总结版测控电路
测控电路知识点总结

测控电路知识点总结近年来,随着电子技术的飞速发展,测控电路越来越成为各行各业中不可或缺的一个关键技术。
测控电路可以用来测量和控制各种电气和非电气量,包括电流、电压、温度、湿度等。
作为一名电子工程师,在处理测控电路方面需要具备相应的知识与技能。
本文将就测控电路方面的知识点进行总结。
一、传感器的种类和原理传感器是一种将非电信号(如压力、温度、湿度等)转换成电信号的电子元件。
不同的传感器根据其测量的物理量可以分为多种类型,例如:1. 压力传感器:用于测量水、气体、油等任何压强。
2. 电位差传感器:用于测量电压信号。
3. 温度传感器:用于测量实际环境的温度。
4. 湿度传感器:用于测量相对湿度。
5. 光电传感器: 用于识别物体的特定位置,能够测量物体的距离、位置、方向等。
二、放大电路对于一些微弱的信号,通过放大电路可以使其变得更容易处理和检测。
其中一个经典例子是基于放大器的心电图监护仪,在该系统中,微弱的电信号将通过放大器进行增强。
常见放大电路包括:1. 非反馈放大器:一种基本的放大器,它由一个晶体管或运放构成。
2. 反馈放大器:一种通过反馈改变增益的电路,在电控系统中应用广泛、且效果显著。
3. 差动放大器:将信号放大器的两个输入端,当两个输入信号不相同时,将输出信号的放大版。
三、多路选择电路在多种模数转换器、自动测量仪器和自动控制系统中,多路选择电路的应用越来越广泛。
通过多路选择电路,可以在多种不同的电压输入信号之间进行切换。
常见的多路选择电路有两种类型:基于模拟开关的多路选择电路和集线器。
1. 模拟开关:通常由多个开关组成,用于将不同的输入信号分别连接到单个输出。
在工业自动化领域中,模拟开关的应用非常广泛。
2. 集线器:一类数字电路,允许将多个设备连接到单个设备上。
在计算机领域中,集线器是网络拓扑中扮演重要角色。
四、计时电路计时电路可以用于测量时间间隔,以实现各种不同的控制功能,在计时器、任务调度和排队等领域中使用广泛。
测控电路

测控电路介绍测控系统主要由传感器、测量控制电路(简称测控电路)和执行机构三部分组成。
在测控系统中电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。
测控系统乃至整个机器和生成系统的性能在很大程度上取决于测控电路。
测控电路主要包括信号放大电路、信号调制解调电路、信号分离电路、信号运算电路、信号转换电路、信号细分与辨向电路、电量测量电路、连续信号控制电路、逻辑与数字控制电路等。
实际上,测控电路是模拟电子技术和数字电子技术的进一步延伸与扩展,主要讨论一些典型常见的电路。
因此学好模电和数电是基础,其中运算放大器是测控电路的一个核心部件。
网址:从50年代的“尺寸自动检测仪器”,到80年代的“精密仪器电路”,再到今天的“测控电路”,“测控电路”课程经历了半个世纪的发展历程。
测控技术是现代生产和高科技中的一项必不可少的基础技术。
“测控电路”课程主要介绍工业生产和科学研究中常用的测量与控制电路。
包括测控电路的功用和对它的主要要求、测控电路的类型与组成、信号放大电路、信号调制解调电路、信号分离电路、信号运算电路、信号转换电路、信号细分与辨向电路、逻辑控制与连续信号控制电路、测控电路中的抗干扰技术,最后通过若干典型测控电路对电路进行分析。
本课程不是一般意义上电子技术课程的深化与提高,而要着重讲清如何在电子技术与测量、控制之间架起一座桥梁,使学员熟悉怎样运用电子技术来解决测量与控制中的任务,实现测控的总体思想,围绕精、快、灵和测控任务的其它要求来选用和设计电路。
本课程选用的教材是由天津大学精仪学院张国雄教授主编的《测控电路》。
该书是根据1996年10月全国高等学校仪器仪表类教学指导委员会第一次会议的决定,作为测控技术及仪器专业的规划教材,并根据随后拟定的教学大纲编写的。
该教材可供测控技术及仪器专业各专业方向和机械工程类其它专业选用。
2002年,该书获全国优秀教材二等奖,并被列为国家“十五”规划教材。
测控电路

