题)如图,某校礼堂的座位分为四个区域,前区共有8排, 其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是_____.67.(2020·海南中考真题)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有_____________个菱形, 第n 个图中有____________个菱形(用含n 的代数式表示).68.(2020·湖北荆州中考真题)若单项式32m x y 与3m n xy +是同类项,2m n +_______________.69.(2020·宁夏中考真题)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a ,较长直角边为b .如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为____.70.(2020·贵州毕节中考真题)一次函数y ax b =+()0a ≠的图象与反比例函数k y x =()0k ≠的图象的两个交点分别是()1,4A --,()2,B m ,则2+a b =______.71.(2020·广西玉林中考真题)已知函数1y x =与函数21y x=的部分图像如图所示,有以下结论: ①当0x <时,12,y y 都随x 的增大而增大;②当1x <-时, 12y y >;③12,y y 的图像的两个交点之间的距离是2;④函数12y y y =+的最小值为2;则所有正确的结论是_________.72.(2020·青海中考真题)观察下列各式的规律:①2132341⨯-=-=-;②2243891⨯-=-=-;③235415161⨯-=-=-.请按以上规律写出第4个算式________.用含有字母的式子表示第n 个算式为________.73.(2020·内蒙古通辽中考真题)如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形……,按这样的方法拼成的第()1n +个正方形比第n 个正方形多_____个小正方形.74.(2020·内蒙古中考真题)计算:2(32)(32)+-=______.三、解答题75.(2020·江苏苏州中考真题)如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为()a m ,宽为()b m .(1)当20a =时,求b 的值;(2)受场地条件的限制,a 的取值范围为1826a ≤≤,求b 的取值范围.76.(2020·内蒙古赤峰中考真题)先化简,再求值:221121m m m m m m---÷++,其中m 满足:210m m --=.77.(2020·四川凉山中考真题)化简求值:2(23)(23)(2)4(3)x x x x +--+++,其中2x =78.(2020·江苏南通中考真题)计算: (1)(2m +3n )2﹣(2m +n )(2m ﹣n );(2)22⎛⎫--÷+ ⎪⎝⎭x y y xy x x x79.(2020·黑龙江大庆中考真题)先化简,再求值:2(5)(1)(2)x x x +-+-,其中x =80.(2020·甘肃金昌中考真题)计算:0(2tan 60(π-++︒--81.(2020·重庆中考真题)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n ,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n 为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除; 643不是“好数”,因为6+4=10,10不能被3整除. (1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.82.(2020·重庆中考真题)计算: (1)(x +y )2+y (3x -y )(2)2241611a a a a a ⎛⎫--+÷ ⎪--⎝⎭83.(2020·吉林长春中考真题)先化简,再求值:()()23231a a -+-,其中a =84.(2020·吉林中考真题)先化简,再求值:2(1)(1)1a a a ++--,其中a =85.(2020·海南中考真题)计算:(1)()20201821--⨯-;(2)()()()221a a a a +--+.86.(2020·贵州毕节中考真题)如图(1),大正方形的面积可以表示为()2a b +,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即222a ab b ++.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:222()2a b a ab b +=++.把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”(1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个多项式进行因式分解的等式:_______;(2)如图(3),Rt ABC 中,90C ∠=︒,3CA =,4CB =,CH 是斜边AB 边上的高.用上述“面积法”求CH 的长;(3)如图(4),等腰ABC 中,AB AC =,点O 为底边BC 上任意一点,OMAB ⊥,ON AC ⊥,CH AB ⊥,垂足分别为点M ,N ,H ,连接AO ,用上述“面积法”,求证:OM ON CH +=.87.(2020·内蒙古呼和浩特中考真题)“通过等价变换,化陌生为熟悉,化未知为已知”是数学学习中解决问题的基本思维方式,例如:解方程0x x -=x y =,将原方程转化为:20y y -=这个熟悉的关于y 的一元二次方程,解出y ,再求x ,这种方法又叫“换元法”.请你用这种思维方式和换元法解决下面的问题.已知实数x ,y 满足22225221332514x y x y x y x y ⎧++=⎪⎨++=⎪⎩,求22x y +的值.。

中考数学专题练习 代数式(含解析)-人教版初中九年级全册数学试题

中考数学专题练习 代数式(含解析)-人教版初中九年级全册数学试题

