高考数学一轮复习第2章函数导数及其应用第9讲课后作业理含解析
高考数学一轮复习学案 第9讲 对数函数(原卷版)
第9讲 对数函数(原卷版)考点内容解读要求 常考题型 1.对数函数的图像和性质 理解对数函数的定义图象及性质 Ⅰ 选择题,填空题 2.对数函数的应用 对数函数性质的归纳与运用Ⅱ选择题,填空题1.对数1.对数的概念:一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以a 为底N 的对数,记作:Nx a log =(a — 底数,N — 真数,Na log — 对数式)说明:① 注意底数的限制0>a ,且1≠a ; ②xN N a a x =⇔=log ;③ 注意对数的书写格式. 两个重要对数:① 常用对数:以10为底的对数N lg ;② 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 2.对数函数的特征特征⎩⎪⎨⎪⎧log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数log a x 的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log7x 是对数函数,而函数y =-3log4x 和y =logx2均不是对数函数,其原因是不符合对数函数解析式的特点. 3.对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ①Ma (log ·=)N ;②=N M alog ;③ n a M log n =M a log )(R n ∈.注意:换底公式a bb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).利用换底公式推导下面的结论(1)b m n b a na m log log =;(2)a b b a log 1log =.2.对数函数及其性质 1.对数函数的定义:函数 x y a log =)10(≠>a a 且叫做 。
2.对数函数的性质:(1)定义域、值域:对数函数x y a log =)10(≠>a a 且的定义域为 ,值域为 .(2)图象:由于对数函数是指数函数的 ,所以对数函数的图象只须由相应的指数函数图象作关于 的对称图形,即可获得。
高考数学一轮复习第2章函数导数及其应用第9讲函数模型及其应用
对于选项 C,D,由图可知显然正确.故选 A.
触类旁通 用函数图象刻画实际问题的解题思路
将实际问题中两个变量间变化的规律(如增长的快慢、 最大、最小等)与函数的性质(如单调性、最值等)、图象(增 加、减少的缓急等)相吻合即可.
[考点自测] 1.判断下列结论的正误.(正确的打“√”,错误的打 “×”) (1)函数 y=2x 的函数值比 y=x2 的函数值大.( × ) (2)幂函数比一次函数增长速度快.( × ) (3)指数函数模型,一般用于解决变化较快,短时间内 变化量较大的实际问题中.( √ )
(4)对数函数增长模型比较适合于描述增长速度平缓的 变化规律.( √ )
对数函数型 f(x)=blogax+c(a,b,c 为常数,a>0 且 a≠1,b≠0)
幂函数型
f(x)=axn+b(a,b 为常数,a≠0)
考点 2 指数、对数及幂函数三种增长型函数模型的图 象与性质
[必会结论] “f(x)=x+ax(a>0)”型函数模型 形如 f(x)=x+ax(a>0)的函数模型称为“对勾”函数模 型: (1)该函数在(-∞,- a]和[ a,+∞)上单调递增,在 [- a,0]和(0, a]上单调递减. (2)当 x>0 时,x= a时取最小值 2 a, 当 x<0 时,x=- a时取最大值-2 a.
第2章 函数、导数及其应用
第9讲 函数模型及其应用
板块一 知识梳理·自主学习
[必备知识]
考点 1 常见的函数模型
函数模型
函数解析式
一次函数型 f(x)=ax+b(a,b 为常数,a≠0)
二次函数型 f(x)=ax2+bx+c(a,b,c 为常数,a≠0)
高考数学一轮复习 第二章 函数、导数及其应用 第9讲 幂函数课时作业 理
第9讲 幂函数1.若幂函数f (x )的图象经过点⎝⎛⎭⎪⎫3,33,则其定义域为( ) A .{x |x ∈R ,且x >0} B .{x |x ∈R ,且x <0} C .{x |x ∈R ,且x ≠0} D.R2.函数f (x )=x -12的大致图象是( )A B C D3.在同一平面直角坐标系内,函数y =x a(a ≠0)和y =ax -1a的图象可能是( )A BC D4.若幂函数y =(m 2-3m +3)·22m m x --的图象不过原点,则m 的取值范围是( ) A .-1≤m ≤2 B.m =1或m =2 C .m =2 D .m =15.(2016年新课标Ⅲ)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b6.已知幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,则log 4f (2)=( )A.14 B .-14 C .2 D .-27.(2017年广东深圳一模)已知a >b >0,c <0,下列不等关系中正确的是( )A .ac >bcB .a c >b cC .log a (a -c )>log b (b -c ) D.aa -c >bb -c8.(2014年上海)若f (x )=x 23-x 12,则满足f (x )<0的x 的取值范围是__________.9.将下列各数从小到大排列起来:⎝ ⎛⎭⎪⎫2313-,⎝ ⎛⎭⎪⎫3512,323,⎝ ⎛⎭⎪⎫2512,⎝ ⎛⎭⎪⎫3223,⎝ ⎛⎭⎪⎫560,(-2)3,⎝ ⎛⎭⎪⎫5313-.10.已知函数f (x )=(m 2-m -1)x -5m -3,求满足下列条件的m 的值: (1)f (x )为幂函数;(2)f (x )为幂函数,且在(0,+∞)上为增函数; (3)f (x )为正比例函数; (4)f (x )为反比例函数; (5)f (x )为二次函数.第9讲 幂函数1.A 解析:设f (x )=x α,则3α=33,α=-12,所以f (x )=x 12-,所以其定义域为{x |x >0}.故选A.2.A 解析:f (x )=x 12-=1x,其定义域为(0,+∞).故选A.3.C4.B 解析:由幂函数的定义,可得⎩⎪⎨⎪⎧m 2-3m +3=1,m 2-m -2≤0⇒m =1或m =2.5.A 解析:因为a =243=423>425=b ,c =2513=523>423=a ,所以b <a <c .故选A.6.A 解析:设f (x )=x α,由其图象过点⎝ ⎛⎭⎪⎫12,22,得⎝ ⎛⎭⎪⎫12α=22=⎝ ⎛⎭⎪⎫1212⇒α=12,则log 4f (2)=log 4212=log 4414=14.7.D 解析:因为c <0,由a >b ,得ac <bc ,故A 错;当c <0时,幂函数y =x c是减函数,故B 错;D 选项作差,得a a -c -b b -c =ab -ac -ab +bc a -c b -c =b -a ca -cb -c>0,所以aa -c >bb -c正确.故选D.8.(0,1) 解析:根据幂函数的性质,∵12<23,∴当0<x <1时,x 23<x 12;当x >1时,x 23>x 12.∴f (x )<0的解集为(0,1).9.解:(-2)3<0,⎝ ⎛⎭⎪⎫560=1,⎝ ⎛⎭⎪⎫2313->1,323>1,⎝ ⎛⎭⎪⎫3223>1, 0<⎝ ⎛⎭⎪⎫3512<1,0<⎝ ⎛⎭⎪⎫2512<1,0<⎝ ⎛⎭⎪⎫5313-<1. 又∵2323332⎛⎫ ⎪⎝⎭=223>1,∴323>⎝ ⎛⎭⎪⎫3223>⎝ ⎛⎭⎪⎫3213=⎝ ⎛⎭⎪⎫2313-.因此⎝ ⎛⎭⎪⎫2313-<⎝ ⎛⎭⎪⎫3223<323.同理,可得到⎝ ⎛⎭⎪⎫2512<⎝ ⎛⎭⎪⎫3512<⎝ ⎛⎭⎪⎫5313-.∴(-2)3<⎝ ⎛⎭⎪⎫2512<⎝ ⎛⎭⎪⎫3512<⎝ ⎛⎭⎪⎫5313-<⎝ ⎛⎭⎪⎫560<⎝ ⎛⎭⎪⎫2313-<⎝ ⎛⎭⎪⎫3223<323.10.解:(1)因为f (x )是幂函数,所以m 2-m -1=1,即m 2-m -2=0. 解得m =2或m =-1.(2)若f (x )是幂函数,且在(0,+∞)上为增函数,则⎩⎪⎨⎪⎧m 2-m -1=1,-5m -3>0,∴m =-1.(3)若f (x )是正比例函数,则-5m -3=1,解得m =-45.此时m 2-m -1≠0.故m =-45.(4)若f (x )是反比例函数,则-5m -3=-1.则m =-25.此时m 2-m -1≠0.故m =-25.(5)若f (x )是二次函数,则-5m -3=2,即m =-1.此时m 2-m -1≠0.故m =-1.。
高考一轮复习第2章函数导数及其应用第9讲函数与方程
第九讲函数与方程知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE知识梳理知识点一函数的零点1.函数零点的定义对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.注:函数的零点不是点.是函数f(x)与x轴交点的横坐标,而不是y=f(x)与x轴的交点.2.几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.3.函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么函数y =f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.知识点二二分法1.对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:(1)确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;(2)求区间(a,b)的中点c;(3)计算f(c);①若f(c)=0,则c就是函数的零点;②若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));③若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b)).(4)判断是否达到精确度ε,即:若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)(3)(4).重要结论1.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.(4)由函数y=f(x)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示.所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.事实上,只有当函数图象通过零点(不是偶个零点)时,函数值才变号,即相邻两个零点之间的函数值同号.(5)若函数f(x)在[a,b]上单调,且f(x)的图象是连续不断的一条曲线,则f(a)·f(b)<0⇒函数f(x)在[a,b]上只有一个零点.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0 Δ=0 Δ<0 二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0) (x1,0) 无交点零点个数两个零点一个零点无零点双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.( ×)(2)二次函数y=ax2+bx+c(a≠0)在当b2-4ac<0时没有零点.( √)(3)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.(×)(4)若f(x)在区间[a,b]上连续不断,且f(a)·f(b)>0,则f(x)在(a,b)内没有零点.( ×)(5)函数y=2x与y=x2只有两个交点.( ×)[解析](1)函数的零点是函数图象与x轴交点的横坐标.(2)当b2-4ac<0时,抛物线与x轴无交点,故没有零点.(3)函数图象若没有穿过x轴,则f(a)·f(b)>0.(4)若在区间[a,b]内有多个零点,f(a)·f(b)>0也可以.(5)y=x2与y=2x在y轴左侧一个交点,y轴右侧两个交点,如在x=2和x=4处都有交点.题组二走进教材2.(必修1P92AT2改编)已知函数f(x)的图象是连续不断的,且有如下对应值表:x 1 2 3 4 5f(x) -4 -2 1 4 7在下列区间中,函数f(x)A.(1,2) B.(2,3)C.(3,4) D.(4,5)[解析]由所给的函数值的表格可以看出,x=2与x=3这两个数字对应的函数值的符号不同,即f(2)·f(3)<0,所以函数在(2,3)内有零点,故选B.3.(必修1P92AT1改编)下列函数图象与x轴均有公共点,其中能用二分法求零点的是( C )[解析]A,B图中零点两侧不异号,D图不连续.故选C.4.(必修1P92AT4改编)为了求函数f(x)=2x+3x-7的一个零点,某同学利用计算器得到自变量x和函数f(x)的部分对应值(精确度0.1)如下表所示:x 1.25 1.312 5 1.375 1.437 5 1.5 1.562 5f(x) -0.871 6 -0.578 8 -0.281 3 0.210 1 0.328 43 0.641 15则方程2x+3x=7的近似解(精确到0.1)可取为( C )A.1.32 B.1.39C.1.4 D.1.3[解析]通过上述表格得知函数唯一的零点x0在区间(1.375,1.437 5)内,故选C.题组三走向高考5.(2015·安徽,5分)下列函数中,既是偶函数又存在零点的是( A )A.y=cos x B.y=sin xC.y=ln x D.y=x2+1[解析]y=cos x是偶函数且有无数多个零点,y=sin x为奇函数,y=ln x既不是奇函数也不是偶函数,y=x2+1是偶函数但没有零点,故选A.6.(2019·全国卷Ⅲ,5分)函数f(x)=2sin x-sin 2x在[0,2π]的零点个数为( B )A.2 B.3C.4 D.5[解析]f(x)=2sin x-2sin xcos x=2sin x(1-cos x),令f(x)=0,则sin x=0或cos x=1,所以x=kπ(k∈Z),又x∈[0,2π],所以x=0或x=π或x=2π.故选B.