部编版七年级数学上册【教学设计】 利用一元一次方程解配套问题与工程问题

合集下载

七年级数学上册第5章一元一次方程5.5应用一元一次方程__希望工程义演1产品配套问题与工程问题教案新

七年级数学上册第5章一元一次方程5.5应用一元一次方程__希望工程义演1产品配套问题与工程问题教案新

利用一元一次方程解配套问题和工程问题【教学目标】知识与技能目标1.理解工程问题和产品配套问题的根本等量关系。

2.会用这些等量关系列一元一次方程解决这类问题。

过程与方法目标通过列方程解决实际问题,培养学生数学建模能力、探索能力、分析能力。

情感与态度目标让学生在实际问题情境中感受数学的应用价值,产生对数学的兴趣,养成认真听他人发言的习惯,感受与同学交流的乐趣。

【重点、难点】重点:根据题意列出方程。

难点:从实际问题中建立数学模型,从数量关系中提炼出等量关系。

【教学方法与教学手段】1.通过已会知识的复习,引出新课,并在练习题的设计上逐步深入。

2.通过自学、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨。

【教学过程】一、明确目标,导入新课学习目标〔1〕理解并掌握工程问题和产品配套问题的根本等量关系。

〔2〕能运用这些等量关系解决实际问题。

〔3〕掌握用一元一次方程解实际问题的根本思路。

二、复习回忆,打好铺垫1. 一项工作,甲独做3小时可完成,那么甲的工作效率为____;乙独做6小时可完成,那么乙的效率为____;假设甲乙合作那么合作效率可表示为_____。

2. 一件工作,甲用10天可以完成,现在甲独做了a天,那么甲的工作量为____。

3. 一项工作,由一个人独做40天可完成,现由4个人共做5天,那么完成的工作量为_____。

〔假设这些人的工作效率相同〕4. 一件工作,甲独做用8天可以完成,乙独做用6天可以完成,假设甲乙合作x天可以完成任务,那么可列方程为_______。

小结归纳三、自学探究,以学定教〔一〕工程问题:整理一批图书,由一个人做要40h完成,现方案由一局部先做4h,然后增加2人与他们一起做8h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?【自学指导】1.一个人的工作效率你可以算出来。

2.设先安排x人工作,你可表示出后来工作的人数。

3.分别表示出先后完成的工作量。

人教版七年级数学上册教案 利用一元一次方程解配套问题与工程问题

人教版七年级数学上册教案 利用一元一次方程解配套问题与工程问题
3
去分母,得 5x+3(x-14)=150. 去括号,得 5x+3x-42=150. 移项、合并同类项,得 8x=192. 系数化为 1,得 x=24. 答:完成这项工程需要 24 天. 四、运用新知,深化理解 1. 某车间 90 名工人生产凳子面和凳子腿,每人每天平均生产凳子面 10 个或 凳子腿 50 个,一个凳子面要配四个凳子腿.为了使每天的产品刚好配套,应该分 配多少名工人生产凳子面,多少名工人生产凳子腿? 2.一本稿件,甲打字员单独打 20 小时可以完成,甲、乙两打字员合打,12 小时可以完成.现由两人合打 7 小时,余下部分由乙完成,还需多少小时? 3. 有甲、乙、丙三个水管,单独开放甲管 5h 可注满一池水;甲、乙两管齐 放 ,2h 可注满一池水;甲、丙两管齐开放,3h 可注满一池水.现把三管一齐开放, 过了一段时间后甲管因故障停开,停开后 2h 水池注满,问三管齐开放了多少小 时水? 【教学说明】上面前两道题分别是与本课时所学应用题相对应的,第 1 题为 配套问题,可设应分配 x 名工人生产凳子面,(90-x)名工人生产凳子腿,由题意 分析可知其中的相等关系为:x 名工人一天生产凳子面的 4 倍=(90-x)名工人生产 凳子腿的数量,教师应让学生通过思考找出这个等量关系.第 2 题为工作量问题, 教师应注意让学生找到本题关键点:由乙单独完成需要几小时.在对这两题进行 分析后,教师可让学生上台板演.第 3 题综合性强,题较难,教师应给予充分的 提示,此题是一个工程问题,基本关系是:工作量=工作效率×工作时间.各个工 作量之和=总工作量.将注满一池水的工作量设为 1,设三管齐开放了 xh,可列表 如下:
5
1.布置作业::从教材习题 3.4 中选取. 2.完成练习册中本课时的练习. 本课时的内容主要是结合前面所学内容解决实际问题,所以教学时教师应给 予学生充分的独立思考空间,注重与学生进行互动.引导学生应注意找出等量关 系,因为这是列方程解应用题的关键所在.此外,考虑到这是第 1 课时,所以教 学时应注意让学生总结解决实际问题的步骤,让学生养成规范化解题和答题的习 惯.

初中数学七年级《实际问题与一元一次方程:“配套”问题》优秀教学设计

初中数学七年级《实际问题与一元一次方程:“配套”问题》优秀教学设计

3.4实际问题与一元一次方程:“配套”问题一、教材分析这一节是人教版七年级数学上册第三章第4节《实际问题与一元一次方程》第1课时的内容,是学生学习了代数式及一元一次方程的解法后一个理论联系实际的最好教材,也是前一部分知识的应用与巩固,这一节又是整个列方程解应用题的重点。

列方程解应用题体现了现实世界中事物的相互联系,学生从这些联系中看问题的同时也为今后学习函数奠定了基础。

在能力方面,无论是逻辑思维能力、计算能力,还是分析问题、解决问题的能力,都可在本节教学中得以培养和提高。

该节课主要学习的内容是“配套问题”相关的应用题;教材通过例1和它引申出的两个问题与学生共同总结出列一元一次方程方程解决实际问题的一般步骤。

重点:找到配套问题中的相等关系,建立数学模型,正确列出一元一次方程进行求解。

建立模型解决实际问题的一般方法和步骤。

难点:由实际问题抽象出数学模型的探究过程。

二、教学目标三、学情分析本节课是在学生初步认识方程,掌握方程解法的基础上,学习一元一次方程的应用,让学生根据应用题的实际意义,寻找等量关系,列一元一次方程来解决实际问题,体验到了用一元一次方程来解决问题的简洁性。

本节开始,学生将接触与学习掌握更复杂一点的实际问题,这些问题用算术方法来解决往往很难,而用方程来解决却很简便,进而培养学习用方程来解决实际问题的意识和应用技巧,使学生真正体验到学而有用。

四、教学策略七年级学生思维活跃,接受新事物的能力和模仿能力比较强,然而,实际问题往往题目长、文字多,学生社会经验不足,难以找出相应的等量关系,容易产生厌倦情绪。

根据学生的心智特征及本课实际,将采用启发诱导、合作交流的方式引导学生主动参与到教学过程中来建构知识,来培养和提高学生的逻辑思维能力、计算能力、分析问题、解决问题的能力。

本节课可以简单概括为:一条主线,三个问题.即以小明爸爸创业致富不忘回报社会,教育学生常怀感恩为主线,解决小明爸爸经营的螺丝厂螺钉螺母的配套问题,捐赠课桌中桌面桌腿的配套问题,以及桌面桌腿配套问题的变式应用.这三个问题由浅入深,层层递近,螺旋式上升.根据教材内容,结合学生认知能力,本节课采用启发式、引导式、探究式教学方法为主,辅以问题教学法,类比教学法. 五、发展学生核心素养教 学 目 标知识与技能目标 1.掌握配套问题中有关量的基本关系式,并会寻求等量关系列方程求解.2.提高利用一元一次方程解决实际问题的能力. 过程与方法目标1.通过自主探索与合作交流,合理表达自己的思维过程;2.渗透建模思想; 情感态度价值观目标1.体会数学与生活的联系,学会感恩,懂得回报.2.让学生在探究中感受学习的快乐.通过学习,进一步认识到方程与现实世界的密切联系. 感受数学的应用价值,增强用数学的意识,从而激发学生学习数学的热情.培养和提高学生的逻辑思维能力、计算能力,还是分析问题、解决问题的能力。