代数式一、选择题1.一个代数式减去x2﹣y2等于x2+2y2,则这个代数式是()A.﹣3y2B.2x2+y2C.3y2﹣2x2D.3y22.若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D.3.下列各组代数式中,属于同类项的是()A.b与B.a2b与a2cC.22与34D.p与q4.下列计算正确的是()A.3x2﹣x2=3 B.3a2﹣2a2=1 C.3x2+5x3=8x5D.3a2﹣a2=2a25.如果a=255,b=344,c=433,则a、b、c的大小关系是()A.a>c>b B.b>a>c C.b>c>a D.c>b>a6.一个两位数,十位数字是x,个位数字是y,如果在它们中间加上一个0得到的数是()A.10x+y B.100x+y C.100y+x D.x+10y7.如果=0,则下列等式成立的是()A.a=b=0 B.a=b C.a+b=0 D.ab=08.设A、B均为实数,且,,则A、B的大小关系是()A.A>B B.A=B C.A<B D.A≥B9.下列多项式属于完全平方式的是()A.x2﹣2x+4 B.x2+x+C.x2﹣xy+y2 D.4x2﹣4x﹣110.如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S,按此推断S与n的关系式为()A.S=3n B.S=3(n﹣1)C.S=3n﹣1 D.S=3n+1二、填空题11.一台电视机的成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台实际售价为元.12.已知=0 则a+b=.13.如果最简二次根式与是同类二次根式,则a=.14.把a3+ab2﹣2a2b分解因式的结果是.15.观察下列各式:,,,设n表示正整数,用关于n的等式表示这个规律是.三、解答下列各题16.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,求剩下的钢板的面积.17.已知A=a+2,B=a2﹣a+5,C=a2+5a﹣19,其中a>2.(1)求证:B﹣A>0,并指出A与B的大小关系;(2)指出A与C哪个大?说明理由.18.已知a、b、c为△ABC三边,利用因式分解说明b2﹣a2+2ac﹣c2的符号.19.某餐厅中1X餐桌可坐六人,有以下两种摆放方式(如图1和2).一天中午,餐厅要接待98位顾客共同就餐,但餐厅只有25X这样的餐桌,若你是这个餐厅的经理,你应该选择哪种拼接方式来摆餐桌?请说明理由.20.计算:.代数式参考答案与试题解析一、选择题1.一个代数式减去x2﹣y2等于x2+2y2,则这个代数式是()A.﹣3y2B.2x2+y2C.3y2﹣2x2D.3y2【考点】整式的加减.【分析】先根据题意列出式子,再去括号后合并同类项即可.【解答】解:这个代数式是(x2+2y2)+(x2﹣y2)=x2+2y2+x2﹣y2=2x2+y2,故选B.【点评】本题考查了整式的加减的应用,解此题的关键是能根据题意列出算式.2.若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】由3x=4,9y=7与3x﹣2y=3x÷32y=3x÷(32)y,代入即可求得答案.【解答】解:∵3x=4,9y=7,∴3x﹣2y=3x÷32y=3x÷(32)y=4÷7=.故选A.【点评】此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将3x﹣2y变形为3x÷(32)y是解此题的关键.3.下列各组代数式中,属于同类项的是()A.b与B.a2b与a2cC.22与34D.p与q【考点】同类项.【分析】根据字母相同且相同的字母的指数也相同是同类项,可得答案.【解答】解:A、相同字母的指数不同,故A不是同类项;B、字母不同,故B不是同类项;C、常数也是同类项,故C是同类项;D、字母不同,故D不是同类项;故选:C.【点评】本题考查了同类项,注意常数也是同类项.4.下列计算正确的是()A.3x2﹣x2=3 B.3a2﹣2a2=1 C.3x2+5x3=8x5D.3a2﹣a2=2a2【考点】合并同类项.【分析】先判断是否是同类项,如果是同类项,根据合并同类项法则合并即可.【解答】解:A、结果是2x2,故本选项错误;B、结果是a2,故本选项错误;C、不是同类项,不能合并,即结果是3x2+5x3,故本选项错误;D、结果是2a2,故本选项正确;故选D.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.5.如果a=255,b=344,c=433,则a、b、c的大小关系是()A.a>c>b B.b>a>c C.b>c>a D.c>b>a【考点】幂的乘方与积的乘方.【分析】a=(25)11=3211,b=(34)11=8111,c=(43)11=6411,从而可得出a、b、c的大小关系.【解答】解:∵a=(25)11=3211,b=(34)11=8111,c=(43)11=6411,∴b>c>a.故选C.【点评】本题考查了幂的乘方和积的乘方,解答本题关键是掌握幂的乘方法则.6.一个两位数,十位数字是x,个位数字是y,如果在它们中间加上一个0得到的数是()A.10x+y B.100x+y C.100y+x D.x+10y【考点】列代数式.【分析】中间加上一个0得到的数是三位数.百位数字是x,十位数字是0,个位数字是y,这个数表示为(100x+y),由此得出答案.【解答】解:百位数字是x,十位数字是0,个位数字是y,这个数表示为(100x+y).故选:B.【点评】此题考查列代数式,关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.7.如果=0,则下列等式成立的是()A.a=b=0 B.a=b C.a+b=0 D.ab=0【考点】立方根.【分析】根据立方根的和为0,可得被开方数互为相反数,可得答案.【解答】解:∵=0,∴a+b=0.故选:C.【点评】本题考查了立方根,立方根的和为0,被开方数的和为0.8.设A、B均为实数,且,,则A、B的大小关系是()A.A>B B.A=B C.A<B D.A≥B【考点】实数大小比较.【分析】根据算术平方根的定义得出A是一个非负数,且m﹣3≥0,推出3﹣m≤0,得出B≤0,即可得出答案,【解答】解:∵,∴A是一个非负数,且m﹣3≥0,∴m≥3,∵,∵3﹣m≤0,即B≤0,∴A≥B,故选D.【点评】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度.9.下列多项式属于完全平方式的是()A.x2﹣2x+4 B.x2+x+C.x2﹣xy+y2 D.4x2﹣4x﹣1【考点】完全平方式.【分析】根据完全平方公式的公式结构对各选项分析判断利用排除法求解.【解答】解:A、x2﹣2x+4不是完全平方式,故本选项错误;B、x2+x+=(x+)2,故本选项正确;C、x2﹣xy+y2,不是完全平方式,故本选项错误;D、4x2﹣4x﹣1,不是完全平方式,故本选项错误.故选B.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.10.如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S,按此推断S与n的关系式为()A.S=3n B.S=3(n﹣1)C.S=3n﹣1 D.S=3n+1【考点】根据实际问题列一次函数关系式;规律型:图形的变化类.