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU考点一,函数的零点考向1 确定函数零点所在区间——自主练透例1 (1)若函数f(x)的图象是连续不断的,且f(0)>0,f(1)·f(2)·f(4)<0,则下列命题正确的是( D )A.函数f(x)在区间(0,1)内有零点B.函数f(x)在区间(1,2)内有零点C.函数f(x)在区间(0,2)内有零点D.函数f(x)在区间(0,4)内有零点(2)(2021·开封模拟)函数f(x)=x+ln x-3的零点所在的区间为( C )A.(0,1) B.(1,2)C.(2,3) D.(3,4)(3)(多选题)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)·(x-c)+(x-c)(x-a)的零点位于区间可能为( BC )A.(-∞,a) B.(a,b)C.(b,c) D.(c,+∞)[解析](1)因为f(1)·f(2)·f(4)<0,所以f(1)、f(2)、f(4)中至少有一个小于0.若f(1)<0,则在(0,1)内有零点,在(0,4)内必有零点;若f(2)<0,则在(0,2)内有零点,在(0,4)内必有零点;若f(4)<0,则在(0,4)内有零点.故选D.(2)解法一:利用零点存在性定理因为函数f(x)是增函数,且f(2)=ln 2-1<0,f(3)=ln 3>0,所以由零点存在性定理得函数f(x)的零点位于区间(2,3)内,故选C.解法二:数形结合函数f(x)=x+ln x-3的零点所在区间转化为g(x)=ln x,h(x)=-x+3的图象的交点横坐标所在范围.如图所示,可知f(x)的零点在(2,3)内.(3)易知f(a)=(a-b)(a-c),f(b)=(b-c)·(b-a),f(c)=(c-a)(c-b).又a<b<c,则f(a)>0,f(b)<0,f(c)>0,又该函数是二次函数,且图象开口向上,可知两个零点分别位于区间(a,b)和(b,c)内,故选B、C.名师点拨MING SHI DIAN BO确定函数零点所在区间的方法(1)解方程法:当对应方程f(x)=0易解时,可先解方程,然后再看求得的根是否落在给定区间上.(2)利用函数零点的存在性定理:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 考向2 函数零点个数的确定——师生共研例2 (1)函数f(x)=⎩⎪⎨⎪⎧x 2+x -2,x≤0,-1+ln x ,x>0的零点个数为( B )A .3B .2C .7D .0(2)已知f(x)=⎩⎪⎨⎪⎧|lg x|,x>0,2|x|,x≤0,则函数y =2f 2(x)-3f(x)+1的零点个数为5.[解析] (1)解法一:(直接法)由f(x)=0得⎩⎪⎨⎪⎧x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x>0,-1+ln x =0,解得x =-2或x =e. 因此函数f(x)共有2个零点.解法二:(图象法)函数f(x)的图象如图所示,由图象知函数f(x)共有2个零点. (2)令2f 2(x)-3f(x)+1=0,解得f(x)=1或f(x)=12,作出f(x)的简图:由图象可得当f(x)=1或f(x)=12时,分别有3个和2个交点,则关于x 的函数y =2f 2(x)-3f(x)+1的零点的个数为5.名师点拨 MING SHI DIAN BO函数零点个数的判定有下列几种方法(1)直接求零点:令f(x)=0,如果能求出解,那么有几个解就有几个零点.(2)零点存在性定理:利用该定理不仅要求函数在[a ,b]上是连续的曲线,且f(a)·f(b)<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合法:利用函数y =f(x)的图象与x 轴的交点的个数,从而判定零点的个数,或转化为两个函数图象交点个数问题.画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.〔变式训练1〕(1)已知函数f(x)=⎩⎪⎨⎪⎧x 2-2x ,x≤0,1+1x ,x>0,则函数y =f(x)+3x 的零点个数是( C )A .0B .1C .2D .3(2)设函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=e x+x -3,则f(x)的零点个数为( C ) A .1 B .2 C .3D .4(3)(2020·河南名校联考)函数f(x)=⎩⎪⎨⎪⎧|log 2x|,x>0,2x ,x≤0,则函数g(x)=3[f(x)]2-8f(x)+4的零点个数是( A )A .5B .4C .3D .6[解析] (1)由已知得y =f(x)+3x =⎩⎪⎨⎪⎧x 2+x ,x≤0,1+1x+3x ,x>0.令x 2+x =0,解得x =0或x =-1.令1+1x +3x =0(x>0)可得3x 2+x +1=0.因为Δ=1-12<0,所以方程3x 2+x +1=0无实根.所以y =f(x)+3x 的零点个数是2.(2)f(x)=e x+x -3在(0,+∞)上为增函数,f ⎝ ⎛⎭⎪⎫12=e 12-52<0,f(1)=e -2>0,∴f(x)在(0,+∞)上只有一个零点,由奇函数性质得f(x)在(-∞,0)上也有一个零点,又f(0)=0,所以f(x)有三个零点,故选C .(3)本题考查函数的零点与方程根的个数的关系.函数g(x)=3[f(x)]2-8f(x)+4=[3f(x)-2][f(x)-2]的零点,即方程f(x)=23和f(x)=2的根.函数f(x)=⎩⎪⎨⎪⎧|log 2x|,x>0,2x ,x≤0的图象如图所示,由图可得方程f(x)=23和f(x)=2共有5个根,即函数g(x)=3[f(x)]2-8f(x)+4有5个零点. 考向3 函数零点的应用——多维探究 角度1 与零点有关的比较大小例3 已知函数f(x)=2x+x ,g(x)=x -log 12x ,h(x)=log 2x -x 的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系为( D )A .x 1>x 2>x 3B .x 2>x 1>x 3C .x 1>x 3>x 2D .x 3>x 2>x 1[解析] 由f(x)=2x+x =0,g(x)=x -log 12x =0,h(x)=log 2x -x =0,得2x=-x ,x =log 12x ,log 2x=x ,在平面直角坐标系中分别作出y =2x与y =-x 的图象;y =x 与y =log 12x 的图象;y =log 2x 与y =x 的图象,由图可知:-1<x 1<0,0<x 2<1,x 3>1.所以x 3>x 2>x 1.角度2 已知函数的零点或方程的根求参数例4 (2018·全国Ⅰ)已知函数f(x)=⎩⎪⎨⎪⎧e x,x≤0,ln x ,x>0,g(x)=f(x)+x +a.若g(x)存在2个零点,则a 的取值范围是( C ) A .[-1,0) B .[0,+∞) C .[-1,+∞) D .[1,+∞)[解析]令h(x)=-x -a ,则g(x)=f(x)-h(x).在同一坐标系中画出y =f(x),y =h(x)图象的示意图,如图所示.若g(x)存在2个零点,则y =f(x)的图象与y =h(x)的图象有2个交点.由图知-a≤1,∴a≥-1.名师点拨 MING SHI DIAN BO 1.比较零点大小常用方法:(1)确定零点取值范围,进而比较大小; (2)数形结合法.2.已知函数有零点(方程有根)求参数值常用的方法和思路:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解. 〔变式训练2〕(1)(角度1)(2021·安徽蚌埠月考)已知函数f(x)=3x+x ,g(x)=log 3x +x ,h(x)=x 3+x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为( B )A .a<b<cB .a<c<bC .a>b>cD .c>a>b(2)(角度2)(2021·杭州学军中学月考)已知函数f(x)=⎩⎪⎨⎪⎧2x-a ,x≤0,2x -1,x>0(a∈R),若函数f(x)在R 上有两个零点,则a 的取值范围是( D )A .(-∞,-1)B .(-∞,-1]C .[-1,0)D .(0,1][分析] (1)解法一:依据零点存在定理,确定a ,b ,c 所在区间,进而比较大小;解法二:分别作出y =3x、y =log 3x 、y =x 3与y =-x 的图象,比较其交点横坐标的大小即可.[解析](1)解法一:∵f(-1)=3-1-1=-23,f(0)=1,∴a∈⎝ ⎛⎭⎪⎫-23,0,又g ⎝ ⎛⎭⎪⎫13=log 313+13=-23,g(1)=1,∴b∈⎝ ⎛⎭⎪⎫13,1,显然c =0,∴a<c<b,故选B .解法二:数形结合法,在同一坐标系中分别作出y =3x、y =log 3x 、y =-x 的图象,结合图象及c =0可知a<c<b ,故选B .解法三:由概念知b>0,a<0,c<0,∴b 最大,选B .(2)∵当x>0时,f(x)=2x -1, 由f(x)=0得x =12,∴要使f(x)在R 上有两个零点, 则必须2x-a =0在(-∞,0]上有解. 又当x ∈(-∞,0]时,2x∈(0,1]. 故所求a 的取值范围是(0,1].考点二 二分法及其应用——自主练透例5 (1)用二分法研究函数f(x)=x 3+3x -1的零点时,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x 0∈(0,0.5),第二次应计算f(0.25).(2)在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可判定该根所在的区间为⎝ ⎛⎭⎪⎫32,2. (3)在用二分法求方程x 2=2的正实数根的近似解(精确度0.001)时,若我们选取初始区间是[1.4,1.5],则要达到精确度要求至少需要计算的次数是7.[解析] (1)因为f(0)<0,f(0.5)>0,由二分法原理得一个零点x 0∈(0,0.5);第二次应计算f ⎝ ⎛⎭⎪⎫0+0.52=f(0.25).(2)区间(1,2)的中点x 0=32,令f(x)=x 3-2x -1,f ⎝ ⎛⎭⎪⎫32=278-4<0,f(2)=8-4-1>0,则根所在区间为⎝ ⎛⎭⎪⎫32,2. (3)设至少需要计算n 次,由题意知1.5-1.42n<0.001,即2n >100.由26=64,27=128,知n =7. 名师点拨 MING SHI DIAN BO1.用二分法求函数零点的方法:定区间,找中点,中值计算两边看,同号去,异号算,零点落在异号间.周而复始怎么办?精确度上来判断.2.利用二分法求近似解需注意的问题(1)在第一步中:①区间长度尽量小;②f(a),f(b)的值比较容易计算且f(a)·f(b)<0; (2)根据函数的零点与相应方程根的关系,求函数的零点与相应方程的根是等价的.(3)虽然二分法未单独考过,但有可能像算法中的“更相减损术”一样,嵌入到程序框图中去考查.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG函数零点的综合问题例6 (2021·山西五校联考)已知函数f(x)=⎩⎪⎨⎪⎧-2x ,x≤0-x 2+x ,x>0,若函数g(x)=f(x)-a 恰有三个互不相同的零点x 1,x 2,x 3,则x 1x 2x 3的取值范围是( A )A .⎝ ⎛⎭⎪⎫-132,0B .⎝ ⎛⎭⎪⎫-116,0 C .⎝ ⎛⎭⎪⎫0,132 D .⎝ ⎛⎭⎪⎫0,116 [解析] 解法一:显然x≤0时,-2x =a ,有一根不妨记为x 1,则x 1=-a 2(a≥0),当x>0时-x 2+x=a 即x 2-x +a =0有两个不等正根,不妨记为x 2,x 3,则Δ=1-4a>0,即a<14,从而-a 2∈⎝ ⎛⎭⎪⎫-116,0且x 2x 3=a.∴x 1x 2x 3=-a 22∈⎝ ⎛⎭⎪⎫-132,0,故选A .解法二:作出y =f(x)及y =a 的图象,显然0<a<14,不妨设x 1<x 2<x 3显然x 1<0,x 2>0,x 3>0,∴x 1x 2x 3<0排除C 、D ,又当x 2趋近x 3时,x 2x 3趋近14,x 1趋近-18,故x 1x 2x 3趋近-132.故选A .名师点拨 MING SHI DIAN BO以函数图象、图象的变换方法及函数的零点等相关知识为基础,通过作图、想象,发现该问题的相关数学知识及其联系,快速解决该问题.〔变式训练3〕(2021·东北三省四市模拟)已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +1,x≤0,|lg x|,x>0.若f(x)=a(a∈R)有四个不等实根,则所有实根之积的取值范围是( B )A .(-∞,1)B .[0,1)C .(0,1)D .(1,+∞)[解析] 本题考查已知方程根的个数求根的乘积的取值范围. 设四个根依次为x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4), 则-2≤x 1<-1,-1<x 2≤0,x 1+x 2=-2, 由|lg x 3|=|lg x 4|,得-lg x3=lg x4,则lg x3+lg x4=lg(x3x4)=0,∴x3x4=1,∴x1x2x3x4=x1x2=(-2-x2)x2=-(x2+1)2+1∈[0,1).故选B.。
高考数学一轮总复习 第二章 函数 第9讲 指数与指数函数课件
12/13/2021
第二十五页,共四十七页。
指数函数的性质及应用 例 3 (1)已知 a,b∈(0,1)∪(1,+∞),当 x >0 时,1<bx<ax,则( ) A.0<b<a<1 B.0<a<b<1 C.1<b<a D.1<a<b
[解析] ∵x>0 时,1<bx,∴b>1. ∵x>0 时,bx<ax,∴x>0 时,bax>1. ∴ba>1,∴a>b,∴1<b<a,故选 C.
(3)指数函数 y=ax(a>0,a≠1)的图象和性质跟 a 的取值有关,要特别注意应分 a>1 与 0<a<1 来研究.
12/13/2021
第十二页,共四十七页。
指数幂的运算
例 1 求值与化简:
2 1 1 1 1 5
(1)
2a
3b
2
6a
2
b
3
3a
6
b
6
;
(2)(1.5)
-
2
当 0<a<1 时,如图②所示,需满足12·12≤a1,即12
≤a<1;当 a=1 时,y=12x2 与 y=1 在[1,2]上有交点
( 122/,13/[12答0)2,1案满] B足条件.综上第可十八页知,共四十,七页。a∈12,
2.