实际问题与一元一次方程(一)配套问题和工程问题(教学设计)七年级数学上册系列(人教版)

实际问题与一元一次方程(一)配套问题和工程问题(教学设计)七年级数学上册系列(人教版)

3.4.1 实际问题与一元一次方程(一) 配套问题和工程问题教学设计一、内容和内容解析本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章“一元一次方程”3.4.1 实际问题与一元一次方程(一) 配套问题和工程问题,内容包括:列一元一次方程解决配套问题和工程问题.这一节是人教版新课标实验教材中学数学七年级上册第三章第四节第一课时的内容,是学生学习了代数式、简易方程及一元一次方程的解法后一个理论联系实际的最好教材,也是前一部分知识的应用与巩固.所有列方程解应用题的基本方法都与列一元一次方程解应用题的基本方法类似,所以这一节又是整个列方程解应用题的重点.列方程解应用题体现了现实世界中事物的相互联系,学生从这些联系中看问题的同时也为今后学习函数奠定了基础.在能力方面,无论是逻辑思维能力、计算能力.还是分析问题、解决问题的能力,都可在本单元教学中得以培养和提高.基于以上分析,确定本节课的教学重点为:掌握用一元一次方程解决实际问题的基本过程.二、目标和目标解析(1)理解配套问题和工程问题的背景.(2)掌握用一元一次方程解决实际问题的基本过程.(3)分清有关数量关系,能正确找出作为列方程依据的主要等量关系.掌握配套问题和工程问题中有关量的基本关系式,并会寻求等量关系列方程求解提高利用一元一次方程解决实际问题的能力.让学生亲身经历和体验运用方程解决实际问题的过程,培养学生用数学的眼光去看待、分析现实生活中的情境:并能作出相应的选择.经历将实际问题转化为数学问题的过程,进一步体会并认识到方程是刻画现实世界的一个很有效的数学模型,渗透数学建模思想.培养学生的抽象、概括、分析和解决问题的能力.通过学习,进一步认识到方程与现实世界的密切联系感受数学的应用价值,增强用数学的意识,从而激发学生学习数学的热情体会在解决问题的过程中同学之间交流合作的重要性让学生在探究中感受学习的快乐.三、教学问题诊断分析本节课教学的对象是七年级学生,他们思想活跃,兴趣广泛,善于思考.在进行教学设计时力争从教学内容、教学形式、教学评价中体现出趣味性和切近生活的原则.通过教学活动,让学生自主探究,引导他们由浅入深、步步推进,从广度、高度和深度上开拓学生的思维,也有助于学生形成完整的知识体系.基于以上学情分析,确定本节课的教学难点为:将实际问题抽象为方程的过程中,如何找等量关系.四、教学过程设计(一)自学导航1.一个三角形的三边长度的比是3:4:5,最短的边比最长边短4,则三边各是多少?解:设最短边为3x,则最长边为____,根据题意,列得方程____________.2.铅笔每支1元,钢笔每支8元. 小明买回铅笔钢笔共8支,用了22元. 问小明买了铅笔钢笔各多少支?解:设小明买了x支铅笔,则买了_______支钢笔,根据题意,列得方程______________.3.甲队有32人,乙队有40人,现在从乙队抽调x 人到甲队,使得甲队的人数是乙队人数的2倍,根据题意,列得方程_________________.(二)情境引入生活中,有很多需要进行配套的问题,如课桌和凳子、螺钉和螺母、电扇叶片和电机等,大家能举出生活中配套问题的例子吗?(三)考点解析例1.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母. 1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?提示:这类问题中配套的物品之间具有一定的数量关系,这可以作为列方程的依据.分析:每天生产的螺母数量是螺钉数量的2倍时,它们刚好配套.螺母总量=螺钉总量×2列表分析:解:设应安排x名工人生产螺钉,(22-x)名工人生产螺母.根据螺母数量应是螺钉数量的2倍,列出方程2000(22-x)=2×1200x .解方程,得x=10.所以22-x=12.答:应安排10名工人生产螺钉,12名工人生产螺母.思考:如果设x名工人生产螺母,怎样列方程?解:设应安排x名工人生产螺母,(22-x)名工人生产螺钉.根据螺母数量应是螺钉数量的2倍,列出方程2×1200(22-x)=2000x解方程,得x=12所以22-x=10答:应安排10名工人生产螺钉,12名工人生产螺母.思考:本题还有其他做法吗?分析:从螺钉的角度来看,螺钉数等于套数;从螺母的角度来看,螺母数等于套数的2倍.可以根据生产的套数是一样的建立方程解决.列表分析:解:设应安排x 名工人生产螺钉,(22-x)名工人生产螺母.依题意,得2000(22-)1200.2x x 解方程,得 x =10.所以 2-x =12.答:应安排10名工人生产螺钉,12名工人生产螺母.【方法归纳】解决配套问题的思路:物品之间具有的数量关系作为列方程的依据;套数不变作为列方程的依据.例2.某服装厂要生产一批校服,已知每3m 的布料可以做2件上衣或3条裤子,要求一件上衣和两条裤子配一套,现有1008m 的布料,应怎样计划用料才能做尽可能多的成套校服?校服有多少套?解:设用x m 布料做上衣,则用(1008-x)m 布料做裤子.由题意,得23x×2=1008-x , 解得x=432.所以1008-x=576,23x=288.答:用432m 布料做上衣,576m 布料做裤子,刚好能做288套校服.【迁移应用】1.某防护服厂有54人,每人每天可加工防护服8件或防护面罩10个,已知一件防护服配一个防护面罩,为了使每天生产的防护服与防护面罩正好配套,需要安排多少人生产防护服?解:设需要安排x 人生产防护服,则安排(54-x)人生产防护面罩.由题意,得8x=10(54-x),解得x=30.答:需要安排30人生产防护服.2.一张方桌由1个桌面、4条桌腿组成,如果1m3木料可以做50个桌面或300条桌腿,现有5m3木料,要使做出的桌面和桌腿恰好配成方桌,应用多少木料来做桌面?能配成多少张方桌?解:设应用xm3木料做桌面,则用(5-x)m3木料做桌腿.根据题意得50x×4=300(5-x),解得x=3.则能配成方桌50×3=150(张).答:应用3m3木料做桌面,能配成150张方桌.(四)自学导航做某件工作,甲单独做要8时才能完成,乙单独做要12时才能完成,问:①甲做1时完成全部工作量的几分之几?_______.①乙做1时完成全部工作量的几分之几?_______.①甲、乙合做1时完成全部工作量的几分之几?_______.①甲做x时完成全部工作量的几分之几?_______.①甲、乙合做x时完成全部工作量的几分之几?_______.①甲先做2时完成全部工作量的几分之几?_______;乙后做3时完成全部工作量的几分之几?_______;甲、乙再合做x时完成全部工作量的几分之几?_______;三次共完成全部工作量的几分之几?______________;结果完成了工作,则可列出方程:________________.(五)考点解析例3.整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?分析:这里可以把总工作量看作1;工作量=人均效率×人数×时间.人均效率(一人做1h完成工作量)为( )x人1h完成的工作量( )x人4h完成的工作量( )增加2人后再做8h,完成工作量为()这两个工作量之和为( ).解:设安排x人先做4h. 根据先后两个时段的工作量之和应等于总工作量,列出方程48(2)14040x x ++= 解方程,得 4x+8(x+2)=404x+8x+16=4012x=24x=2答:应安排2人先做4h.【总结提升】解决工程问题的基本思路:1. 三个基本量:工作量、工作效率、工作时间.它们之间的关系是:工作量=工作效率×工作时间.2. 相等关系:工作总量=各部分工作量之和.(1) 按工作时间,工作总量=各时间段的工作量之和;(2) 按工作者,工作总量=各工作者的工作量之和.3. 通常在没有具体数值的情况下,把工作总量看作“1”.例4.某村经济合作社决定把22t 竹笋加工后再上市销售,刚开始每天加工3t ,后来在乡村振兴工作队的指导下改进加工方法,每天加工5t ,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?分析:相等关系:改进方法前的工作量+改进方法后的工作量=22t.解:设改进加工方法前用了x 天,则改进加工方法后用了(6-x)天.根据题意,得3x+5(6-x)=22,解得x=4.所以6-x=2答:改进加工方法前用了4天,改进加工方法后用了2天.【迁移应用】1.将一段长为1.2km 的河道的整治任务交由甲、乙两个工程队接力完成,共用时60天.已知甲队每天整治24m ,乙队每天整治16m ,则甲队整治河道_______m ,乙队整治河道_______m.2.有一段长为146m 的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26m.已知甲工程队每天比乙工程队多掘进2m ,按此速度施工,甲、乙两个工程队还需联合工作______天.例5.?解:设甲做了xh ,则乙做了(x+2)h.x 根据题意,得140+x+330=1,解得x=16.答:甲做了16h.【迁移应用】1.一项工程,甲单独做10天可以完成,乙单独做15天可以完成,现甲队先做2天,余下的工程由两队共同做x 天刚好可以完成,则由题意可列出的方程是___________________.2.加工一批零件,由一个人做要100h 完成,现计划由若干人先做2h ,再增加5人与他们一起做9h ,可完成这项工作的3950.假设这些人50的工作效率相同,先做2h 的有多少人? 解:设先做2h 的有x 人.根据题意,得x 100×2+(x+5)100×9=3950. 解得x=3.答:先做2h 的有3人.例6.【分类讨论思想】某玩具公司要生产若干件高级玩具,现有甲、乙两个加工厂都想加工这批玩具,已知甲厂单独加工这批玩具比乙厂单独加工这批玩具多用20天,甲厂每天可加工16 件玩具,乙厂每天可加工24件玩具,玩具公司每天需付给甲厂800元加工费,每天需付给乙厂1200元加工费.(1)这个玩具公司要生产多少件高级玩具?(2)在加工过程中(无论单独加工,还是两厂合作),玩具公司需派一名技术员每天给加工厂提供指导,并为该技术员提供每天20元的额外补助,玩具公司制订玩具加工方案如下:可由一个厂单独加工完成,也可由两厂合作完成请你帮助玩具公司选择一种既省钱又省时的加工方案.解:(1)设这个玩具公司要生产x 件高级玩具.由题意,得x 16-x 24=20,解得x=960.答:这个玩具公司要生产960件高级玩具.(2)分三种情况讨论:①甲厂单独加工:耗时96016=60(天),费用为60×(20+800)=49200(元);①乙厂单独加工:耗时96024=40(天),费用为40×(1200+20)=48800(元);9①两厂共同加工:耗时96016+24=24(天),费用为24×(800+1200+20)=48480(元).所以由两厂合作完成时,既省钱又省时.【迁移应用】为推进我国“碳达峰、碳中和”双碳目标的实现,各地大力推广分布式光伏发电项目.某公司计划建设一座光伏发电站,若由甲工程队单独施工需要3周,每周耗资8万元,若由乙工程队单独施工需要6周,每周耗资3万元.(1)若甲、乙两工程队合作施工,需要几周完成?共需耗资多少万元?(2)若需要最迟4周完成工程,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整周计算)解:(1)设甲、乙两工程队合作施工需要x 周完成.根据题意,得(13+16)x=1, 解得x=2.所以(8+3)×2=22(万元).答:甲、乙两工程队合作施工,需要2周完成,共需耗资22万元.(2)因为乙工程队每周耗资较少,为最大限度节省资金,则乙工程队应尽可能多做.设先由甲、乙两工程队合作施工y 周,剩下的工作量由乙工程队单独完成.根据题意,得(13+16)y+4−y 6=1,解得y=1.所以4-y=3.答:先由甲、乙两工程队合作施工1周,再由乙工程队单独施工了周,既保证按时完成任务,又最大限度节省资金.(六)小结梳理用一元一次方程解决实际问题的基本过程如下:列方程解决实际问题的一般步骤:审:审清题意,分清题中的已知量、未知量.设:设未知数,设其中某个未知量为x.列:根据题意寻找等量关系列方程.解:解方程.验:检验方程的解是否符合题意.答:写出答案(包括单位).五、教学反思。