2.常用的调制方法:传感器调制和电路调制。传感器调制包括1交流供电2机械或光学方法。电路调制包括 乘法器调制,开关电路调制,信号相加调制。常用的解调方法:用非线性原件(二极管或者晶体三极 管);用低通滤波器。 3.相敏检波电路和包络检波的区别在于:相敏检波电路具有鉴别相位的能力,具有选频的功能,还必须有参 考信号。(乘法器,开关式,相加式) 4.将调制信号乘以幅值为1的余弦信号就可以得到双边带调幅信号,将双边带调幅信号再乘以载波信号,经 低通滤波后就可以得到原先的调制信号。 5.相敏检波电路具有抑制各种高次谐波的能力,这就是他的选频功能。相敏检波电路的鉴相特性指:当输入 信号和参考信号同频率时,输出信号随相位差的余弦而变化。 第四章 信号分离电路 1.滤波器是具有频率选择作用的电路或运算处理系统,可以从频率域中实现对噪声的抑制,提取所需的测量 信号。工作原理是当信号与噪声分布在不同频域带中时,利用滤波器对不同频率信号具有不同的衰减作用 的特点从频域实现信号分离。 2.几个特征频率:转折频率fc,固有频率(谐振频率或中心频率)f0; *群时延函数:t=df(w)/dw,用来评价相位失真程度。越接近常数,相位失真越小。 3.滤波器按照电路组成可以分为:1.LC无源滤波器,2.RC无源滤波器,3.RC有源滤波器 4.由特殊元件构成 的无源滤波器。 4.压控电压源型滤波器:闭环增益(1+R0/R)增益过大容易导致自己振荡,这是因为电路中存在正反馈。 高通低通和带通 *5.无源元件参数计算。 第五章 加法减法运算电路(设计) 第六章 常用的模拟开关元件包括二极管开关.,双极型晶体管开关,结型场效应管开关,MOS型场效应管开关等。
测控电路
第一章 1.测控系统主要由传感器(测量装置),测量控制电路(测控电路)和执行机构三部分组成。传感器的输出 信号一般都很微弱,还可能伴随着各种噪声,还需要测控电路将它放大,剔除噪声,选取有用信号。在测 控系统中,电路是最灵活的部分,它具有便于放大,便于变换,便于传输,适应于各种使用要求的特点。 *2.测控电路的特点:精度高;响应快;转换灵活。 *3.影响测控电路的主要因素: 1噪声与干扰;2失调与漂移,主要是温漂;3线性度与保真度;4输入与输出阻抗的影响。其中噪声与干 扰,失调与漂移(含温漂)是最主要的,需要特别注意。 4.测控电路的输入信号和输出信号: 模拟:1非调制信号2已调制信号(调制信号,载波信号,调幅信号) 数字:增量码信号;绝对码信号;开关信号 第二章 信号放大电路 1.信号放大电路是为了将微弱的传感器信号放大到足以进行的各种转换处理或驱动指示器,记录器以及各种 控制机构。 2.输入失调电压(实际中的差分放大器不一定完全对称,必须在输入端加上某一直流电压后才能使输出为 零,这一电压便成为输入失调电压);这种失调电压随时间和温度而变化,称为零点漂移; 3.为了减小零点漂移可以采取以下几个措施:1.引入直流负反馈2.引入温度补偿电路3.差分放大电路的自稳零 和采用调制的方法把直流变交流。 4.相位补偿 5.噪声分为白噪声和色噪声两种。电子电路中的固有噪声有热噪声,低频噪声和散弹噪声三种。 6.测量放大电路是指在测量控制系统中用来放大传感器输出的微弱电压电流或者电荷信号的电路。在结构原 理上可以分为1.差动直接耦合式(单端输入,电桥放大,电荷放大),2调制式(斩波稳零)3自动稳定式 (自动调零放大电路)。测量放大电路的基本要求是:1其输入阻抗要与传感器的输出阻抗相匹配2稳定的 放大倍数3低噪声4低的输入失调电压和输入失调电流以及低漂移,5足够的带宽和转换速率6高共模输入范 围和高共模抑制比7可调的闭环增益8线性好精度高9成本低。 7.反向放大器的闭环增益为-R2/R1;优点:性能稳定,缺点是输入阻抗低容易对传感器新城敷在作用。 同相放大器的闭环增益是1+(R2/R1);优点输入阻抗高,输出阻抗几乎为零,缺点容易受干扰99。 差动放大电路有益于抑制共模干扰(提高电路的共模抑制比)和减小温漂。 *8.三运放高共模抑制比放大电路 9.自动调零放大电路 10.高输入阻抗集成运放的屏蔽将高输入阻抗的输入端周围用导体围住,并将屏蔽层接到低输入阻抗处。 11.自举式高输入阻抗放大电路利用反馈使输入阻抗两端电位近似相等,减少想输入阻抗索取电流从而提高 输入阻抗。 12.差动输入电桥放大电路 *13.隔离放大电路的输入输出和电源的电路之间没有直接的电路耦合,即信号在传输过程中没有公共的接地 端。由输入放大器和输出放大器,隔离器和隔离电源等几部分组成。常用的隔离方法:光电隔离,变压器 隔离和电容隔离。 14.调制信号---->调制器——>放大器——》解调器——》低通滤波 振荡器 第三章 信号调制解调电路 1.在信号调制中,通常以高频的正弦信号做载波信号。调幅,调频和调相。调制就是利用调制信号去控制另 一个作为载体的信号(载波信号),让载波信号的(幅值,频率,相位和脉冲宽度)按照调制信号的值变 化。 可以克服干扰,便于放大和远距离传输。
测控电路 (2)