(3)( 多 选 ) 已 知 函 数 f(x) = |2x - 1| , a<b<c 且 f(a)>f(c)>f(b),则下列结论中,一定成立的是( )
m
意义相仿,我们规定 a n =
1
m
an
(a>0,m,n∈N*,且
n>1).0 的正分数指数幂等于_0___;0 的负分数指数幂
__没__有__(m_é_i y_ǒ_u)_意_.义
高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理
第二章 函数(hánshù)、导数及其应用
第九节 函数模型(móxíng)及其应用
第一页,共33页。
栏
考情分析 1
(fēnxī)
目
基础自主(zìzhǔ) 2
3 考点疑难(yí
nán)突破
导
梳理
航
4 课时跟踪检测
第二页,共33页。
1
考情分析
第三页,共33页。
考点分布
考纲要求
第十三页,共33页。
3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品 x 万件时的生产成本为 C(x)=12x2+2x+20(万元).一万件售价是 20 万元,为获取更大 利润,该企业一个月应生产该商品数量为________万件.
解析:利润 L(x)=20x-C(x)=-12(x-18)2+142,当 x=18 时,L(x)有最大值. 答案:18
第三十页,共33页。
指数函数与对数函数模型的应用技巧 (1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会 合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于 1)的一 类函数模型,与增长率、银行利率有关的问题都属于指数函数模型. (2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函 数解析式,再借助函数的图象求解最值问题.
二次函数模型
f(x)=ax2+bx+c (a,b,c 为常数,a≠0)
第六页,共33页。
f(x)=bax+c 指数函数模型
(a,b,c 为常数,b≠0,a>0 且 a≠1)
对数函数模型
f(x)=blogax+c
(a,b,c 为常数,b≠0,a>0 且 a≠1)
高考数学一轮复习课时作业12第2章函数、导数及其应用9Word版含答案
种植成本 Q 116 84 116
根据上表数据, 从下列函数中选取一个函数描述西红柿种植成本
Q 与上市时间 t 的变化
关系。 Q= at+ b, Q= at2+bt +c, Q= a·bt, Q= a·log bt
利用你选取的函数,求得:
(1)西红柿种植成本最低时的上市天数是 ________。
(2)最低种植成本是 ________(元 /100 kg) 。 解析: 根据表中数据可知函数不单调,
所以 Q= at2+ bt+ c 且开口向上,对称轴 t=- b = 60+ 180= 120。
∴ x= 5 时营运的平均利润最大。
答案: C
二、填空题
7.有一批材料可以建成 200 m 的围墙,如果用此材料在一边靠墙的地方围成一块矩形
场地,中间用同样的材料隔成三个面积相等的矩形
( 如图所示 ) ,则围成的矩形最大面积为
__________。 (围墙厚度不计 )
解析: 设矩形的长为
x
m,宽为
200- x 4
所以当 x= 60 时,旅行社可获得的最大利润 42 000 元。
综上,当旅游团的人数为 60 人时,旅行社获得的利润最大。
答案: 60
9.某地西红柿从 2 月 1 日起开始上市,通过市场调查,得到西红柿种植成本
Q(单位:
元/100 kg) 与上市时间 t(单位:天 )的数据如下表:
时间 t
60 100 180
x
x+1
= x+1x00+
1.5,由基本不等式得 y= x+ 1x00+ 1.5≥ 2 时取等号,所以选 A 。
答案: A
x·10x0+ 1.5= 21.5,当且仅当 x=10x0,即 x= 10
2021高考数学一轮复习考点通关练第二章函数、导数及其应用考点测试9指数与指数函数(含解析)苏教版
考点测试9 指数与指数函数高考概览高考在本考点的常考题型为选择题,分值5分,中等难度 考纲研读1.了解指数函数模型的实际背景2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算3.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点4.体会指数函数是一类重要的函数模型一、基础小题 1.设2x=8y +1,9y=3x -9,则x +y 的值为( )A .18B .21C .24D .27答案 D 解析 因为2x=8y +1=23(y +1),所以x =3y +3,因为9y =3x -9=32y,所以x -9=2y ,解得x =21,y =6,所以x +y =27.2.化简(a >0,b >0)的结果是( )A.b aB .abC .a 2b D .a b答案 D 解析 原式==ab -1=ab .故选D.3.若f (x )=(2a -3)a x为指数函数,则f (x )在定义域内( ) A .为增函数 B .为减函数 C .先增后减 D .先减后增答案 A解析 由指数函数的定义知2a -3=1,解得a =2,所以f (x )=2x,所以f (x )在定义域内为增函数.故选A.4.已知,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b答案 A 解析 a =,由2<3得a <c ,由23>25,得a >b ,故c >a >b .故选A.5.当x >0时,函数f (x )=(a 2-1)x的值总大于1,则实数a 的取值范围是( ) A .1<a <2B .-1<a <1C .a >2或a <- 2D .-2<a < 2答案 C解析 ∵x >0时,f (x )=(a 2-1)x 的值总大于1,∴a 2-1>1,即a 2>2.∴a >2或a <- 2.故选C.6.下列函数中,在(0,+∞)内单调递减的是( ) A .y =22-xB .y =x -11+xC .D .y =-x 2+2x +a答案 A解析 根据题意,依次分析选项:对于A ,y =22-x=4×⎝ ⎛⎭⎪⎫12x,在(0,+∞)内单调递减,符合题意;对于B ,y =x -1x +1=1-2x +1,在(0,+∞)内单调递增,不符合题意;对于C ,y ==log 2x ,在(0,+∞)内单调递增,不符合题意;对于D ,y =-x 2+2x +a =-(x -1)2+a +1,在(0,1)内单调递增,不符合题意.故选A.7.已知函数f (x )满足对一切x ∈R ,f (x +2)=-1f x都成立,且当x ∈(1,3]时,f (x )=2-x,则f (2019)=( )A.14 B .18 C .116 D .132答案 B解析 由已知条件f (x +2)=-1f x可得f (x )=-1fx -2,故f (x +2)=f (x -2),易得f (x )是周期为4的周期函数,∴f (2019)=f (3+504×4)=f (3),∵当x ∈(1,3]时,f (x )=2-x ,∴f (3)=2-3=18,即f (2019)=18.故选B.8.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f (x )=2x+31+2x +1,则函数y =[f (x )]的值域为( ) A.⎝ ⎛⎭⎪⎫12,3 B .(0,2] C .{0,1,2} D .{0,1,2,3}答案 C解析 因为f (x )=2x+31+2x +1=121+2x +1+521+2x +1=12+521+2x +1,2x +1>0,所以0<11+2x +1<1,所以12<12+521+2x +1<3,即12<f (x )<3,所以y =[f (x )]的值域为{0,1,2},故选C. 9.下列说法中,正确的是( ) ①任取x ∈R 都有3x >2x;②当a >1时,任取x ∈R 都有a x >a -x; ③y =(3)-x是增函数; ④y =2|x |的最小值为1;⑤在同一坐标系中,y =2x 与y =2-x的图象关于y 轴对称. A .①②④ B .④⑤ C .②③④ D .①⑤答案 B解析 ①中令x =-1,则3-1<2-1,故①错误;②中当x <0时,a x <a -x,故②错误;③中y =(3)-x =⎝⎛⎭⎪⎫33x ,∵0<33<1,∴y =⎝ ⎛⎭⎪⎫33x为减函数,故③错误;④中x =0时,y 取最小值1,故④正确;⑤由函数图象变换,可知y =2x与y =2-x的图象关于y 轴对称,故⑤正确.故选B.10.已知f (x )是定义在R 上的奇函数,且满足f (x )=f (2-x ),当x ∈[0,1]时,f (x )=4x-1,则在(1,3)上,f (x )≤1的解集是( )A.⎝ ⎛⎦⎥⎤1,32 B .⎣⎢⎡⎦⎥⎤32,52C.⎣⎢⎡⎭⎪⎫32,3 D .[2,3)答案 C解析 ∵0≤x ≤1时,f (x )=4x-1,∴f (x )在区间[0,1]上是增函数,又f (x )是奇函数,∴f (x )在区间[-1,1]上是增函数.∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称,∴f (x )在区间(1,3)上是减函数,又f ⎝ ⎛⎭⎪⎫12=1,∴f ⎝ ⎛⎭⎪⎫32=1,∴在区间(1,3)上不等式f (x )≤1的解集为⎣⎢⎡⎭⎪⎫32,3,故选C.11.求值:=________.答案14380解析 原式=0.4-1-1+(-2)-4+2-3+0.1=104-1+116+18+110=14380.12.已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.答案 e解析 由题意得,f (x )=⎩⎪⎨⎪⎧e |x |,x ≥1,e |x -2|,x <1.当x ≥1时,f (x )=e |x |=e x≥e(当x =1时,取等号);当x <1时,f (x )=e|x -2|=e2-x>e.故f (x )的最小值为f (1)=e.二、高考小题13.(2019·全国卷Ⅰ)已知a =log 20.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <b D .b <c <a答案 B解析 因为a =log 20.2<0,b =20.2>1,0<c =0.20.3<1,所以a <c <b .故选B. 14.(2017·全国卷Ⅰ)设x ,y ,z 为正数,且2x=3y=5z,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z答案 D解析 令t =2x =3y =5z,∵x ,y ,z 为正数,∴t >1.则x =log 2t =lg t lg 2,同理,y =lg t lg 3,z =lg t lg 5.∴2x -3y =2lg t lg 2-3lg t lg 3=lg t 2lg 3-3lg 2lg 2×lg 3=lg t lg 9-lg 8lg 2×lg 3>0,∴2x >3y .又2x -5z =2lg t lg 2-5lg t lg 5=lg t 2lg 5-5lg 2lg 2×lg 5=lg t lg 25-lg 32lg 2×lg 5<0,∴2x<5z ,∴3y <2x <5z .故选D.15.(2018·上海高考)已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P ⎝ ⎛⎭⎪⎫p ,65,Q ⎝ ⎛⎭⎪⎫q ,-15.若2p +q=36pq ,则a =________.答案 6解析 由已知条件知f (p )=65,f (q )=-15,所以⎩⎪⎨⎪⎧2p2p+ap =65, ①2q 2q+aq =-15, ②①+②,得2p2q +aq +2q2p+ap2p +ap 2q+aq=1, 整理得2p +q=a 2pq ,又2p +q=36pq ,∴36pq =a 2pq ,又pq ≠0,∴a 2=36,∴a =6或a =-6,又a >0,∴a =6. 16.(2015·江苏高考)不等式<4的解集为________.答案 {x |-1<x <2} 解析 不等式<4可转化为<22,利用指数函数y =2x 的性质可得,x 2-x <2,解得-1<x <2,故所求解集为{x |-1<x <2}.17.(2015·福建高考)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________.答案 1解析 因为f (1+x )=f (1-x ),所以函数f (x )的图象关于直线x =1对称,所以a =1.函数f (x )=2|x -1|的图象如图所示.因为函数f (x )在[m ,+∞)上单调递增,所以m ≥1,所以实数m 的最小值为1.三、模拟小题18.(2020·河北张家口摸底)化简的结果为( )A .-4aB .4aC .11aD .4ab答案 B 解析 原式==4ab 0=4a ,故选B.19.(2019·湖北八校联考)若,则函数y =2x 的值域是( )A.⎣⎢⎡⎭⎪⎫18,2 B .⎣⎢⎡⎦⎥⎤18,2 C.⎝ ⎛⎦⎥⎤-∞,18 D .[2,+∞)答案 B 解析 因为=24-2x,则x 2+1≤4-2x 即x 2+2x -3≤0,所以-3≤x ≤1.所以18≤y ≤2.20.(2019·沧州模拟)已知函数f (x )=e x -1-e-x +1,则下列说法正确的是( )A .函数f (x )的最小正周期是1B .函数f (x )是单调递减函数C .函数f (x )的图象关于直线x =1轴对称D .函数f (x )的图象关于(1,0)中心对称 答案 D解析 函数f (x )=ex -1-e-x +1,即f (x )=ex -1-1e x -1,可令t =e x -1,即有y =t -1t,由y =t -1t在t >0时单调递增,t =e x -1在R 上单调递增,可得f (x )在R 上为增函数,则A ,B 均错误;由f (2-x )=e1-x-ex -1,可得f (x )+f (2-x )=0,即有f (x )的图象关于点(1,0)对称,则C 错误,D 正确.故选D.21.(2020·湖南衡阳高三摸底考试)设函数f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎪⎨⎪⎧f x,f x ≤K ,K ,f x >K .给出函数f (x )=2x +1-4x,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为1答案 D解析 根据题意可知,对于任意x ∈(-∞,1],若恒有f K (x )=f (x ),则f (x )≤K 在x ≤1时恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,所以K ≥1,故选D.22.(2019·江苏省镇江市期末)已知函数f (x )=12x -2x ,则满足f (x 2-5x )+f (6)>0的实数x 的取值范围是________.答案 (2,3)解析 根据题意,函数f (x )=12x -2x ,f (-x )=12-x -2-x=-⎝ ⎛⎭⎪⎫12x -2x =-f (x ),即f (x )为奇函数,又由y =12x 在R 上为减函数,y =-2x在R 上为减函数,则f (x )在R 上为减函数,则f (x 2-5x )+f (6)>0⇒f (x 2-5x )>-f (6)⇒f (x 2-5x )>f (-6)⇒x 2-5x <-6,解得2<x <3,即x 的取值范围为(2,3).23.(2019·浦东新区模拟)已知函数f (x )=⎩⎪⎨⎪⎧x4x 2+16,x ≥2,⎝ ⎛⎭⎪⎫12|x -a |,x <2,若对任意的x 1∈[2,+∞),都存在唯一的x 2∈(-∞,2),满足f (x 1)=f (x 2),则实数a 的取值范围为________.答案 [-2,6)解析 当x 1∈[2,+∞)时, x 14x 21+16=14x 1+16x 1∈⎝ ⎛⎦⎥⎤0,116.当x 2∈(-∞,2)时,(1)若a ≥2,则f (x )=⎝ ⎛⎭⎪⎫12|x -a |=⎝ ⎛⎭⎪⎫12a -x 在(-∞,2)上是单调递增函数,所以f (x 2)∈⎝ ⎛⎭⎪⎫0,⎝ ⎛⎭⎪⎫12a -2.若满足题目要求,则⎝ ⎛⎦⎥⎤0,116⊆⎝ ⎛⎭⎪⎫0,⎝ ⎛⎭⎪⎫12a -2,所以⎝ ⎛⎭⎪⎫12a -2>116=⎝ ⎛⎭⎪⎫124,∴a -2<4,a <6.又a ≥2,所以a ∈[2,6).(2)若a <2,则f (x )=⎝ ⎛⎭⎪⎫12|x -a |=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12a -x,x <a ,⎝ ⎛⎭⎪⎫12x -a,a ≤x <2.如果f (x )在(-∞,a )上是单调递增函数, 此时f (x 2)∈(0,1);如果f (x )在[a,2)上是单调递减函数,此时f (x 2)∈⎝ ⎛⎦⎥⎤⎝ ⎛⎭⎪⎫122-a ,1. 