【分析】由图可知:第一图:有花盆3个,每条边有2盆花,那么3=3×(2﹣1);第二图:有花盆6个,每条边有3盆花,那么6=3×(3﹣1);第三图:有花盆9个,每条边有4盆花,那么9=3×(4﹣1);…由此可知S与n的关系式为S=3(n﹣1).【解答】解:根据图案组成的是三角形的形状,则其周长等于边长的3倍,但由于每个顶点重复了一次.所以S=3n﹣3,即S=3(n﹣1).故选B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.本题要注意给出的图片中所包含的规律,然后根据规律列出函数关系式.二、填空题11.一台电视机的成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台实际售价为元.【考点】列代数式.【分析】每台实际售价=销售价×70%.根据等量关系直接列出代数式即可.【解答】解:a(1+25%)×70%=70%(1+25%)a=元.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.注意销售价比成本价增加25%后,再按销售价的70%出售.12.已知=0 则a+b=.【考点】分式的值为零的条件;非负数的性质:绝对值;非负数的性质:偶次方;二次根式有意义的条件.【专题】计算题.【分析】分式的值为零,则分子为零,且分母不为零、二次根式的被开方数是非负数;据此列出关于a、b的方程组,通过解该方程组即可求得a、b的值.【解答】解:根据题意,得,解得,,则a+b=2+=;故答案是:.【点评】本题考查了分式的值为零的条件、非负数的性质以及二次根式有意义的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.如果最简二次根式与是同类二次根式,则a= 5 .【考点】同类二次根式;最简二次根式.【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.14.把a3+ab2﹣2a2b分解因式的结果是a(a﹣b)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再利用完全平方公式继续进行二次因式分解.【解答】解:a3+ab2﹣2a2b,=a(a2+b2﹣2ab),=a(a﹣b)2.【点评】本题主要考查提公因式法分解因式和完全平方公式分解因式,进行二次因式分解是解本题的关键.15.观察下列各式:,,,设n表示正整数,用关于n的等式表示这个规律是.【考点】规律型:数字的变化类.【分析】通过观察可以看出两个数的和等于两个数的积,分数的分母比分子小一,而相乘的整数和相加的整数也比分母大一,由此规律得出答案即可.【解答】解:由所给的各式可知,不妨设分母为n,则分子为n+1,另一个因数和加数也为n+1,因此可知律为.故答案为:.【点评】此题考查数字的变化规律,找出式子之间的联系,由特殊找出一般规律解决问题.三、解答下列各题16.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,求剩下的钢板的面积.【考点】整式的混合运算.【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【解答】解:S剩下=S大圆﹣S小圆1﹣S小圆2=π•()2﹣π•()2﹣π•()2==;答:剩下的钢板的面积是.【点评】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、合并同类项法则,熟练掌握公式及法则是解本题的关键.17.已知A=a+2,B=a2﹣a+5,C=a2+5a﹣19,其中a>2.(1)求证:B﹣A>0,并指出A与B的大小关系;(2)指出A与C哪个大?说明理由.【考点】因式分解的应用;整式的加减.【专题】分类讨论.【分析】计算B﹣A后结论,从而判断A与B的大小;同理计算C﹣A,根据结果来比较A与C的大小.【解答】解:(1)B﹣A=(a﹣1)2+2>0,所以B>A;(2)C﹣A=a2+5a﹣19﹣a﹣2,=a2+4a﹣21,=(a+7)(a﹣3).因为a>2,所以a+7>0,从而当2<a<3时,A>C;当a=3时,A=C;当a>3时,A<C.【点评】本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想.18.已知a、b、c为△ABC三边,利用因式分解说明b2﹣a2+2ac﹣c2的符号.【考点】因式分解的应用;三角形三边关系.【分析】原式后三项提取﹣1变形后,利用完全平方公式分解因式,再利用平方差公式分解因式;由a,b及c为三角形的三边,利用两边之和大于第三边即可判断出因式分解后积的正负.【解答】解:原式=b2﹣(a2+c2﹣2ac)=b2﹣(a﹣c)2=(a+b﹣c)(﹣a+b+c);∵a,b,c为△ABC的三边长,∴(a+b﹣c)(﹣a+b+c)中,(a+b﹣c)>0,(﹣a+b+c)>0,∴(a+b﹣c)(﹣a+b+c)>0.【点评】此题考查了因式分解的应用,以及三角形的三边关系,灵活运用完全平方公式及平方差公式是解本题的关键.19.某餐厅中1X餐桌可坐六人,有以下两种摆放方式(如图1和2).一天中午,餐厅要接待98位顾客共同就餐,但餐厅只有25X这样的餐桌,若你是这个餐厅的经理,你应该选择哪种拼接方式来摆餐桌?请说明理由.【考点】规律型:图形的变化类.【分析】能够根据桌子的摆放发现规律,分别求出n=25时,两种不同的摆放方式对应的人数,即可作出判断.【解答】解:∵第一种中,只有一X桌子是6人,后边多一X桌子多4人.即有nX桌子时是6+4(n ﹣1)=4n+2.第二种中,有一X桌子是6人,后边多一X桌子多2人,即6+2(n﹣1)=2n+4.∴当n=25时,4n+2=4×25+2=102>98,当n=25时,2n+4=2×25+4=54<98,所以,选用第一种摆放方式.【点评】此题主要考查了图形的变化类,关键是通过归纳与总结,得到其中的规律.20.计算:.【考点】分式的乘除法.【分析】分式的除法计算首先要转化为乘法运算,然后对式子进行化简,化简的方法就是把分子、分母进行分解因式,然后进行约分.【解答】解:原式==.【点评】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.。

中考数学真题知识分类练习试卷:代数式(含解析)

中考数学真题知识分类练习试卷:代数式(含解析)