测控电路1. 引言测控电路是一种应用广泛的电子电路,用于测量和控制各种物理量。
在现代工业、科研和仪器仪表中,测控电路扮演着重要的角色。
本文将介绍测控电路的基本原理、常见元件和设计考虑因素。
2. 测量电路测量电路是测控电路中的核心部分,它用于测量各种物理量,如电压、电流、温度、压力等。
常见的测量电路包括电压分压电路、电流测量电路、电桥电路等。
2.1 电压分压电路电压分压电路是一种常见的测量电路,它通过使用电阻器将被测电压降低到适合测量范围内。
电压分压电路可以使用电阻分压原理或者电容分压原理实现。
电阻分压原理是使用串联电阻来实现电压分压,根据欧姆定律,电阻与电压成正比关系。
电阻分压电路可以灵活调整分压比例,适用于各种电压范围的测量。
电容分压原理是利用电容器的电压分压特性实现电压分压。
通过选择合适的电容比例,可以实现不同范围的电压测量。
电容分压电路对输入阻抗要求较高,适用于高阻抗源测量。
2.2 电流测量电路电流测量电路用于测量电路中的电流大小。
电流测量电路采用电阻器、电流互感器等元件来实现电流的测量。
电阻器法是最常见的电流测量方法之一。
通过串联电阻器,将待测电流转化为电压信号进行测量。
根据欧姆定律,电流与电压成反比关系,因此可以根据电压信号求出电流大小。
电流互感器是一种特殊的电流测量元件,通过互感原理实现电流的测量。
电流互感器主要由铁芯和线圈组成,当被测电流通过线圈时,会在铁芯中产生磁感应强度变化,通过测量磁感应强度的变化来求解电流大小。
2.3 电桥电路电桥电路是一种精密测量电路,常用于测量阻抗、电容和电感等物理量。
电桥电路的核心是利用电阻和电压的平衡关系来实现测量。
常见的电桥电路包括维尔斯顿电桥、韦斯通电桥和麦克斯韦电桥等。
电桥电路通过调整电桥上的元件值,使得电桥平衡,从而测量待测物理量。
3. 控制电路控制电路是测控电路中的另一个重要组成部分,它用于控制各种设备和系统的操作。
常见的控制电路包括开关电路、比较器电路和放大器电路等。
测控电路复习要点总结范文-图文

测控电路复习要点总结范文-图文第三章半导体二极管及基本电路3.1半导体的基本知识3.1.1半导体材料导体(conductor):自然界中很容易导电的物质称为导体,金属一般都是导体。
绝缘体(emiconductor):有的物质几乎不导电,称为绝缘体,如橡皮、陶瓷、塑料和石英。
半导体(inulator):另有一类物质的导电特性处于导体和绝缘体之间,称为半导体,如锗、硅、砷化镓和一些硫化物、氧化物等。
半导体的导电机理不同于其它物质,所以它具有不同于其它物质的特点:当受外界热和光的作用时,它的导电能力明显变化。
往纯净的半导体中掺入某些杂质,会使它的导电能力明显改变。
3.1.2本征半导体和杂志半导体本征半导体:完全纯净的、结构完整的半导体晶体。
成分:载流子、自由电子和空穴。
本征半导体中存在数量相等的两种载流子,即自由电子和空穴。
杂质半导体:掺杂浓度远大于本征半导体中载流子浓度,所以,自由电子浓度远大于空穴浓度。
自由电子称为多数载流子(多子),空穴称为少数载流子(少子)。
包括P型半导体和N型半导体。
3.2PN结的形成及特性3.2.1PN结的形成漂移运动:内电场越强,就使漂移(drift)运动越强,而漂移使空间电荷区变薄。
扩散运动:扩散(diffuion)的结果是使空间电荷区逐渐加宽,空间电荷区越宽。
PN结的形成:扩散和漂移这一对相反的运动最终达到平衡,相当于两个区之间没有电荷运动,空间电荷区的厚度固定不变。
3.2.2PN结的特性PN结的单向导电性:PN结(PNjunction)正向偏置,内电场减弱,使扩散加强,扩散飘移,正向电流大,空间电荷区变薄;PN结(PNjunction)反向偏置,内电场加强,使扩散停止,有少量飘移,反向电流很小,空间电荷区变厚。
PN结的电容效应:扩散电容CD和势垒电容CB。
扩散电容,PN结处于正向偏置时,多子的扩散导致在P区(N区)靠近结的边缘有高于正常情况的电子(空穴)浓度,这种超量的浓度可视为电荷存储到PN结的邻域;势垒电容,势垒区是积累空间电荷的区域,当反向偏置电压变化时,就会引起积累在势垒区的空间电荷的变化,类似于平板电容器两极板上电荷的变化。
测控电路基础概念总结