若满足题目要求,则116≤⎝ ⎛⎭⎪⎫122-a,∴a ≥-2,又a <2,所以a ∈[-2,2). 综上,a ∈[-2,6).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2019·兰州模拟)已知函数.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求实数a 的值; (3)若f (x )的值域是(0,+∞),求实数a 的值. 解 (1)当a =-1时,,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而指数函数y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,实数a 的值等于1. (3)由指数函数的性质知,要使的值域为(0,+∞),则应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ).故a 的值为0.2.(2020·河南洛阳高三阶段考试)已知函数f (x )=a|x +b |(a >0,a ≠1,b ∈R ).(1)若f (x )为偶函数,求实数b 的值;(2)若f (x )在区间[2,+∞)上是增函数,试求实数a ,b 应满足的条件. 解 (1)因为f (x )为偶函数,所以对任意的x ∈R ,都有f (-x )=f (x ), 即a|x +b |=a|-x +b |,|x +b |=|-x +b |,解得实数b =0.(2)记h (x )=|x +b |=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间[2,+∞)上是增函数,即h (x )在区间[2,+∞)上是增函数, 所以-b ≤2,b ≥-2.②当0<a <1时,f (x )在区间[2,+∞)上是增函数,即h (x )在区间[2,+∞)上是减函数,但h (x )在区间[-b ,+∞)上是增函数,故不存在a ,b 的值,使f (x )在区间[2,+∞)上是增函数.所以f (x )在区间[2,+∞)上是增函数时,实数a ,b 应满足的条件为a >1且b ≥-2. 3.(2019·渭南模拟)已知定义域为R 的函数f (x )=-2x+b2x +1+a 是奇函数.(1)求实数a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围. 解 (1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b2+a =0,解得实数b =1,所以f (x )=-2x+12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得实数a =2.(2)由(1)知f (x )=-2x+12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因为f (x )是R 上的减函数, 所以由上式推得t 2-2t >-2t 2+k . 即对一切t ∈R 有3t 2-2t -k >0, 从而Δ=4+12k <0,解得k <-13.故实数k 的取值范围为⎝⎛⎭⎪⎫-∞,-13. 4.(2020·山东枣庄高三摸底考试)已知函数f (x )=e x +a ·e -x,x ∈R . (1)当a =1时,证明:f (x )为偶函数;(2)若f (x )在[0,+∞)上单调递增,求实数a 的取值范围;(3)若a =1,求实数m 的取值范围,使m [f (2x )+2]≥f (x )+1在R 上恒成立. 解 (1)证明:当a =1时,f (x )=e x+e -x,定义域(-∞,+∞)关于原点对称,而f (-x )=e -x +e x =f (x ),所以f (x )为偶函数.因为x 1<x 2,函数y =e x为增函数,所以,则,又因为f (x )在[0,+∞)上单调递增,所以f (x 1)<f (x 2),故f (x 1)-f (x 2)<0, 所以对任意的0≤x 1<x 2恒成立,所以a ≤1.故实数a 的取值范围为(-∞,1].(3)由(1)(2)知函数f (x )=e x +e -x在(-∞,0]上单调递减,在[0,+∞)上单调递增,所以其最小值f (0)=2,且f (2x )=e 2x+e-2x=(e x +e -x )2-2,设t =e x +e -x,则t ∈[2,+∞),1t ∈⎝ ⎛⎦⎥⎤0,12,则不等式m [f (2x )+2]≥f (x )+1恒成立, 等价于m ·t 2≥t +1,即m ≥t +1t 2恒成立, 而t +1t 2=1t 2+1t =⎝ ⎛⎭⎪⎫1t +122-14, 当且仅当1t =12,即t =2时t +1t 2取得最大值34,故m ≥34.因此实数m 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞.。
高考数学一轮复习第2章函数导数及其应用第9讲作业课件理
12/13/2021
第二十六页,共三十九页。
利用你选取的函数,求得: (1)西红柿种植成本最低时的上市天数是________; (2)最低种植成本是________元/100 kg.
答案 (1)120 (2)80
12/13/2021
第二十七页,共三十九页。
答案
解析 根据表中数据可知函数不单调,所以 Q=at2+bt+c,且开口向上,
12/13/2021
第二十二页,共三十九页。
答案 C
12/13/2021
第二十三页,共三十九页。
答案
解析 依题意, 当 0≤a≤1 时,S(a)=a2- 2 a+2a=-12a2+3a; 当 1<a≤2 时,S(a)=12+2a; 当 2<a≤3 时,S(a)=12+2+a=a+52; 当 a>3 时,S(a)=12+2+3=121,
对称轴 t=-2ba=60+2180=120,
3600a+60b+c=116,
代入数据10000a+100b+c=84, 32400a+180b+c=116,
b=-2.4,
解得c=224, a=0.01.
所以西红柿种植成本最低时的上市天数是 120,
最低种植成本是 14400a+120b+c=14400×0.01+120×(-2.4)+224=
A.40 万元 C.120 万元
12/13/2021
B.60 万元 D.140 万元
第十页,共三十九页。
答案 C
解析 甲 6 元时该商人全部买入甲商品,可以买 120÷6=20(万份),在 t2 时刻全部卖出,此时获利 20×2=40(万元),乙 4 元时该商人买入乙商品,可 以买(120+40)÷4=40(万份),在 t4 时刻全部卖出,此时获利 40×2=80(万元), 共获利 40+80=120(万元),故选 C.
最新高考数学(文)一轮复习第二章 函数、导数及其应用 第二章 函数、导数及其应用及答案
第二章⎪⎪⎪函、导及其应用第一节函及其表示1.函与映射的概念2.函的有关概念 (1)函的定义域、值域:在函y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函的定义域;与x 的值相对应的y 值叫做函值,函值的集合{f (x )|x ∈A }叫做函的值域.显然,值域是集合B 的子集.(2)函的三要素:定义域、值域和对应关系.(3)相等函:如果两个函的定义域和对应关系完全一致,则这两个函相等,这是判断两函相等的依据.(4)函的表示法表示函的常用方法有:解析法、图象法、列表法. 3.分段函若函在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函通常叫做分段函.1.下列函中,与函y =13x定义域相同的函为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx答案:D2.若函y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函y =f (x )的图象可能是()答案:B 3.函f (x )=x -4|x |-5的定义域是________________.答案:1.设函f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =________.解析:若a ≥0,则a +1=2,得a =1; 若a <0,则-a +1=2,得a =-1. 答案:±12.已知f ⎝ ⎛⎭⎪⎫1x =x 2+5x ,则f (x )=________.解析:令t =1x ,∴x =1t .∴f (t )=1t 2+5t.∴f (x )=5x +1x 2(x ≠0).答案:5x +1x 2(x ≠0)考点一 函的定义域 基础送分型考点——自主练透1.函f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .C .(-∞,0)∪(1,+∞)D .(-∞,0]∪B .C .,则函g (x )=f x +1x -1的定义域是( )A .B .C .(1,2 017]D .解析:选B 令t =x +1,则由已知函的定义域为,可知1≤t ≤2 017.要使函f (x +1)有意义,则有1≤x +1≤2 017,解得0≤x ≤2 016,故函f (x +1)的定义域为.所以使函g (x )有意义的条件是⎩⎨⎧0≤x ≤2 016,x -1≠0,解得0≤x <1或1<x ≤2 016.故函g (x )的定义域为.4.函f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为____________________.解析:由⎩⎨⎧1-|x -1|≥0,a x-1≠0⇒⎩⎨⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函的定义域为(0,2].答案:(0,2]函定义域的求解策略(1)已知函解析式:构造使解析式有意义的不等式(组)求解.(2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函:①若已知函f (x )的定义域为,其复合函f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;②若已知函f (g (x ))的定义域为,则f (x )的定义域为g (x )在x ∈时的值域. 考点二 求函的解析式 重点保分型考点——师生共研(1)已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ); (4)已知函f (x )满足f (-x )+2f (x )=2x ,求f (x )的解析式. 解:(1)(配凑法)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.(2)(换元法)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1, 故f (x )的解析式是f (x )=lg2x -1,x >1. (3)(待定系法)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1, 所以⎩⎨⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(4)(解方程组法)由f (-x )+2f (x )=2x ,① 得f (x )+2f (-x )=2-x ,② ①×2-②,得,3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.∴f (x )的解析式是f (x )=2x +1-2-x3.求函解析式的4种方法1.已知f (x +1)=x +2x ,求f (x )的解析式.解:法一:(换元法)设t =x +1,则x =(t -1)2,t ≥1,代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.法二:(配凑法)∵x +2x =(x )2+2x +1-1=(x +1)2-1,∴f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1.2.设y =f (x )是二次函,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1. 考点三 分段函 题点多变型考点——多角探明高考对分段函的考查多以选择题、填空题的形式出现,试题难度一般较小. 常见的命题角度有: (1)分段函的函求值问题; (2)分段函的自变量求值问题;(3)分段函与方程、不等式问题.角度一:分段函的函求值问题1.(2017·西安质检)已知函f (x )=⎩⎨⎧log 2x ,x >0,3x+1,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14的值是________.解析:由题意可得f ⎝ ⎛⎭⎪⎫14=log 214=-2,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14=f (-2)=3-2+1=109.答案:109角度二:分段函的自变量求值问题2.已知f (x )=⎩⎪⎨⎪⎧x 12,x ∈[0,+∞ ,|sin x |,x ∈⎝ ⎛⎭⎪⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 12=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝ ⎛⎭⎪⎫-π2,0,解得a =-π6.综上可知,a =14或-π6. 答案:14或-π6角度三:分段函与方程、不等式问题 3.已知函f (x )=⎩⎨⎧x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)1.分段函的求值问题的解题思路(1)求函值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函定义区间的各段上,然后求出相应自变量的值,切记要代入检验.2.分段函与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起.1.(2017·唐山统考)已知函f (x )=⎩⎨⎧2x-2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( )A .-log 37B .-34C .-54D .-74解析:选D 当a ≤0时,2a -2=-2无解;当a >0时,由-log 3a =-2,解得a =9,所以f (7-a )=f (-2)=2-2-2=-74.2.(2015·山东高考)设函f (x )=⎩⎨⎧3x -1,x <1,2x, x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1 B .C.⎣⎢⎡⎭⎪⎫23,+∞ D . B .(0,1] C .D ..∴原函的定义域为(0,1].4.已知函y =f (x )的定义域是,则函g (x )=f 3xx -1的定义域是( ) A.⎣⎢⎡⎭⎪⎫0,13∪⎝ ⎛⎦⎥⎤13,1 B . D . 解析:选B 由⎩⎨⎧0≤3x ≤3,x -1≠0可得0≤x <1,选B.5.已知具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函,我们称为满足“倒负”变换的函,下列函:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函是( ) A .①② B .①③ C .②③D .① 解析:选B 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x +x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x>1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函是①③. 6.函f (x ),g (x )分别由下表给出.则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________. 解析:∵g (1)=3,f (3)=1,∴f (g (1))=1.当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3,不合题意. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=1,符合题意. 当x =3时,f (g (3))=f (1)=1,g (f (3))=g (1)=3,不合题意. 答案:1 27.已知函f (x )=⎩⎨⎧a -1 x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝ ⎛⎭⎪⎫122=14.答案:148.已知函y =f (x 2-1)的定义域为,则函y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为, ∴x ∈,x 2-1∈, ∴y =f (x )的定义域为. 