《实际问题与一元一次方程1:配套问题》示范公开课教学设计【部编新人教版七年级数学上册】

《实际问题与一元一次方程1:配套问题》示范公开课教学设计【部编新人教版七年级数学上册】

实际问题与一元一次方程1
配套问题
一、教学目标
1.经历“把配套问题抽象为数学方程”的过程,掌握用一元一次方程解决实际问题的
方法与步骤,获得分析实际问题的思路与方法;
2.能够“找出配套问题中的已知数和未知数,分析它们之间的关系,设未知数,列出
方程表示问题中的等量关系”,体会建立数学模型的思想;
3.经历“把配套问题抽象为数学方程”的过程,培养学生的数学抽象和数学建模的核
心素养,并养成良好的运算习惯;
4.通过探究如何用一元一次方程解决实际问题,体会利用一元一次方程解决问题的基
本过程,感受数学的应用价值,提高分析问题、解决问题的能力.
二、教学重难点
重点:表示出题目中不同的量,并分析量之间的等量关系.
难点:找等量关系列一元一次方程解决实际问题.
三、教学用具
多媒体课件
四、教学过程设计
思维导图的形式呈现本节课的主要内容:。

七年级数学上册《列一元一次方程解应用题调配问题》教案、教学设计

七年级数学上册《列一元一次方程解应用题调配问题》教案、教学设计
d.总结反思:引导学生总结解决问题的方法与步骤,形成自己的认知结构。
3.个性化教学设想:
a.关注学生个体差异,针对不同学生的学习需求提供个性化指导。
b.鼓励学生提出自己的疑问,培养学生的批判性思维。
c.注重情感教育,鼓励学生克服困难,增强自信心。
四、教学内容与过程
(一)导入新课
1.教学内容:以学生熟悉的生活场景为背景,如学校的运动会筹备,引入调配问题。
3.培养学生的批判性思维和创新意识,鼓励学生在解决问题时提出不同的观点和方法,尊重每个学生的个性和创造性,让学生在数学学习中建立自信,形成正确的数学观。
二、学情分析
七年级的学生已经具备了一定的数学基础,掌握了一元一次方程的基本概念和解法,但在将现实问题抽象成数学模型方面仍需加强。学生对数学应用题的兴趣和信心各不相同,部分学生可能对应用题感到恐惧和困惑,需要教师耐心引导和鼓励。此外,学生在小组合作学习中,团队协作和交流表达能力有待提高。因此,本章节教学应注重激发学生的学习兴趣,加强学生对实际问题的分析指导,培养学生将现实问题转化为数学问题的能力,同时,关注学生个体差异,提供个性化指导,使每位学生都能在数学学习中得到成长和提升。
2.完成课本练习题:第5题、第6题和第7题。这三题分别涵盖了不同类型的调配问题,旨在让学生熟悉各种应用场景,提高解题技巧。
3.小组合作:请同学们以小组为单位,共同探讨以下问题:在实际生活中,还有哪些问题可以用一元一次方程来解决?请举例说明,并列出解题步骤。
4.写一篇数学日记,记录在本节课学习过程中,你是如何从实际问题中抽象出一元一次方程的?在解题过程中遇到了哪些困难?又是如何克服这些困难的?
5.预习下一节课内容:二元一次方程组的解法及应用。提前了解相关知识,为课堂学习做好准备。