第一章绪论1、测控系统主要由传感器(测量装置)、测量控制电路(测控电路)、执行机构组成2、测控电路的主要要求:精、快、灵、可靠3、测控电路的特点:精度高、动态性能好、高的识别和分析能力、可靠性高、经济性好4、为了提高信号的抗干扰能力,往往需要对信号进行调制。
在紧密测量中希望从信号一形成就成为已调制信号,因此常在传感器中进行调制。
5用电感传感器测量工件轮廓形状时—这是一个幅值按被测轮廓调制的已调制信号---称为调幅信号6、用应变片测量梁的变形,并将应变片接入交流电桥。
这时电桥的输出也是调幅信号,载波信号的频率为电桥供电频率,电桥输出信号的幅值为应变片的变形所调制。
7、采用光栅、激光干涉法等测量位移时时传感器的输出为增量码信号。
8、增量码信号是一种反映过程的信号,或者说是一种反映变化增量的信号。
它与被测对象的状态并无一一对应的关系。
9、绝对码信号是一种与状态相对应的信号。
10、开关信号可视为绝对码信号的特例,当绝对码信号只有一位编码时,就成了开关信号。
开关信号只有0和1两个状态。
11、控制方式可分为开环控制与闭环控制。
12、闭环控制的特点:它的主要特点是用传感器直接测量输出量,将它反馈到输入端与设定电路的输出相比较,当发现他们之间有差异时,进行调节补充:1、信息时代的标志——高性能计算机的发展,速度和容量为其主要标志2、影响测控电路精度的主要因素有哪些?其中那几个因素是最基本的?(1)、噪声与干扰★(2)、失调与漂移,主要是温漂★(3)、线性度与保真度(4)、输入与输出阻抗的影响第二章信号放大电路1、输入失调电压u0s:对于理想运算放大器,输入电压为零,输出电压也必然为零。
然而,实际运算放大器中,前置级的差动放大器并不一定完全对称,必须在输入端加上某一直流电压后才能使输出为零,这一直流电压称之。
2、零点漂移:失调电压随时间和温度而变化,即零点在变动,称之3、输出失调电压u0=(1+R2/R1)u0s4、输出端产生的失调电压u02=-R2I b1+(1+R2/R1)R3I b2若取R3=R1//R2,则u02=R2(I b2-I b1)=R2I0s I0s称为输入失调电流5、绝大部分的运算放大器都是用于反馈状态6、由于运算放大器通常使用在负反馈状态,本来就有1800的相位差,再加上外接和内部电路的RC网络,有可能出现3600的相位差,使电路振荡。
测控电路 (2)