答案:9.已知函f (x )=2x +1与函y =g (x )的图象关于直线x =2成轴对称图形,则函y =g (x )的解析式为________.解析:设点M (x ,y )为函y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则⎩⎨⎧x ′=4-x ,y ′=y .又y ′=2x ′+1, ∴y =2(4-x )+1=9-2x , 即g (x )=9-2x . 答案:g (x )=9-2x10.如图,已知A (n ,-2),B (1,4)是一次函y =kx +b 的图象和反比例函y =mx的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函和一次函的解析式. (2)求△AOC 的面积.解:(1)因为B (1,4)在反比例函y =m x上,所以m =4,又因为A (n ,-2)在反比例函y =m x =4x的图象上,所以n =-2,又因为A (-2,-2),B (1,4)是一次函y =kx +b 上的点,联立方程组⎩⎨⎧-2k +b =-2,k +b =4,解得⎩⎨⎧k =2,b =2.所以y =4x,y =2x +2.(2)因为y =2x +2,令x =0,得y =2,所以C (0,2),所以△AOC 的面积为:S =12×2×2=2.三上台阶,自主选做志在冲刺名校 1.已知实a ≠0,函f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( )A .-32B .-34C .-32或-34 D.32或-34解析:选B 当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B.2.已知函f (x )满足对任意的x ∈R 都有f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2成立,则f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=________.解析:由f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2,得f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫78=2,f ⎝ ⎛⎭⎪⎫28+f ⎝ ⎛⎭⎪⎫68=2, f ⎝ ⎛⎭⎪⎫38+f ⎝ ⎛⎭⎪⎫58=2,又f ⎝ ⎛⎭⎪⎫48=12⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫48+f ⎝ ⎛⎭⎪⎫48=12×2=1,∴f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=2×3+1=7.答案:73.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常).如图是根据多次实验据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m=1100,n=0,所以y=x2200+x100(x≥0).(2)令x2200+x100≤25.2,得-72≤x≤70.∵x≥0,∴0≤x≤70.故行驶的最大速度是70千米/时.第二节函的单调性与最值1.函的单调性(1)单调函的定义如果函y=f(x)在区间D上是增函或减函,那么就说函y=f(x)在这一区间具有(严格的)单调性,区间D叫做函y=f(x)的单调区间.2.函的最值1.下列函中,定义域是R且为增函的是( )A.y=e-x B.y=x3C.y=ln x D.y=|x|答案:B2.y=x2-6x+5的单调减区间为________.解析:y=x2-6x+5=(x-3)2-4,表示开口向上,对称轴为x=3的抛物线,其单调减区间为(-∞,3].答案:(-∞,3]3.若函f(x)=1x 在区间上的最大值与最小值的和为34,则a=________.解析:由f (x )=1x 的图象知,f (x )=1x在(0,+∞)上是减函,∵⊆(0,+∞),∴f (x )=1x在上也是减函,∴f (x )m ax =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:41.易混淆两个概念:“函的单调区间”和“函在某区间上单调”,前者指函具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函f (x )在区间(-1,0)上是减函,在(0,1)上是减函,但在(-1,0)∪(0,1)上却不一定是减函,如函f (x )=1x.3.两函f (x ),g (x )在x ∈(a ,b )上都是增(减)函,则f (x )+g (x )也为增(减)函,但f (x )·g (x ),1f x等的单调性与其正负有关,切不可盲目类比.1.设定义在上的函y =f (x )的图象如图所示,则函y =f (x )的增区间为________.答案:, 2.函f (x )=2x -1在上的最大值与最小值之差为________. 解析:易知f (x )在上是减函,∴f (x )m ax -f (x )min =f (-2)-f (0)=-23-(-2)=43.答案:43考点一 函单调性的判断 基础送分型考点——自主练透1.下列四个函中,在(0,+∞)上为增函的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函; 当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函;当x ∈(0,+∞)时,f (x )=-1x +1为增函; 当x ∈(0,+∞)时,f (x )=-|x |为减函. 2.试讨论函f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.解:法一(定义法):设-1<x 1<x 2<1,f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a x 2-x 1x 1-1 x 2-1,由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函f(x)在(-1,1)上递增.法二(导法):f′(x)= ax ′ x-1 -ax x-1 ′x-1 2=a x-1 -axx-1 2=-ax-1 2.当a>0时,f′(x)<0,函f(x)在(-1,1)上递减;当a<0时,f′(x)>0,函f(x)在(-1,1)上递增.3.判断函y=x+2x+1在(-1,+∞)上的单调性.解:法一:任取x1,x2∈(-1,+∞),且x1<x2,则y1-y2=x1+2x1+1-x2+2x2+1=x2-x1x1+1 x2+1.∵x1>-1,x2>-1,∴x1+1>0,x2+1>0,又x1<x2,∴x2-x1>0,∴x2-x1x1+1 x2+1>0,即y1-y2>0.∴y1>y2,∴函y=x+2x+1在(-1,+∞)上单调递减.法二:y=x+2x+1=1+1x+1.∵y=x+1在(-1,+∞)上是增函,∴y=1x+1在(-1,+∞)上是减函,∴y=1+1x+1在(-1,+∞)上是减函.即函y=x+2x+1在(-1,+∞)上单调递减.判断或证明函的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤: 取值作差 商变形确定符号与1的大小得出结论(2)导法,其基本步骤: 求导函确定符号得出结论考点二 求函的单调区间 重点保分型考点——师生共研求下列函的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =错误!即y =⎩⎨⎧- x -1 2+2,x ≥0,- x +1 2+2,x <0.画出函图象如图所示,单调递增区间为(-∞,-1]和,单调递减区间为和确定函的单调区间的3种方法单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.1.函y =|x |(1-x )在区间A 上是增函,那么区间A 是( ) A .(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12C .高考对函单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.常见的命题角度有: (1)求函的值域或最值;(2)比较两个函值或两个自变量的大小; (3)解函不等式;(4)利用单调性求参的取值范围或值.角度一:求函的值域或最值1.函f (x )=⎩⎨⎧1x,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函f (x )=1x为减函,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函f (x )的最大值为2. 答案:2角度二:比较两个函值或两个自变量的大小2.(2017·哈尔滨联考)已知函f (x )的图象关于直线x =1对称,当x 2>x 1>1时,(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:选D 因f (x )的图象关于直线x =1对称.由此可得f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),∴b >a >c .角度三:解函不等式3.已知函f (x )为R 上的减函,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选 C 由f (x )为R 上的减函且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1),得⎩⎨⎧⎪⎪⎪⎪⎪⎪1x >1,x ≠0,即⎩⎨⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.故选C.角度四:利用单调性求参的取值范围或值 4.已知函f (x )=⎩⎨⎧a -2 x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实a 的取值范围为________.解析:要使函f (x )在R 上单调递增,则有⎩⎨⎧a >1,a -2>0,f 1 ≤0,即⎩⎨⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实a 的取值范围是(2,3]. 答案:(2,3]函单调性应用问题的常见类型及解题策略(1)求函最值(五种常用方法)(2)比较大小比较函值的大小,应将自变量转到同一个单调区间内,然后利用函的单调性解决.(3)解不等式在求解与抽象函有关的不等式时,往往是利用函的单调性将“f”符号脱掉,使其转为具体的不等式求解.此时应特别注意函的定义域.(4)利用单调性求参视参为已知,依据函的图象或单调性定义,确定函的单调区间,与已知单调区间比较求参.①若函在区间上单调,则该函在此区间的任意子区间上也是单调的;②分段函的单调性,除注意各段的单调性外,还要注意衔接点的取值.1.已知函f(x)=|x+a|在(-∞,-1)上是单调函,则a的取值范围是( ) A.(-∞,1] B.(-∞,-1]C.解析:选A 法一:由一次函的图象可知选A.法二:设∀x1,x2∈R且x1<x2,∵f(x)=kx+b在R上是增函,∴(x1-x2)(f(x1)-f(x2))>0,即k(x1-x2)2>0,∵(x1-x2)2>0,∴k>0,故选A.3.(2017·北京东城期中)已知函y =1x -1,那么( ) A .函的单调递减区间为(-∞,1),(1,+∞) B .函的单调递减区间为(-∞,1)∪(1,+∞) C .函的单调递增区间为(-∞,1),(1,+∞) D .函的单调递增区间为(-∞,1)∪(1,+∞) 解析:选A 函y =1x -1可看作是由y =1x向右平移1个单位长度得到的,∵y =1x 在(-∞,0)和(0,+∞)上单调递减,∴y =1x -1在(-∞,1)和(1,+∞)上单调递减,∴函y =1x -1的单调递减区间为(-∞,1)和(1,+∞),故选A. 4.函y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎪⎫t -122+14,结合图象知,当t =12,即x =14时,y m ax =14.答案:145.函f (x )=log 12(x 2-4)的单调递增区间为________.解析:由x 2-4>0得x <-2或x >2.又u =x 2-4在(-∞,-2)上为减函,在(2,+∞)上为增函,y =log 12u 为减函,故f (x )的单调递增区间为(-∞,-2).答案:(-∞,-2)二保高考,全练题型做到高考达标1.已知函f (x )=x 2-2x -3,则该函的单调递增区间为( ) A .(-∞,1] B . D .∪上单调递减,在 B.⎝ ⎛⎦⎥⎤0,12C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]解析:选C 因为log 12a =-log 2 a ,且f (x )是偶函,所以f (log 2a )+f (log 12a )=2f (log 2a )=2f (|log 2a |)≤2f (1),即f (|log 2a |)≤f (1),又函在的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函. ∴f (x )的最大值为f (2)=23-2=6.4.已知函f (x )=⎩⎨⎧a -2 x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2是R 上的单调递减函,则实a的取值范围是( )A .(-∞,2) B.⎝⎛⎦⎥⎤-∞,138 C .(0,2)D.⎣⎢⎡⎭⎪⎫138,2 解析:选B因为函为递减函,则⎩⎨⎧a -2<0,2 a -2 ≤⎝ ⎛⎭⎪⎫122-1,解得a ≤138,故选B.5.(2017·安徽皖江名校联考)定义在上的函f (x )满足(x 1-x 2)>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实a 的取值范围为( )A .>0,x 1≠x 2,∴函在上单调递增,∴⎩⎨⎧-2≤a 2-a ≤2,-2≤2a -2≤2,2a -2<a 2-a .∴⎩⎨⎧-1≤a ≤2,0≤a ≤2,a <1或a >2,∴0≤a <1,故选C.6.函f (x )=1x -1在区间上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在上为减函,∴⎩⎨⎧f a =1,f b =13,即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,∴⎩⎨⎧a =2,b =4.∴a +b =6. 答案:67.已知函f (x )=x 2-2ax -3在区间上具有单调性,则实a 的取值范围为________________.解析:函f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函在(-∞,a ]和上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪∪上的最大值为4,最小值为m ,且函g (x )=(1-4m )x 在上的最小值为1a =m ,最大值为a 2=4,解得a =2,12=m ,与m <14矛盾;当0<a <1时,函f (x )在上的最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116.所以a =14.答案:149.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2 x 1-x 2 x 1+2 x 2+2. ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f(x1)<f(x2),∴f(x)在(-∞,-2)上单调递增.(2)任设1<x1<x2,则f(x1)-f(x2)=x1x1-a-x2x2-a=a x2-x1x1-a x2-a.∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0在(1,+∞)上恒成立,∴a≤1.综上所述知a的取值范围是(0,1].10.已知函f(x)=a-1|x|.(1)求证:函y=f(x)在(0,+∞)上是增函;(2)若f(x)<2x在(1,+∞)上恒成立,求实a的取值范围.解:(1)证明:当x∈(0,+∞)时,f(x)=a-1 x ,设0<x1<x2,则x1x2>0,x2-x1>0,f(x2)-f(x1)=⎝⎛⎭⎪⎫a-1x2-⎝⎛⎭⎪⎫a-1x1=1x1-1x2=x2-x1x1x2>0,所以f(x)在(0,+∞)上是增函.(2)由题意a-1x<2x在(1,+∞)上恒成立,设h(x)=2x+1x,则a<h(x)在(1,+∞)上恒成立.