七年级数学第三章一元一次方程3.4实际问题与一元一次方程第1课时配套问题与工程问题教案

七年级数学第三章一元一次方程3.4实际问题与一元一次方程第1课时配套问题与工程问题教案

3.4实际问题与一元一次方程第1课时配套问题与工程问题【知识与技能】会根据实际问题中数量关系列方程解决问题,并进一步熟练掌握一元一次方程的解法。

【过程与方法】培养学生数学建模能力,分析问题、解决问题的能力。

【情感态度】通过开放性问题的设计,培养学生创新能力和挑战自我的意识,增强学生的学习兴趣。

【教学重点】从实际问题中抽象出数学模型.【教学难点】根据题意,分析各类问题中的数量关系,会熟练地列方程解应用题。

一、情境导入,初步认识在前两节中,我们着重探讨了解一元一次方程的概念和几种方法,这几种解法包括合并同类项与移项、去括号与去分母等.这几个课时我们着重探讨如何用一元一次方程解决实际问题,我们先来看两个问题:问题1 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?思考:①若安排x名工人加工大齿轮,则有___名工人加工小齿轮。

②x名工人每天可加工_____个大齿轮,加工小齿轮的工人每天可加工____个小齿轮。

③按题中的配套方法,你是否可找出其中的等量关系呢?问题2一件工作,甲单独做20小时完成,乙单独做12小时完成,那么两人合作多少小时完成?思考:①两人合作32小时完成对吗?为什么?②甲每小时完成全部工作的______;乙每小时完成全部工作的_______;甲x小时完成全部工作的_______;乙x小时完成全部工作的_______。

【教学说明】提出这个问题,旨在让学生能快速进入课堂,进行思考。

教师可根据上面所列思考题引导学生进行思考,问题1是配套问题,教师最终要引导学生找出等量关系:生产的大齿轮数量的3倍与小齿轮数量的2倍相等.题①、②依次填:(85-x)、16x、10(85-x)。

依次我们可列得方程为3×16x=2×\[10×(85—x)\].问题2提出了一个新问题:如何解决与工作量相关的应用题,这类题求解时一般都需要去分母。

七年级数学上册《列一元一次方程解应用题工程问题》教案、教学设计

七年级数学上册《列一元一次方程解应用题工程问题》教案、教学设计
4.培养学生的团队协作精神,学会与他人合作、交流、分享。
在教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,激发学生的学习兴趣,使他们在轻松愉快的氛围中掌握一元一次方程解决工程问题的方法,提高学生的数学素养。
二、学情分析
七年级的学生已经具备了一定的数学基础,掌握了基本的算术运算和简单的代数知识。在此基础上,学生对一元一次方程的概念和求解方法有一定了解,但在实际应用中,将实际问题抽象为一元一次方程的能力仍有待提高。特别是工程问题,由于其涉及的生活情境较为复杂,学生在提取关键信息、建立数学模型方面可能存在困难。
2.学生在规定时间内完成练习题,教师巡回指导,解答学生的疑问。
3.教师挑选部分学生的答案进行展示,分析解题过程中的优点和不足,引导学生掌握正确的解题方法。
(五)总结归纳(500字)
1.教师带领学生回顾本节课所学的一元一次方程解决工程问题的方法,总结解题步骤和注意事项。
2.学生分享自己在解决问题过程中的心得体会,以及学到的知识和技能。
3.合作交流:组织学生进行小组讨论,分享解题思路,互相学习,提高学生的团队协作能力。
4.精讲精练:针对学生的难点和疑问,进行针对性的讲解,帮助学生突破难点,巩固所学知识。
5.拓展延伸:设计不同难度的练习题,使学生在巩固基础的同时,提高解题能力。
6.课堂小结:通过师生共同总结,梳理本节课的知识点和解题方法,加深学生对一元一次方程解决工程问题的认识。
七年级数学上册《列一元一次方程解应用题工程问题》教案、教学设计
一、教学目标
(一)知识与技能
1.知道一元一次方程的定义及其基本性质。
2.学会列出与工程问题相关的一元一次方程,并掌握方程的求解方法。
3.能够运用一元一次方程解决生活中的工程问题,如时间、速度、路程、工作量等问题。

利用一元一次方程解配套问题和工程问题课件

利用一元一次方程解配套问题和工程问题课件

本例是工作效率已知,从工作量设元,则从工 作时间找相等关系列方程.
工程问题中将工作总量看成单位“1”是最常见 的,“工作总量等于各部分工作量之和”也是最常 用的等量关系.
小结
1. 工程问题的基本量:工作量、工作效率、工作时间, 基本关系式:工作量=工作效率×工作时间.
2. 当工作总量未给出具体数量时,常把总工作量当作 整体1. 常用的相等关系为:总工作量=各部分工作量的和.
答:应安排10名工人生产螺钉,12名工人 生产螺母.
解决配套问题时,要弄清配套双方的数量关系,准确地 找出题中的相等关系; 常见类型: (1)生产配套:已知总人数,分成几部分分别从事不同项目,
各项目数量之间的比例符合总体要求.符合一
定的数量关系,或从第三方调入一些人(或物)到甲、乙两处, 使之符合一定的数量关系,其基本相等关系为:甲人(或物) 数+乙人(或物)数=总人(或物)数
乙每小时完成全部工作的_______; 甲x小时完成全部工作的_______; 乙x小时完成全部工作的_______.
【例知2识】整点理一批图书,由一个人做要40 h完成.现计划
由一部分人先做 4 h,然后增加2人与他们一起做
8 h,完成这项工作.假设这些人的工作效率 相
同,具体应先安排多少人工作?
答:应安排2人先做4 h.
这类问题中常常 把总工作量看作1, 并 利用“工作量= 人均 效率×人数 ×时间” 的关系 考虑问题.
(来自教材)
1.知基识本关点系式:工作量=工作效率×工作时间,
工作时间=
工作量 工作效率
,工作效率=
工作量 工作时间
.
2.当问题中总工作量未知而又不求总工作量时,通常把总
如果设x名工 人生产螺母, 怎样列方程?