中考数学真题知识分类练习试卷:代数式(含解析)一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3 =a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2021年中考数学试题【答案】B2.运算的结果是()A. B. C. D.【来源】江苏省南京市2021年中考数学试卷【答案】B【解析】分析:依照幂的乘方的性质和同底数幂的乘法运算即可.详解:故选:B.点睛:本题要紧考查了幂的乘方,同底数幂的乘法,熟练把握运算法则和性质是解题的关键.3.下列运算结果等于的是()A. B. C. D.【来源】2021年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2021年中考数学试题【答案】D【解析】【分析】依照同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行运算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练把握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2021年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形说明二项式的展开式的各项系数,此三角形称为“杨辉三角”.依照“杨辉三角”请运算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2021年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2021年中考数学试题【答案】D【解析】【分析】依照幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行运算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练把握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省××局公布,2021年我省有效发明专利数比2021年增长22.1%假定2021年的平均增长率保持不变,2021年和2021年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2021年中考数学试题【答案】B【解析】【分析】依照题意可知2021年我省有效发明专利数为(1+22. 1%)a万件,2021年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2021年我省有效发明专利数为(1+22.1%)a万件,2021年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2021年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2021年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2021年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2021年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐都市2021年中考数学试题【答案】C14.下列运算正确的是()A. B.C. D.【来源】湖北省孝感市2021年中考数学试题【答案】A【解析】分析:直截了当利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别运算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法运算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题要紧考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确把握相关运算法则是解题关键.15.若单项式am﹣1b2与的和仍是单项式,则nm的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2021年中考数学试题【答案】C【解析】分析:第一可判定单项式am﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式am﹣1b2与的和仍是单项式,∴单项式am﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴nm=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是把握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2021年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos3 0°=【来源】湖北省黄冈市2021年中考数学试题【答案】D【解析】分析:依照同底数幂的乘法、幂的乘方与积的乘方、专门角的三角函数值进行运算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、专门角的三角函数值,属于基础运算题.18.下列运算正确的是()A. B.C. D.【来源】四川省成都市2021年中考数学试题【答案】D19.下列运算正确的是( )A. B. C. D.【来源】山东省潍坊市2021年中考数学试题【答案】C【解析】分析】依照同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判定后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练把握运算性质和法则是解题的关键.20.运算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2021年中考数学试题【答案】B【解析】分析:直截了当利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题要紧考查了幂的乘方运算以及同底数幂的除法运算,正确把握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2021年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2021年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2021年中考数学试题【答案】2021【解析】分析:观看图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2021;详解:观看图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2021,故答案为2021.