任取x1,x2∈(1,+∞)且x1<x2,h(x1)-h(x2)=(x1-x2)⎝⎛⎭⎪⎫2-1x1x2.因为1<x1<x2,所以x1-x2<0,x1x2>1,所以2-1x1x2>0,所以h(x1)<h(x2),所以h(x)在(1,+∞)上单调递增.故a≤h(1),即a≤3,所以实a 的取值范围是(-∞,3]. 三上台阶,自主选做志在冲刺名校1.如果函y =f (x )在区间I 上是增函,且函y =f xx在区间I 上是减函,那么称函y =f (x )是区间I 上的“缓增函”,区间I 叫做“缓增区间”.若函f (x )=12x 2-x +32是区间I 上的“缓增函”,则“缓增区间”I 为( )A . C .D .解析:选D 因为函f (x )=12x 2-x +32的对称轴为x =1,所以函y =f (x )在区间上单调递减,故“缓增区间”I 为.2.已知定义在区间(0,+∞)上的函f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)证明:f (x )为单调递减函.(2)若f (3)=-1,求f (x )在上的最小值. 解:(1)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函f (x )在区间(0,+∞)上是单调递减函. (2)因为f (x )在(0,+∞)上是单调递减函, 所以f (x )在上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3),而f (3)=-1, 所以f (9)=-2.所以f (x )在上的最小值为-2.第三节函的奇偶性及周期性1.函的奇偶性(1)周期函对于函f(x),如果存在一个非零常T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函f(x)为周期函,称T为这个函的周期.(2)最小正周期如果在周期函f(x)的所有周期中存在一个最小的正,那么这个最小正就叫做f(x)的最小正周期.1.下列函中,既是偶函又在(0,+∞)上单调递增的是( )A.y=x B.y=cos xC.y=e x D.y=ln |x|答案:D2.已知函f(x)是定义在R上的奇函,且当x>0时,f(x)=x2+1x,则f(-1)=________.答案:-23.若函f (x )是周期为5的奇函,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________.答案:-11.判断函的奇偶性,易忽视判断函定义域是否关于原点对称.定义域关于原点对称是函具有奇偶性的一个必要条件.2.判断函f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0).3.分段函奇偶性判定时,误用函在定义域某一区间上不是奇偶函去否定函在整个定义域上的奇偶性.1.已知f (x )=ax 2+bx 是定义在上的偶函,那么a +b 的值是( ) A .-13B.13C.12D .-12解析:选B ∵f (x )=ax 2+bx 是定义在上的偶函,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.2.下列函中,为奇函的是( ) A .y =3x +13xB .y =x ,x ∈{0,1}C .y =x ·sin xD .y =⎩⎨⎧1,x <0,0,x =0,-1,x >0解析:选D 由函奇偶性定义易知函y =3x +13x 和y =x ·sin x 都是偶函,排除A 和C ;函y =x ,x ∈{0,1}的定义域不关于坐标原点对称,既不是奇函又不是偶函,排除B ;由奇函的定义知y =⎩⎨⎧1,x <0,0,x =0,-1,x >0是奇函,故选D.考点一 函奇偶性的判断 基础送分型考点——自主练透判断下列函的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3;(3)f (x )=3x -3-x ; (4)f (x )=4-x 2|x +3|-3;(5)(易错题)f (x )=⎩⎨⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎨⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ). ∴f (x )既是奇函又是偶函. (2)∵函f (x )=3-2x +2x -3的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫32,不关于坐标原点对称,∴函f (x )既不是奇函,也不是偶函. (3)∵f (x )的定义域为R ,∴f (-x )=3-x -3x =-(3x -3-x )=-f (x ), 所以f (x )为奇函.(4)∵由⎩⎨⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为,∴f (x )=4-x 2|x +3|-3=4-x 2 x +3 -3=4-x 2x ,∴f (-x )=-f (x ),∴f (x )是奇函.(5)易知函的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0, 故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0, 故f (-x )=x 2+x =f (x ),故原函是偶函.判定函奇偶性的3种常用方法(1)定义法(2)图象法(3)性质法①设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函的奇偶性可概括为“同奇则奇,一偶则偶”.(1)“性质法”中的结论是在两个函的公共定义域内才成立的.(2)判断分段函的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.如“题组练透”第(5)题.考点二函的周期性 重点保分型考点——师生共研设f(x)是定义在R上的奇函,且对任意实x,恒有f(x+2)=-f(x),当x ∈时,f(x)=2x-x2.(1)求证:f(x)是周期函;(2)计算f(0)+f(1)+f(2)+…+f(2 018).解:(1)证明:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函.(2)∵f(0)=0,f(1)=1,f(2)=0,f(3)=-f(1)=-1.又f(x)是周期为4的周期函,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 012)+f(2 013)+f(2 014)+f(2 015)=0.∴f(0)+f(1)+f(2)+…+f(2 018)=f(2 016)+f(2 017)+f(2 018)=f(0)+f(1)+f(2)=1.1.判断函周期性的2个方法(1)定义法.(2)图象法.2.周期性3个常用结论(1)若f(x+a)=-f(x),则T=2a,(2)若f(x+a)=1f x,则T=2a,(3)若f(x+a)=-1f x,则T=2a(a>0).1.若f(x)是R上周期为5的奇函,且满足f(1)=1,f(2)=2,则f(3)-f(4)等于( )A.-1 B.1 C.-2 D.2解析:选A 由f(x)是R上周期为5的奇函,知f(3)=f(-2)=-f(2)=-2,f(4)=f(-1)=-f(1)=-1,∴f(3)-f(4)=-1,故选A.2.已知定义在R上的函满足f(x+2)=-1f x,x∈(0,2]时,f(x)=2x -1.则f(1)+f(2)+f(3)+…+f(2 017)的值为________.解析:∵f(x+2)=-1f x,∴f(x+4)=-1f x+2=f(x),∴函y=f(x)的周期T=4.又x∈(0,2]时,f(x)=2x-1,∴f(1)=1,f(2)=3,f(3)=-1f 1=-1,f(4)=-1f 2=-13.∴f(1)+f(2)+f(3)+…+f(2 017)=504+f (504×4+1) =504⎝ ⎛⎭⎪⎫1+3-1-13+1=1 345. 答案:1 345考点三 函性质的综合应用 题点多变型考点——多角探明函的奇偶性、周期性以及单调性是函的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函相结合,并以结合奇偶性求函值为主.多以选择题、填空题形式出现.常见的命题角度有: (1)奇偶性的应用; (2)单调性与奇偶性结合; (3)周期性与奇偶性结合;(4)单调性、奇偶性与周期性结合.角度一:奇偶性的应用1.(2017·福建三明模拟)函y =f (x )是R 上的奇函,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x解析:选C x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函,∴当x >0时,f (x )=-f (-x )=-2-x .故选C.角度二:单调性与奇偶性结合2.(2016·天津高考)已知f (x )是定义在R 上的偶函,且在区间(-∞,0)上单调递增.若实a 满足f (2|a -1|)>f (-2),则a 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,12B.⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫32,+∞C.⎝ ⎛⎭⎪⎫12,32D.⎝ ⎛⎭⎪⎫32,+∞ 解析:选C 因为f (x )是定义在R 上的偶函,且在区间(-∞,0)上单调递增,所以f (-x )=f (x ),且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2),可得2|a -1|<2,即|a -1|<12,所以12<a <32.角度三:周期性与奇偶性结合3.已知f (x )是定义在R 上以3为周期的偶函,若f (1)<1,f (5)=2a -3a +1,则实a 的取值范围是( )A .(-1,4)B .(-2,1)C .(-1,2)D .(-1,0)解析:选A 因为函f (x )是定义在R 上以3为周期的偶函,所以f (5)=f (-1)=f (1),即2a -3a +1<1, 简得(a -4)(a +1)<0, 解得-1<a <4,故选A.角度四:单调性、奇偶性与周期性结合4.已知定义在R 上的奇函f (x )满足f (x -4)=-f (x ),且在区间上是增函,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函f (x )是以8为周期的周期函,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f(x)在区间上是增函,f(x)在R上是奇函,所以f(x)在区间上是增函,所以f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).函性质综合应用问题的常见类型及解题策略(1)函单调性与奇偶性结合.注意函单调性及奇偶性的定义,以及奇、偶函图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函值的自变量转到已知解析式的函定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转自变量所在的区间,然后利用奇偶性和单调性求解.1.(2017·广州模拟)已知f(x)在R上是奇函,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( )A.2 B.-2C.-98 D.98解析:选B 因为f(x+4)=f(x),所以函f(x)的周期T=4,又f(x)在R 上是奇函,所以f(7)=f(-1)=-f(1)=-2.2.已知偶函f(x)对于任意x∈R都有f(x+1)=-f(x),且f(x)在区间上是递增的,则f(-6.5),f(-1),f(0)的大小关系是( )A.f(0)<f(-6.5)<f(-1)B.f(-6.5)<f(0)<f(-1)C.f(-1)<f(-6.5)<f(0)D.f(-1)<f(0)<f(-6.5)解析:选A 由f(x+1)=-f(x),得f(x+2)=-f(x+1)=f(x),∴函f(x)的周期是2.∵函f(x)为偶函,∴f(-6.5)=f(-0.5)=f(0.5),f(-1)=f(1).∵f(x)在区间上是单调递增的,∴f(0)<f(0.5)<f(1),即f(0)<f(-6.5)<f(-1).3.设f(x)是定义在R上周期为4的奇函,若在区间上,f(x)=⎩⎨⎧ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2 018)=________.解析:设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .f (x )是定义在R 上周期为4的奇函,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (-2+4)=f (2),所以-2a +1=2a -1,解得a =12,所以f (2 018)=f (2)=2×12-1=0.答案:0一抓基础,多练小题做到眼疾手快1.(2017·石家庄质检)下列函中,既是偶函又在区间(0,+∞)上单调递增的是( )A .y =1xB .y =|x |-1C .y =lg xD .y =⎝ ⎛⎭⎪⎫12|x |解析:选B A 中函y =1x不是偶函且在(0,+∞)上单调递减,故A 错误;B中函满足题意,故B 正确;C 中函不是偶函,故C 错误;D 中函不满足在(0,+∞)上单调递增,故选B.2.已知f (x )为定义在R 上的奇函,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A .-3B .-54C.54D .3解析:选A 因为f (x )为R 上的奇函,所以f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.函f (x )=x +1x+1,f (a )=3,则f (-a )的值为( )A .-3B .-1C .1D .2解析:选B 由题意得f (a )+f (-a )=a +1a +1+(-a )+1-a +1=2.∴f (-a )=2-f (a )=-1,故选B.4.函f (x )在R 上为奇函,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.解析:∵f (x )为奇函,x >0时,f (x )=x +1, ∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1. 答案:--x -15.设函f (x )是定义在R 上周期为2的偶函,当x ∈时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________.解析:依题意得,f (2+x )=f (x ),f (-x )=f (x ), 则f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=12+1=32.答案:32二保高考,全练题型做到高考达标1.(2016·山西考前质检)下列函中,既是偶函又在区间(1,2)内单调递减的是( )A .f (x )=xB .f (x )=1x2C .f (x )=2x +2-xD .f (x )=-cos x解析:选B 对于A ,偶函与单调递减均不满足;对于B ,符合题意;对于C ,不满足单调递减;对于D ,不满足单调递减,故选B.2.设f (x )是周期为2的奇函,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52等于( )A .-12B .-14C.14D.12解析:选A ∵f (x )是周期为2的奇函,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-2×12×⎝ ⎛⎭⎪⎫1-12=-12.3.(2017·绵阳诊断)已知偶函f (x )在区间(a <b <0)上的值域为,则在区间上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3解析:选B 法一:根据题意作出y =f (x )的简图,由图知,选B.法二:当x ∈时,-x ∈,由题意得f (b )≤f (-x )≤f (a ),即-3≤-f (x )≤4,∴-4≤f (x )≤3,即在区间上f (x )min =-4,f (x )m ax =3,故选B. 5.