人教版七年级数学上册教案 利用一元一次方程解配套问题与工程问题

人教版七年级数学上册教案 利用一元一次方程解配套问题与工程问题

义务教育基础课程初中教学资料利用一元一次方程解配套问题与工程问题【知识与技能】会根据实际问题中数量关系列方程解决问题,并进一步熟练掌握一元一次方程的解法.【过程与方法】培养学生数学建模能力,分析问题、解决问题的能力.【情感态度】通过开放性问题的设计,培养学生创新能力和挑战自我的意识,增强学生的学习兴趣.【教学重点】从实际问题中抽象出数学模型.【教学难点】根据题意,分析各类问题中的数量关系,会熟练地列方程解应用题.一、情境导入,初步认识在前两节中,我们着重探讨了解一元一次方程的概念和几种方法,这几种解法包括合并同类项与移项、去括号与去分母等.这几个课时我们着重探讨如何用一元一次方程解决实际问题,我们先来看两个问题:问题1 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?思考:①若安排x名工人加工大齿轮,则有___名工人加工小齿轮.②x名工人每天可加工_____个大齿轮,加工小齿轮的工人每天可加工____个小齿轮.③按题中的配套方法,你是否可找出其中的等量关系呢?问题2一件工作,甲单独做20小时完成,乙单独做12小时完成,那么两人合作多少小时完成?思考:①两人合作32小时完成对吗?为什么?②甲每小时完成全部工作的______;乙每小时完成全部工作的_______;甲x小时完成全部工作的_______;乙x小时完成全部工作的_______.【教学说明】提出这个问题,旨在让学生能快速进入课堂,进行思考.教师可根据上面所列思考题引导学生进行思考,问题1是配套问题,教师最终要引导学生找出等量关系:生产的大齿轮数量的3倍与小齿轮数量的2倍相等.题①、(85-x)、16x、10(85-x).依次我们可列得方程为3×16x=2×\[10×(85-x)\].②依次填:问题2提出了一个新问题:如何解决与工作量相关的应用题,这类题求解时一般都需要去分母.所以这类题可看作是与去分母解方程有关的实际问题.解决这类问题需要知道“工作量=人均效率×人数×时间”这一基本数量关系式,该题中第①问是不对的,第②问依次应填120,112,x20,x12,教师教学时可让学生稍作思考后作答.二、思考探究,获取新知探究1教材第100页例1.【分析】(1)每人每天平均生产螺钉1200个或螺母2000个表示什么意思?(2)刚好配套,说明螺钉和螺母个数一样多吗?(3)为了使每天的产品刚好配套,应使生产的螺母数量恰好为螺钉数量的_______.解:设分配x名工人生产螺钉,则有人生产螺母,一天共生产螺钉个,螺母_______个.问题:你能列出方程吗?【教学说明】众所周知,理解题意是学好数学的前提,本例通过分析使学生深入理解题意,便于学生找出相等关系.通过多媒体或实物演示,有效分解教学难点,从而更有效地突破教学难点.此外,前面栏目中的问题也有利于解答本题.教师组织并引导学生通过具体的生活实例或实物演示使学生深入理解螺钉的数量是螺母数量的二分之一,螺母数量是螺钉数量的二倍,引导学生找出相等关系列方程.教师重点关注学生能否理解“刚好配套”,关注学生能否理解在配套的情况下相等关系应为:螺钉的数量×2=螺母的数量;而不是:螺母的数量×2=螺钉的数量.试一试教材第101页练习第1题.探究2 教材第100~101页例2.【分析】这里可以把总工作量看作1.请填空:人均效率(一个人1h完成的工作量)为.由x人先做4h,完成的工作量为.再增加2人和前一部分人一起做8h,完成的工作量为_____.这项工作分两段完成,两段完成的工作量之和为.【教学说明】前面问题1 和问题2为本题作了铺垫,所以学生比较好理解.教学时,教师引导学生完成“分析”中的空,上面的空依次应填:1/40,4x/40, 8(x+2)/40,4x/40+8(x+2)/40,填完空后,教师让学生上台板演此题.随后师生一起运用一元一次方程解决问题的基本思路,具体可参见教材第101页的相关表述.试一试教材第101页练习第2题.三、典例精析,掌握新知例1 用白铁皮做罐头盒,每张白铁皮可制盒身16个或制盒底48个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?【分析】这是一个“配套”问题,我们可以运用上一栏目中的“配套”问题的解题思路来分析.本题需要找出等量关系:做盒身的白铁皮张数+做盒底的白铁皮张数=100;用白铁皮做盒身的总个数×2=用白铁皮做盒底的总个数.解:设用x张制盒身,则用(100-x)张制盒底.根据题意列方程,得2×16x=48×(100-x).去括号,得32x=4800-48x.移项及合并同类项,得80x=4800.系数化为1,得x=60.制盒底的铁皮数:100-60=40.答:用60张制盒身,40张制盒底.例2 整理一批图书,如果由一个人单独做要花60小时,现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?【分析】本题中含有一些基本等量关系:工作总量=工作时间×工作效率.一般把工作总量看作总体“1”.解:设先安排整理的人员为x人,根据题意得解此方程,得x=10.答:先安排整理的人员有10人.例3一项工程,由甲单独做需30天,由乙单独做需50天,现由甲、乙共同完成这项工程且施工期间乙要休息14天,那么完成这项工程需要几天?【分析】把全部工作量看成1,则甲的效率为1/30,乙的效率为1/50.若设这项工程需要x天完成,则甲的工作量为1/30x,乙的工作量为1/50(x-14),由此列出方程.解:设这项工程需要x天完成.由题意,得1/30x+1/50(x-14)=1.去分母,得5x+3(x-14)=150.去括号,得5x+3x-42=150.移项、合并同类项,得8x=192.系数化为1,得x=24.答:完成这项工程需要24天.四、运用新知,深化理解1.某车间90名工人生产凳子面和凳子腿,每人每天平均生产凳子面10个或凳子腿50个,一个凳子面要配四个凳子腿.为了使每天的产品刚好配套,应该分配多少名工人生产凳子面,多少名工人生产凳子腿?2.一本稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成.现由两人合打7小时,余下部分由乙完成,还需多少小时?3.有甲、乙、丙三个水管,单独开放甲管5h可注满一池水;甲、乙两管齐放,2h可注满一池水;甲、丙两管齐开放,3h可注满一池水.现把三管一齐开放,过了一段时间后甲管因故障停开,停开后2h水池注满,问三管齐开放了多少小时水?【教学说明】上面前两道题分别是与本课时所学应用题相对应的,第1题为配套问题,可设应分配x名工人生产凳子面,(90-x)名工人生产凳子腿,由题意分析可知其中的相等关系为:x名工人一天生产凳子面的4倍=(90-x)名工人生产凳子腿的数量,教师应让学生通过思考找出这个等量关系.第2题为工作量问题,教师应注意让学生找到本题关键点:由乙单独完成需要几小时.在对这两题进行分析后,教师可让学生上台板演.第3题综合性强,题较难,教师应给予充分的提示,此题是一个工程问题,基本关系是:工作量=工作效率×工作时间.各个工作量之和=总工作量.将注满一池水的工作量设为1,设三管齐开放了xh,可列表如下:如若教师在进行上面的提示之后,学生仍无法动手,教师可与学生进行互动,不必要求学生上台板演.【答案】1.解:设应分配x名工人生产凳子面,(90-x)名工人生产凳子腿.依题意可列方程,得:4×10x=(90-x)×50去括号,得40x=4500-50x移项,得40x+50x=4500合并同类项,得90x=4500系数化为1,得x=50所以90-x=40答:应分配50名工人生产凳子面,40名工人生产凳子腿.2.解:设还需x小时完成,依题意列方程得:去分母,得35+2x=60移项及合并同类项,得2x=25系数化为1,得x=12.5答:还需12.5小时完成.3.设三管齐开放注水xh,根据题意得去分母,得6x+9x+18+4x+8=30.移项,得6x+9x+4x=30-8-18.合并同类项,得19x=4.系数化为1,得x=4/19.答:三管齐开放了4/19h水.五、师生互动,课堂小结通过以下问题引导学生反思小结:1.通过这节课的学习,你有什么收获?2.在解决应用问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?1.布置作业::从教材习题3.4中选取.2.完成练习册中本课时的练习.本课时的内容主要是结合前面所学内容解决实际问题,所以教学时教师应给予学生充分的独立思考空间,注重与学生进行互动.引导学生应注意找出等量关系,因为这是列方程解应用题的关键所在.此外,考虑到这是第1课时,所以教学时应注意让学生总结解决实际问题的步骤,让学生养成规范化解题和答题的习惯.。