点睛:本题考查规律型﹣数字问题,解题的关键是学会观看,探究规律,利用规律解决问题.24.我国古代数学家杨辉发觉了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2021年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2021年中考数学试题【答案】8【解析】分析:依照完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2021年中考数学试题【答案】27.运算的结果等于__________.【来源】天津市2021年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行运算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题要紧考查的是单项式乘单项式,把握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2021年中考数学试题【答案】7或-1【解析】【分析】直截了当利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题要紧考查了完全平方公式,正确把握完全平方公式的差不多形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2021年中考数学试题【答案】x2﹣130.观看下列各式:请利用你所发觉的规律,运算+++…+,其结果为_______.【来源】山东省滨州市2021年中考数学试题【答案】【解析】分析:直截了当依照已知数据变化规律进而将原式变形求出答案.详解:由题意可得:=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题要紧考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2021年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第20 21次输出的结果为__________.【来源】2021年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2021年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先运算单项式乘以多项式与和的完全平方,再合并同类项,最后代入运算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确依照整式的运算法则进行化简是解此题的关键.34.(1)运算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2021年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子运算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2021年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后依照乘方的定义进行运算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,因此二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)运算:;(2)解不等式:【来源】江西省2021年中等学校招生考试数学试题【答案】(1);(2)37.运算或化简.(1);(2).【来源】江苏省扬州市2021年中考数学试题【答案】(1)4;(2)【解析】分析:(1)依照负整数幂、绝对值的运算法则和专门三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式运算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观看以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2021年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)依照观看到的规律写出第6个等式即可;(2)依照观看到的规律写出第n个等式,然后依照分式的运算对等式的左边进行化简即可得证.39.运算:(1)(2)【来源】【全国省级联考】2021年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,假如千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)假如一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2021年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,74 25.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发觉这三种方案都能验证公式:a2+2ab+b2=(a+b)2,关于方案一,小明是如此验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你依照方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2021年中考数学试卷【答案】略。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数式一、单选题1.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市xx年中考数学试卷【答案】C2.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市xx年中考数学试题【答案】A3.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市xx年中考数学试题【答案】C4.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市xx年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.5.