设f (x )是定义在实集上的函,且f (2-x )=f (x ),若当x ≥1时,f (x )=ln x ,则有( )A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13解析:选C 由f (2-x )=f (x )可知函f (x )的图象关于x =1对称,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫53,又当x ≥1时,f (x )=ln x 单调递增,所以f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫53<f (2),即f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2),故选C.6.(2017·贵州适应性考试)已知f (x )是奇函,g (x )=2+f xf x.若g (2)=3,则g (-2)=________.解析:由题意可得g (2)=2+f 2f 2=3,则f (2)=1,又f (x )是奇函,则f (-2)=-1,所以g (-2)=2+f -2 f -2 =2-1-1=-1.答案:-17.定义在R 上的奇函y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (x )>0的x 的集合为________.解析:由奇函y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,得函y =f (x )在(-∞,0)上递增,且f ⎝ ⎛⎭⎪⎫-12=0,∴f (x )>0时,x >12或-12<x <0.即满足f (x )>0的x 的集合为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <0或x >12. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <0或x >12 8.已知f (x ),g (x )分别是定义在R 上的奇函和偶函,且f (x )-g (x )=⎝ ⎛⎭⎪⎫12x ,则f (1),g (0),g (-1)之间的大小关系是______________.解析:在f (x )-g (x )=⎝ ⎛⎭⎪⎫12x 中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函和偶函, 所以f (-x )=-f (x ),g (-x )=g (x ), 因此得-f (x )-g (x )=2x .联立方程组解得f (x )=2-x -2x 2,g (x )=-2-x +2x2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1). 答案:f (1)>g (0)>g (-1)9.设f (x )的定义域为(-∞,0)∪(0,+∞),且f (x )是奇函,当x >0时,f (x )=x 1-3x.(1)求当x <0时,f (x )的解析式; (2)解不等式f (x )<-x8.解:(1)因为f (x )是奇函,所以当x <0时,f (x )=-f (-x ),-x >0, 又因为当x >0时,f (x )=x1-3x ,所以当x <0时,f (x )=-f (-x ) =--x 1-3-x =x1-3-x. (2)f (x )<-x 8,当x >0时,即x 1-3x <-x8,所以11-3x <-18,所以13x-1>18,所以3x -1<8, 解得x <2,所以x ∈(0,2). 当x <0时,即x1-3-x<-x 8,所以11-3-x >-18, 所以3-x >32,所以x <-2, 所以解集是(-∞,-2)∪(0,2).10.已知函f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函.(1)求实m 的值;(2)若函f (x )在区间上单调递增,求实a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在上单调递增,结合f (x )的图象(如图所示)知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3,故实a 的取值范围是(1,3].三上台阶,自主选做志在冲刺名校1.已知y =f (x )是偶函,当x >0时,f (x )=x +4x,且当x ∈时,n ≤f (x )≤m恒成立,则m -n 的最小值是________.解析:∵当x ∈时,n ≤f (x )≤m 恒成立, ∴n ≤f (x )min 且m ≥f (x )m ax ,∴m -n 的最小值是f (x )m ax -f (x )min ,又由偶函的图象关于y 轴对称知,当x ∈时,函的最值与x ∈时的最值相同,又当x >0时,f (x )=x +4x,在上递减,在上递增,且f (1)>f (3),∴f (x )m ax -f (x )min =f (1)-f (2)=5-4=1. 答案:12.设函f (x )是定义在R 上的奇函,对任意实x 有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 成立.(1)证明y =f (x )是周期函,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值;(3)若g (x )=x 2+ax +3,且y =|f (x )|·g (x )是偶函,求实a 的值. 解:(1)由f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x , 且f (-x )=-f (x ),知f (3+x )=f ⎣⎢⎡⎦⎥⎤32+⎝ ⎛⎭⎪⎫32+x =-f⎣⎢⎡⎦⎥⎤32-⎝ ⎛⎭⎪⎫32+x =-f (-x )=f (x ), 所以y =f (x )是周期函,且T =3是其一个周期. (2)因为f (x )为定义在R 上的奇函,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.(3)因为y =|f (x )|·g (x )是偶函,且|f (-x )|=|-f (x )|=|f (x )|,所以|f (x )|为偶函. 故g (x )=x 2+ax +3为偶函, 即g (-x )=g (x )恒成立,于是(-x )2+a (-x )+3=x 2+ax +3恒成立. 于是2ax =0恒成立,所以a =0.第四节函的图象1.描点法作图其基本步骤是列表、描点、连线,具体为:(1)①确定函的定义域;②简函的解析式;③讨论函的性质(奇偶性、单调性、周期性).(2)列表(注意特殊点、零点、最大值点、最小值点以及坐标轴的交点). (3)描点,连线. 2.图象变换 (1)平移变换①y =f (x )的图象――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b 的图象. (2)对称变换。
2020版高考数学一轮复习第2章函数导数及其应用第10讲课后作业理含解析
第2章 函数、导数及其应用 第10讲A 组 基础关1.设f ()=ln (3-2)+cos2,则f ′(0)=( )A .-13 B.13 C .-23 D.23答案 C解析 因为f ′()=13-2x ·(-2)-2sin2=22x -3-2sin2,所以f ′(0)=-23. 2.(2019·宁夏中卫月考)函数y =f ()的图象在点P (5,f (5))处的切线方程是y =-+8,则f (5)+f ′(5)=( )A .1B .2C .3D .4答案 B解析 由条件知f ′(5)=-1,又在点P 处的切线方程为y -f (5)=-(-5),∴y =-+5+f (5),即y =-+8,∴5+f (5)=8,∴f (5)=3,∴f (5)+f ′(5)=2.3.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3t 2+8t ,那么速度为零的时刻是( )A .1秒末B .1秒末和2秒末C .4秒末D .2秒末和4秒末答案 D解析 速度v =s ′=⎝ ⎛⎭⎪⎫13t 3-3t 2+8t ′=t 2-6t +8,由t 2-6t +8=0,解得t =2或4,所以速度为零的时刻是2秒末和4秒末.4.设曲线y =e a -ln(+1)在=0处的切线方程为2-y +1=0,则a 等于( )A .0B .1C .2D .3答案 D解析 ∵y ′=a e a -1x +1, ∴当=0时,切线的斜率为a -1.又∵此切线的方程为2-y +1=0,∴a -1=2,故a =3.5.已知函数f ()的图象如图,f ′()是f ()的导函数,则下列数值排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f ′(2)<f (3)-f (2)C .0<f ′(3)<f (3)-f (2)<f ′(2)D .0<f (3)-f (2)<f ′(2)<f ′(3)答案 C解析 f ′(2),f ′(3)表示曲线y =f ()在点A ,B 处切线的斜率,又f (3)-f (2)=f 3f 23-2表示直线AB 的斜率.所以0<f ′(3)<f (3)-f (2)<f ′(2).6.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A.⎣⎢⎡⎭⎪⎫3π4,πB.⎣⎢⎡⎭⎪⎫π4,π2C.⎝ ⎛⎦⎥⎤π2,3π4D.⎣⎢⎡⎭⎪⎫0,π4 答案 A解析 ∵y =4e x +1,∴y ′=4e x +14e x +1e x +12=-4e xe x +12=-4e x +1e x +2.由e +1e x ≥2可得y ′∈[-1,0),而tan α=y ′,所以α∈⎣⎢⎡⎭⎪⎫3π4,π. 7.过点(-1,1)与曲线f ()=3-2-2+1相切的直线有( )A .0条B .1条C .2条D .3条答案 C解析 f ′()=32-2-2.设切点坐标为(0,y 0),则切线方程为y -1=(320-20-2)(+1),所以⎩⎨⎧ y 0-13x 20-2x 0-2x 0+1y 0=x 30-x 20-2x 0+1,所以30-20-20+1-1=330-220-20+320-20-2.整理得30+20-0-1=0,20(0+1)-(0+1)=0,(20-1)(0+1)=0,(0-1)(0+1)2=0,所以0=±1,故切线有2条.8.曲线y =xx -2在点(1,-1)处的切线方程为________.答案 y =-2+1解析 由题意可得,y ′=-2x -22,则曲线在点(1,-1)处的切线斜率为-2,所以所求的切线方程为y =-2+1.9.(2018·全国卷Ⅲ)曲线y =(a +1)e 在点(0,1)处的切线的斜率为-2,则a =________. 答案 -3解析 由y ′=a e +(a +1)e ,则f ′(0)=a +1=-2.所以a =-3.10.已知y =f ()是可导函数,如图,直线y =+2是曲线y =f ()在=3处的切线,令g ()=f (),g ′()是g ()的导函数,则g ′(3)=________.答案 0解析 由题图可知曲线y =f ()在=3处切线的斜率等于-13,∴f ′(3)=-13.∵g ()=f (), ∴g ′()=f ()+f ′(),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0. B 组 能力关1.已知f ()=142+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′()为f ()的导函数,则f ′()的图象是( )答案 A解析 ∵f ()=142+sin ⎝ ⎛⎭⎪⎫π2+x =142+cos , ∴f ′()=12-sin ,它是一个奇函数,其图象关于原点对称,故排除B ,D.又∵f ′⎝ ⎛⎭⎪⎫π6=12×π6-sin π6=12×⎝ ⎛⎭⎪⎫π6-1<0,故排除C ,所以f ′()的图象是A. 2.若点P 是曲线y =2-ln 上任意一点,则点P 到直线y =-2的最小距离为( )A .1 B. 2 C.22D. 3 答案 B解析 设P (0,y 0),当点P 处的切线与直线y =-2平行时,点P 到直线y =-2的距离最小.又y ′=2-1x ,则y ′|=0=20-1x 0=1,解得0=1或0=-12(舍去),则y 0=1,即P (1,1),所以最小距离为|1-1-2|1212= 2.3.(2018·河北衡水中学第一次调研)已知定义在R 上的函数f ()满足f (1-)+f (1+)=2,且当>1时,f ()=e 2-,则曲线y =f ()在=0处的切线方程是________.答案 +y =0解析 因为f (1-)+f (1+)=2,所以函数f ()的图象关于点(1,1)对称,当>1时,f ()=e 2-,当<1时,取(,y )关于点(1,1)对称的点(2-,2-y ),则2->1,代入f ()=e 2-, 得到y =2-(2-)e ,所以当<1时,y =2-(2-)e ,所以y ′=(-1)e ,当=0时,y ′=-1;当=0时,y =0,所以曲线y =f ()在=0处的切线方程是y =-,即+y =0.4.已知函数f ()=3+-16.(1)求曲线y =f ()在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f ()的切线,且经过原点,求直线l 的方程及切点坐标. 解 (1)可判定点(2,-6)在曲线y =f ()上.因为f ′()=(3+-16)′=32+1,所以f ()在点(2,-6)处的切线的斜率为=f ′(2)=13.所以切线的方程为y +6=13(-2),即y =13-32.(2)设切点坐标为(0,y 0),则直线l 的斜率为f ′(0)=320+1,y 0=30+0-16,所以直线l的方程为y =(320+1)(-0)+30+0-16.又因为直线l 过原点(0,0),所以0=(320+1)(-0)+30+0-16,整理得,30=-8,所以0=-2,所以y 0=(-2)3+(-2)-16=-26,得切点坐标为(-2,-26),=3×(-2)2+1=13. 所以直线l 的方程为y =13,切点坐标为(-2,-26).5.设函数f ()=a -b x,曲线y =f ()在点(2,f (2))处的切线方程为7-4y -12=0.(1)求f ()的解析式;(2)证明:曲线y =f ()上任一点处的切线与直线=0和直线y =所围成的三角形的面积为定值,并求此定值.解 (1)方程7-4y -12=0可化为y =74-3. 当=2时,y =12.又f ′()=a +b x 2,于是⎩⎪⎨⎪⎧ 2a -b 2=12,a +b 4=74,解得⎩⎨⎧ a =1,b =3. 故f ()=-3x. (2)设P (0,y 0)为曲线上任一点,由y ′=1+3x 2, 知曲线在点P (0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(-0), 即y -⎝⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(-0). 令=0,得y =-6x 0, 从而得切线与直线=0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0. 令y =,得y ==20,从而得切线与直线y =的交点坐标为(20,20).所以点P (0,y 0)处的切线与直线=0,y =所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|20|=6.故曲线y =f ()上任一点处的切线与直线=0,y =所围成的三角形的面积为定值,且此定值为6.。
高考数学一轮复习 第2章 函数、导数及其应用1精品训练