人教版七年级数学上册教案 利用一元一次方程解配套问题与工程问题

人教版七年级数学上册教案 利用一元一次方程解配套问题与工程问题

义务教育基础课程初中教学资料利用一元一次方程解配套问题与工程问题【知识与技能】会根据实际问题中数量关系列方程解决问题,并进一步熟练掌握一元一次方程的解法.【过程与方法】培养学生数学建模能力,分析问题、解决问题的能力.【情感态度】通过开放性问题的设计,培养学生创新能力和挑战自我的意识,增强学生的学习兴趣.【教学重点】从实际问题中抽象出数学模型.【教学难点】根据题意,分析各类问题中的数量关系,会熟练地列方程解应用题.一、情境导入,初步认识在前两节中,我们着重探讨了解一元一次方程的概念和几种方法,这几种解法包括合并同类项与移项、去括号与去分母等.这几个课时我们着重探讨如何用一元一次方程解决实际问题,我们先来看两个问题:问题1 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?思考:①若安排x名工人加工大齿轮,则有___名工人加工小齿轮.②x名工人每天可加工_____个大齿轮,加工小齿轮的工人每天可加工____个小齿轮.③按题中的配套方法,你是否可找出其中的等量关系呢?问题2一件工作,甲单独做20小时完成,乙单独做12小时完成,那么两人合作多少小时完成?思考:①两人合作32小时完成对吗?为什么?②甲每小时完成全部工作的______;乙每小时完成全部工作的_______;甲x小时完成全部工作的_______;乙x小时完成全部工作的_______.【教学说明】提出这个问题,旨在让学生能快速进入课堂,进行思考.教师可根据上面所列思考题引导学生进行思考,问题1是配套问题,教师最终要引导学生找出等量关系:生产的大齿轮数量的3倍与小齿轮数量的2倍相等.题①、(85-x)、16x、10(85-x).依次我们可列得方程为3×16x=2×\[10×(85-x)\].②依次填:问题2提出了一个新问题:如何解决与工作量相关的应用题,这类题求解时一般都需要去分母.所以这类题可看作是与去分母解方程有关的实际问题.解决这类问题需要知道“工作量=人均效率×人数×时间”这一基本数量关系式,该题中第①问是不对的,第②问依次应填120,112,x20,x12,教师教学时可让学生稍作思考后作答.二、思考探究,获取新知探究1教材第100页例1.【分析】(1)每人每天平均生产螺钉1200个或螺母2000个表示什么意思?(2)刚好配套,说明螺钉和螺母个数一样多吗?(3)为了使每天的产品刚好配套,应使生产的螺母数量恰好为螺钉数量的_______.解:设分配x名工人生产螺钉,则有人生产螺母,一天共生产螺钉个,螺母_______个.问题:你能列出方程吗?【教学说明】众所周知,理解题意是学好数学的前提,本例通过分析使学生深入理解题意,便于学生找出相等关系.通过多媒体或实物演示,有效分解教学难点,从而更有效地突破教学难点.此外,前面栏目中的问题也有利于解答本题.教师组织并引导学生通过具体的生活实例或实物演示使学生深入理解螺钉的数量是螺母数量的二分之一,螺母数量是螺钉数量的二倍,引导学生找出相等关系列方程.教师重点关注学生能否理解“刚好配套”,关注学生能否理解在配套的情况下相等关系应为:螺钉的数量×2=螺母的数量;而不是:螺母的数量×2=螺钉的数量.试一试教材第101页练习第1题.探究2 教材第100~101页例2.【分析】这里可以把总工作量看作1.请填空:人均效率(一个人1h完成的工作量)为.由x人先做4h,完成的工作量为.再增加2人和前一部分人一起做8h,完成的工作量为_____.这项工作分两段完成,两段完成的工作量之和为.【教学说明】前面问题1 和问题2为本题作了铺垫,所以学生比较好理解.教学时,教师引导学生完成“分析”中的空,上面的空依次应填:1/40,4x/40, 8(x+2)/40,4x/40+8(x+2)/40,填完空后,教师让学生上台板演此题.随后师生一起运用一元一次方程解决问题的基本思路,具体可参见教材第101页的相关表述.试一试教材第101页练习第2题.三、典例精析,掌握新知例1 用白铁皮做罐头盒,每张白铁皮可制盒身16个或制盒底48个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?【分析】这是一个“配套”问题,我们可以运用上一栏目中的“配套”问题的解题思路来分析.本题需要找出等量关系:做盒身的白铁皮张数+做盒底的白铁皮张数=100;用白铁皮做盒身的总个数×2=用白铁皮做盒底的总个数.解:设用x张制盒身,则用(100-x)张制盒底.根据题意列方程,得2×16x=48×(100-x).去括号,得32x=4800-48x.移项及合并同类项,得80x=4800.系数化为1,得x=60.制盒底的铁皮数:100-60=40.答:用60张制盒身,40张制盒底.例2 整理一批图书,如果由一个人单独做要花60小时,现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?【分析】本题中含有一些基本等量关系:工作总量=工作时间×工作效率.一般把工作总量看作总体“1”.解:设先安排整理的人员为x人,根据题意得解此方程,得x=10.答:先安排整理的人员有10人.例3一项工程,由甲单独做需30天,由乙单独做需50天,现由甲、乙共同完成这项工程且施工期间乙要休息14天,那么完成这项工程需要几天?【分析】把全部工作量看成1,则甲的效率为1/30,乙的效率为1/50.若设这项工程需要x天完成,则甲的工作量为1/30x,乙的工作量为1/50(x-14),由此列出方程.解:设这项工程需要x天完成.由题意,得1/30x+1/50(x-14)=1.去分母,得5x+3(x-14)=150.去括号,得5x+3x-42=150.移项、合并同类项,得8x=192.系数化为1,得x=24.答:完成这项工程需要24天.四、运用新知,深化理解1.某车间90名工人生产凳子面和凳子腿,每人每天平均生产凳子面10个或凳子腿50个,一个凳子面要配四个凳子腿.为了使每天的产品刚好配套,应该分配多少名工人生产凳子面,多少名工人生产凳子腿?2.一本稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成.现由两人合打7小时,余下部分由乙完成,还需多少小时?3.有甲、乙、丙三个水管,单独开放甲管5h可注满一池水;甲、乙两管齐放,2h可注满一池水;甲、丙两管齐开放,3h可注满一池水.现把三管一齐开放,过了一段时间后甲管因故障停开,停开后2h水池注满,问三管齐开放了多少小时水?【教学说明】上面前两道题分别是与本课时所学应用题相对应的,第1题为配套问题,可设应分配x名工人生产凳子面,(90-x)名工人生产凳子腿,由题意分析可知其中的相等关系为:x名工人一天生产凳子面的4倍=(90-x)名工人生产凳子腿的数量,教师应让学生通过思考找出这个等量关系.第2题为工作量问题,教师应注意让学生找到本题关键点:由乙单独完成需要几小时.在对这两题进行分析后,教师可让学生上台板演.第3题综合性强,题较难,教师应给予充分的提示,此题是一个工程问题,基本关系是:工作量=工作效率×工作时间.各个工作量之和=总工作量.将注满一池水的工作量设为1,设三管齐开放了xh,可列表如下:如若教师在进行上面的提示之后,学生仍无法动手,教师可与学生进行互动,不必要求学生上台板演.【答案】1.解:设应分配x名工人生产凳子面,(90-x)名工人生产凳子腿.依题意可列方程,得:4×10x=(90-x)×50去括号,得40x=4500-50x移项,得40x+50x=4500合并同类项,得90x=4500系数化为1,得x=50所以90-x=40答:应分配50名工人生产凳子面,40名工人生产凳子腿.2.解:设还需x小时完成,依题意列方程得:去分母,得35+2x=60移项及合并同类项,得2x=25系数化为1,得x=12.5答:还需12.5小时完成.3.设三管齐开放注水xh,根据题意得去分母,得6x+9x+18+4x+8=30.移项,得6x+9x+4x=30-8-18.合并同类项,得19x=4.系数化为1,得x=4/19.答:三管齐开放了4/19h水.五、师生互动,课堂小结通过以下问题引导学生反思小结:1.通过这节课的学习,你有什么收获?2.在解决应用问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?1.布置作业::从教材习题3.4中选取.2.完成练习册中本课时的练习.本课时的内容主要是结合前面所学内容解决实际问题,所以教学时教师应给予学生充分的独立思考空间,注重与学生进行互动.引导学生应注意找出等量关系,因为这是列方程解应用题的关键所在.此外,考虑到这是第1课时,所以教学时应注意让学生总结解决实际问题的步骤,让学生养成规范化解题和答题的习惯.。