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市xx年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.6.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市xx年中考数学试题【答案】B7.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市xx年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.8.下列计算正确的是()A. B.C. D.【来源】四川省成都市xx年中考数学试题【答案】D9.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市xx年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.10.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市xx年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.11.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市xx年中考数学试题【答案】B12.计算的结果是()A. B. C. D.【来源】江苏省南京市xx年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 13.下列计算结果等于的是()A. B. C. D.【来源】xx年甘肃省武威市(凉州区)中考数学试题【答案】D14.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市xx年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.15.下列运算正确的是()A. B. C. D.【来源】山东省德州市xx年中考数学试题【答案】C16.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市xx年中考数学试题【答案】B17.下列运算正确的是()A. B. C. D.【来源】安徽省xx年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.18.据省统计局发布,xx年我省有效发明专利数比xx年增长22.1%假定xx年的平均增长率保持不变,xx年和xx年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省xx年中考数学试题【答案】B【解析】【分析】根据题意可知xx年我省有效发明专利数为(1+22.1%)a万件,xx年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:xx年我省有效发明专利数为(1+22.1%)a万件,xx年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.19.下列运算正确的是()A. B. C. D.【来源】山东省泰安市xx年中考数学试题【答案】D20.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】xx年重庆市中考数学试卷(A卷)【答案】C21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】xx年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】xx年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市xx年中考数学试题【答案】xx【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=xx;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=xx,故答案为xx.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市xx年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市xx年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市xx年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市xx年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市xx年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市xx年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市xx年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市xx年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第xx次输出的结果为__________.【来源】xx年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市xx年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市xx年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州xx年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省xx年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市xx年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省xx年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】xx年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】xx年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市xx年中考数学试卷【答案】略如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档