2014年高考数学一轮复习 第2章 函数、导数及其应用1精品训练理(含解析)新人教B 版[命题报告·教师用书独具]考查知识点及角度 题号及难度基础 中档 稍难 函数的基本概念 1、3 6 函数解析式求法 4 8、10 分段函数求值2、95、7、11121.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.答案:C2.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2,若f (x )=3,则x 的值是( )A .1B .1或32C .1,32或± 3D. 3解析:当x ≤-1时,f (x )的值域为(-∞,1];当-1<x <2时,f (x )的值域为[0,4];当x ≥2时,f (x )的值域为[4,+∞).而3∈[0,4),所以f (x )=x 2=3,所以x =±3,又因为-1<x <2,所以x = 3.答案:D3.已知a ,b 为实数,集合M =⎩⎨⎧⎭⎬⎫ba,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:a =1,b =0,∴a +b =1. 答案:C4.(2013年茂名模拟)已知函数f (x )满足:f (m +n )=f (m )f (n ),f (1)=3,则f 21+f 2f 1+f 22+f 4f 3+f 23+f 6f 5+f 24+f 8f 7的值等于( )A .36B .24C .18D .12解析:∵f (m +n )=f (m )f (n ),∴f (2n )=f (n )f (n ),即f (2n )=f 2(n ).且有f (n +1)=f (n )f (1)=3f (n ),即f n +1f n =3,则f 21+f 2f 1+f 22+f 4f 3+f 23+f 6f 5+f 24+f 8f 7=2f 2f 1+2f 4f 3+2f 6f 5+2f 8f 7=2×3+2×3+2×3+2×3=24.答案:B 5.(2013年太原模拟)定义在R上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 28-x ,x ≤0,f x -1-f x -2,x >0,则f (3)的值为( )A .1B .2C .-2D .-3解析:依题意得f (3)=f (2)-f (1)=[f (1)-f (0)]-f (1)=-f (0)=-log 28=-3,选D.答案:D 二、填空题6.下列四个命题正确的有________. ①函数是其定义域到值域的映射; ②y =x -3+2-x 是函数;③函数y =2x (x ∈N )的图象是一条直线;④y =⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0的图象是抛物线.解析:命题①函数是一种特殊的映射,是正确的;命题②x ∈∅,故不是函数;y =2x (x ∈N )的图象是一群孤立的点,故③不对;命题④的图象关于原点对称,不是抛物线.故只有①正确.答案:①7.已知函数f (x )=⎩⎪⎨⎪⎧2x, x ≥2,f x +2, x <2,则f (log 45)=________.解析:f (log 45)=f (log 45+2)=22+log 45=4·2log 2 5=4 5. 答案:4 58.已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =g (x )的解析式为________.解析:设点M (x ,y )在所求函数的图象上,点M ′(x ′,y ′)是M 关于直线x =2的对称点,则⎩⎪⎨⎪⎧x ′=4-x ,y ′=y ,又y ′=2x ′+1,∴y =2(4-x )+1=9-2x , 即g (x )=9-2x . 答案:g (x )=9-2x9.(2013年丽水模拟)函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,x 12,x >0,若f (x 0)=1,则x 0的值为________.解析:当x 0≤0时,f (x 0)=2-x 0-1,由f (x 0)=1,得2-x 0-1=1,即2-x 0=2,解得x 0=-1;当x 0>0时,f (x 0)=x 120,由f (x 0)=1,得x 120=1,解得x 0=1.经检验x 0=-1或1符合题意.综上可得x 0的值为-1或1.答案:-1或1 三、解答题 10.若函数f (x )=xax +b(a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解析:由f (2)=1得22a +b=1,即2a +b =2; 由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解方程得x =0或x =1-ba, 又因方程有唯一解, ∴1-ba=0,解得b =1,代入2a +b =2得a =12,∴f (x )=2x x +2. 11.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f [g (2)]和g [f (2)]的值; (2)求f [g (x )]和g [f (x )]的表达式. 解析:(1)由已知,g (2)=1,f (2)=3, ∴f [g (2)]=f (1)=0,g [f (2)]=g (3)=3-1=2. (2)当x >0时,g (x )=x -1, 故f [g (x )]=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f [g (x )]=(2-x )2-1=x 2-4x +3;∴f [g (x )]=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1,或x <-1时,f (x )>0, 故g [f (x )]=f (x )-1=x 2-2; 当-1<x <1时,f (x )<0, 故g [f (x )]=2-f (x )=3-x 2.∴g [f (x )]=⎩⎪⎨⎪⎧x 2-2,x >1,或x <-1,3-x 2,-1<x <1.12.(能力提升)设x ≥0时,f (x )=2;x <0时,f (x )=1,又规定:g (x )=3f x -1-f x -22(x >0),试写出y =g (x )的表达式,并画出其图象.解析:当0<x <1时,x -1<0,x -2<0, ∴g (x )=3-12=1;当1≤x <2时,x -1≥0,x -2<0, ∴g (x )=6-12=52;当x ≥2时,x -1>0,x -2≥0, ∴g (x )=6-22=2.故g (x )=⎩⎪⎨⎪⎧1,0<x <1,52,1≤x <2,2,x ≥2.其图象如图所示:[因材施教·学生备选练习]1.(2013年温州模拟)设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .± 3C .-1D .±1解析:依题意得,f (a )=2-f (-1)=2---1=1.当a ≥0时,有a =1,则a=1;当a <0时,有-a =1,a =-1.综上所述,a =±1,选D.答案:D2.动点P 从单位正方形ABCD 的顶点A 出发,顺次经过B ,C ,D 绕边界一周,当x 表示点P 的行程,y 表示PA 的长时,求y 关于x 的解析式,并求f ⎝ ⎛⎭⎪⎫52的值. 解析:当点P 在AB 上运动时,y =x (0≤x ≤1); 当点P 在BC 上运动时,y =12+x -12=x 2-2x +2(1<x ≤2);当点P 在CD 上运动时,y =12+3-x2=x 2-6x +10(2<x ≤3);当点P 在DA 上运动时, y =4-x (3<x ≤4);综上可知,y =f (x )=⎩⎪⎨⎪⎧x ,0≤x ≤1,x 2-2x +2,1<x ≤2,x 2-6x +10,2<x ≤3,4-x ,3<x ≤4.∴f ⎝ ⎛⎭⎪⎫52=⎝ ⎛⎭⎪⎫522-6×52+10=52.。
近年高考数学一轮复习第2章函数、导数及其应用2.10导数的概念及运算课后作业理(2021年整理)
2019版高考数学一轮复习第2章函数、导数及其应用2.10 导数的概念及运算课后作业理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第2章函数、导数及其应用2.10 导数的概念及运算课后作业理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第2章函数、导数及其应用2.10 导数的概念及运算课后作业理的全部内容。
2.10 导数的概念及运算[基础送分提速狂刷练]一、选择题1.曲线y=lg x在x=1处的切线的斜率是( )A.错误! B.ln 10 C.ln e D。
错误!答案A解析因为y′=错误!,所以y′|x=1=错误!,即切线的斜率为错误!.故选A。
2.(2017·潼南县校级模拟)如图,是函数y=f(x)的导函数f′(x)的图象,则下面判断正确的是( )A.在区间(-2,1)上f(x)是增函数B.在(1,3)上f(x)是减函数C.在(4,5)上f(x)是增函数D.当x=4时,f(x)取极大值答案C解析由于f′(x)≥0⇒函数f(x)单调递增;f′(x)≤0⇒函数f(x)单调递减,观察f′(x)的图象可知,当x∈(-2,1)时,函数先递减,后递增,故A错误;当x∈(1,3)时,函数先增后减,故B错误;当x∈(4,5)时函数递增,故C正确;由函数的图象可知函数在4处取得函数的极小值,故D错误.故选C.3.(2018·上城区模拟)函数f(x)的导函数f′(x)的图象如图所示,则f(x)的函数图象可能是()答案B解析由图可得-1〈f′(x)〈1,切线的斜率k∈(-1,1)且在R上切线的斜率的变化先慢后快又变慢.∴结合选项可知选项B符合.4.(2018·昆明调研)若曲线f(x)=a cos x与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=( )A.-1 B.0 C.1 D.2答案C解析依题意得f′(x)=-a sin x,g′(x)=2x+b,于是有f′(0)=g′(0),即-a sin0=2×0+b,则b=0,又m=f(0)=g(0),即m=a=1,因此a+b=1,选C.5.(2018·山东烟台期末)若点P是函数y=e x-e-x-3x错误!图象上任意一点,且在点P处切线的倾斜角为α,则α的最小值是( )A.错误!B.错误!C.错误!D.错误!答案B解析由导数的几何意义,k=y′=e x+e-x-3≥2e x·e-x-3=-1,当且仅当x=0时等号成立.即tanα≥-1,α∈[0,π),又∵tanα〈0,所以α的最小值为错误!,故选B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章函数、导数及其应用第9讲
A组基础关
1.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( )
A.y=100x B.y=50x2-50x+100
C.y=50×2x D.y=100log2x+100
答案 C
解析对于A中的函数,当x=3或4时,误差较大.对于B中的函数,当x=3或4时误差也较大.对于C中的函数,当x=1,2,3时,误差为0,x=4时,误差为10,误差很小.对于D中的函数,当x=4时,据函数式得到的结果为300,与实际值790相差很远.综上,只有C中的函数误差最小.
2.如图所示的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用容器下面所对的图象表示该容器中水面的高度h和时间t之间的关系,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
答案 C
解析将水从容器顶部一个孔中以相同的速度注入其中,容器中水面的高度h和时间t 之间的关系可以从高度随时间的增长速度上反映出来,①中的增长应该是匀速的,故下面的
图象不正确;②中的增长速度是越来越慢的,正确;③中的增长速度是先快后慢再快,正确;④中的增长速度是先慢后快再慢,也正确,故②③④正确.选C.
3.(2019·德阳一诊)某工厂产生的废气经过过滤后排放,在过滤过程中,污染物的数量p (单位:毫克/升)不断减少,已知p 与时间t (单位:小时)满足p (t )=p 02-t
30,其中p 0
为t =0时的污染物数量.又测得当t ∈[0,30]时,污染物数量的变化率是-10ln 2,则p (60)=( )
A .150毫克/升
B .300毫克/升
C .150ln 2毫克/升
D .300ln 2毫克/升
答案 C
解析 由题意,∵当t =30时,污染物数量的变化率是-10ln 2,∴-10ln 2=1
2
p0-p030-0,
∴p 0=600ln 2,
∵p (t )=p 02-t
30
,
∴p (60)=600ln 2×2-2
=150ln 2毫克/升. 所以C 正确.
4.我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税,已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x 元(叫做税率x %),则每年销售量将减少10x 万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x 的最小值为( )
A .2
B .6
C .8
D .10 答案 A
解析 由(100-10x )·70·x
100≥112,
解得2≤x ≤8.则x 的最小值为2.
5.已知正方形ABCD 的边长为4,动点P 从B 点开始沿折线BCDA 向A 点运动.设点P 运动的路程为x ,△ABP 的面积为S ,则函数S =f (x )的图象是( )
答案 D
解析 ①当点P 在线段BC 上运动时,点P 到AB 的距离为x ,则y =1
2×4×x =2x (0<x <4),
其函数图象为过原点的一线段;
②点P 在边CD 上时,点P 到AB 的距离不变,为4,则y =1
2×4×4=8(4≤x ≤8),其函
数图象是平行于x 轴的一线段;
③点P 在边DA 上时,点P 到AB 的距离为(12-x ),则y =1
2×4×(12-x )=24-
2x (8≤x ≤12),其图象是一线段.纵观各选项,只有D 选项图象符合.
所以D 正确.
6.(2019·山东泰安联考)已知甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某商人持有资金120万元,他可以在t 1至t 4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t 4时刻卖出所有商品,那么他将获得的最大利润是( )
A .40万元
B .60万元
C .120万元
D .140万元
答案 C
解析甲6元时该商人全部买入甲商品,可以买120÷6=20(万份),在t2时刻全部卖出,此时获利20×2=40(万元),乙4元时该商人买入乙商品,可以买(120+40)÷4=40(万份),在t4时刻全部卖出,此时获利40×2=80(万元),共获利40+80=120(万元),故选C.
7.汽车的“燃油效率”,是指汽车每消耗1升汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同的路程,三辆汽车中,甲车消耗汽油量最多
C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D.某城市机动车最高限速80千米/小时,相同条件下,在该城市用丙车比用乙车更省油
答案 D
解析根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故A错误;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故B 错误;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故C错误;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故D正确.
8.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为________.
答案++-1
解析设年平均增长率为x,则(1+x)2=(1+p)(1+q),∴x=++-
1.
9.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为
________m.
答案 20
解析 设矩形花园的宽为y m ,则x 40=40-y
40,即y =40-x ,矩形花园的面积S =x (40
-x )=-x 2
+40x =-(x -20)2
+400,当x =20 m 时,面积最大.
10.某地区居民生活用电分高峰和低谷两个时间段进行计价,该地区电网销售电价表如下:
若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,
则按这种计费方式该家庭本月应付的电费为________元.(用数字作答)
答案148.4
解析据题意有0.568×50+0.598×150+0.288×50+0.318×50=148.4(元).
B组能力关
1.我们定义函数y=[x]([x]表示不大于x的最大整数)为“下整函数”;定义y={x}({x}表示不小于x的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x小时,则李刚应付费为(单位:元)( )
A.2[x+1] B.2([x]+1)
C.2{x} D.{2x}
答案 C
解析如x=1时,应付费2元,此时2[x+1]=4,2([x]+1)=4,排除A,B;当x=0.5时,付费为2元,此时{2x}=1,排除D,故选C.
2.图形M(如图所示)是由底为1,高为1的等腰三角形及高为2和3的两个矩形所构成,函数S=S(a)(a≥0)是图形M介于平行线y=0及y=a之间的那一部分面积,则函数S(a)的图象大致是( )
答案 C 解析 依题意, 当0≤a ≤1时,S (a )=
-2
+2a =-12
a 2
+3a ;
当1<a ≤2时,S (a )=1
2+2a ;
当2<a ≤3时,S (a )=12+2+a =a +5
2;
当a >3时,S (a )=12+2+3=11
2
,于是
S (a )=⎩⎪⎪⎨⎪⎪⎧
-1
2
a2+3a ,0≤a≤12a +1
2
,1<a≤2a +5
2,2<a≤3112,a>3.。