人教部编版七年级数学上册《三章 一元一次方程 3.4 实际问题与一元一次方程 工程问题》精品课教案_2

人教部编版七年级数学上册《三章 一元一次方程  3.4 实际问题与一元一次方程 工程问题》精品课教案_2

实际问题与医院一次方程-------工程问题教学目标:1、掌握工程问题中的基本等量关系;2、会通过列一元一次方程解决工程问题;3、培养学生分析问题、解决问题的能力。

教学重难点:分析工程问题中的已知量与未知量,找出等量关系,列出方程;教学过程:一、回顾1、解一元一次方程的步骤;2、用一元一次方程解决实际问题的步骤;二、新课1、工程问题中的基本量:工作量、工作效率、工作时间;三者的数量关系:工作量=工作效率x工作时间;工作效率=工作量/工作时间工作总量=各部分的工作量之和当工作总量未给出具体数目且不用求时,工作总量通常看作“1”。

2、打好基础做某件工作,甲单独做要8 h能做完,乙单独做要12 h才能完成,问:①甲、乙的工作效率各是多少?②甲乙合作的工作效率是多少?③甲做x h完成的工作量是多?3、例题整理一批图书,由一个人做要40小时完成,现在计划由一部分人先做4小时,再增加2人和他们一起做8小时完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?分析:①设应先安排x人工作,本题把工作总量看作1,一个人的工作效率是;②x人先做4小时完成的工作量是,再增加2人与他们一起做8小时的工作量是;③工作总量“1”的完成分两部分:x人工作4小时的工作量+(x+2)人工作8小时的工作量=1。

4、课堂练习一件工作,甲单独做20小时完成,乙单独做12小时完成,现在由甲单独做4小时,剩余部分由甲乙合作,还需要几小时完成?5、巩固练习一个道路工程,甲队单独施工8天完成,乙队单独施工12天完成,现在甲乙两队共同施工4天,由于甲另有任务,剩下的工程由乙队完成,还需几天?三、小结①在工程问题中,通常把工作总量看做“1”,如果一件工作需要x小时完成,那么工作效率是1/x;②工作总量=各部分的工作量之和(按顺序、按人)③工作量=工作效率x工作时间四、作业布置一项工作,甲单独完成要9天,乙单独完成要12天,丙单独完成要15天,若甲乙先做3天后,甲因故离开,由丙接替甲的工作,则还要多少天才能完成这项工作?。

人教部编版七年级数学上册《三章 一元一次方程 3.4 实际问题与一元一次方程 工程问题》精品课教案_0

人教部编版七年级数学上册《三章 一元一次方程  3.4 实际问题与一元一次方程 工程问题》精品课教案_0

3.4实际问题与一元一次方程——工程问题教案教学目标1.掌握工程问题中有关量的基本关系式,并会寻求等量关系列方程求解. 提高利用一元一次方程解决实际问题的能力;2.经历将实际问题转化为数学问题的过程,进一步体会并认识到方程是刻画现实世界的一个很有效的数学模型,渗透数学建模思想.培养学生的抽象、概括、分析和解决问题的能力;3.通过学习,进一步认识到方程与现实世界的密切联系. 感受数学的应用价值,增强用数学的意识,从而激发学生学习数学的热情. 体会在解决问题的过程中同学之间交流合作的重要性. 让学生在探究中感受学习的快乐。

教学重难点教学重点:找到工程问题中的相等关系,建立数学模型,正确列出一元一次方程进行求解。

建立模型解决实际问题的一般方法和步骤。

教学难点:由实际问题抽象出数学模型的探究过程。

教学方法采用启发诱导,实例探究,讲练结合的教学方法,揭示知识的发生和形成过程。

这种教学方法以“生动探索”为基础,先“引导发现”后“讲评点拔”,让学生在克服困难与障碍的过程中充分发挥自己的观察能力,想象能力和思维能力。

教学过程(一)问题引入,导入新课1.一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作1天完成的工作量是,两人合作3天完成的工作量是.学生独立完成设计意图:通过练习,启到复习作用。

培养学生的表达能力。

明确工程问题各个量之间的关系。

工作总量=工作效率×工作时间2、整理一块地,由一个人做要80小时完成。

(1)一个人做1小时完成的工作量是;(2)一个人做4小时完成的工作量是(3)一个人做x小时完成的工作量是(4)工作效率相同的5个人做1小时完成的工作量是(5)工作效率相同的m个人做1小时完成的工作量是(6)工作效率相同的m个人做x小时完成的工作量是学生思考,点名回答设计意图:通过类比的思想,让学生明白加入人数以后,工作量应该怎么算?并且强调人均工效相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用一元一次方程解配套问题与工程问题
【知识与技能】
会根据实际问题中数量关系列方程解决问题,并进一步熟练掌握一元一次方程的解法.
【过程与方法】
培养学生数学建模能力,分析问题、解决问题的能力.
【情感态度】
通过开放性问题的设计,培养学生创新能力和挑战自我的意识,增强学生的学习兴趣.
【教学重点】
从实际问题中抽象出数学模型.
【教学难点】
根据题意,分析各类问题中的数量关系,会熟练地列方程解应用题.
一、情境导入,初步认识
在前两节中,我们着重探讨了解一元一次方程的概念和几种方法,这几种解法包括合并同类项与移项、去括号与去分母等.这几个课时我们着重探讨如何用一元一次方程解决实际问题,我们先来看两个问题:
问题1 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?
思考:①若安排x名工人加工大齿轮,则有___名工人加工小齿轮.
②x名工人每天可加工_____个大齿轮,加工小齿轮的工人每天可加工____个小齿轮.
③按题中的配套方法,你是否可找出其中的等量关系呢?
问题2一件工作,甲单独做20小时完成,乙单独做12小时完成,那么两人合作多少小时完成?
思考:①两人合作32小时完成对吗?为什么?
②甲每小时完成全部工作的______;
乙每小时完成全部工作的_______;
甲x小时完成全部工作的_______;
乙x小时完成全部工作的_______.
【教学说明】提出这个问题,旨在让学生能快速进入课堂,进行思考.教师
可根据上面所列思考题引导学生进行思考,问题1是配套问题,教师最终要引导学生找出等量关系:生产的大齿轮数量的3倍与小齿轮数量的2倍相等.题①、(85-x)、16x、10(85-x).依次我们可列得方程为3×16x=2×\[10×(85-x)\].
②依次填:
问题2提出了一个新问题:如何解决与工作量相关的应用题,这类题求解时一般都需要去分母.所以这类题可看作是与去分母解方程有关的实际问题.解决这类问题需要知道“工作量=人均效率×人数×时间”这一基本数量关系式,该题中第①问是不对的,第②问依次应填120,112,x20,x12,教师教学时可让学生稍作思考后作答.
二、思考探究,获取新知
探究1教材第100页例1.
【分析】(1)每人每天平均生产螺钉1200个或螺母2000个表示什么意思?
(2)刚好配套,说明螺钉和螺母个数一样多吗?
(3)为了使每天的产品刚好配套,应使生产的螺母数量恰好为螺钉数量的_______.
解:设分配x名工人生产螺钉,则有人生产螺母,一天共生产螺钉个,螺母_______个.
问题:你能列出方程吗?
【教学说明】众所周知,理解题意是学好数学的前提,本例通过分析使学生深入理解题意,便于学生找出相等关系.通过多媒体或实物演示,有效分解教学难点,从而更有效地突破教学难点.此外,前面栏目中的问题也有利于解答本题.
教师组织并引导学生通过具体的生活实例或实物演示使学生深入理解螺钉的数量是螺母数量的二分之一,螺母数量是螺钉数量的二倍,引导学生找出相等关系列方程.教师重点关注学生能否理解“刚好配套”,关注学生能否理解在配套的情况下相等关系应为:螺钉的数量×2=螺母的数量;而不是:螺母的数量×2=螺钉的数量.
试一试教材第101页练习第1题.
探究2 教材第100~101页例2.
【分析】这里可以把总工作量看作1.请填空:
人均效率(一个人1h完成的工作量)为.
由x人先做4h,完成的工作量为.再增加2人和前一部分人一起做8h,完成的工作量为_____.
这项工作分两段完成,两段完成的工作量之和为.
【教学说明】前面问题1 和问题2为本题作了铺垫,所以学生比较好理解.教学时,教师引导学生完成“分析”中的空,上面的空依次应填:1/40,4x/40, 8(x+2)/40,4x/40+8(x+2)/40,填完空后,教师让学生上台板演此题.随后师生一起运
用一元一次方程解决问题的基本思路,具体可参见教材第101页的相关表述.
试一试教材第101页练习第2题.
三、典例精析,掌握新知
例1 用白铁皮做罐头盒,每张白铁皮可制盒身16个或制盒底48个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?
【分析】这是一个“配套”问题,我们可以运用上一栏目中的“配套”问题的解题思路来分析.本题需要找出等量关系:做盒身的白铁皮张数+做盒底的白铁皮张数=100;用白铁皮做盒身的总个数×2=用白铁皮做盒底的总个数.
解:设用x张制盒身,则用(100-x)张制盒底.
根据题意列方程,得2×16x=48×(100-x).
去括号,得32x=4800-48x.
移项及合并同类项,得80x=4800.
系数化为1,得x=60.
制盒底的铁皮数:100-60=40.
答:用60张制盒身,40张制盒底.
例2 整理一批图书,如果由一个人单独做要花60小时,现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?
【分析】本题中含有一些基本等量关系:工作总量=工作时间×工作效率.一般把工作总量看作总体“1”.
解:设先安排整理的人员为x人,根据题意得
解此方程,得x=10.
答:先安排整理的人员有10人.
例3一项工程,由甲单独做需30天,由乙单独做需50天,现由甲、乙共同完成这项工程且施工期间乙要休息14天,那么完成这项工程需要几天?
【分析】把全部工作量看成1,则甲的效率为1/30,乙的效率为1/50.若设这项工程需要x天完成,则甲的工作量为1/30x,乙的工作量为1/50(x-14),由此列出方程.
解:设这项工程需要x天完成.
由题意,得1/30x+1/50(x-14)=1.
去分母,得5x+3(x-14)=150.
去括号,得5x+3x-42=150.
移项、合并同类项,得8x=192.
系数化为1,得x=24.
答:完成这项工程需要24天.
四、运用新知,深化理解
1.某车间90名工人生产凳子面和凳子腿,每人每天平均生产凳子面10个或凳子腿50个,一个凳子面要配四个凳子腿.为了使每天的产品刚好配套,应该分配多少名工人生产凳子面,多少名工人生产凳子腿?
2.一本稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成.现由两人合打7小时,余下部分由乙完成,还需多少小时?
3.有甲、乙、丙三个水管,单独开放甲管5h可注满一池水;甲、乙两管齐放,2h可注满一池水;甲、丙两管齐开放,3h可注满一池水.现把三管一齐开放,过了一段时间后甲管因故障停开,停开后2h水池注满,问三管齐开放了多少小时水?
【教学说明】上面前两道题分别是与本课时所学应用题相对应的,第1题为配套问题,可设应分配x名工人生产凳子面,(90-x)名工人生产凳子腿,由题意分析可知其中的相等关系为:x名工人一天生产凳子面的4倍=(90-x)名工人生产凳子腿的数量,教师应让学生通过思考找出这个等量关系.第2题为工作量问题,教师应注意让学生找到本题关键点:由乙单独完成需要几小时.在对这两题进行分析后,教师可让学生上台板演.第3题综合性强,题较难,教师应给予充分的提示,此题是一个工程问题,基本关系是:工作量=工作效率×工作时间.各个工作量之和=总工作量.将注满一池水的工作量设为1,设三管齐开放了xh,可列表如下:
如若教师在进行上面的提示之后,学生仍无法动手,教师可与学生进行互动,不必要求学生上台板演.
【答案】1.解:设应分配x名工人生产凳子面,(90-x)名工人生产凳子腿.依题意可列方程,得:
4×10x=(90-x)×50
去括号,得40x=4500-50x
移项,得40x+50x=4500
合并同类项,得90x=4500
系数化为1,得x=50
所以90-x=40
答:应分配50名工人生产凳子面,40名工人生产凳子腿.
2.解:设还需x小时完成,依题意列方程得:
去分母,得35+2x=60
移项及合并同类项,得2x=25
系数化为1,得x=12.5
答:还需12.5小时完成.
3.设三管齐开放注水xh,根据题意得
去分母,得6x+9x+18+4x+8=30.
移项,得6x+9x+4x=30-8-18.
合并同类项,得19x=4.
系数化为1,得x=4/19.
答:三管齐开放了4/19h水.
五、师生互动,课堂小结
通过以下问题引导学生反思小结:
1.通过这节课的学习,你有什么收获?
2.在解决应用问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?
1.布置作业::从教材习题3.4中选取.
2.完成练习册中本课时的练习.
本课时的内容主要是结合前面所学内容解决实际问题,所以教学时教师应给
予学生充分的独立思考空间,注重与学生进行互动.引导学生应注意找出等量关系,因为这是列方程解应用题的关键所在.此外,考虑到这是第1课时,所以教学时应注意让学生总结解决实际问题的步骤,让学生养成规范化解题和答题的习惯.。

相关文档
最新文档