测控电路1. 引言测控电路是指用于测量和控制系统中的信号调理、数据采集、信号传输和控制执行等功能的电路。
在现代工业控制、仪器仪表和自动化等领域中,测控电路发挥着重要的作用。
本文将介绍测控电路的基本原理、常见组成部分和设计要点等内容。
2. 测控电路的基本原理测控电路的基本原理包括信号调理、数据采集、信号传输和控制执行等方面。
信号调理是指将传感器、信号源等产生的信号进行放大、滤波、线性化等处理,以便更好地适应后续的数据采集和控制操作。
数据采集是指将经过信号调理的信号转换为数字信号,并进行采样、量化等操作。
信号传输是指将采集到的数字信号进行传输,常用的方式包括串行通信、并行通信、以太网等。
控制执行是指根据传输的数字信号控制执行器进行动作控制,例如电机的启动、停止等操作。
3. 测控电路的组成部分测控电路的组成部分主要包括传感器、信号调理电路、数据采集器、数据传输模块和执行控制器等。
3.1 传感器传感器是将被测量的物理量转换为电信号的装置,常见的传感器包括温度传感器、压力传感器、光电传感器等。
传感器的选择应根据被测量的物理量和测量要求进行,例如在温度测量中可以选择热电偶传感器或者热敏电阻传感器。
3.2 信号调理电路信号调理电路用于对传感器输出的信号进行放大、滤波、线性化等处理,以适应后续的数据采集和控制操作。
常见的信号调理电路包括放大电路、滤波电路和线性化电路等。
放大电路可以根据传感器输出的信号进行放大,以增加测量的精度。
滤波电路可以通过滤除高频噪声和杂散信号,提高测量的稳定性。
线性化电路可以将非线性的传感器输出信号转换为线性信号,以便后续的处理和分析。
3.3 数据采集器数据采集器用于将经过信号调理的信号转换为数字信号,并进行采样和量化等操作。
数据采集器可以根据采集的信号类型选择合适的转换方式,常见的转换方式包括模数转换和频率转换等。
模数转换器可以将连续变化的模拟信号转换为离散的数字信号,频率转换器可以将频率变化的信号转换为数字信号。
最新1章测控电路概述汇总

课程的性质、任务及内容
在电子技术课程深化和提高的基础上,教 大家学会在测量和控制中运用电子技术实 现测控的总体思想,解决实际工程问题。
测试系统不仅仅用于工业领域,也广泛应 用于科学实验、农业、交通、医疗、地质 勘探、国防等国民经济各个领域以及人们 的日常生活中。
例:请设计一个10倍的同相放大器。如 误差不超过1%,又该如何设计?
4、error?
1.1 测控系统组成
当今时代是信息时代,三大支柱:传感技术、计算技 术、通信技术。
信息技术包括:信息获取、处理、传输、存储、执行 (控制)。
仪用电子线路:对各类包含信息的电信号进行处理、 传输、存储、变换的电路网络,实现对外界信息的精 确测量。----测量
控制电路:对测量信息进行判断、决策、执行,使被 控对象按预定的规律运行。---控制
测量是信息的源头,最后落实到控制。 对信息的测量---仪表—仪用电子线路; 测控电路
对目标的控制---执行器—控制电路
1.1 测控系统组成
仪用电子 线路-测量 电路
非电量电测系统的组成一般可以分为: 信息的获得——传感器(变送器,换能器); 信息的转换——放大器,变换器; 信息的显示——指示仪,记录仪,报警器; 信息的处理——调节器,数据分折仪,电子计算机。
例1:“数显式交流有功电子电能表”的设计
QPt(1
t
vid)tt
T0
其中,P为有功功率,t为时间,v、i分别为电 压、电流瞬时值。实现上式的关键是瞬时功率p= vi 的计量,常用的方案有两个:
方案1 方案2
例2:试设计一个“每周响一次”电路,要求如下:
自清零之时起,过168小时(即七天)后, 蜂鸣器发出声响,直至重新清零时为止。清零后 再过168小时又发出声响,直至再清零时为止。 如此周而复始,可不断重复。
测控电路复习重点

A/D转换器
选用适当的模数转换器,将模拟信号 转换为数字信号,便于微控制器或计
算机处理。
信号调理电路
设计信号调理电路,将压力传感器输 出的模拟信号转换为适合后续处理的 数字信号。
控制策略
根据实际需求,设计相应的控制策略, 如PID控制算法,实现对压力的精确 控制。
位移测控电路设计
滤波器类型
滤波器可分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等,根据信号处理需求选择合适的滤波器类型。
滤波器特性
滤波器的特性包括通带、阻带、过渡带等,这些特性决定了滤波器对信号的通过和抑制能力。
信号转换器及其特性
信号转换器类型
信号转换器包括模数转换器和数模转换器,用于实现模拟信号和数字信号之间的相互转换。
应用领域
广泛应用于压力、位移、液位等物理量的测 量与控制。
压电式传感器
要点一
工作原理
压电式传感器利用压电效应,通过测量压电元件的电压或 电荷变化来感知物理量变化,其工作原理基于压电材料的 压电效应和逆压电效应。
要点二
应用领域
广泛应用于冲击、振动、压力等物理量的测量与控制。
04 测控电路中的执行器
测控电路的应用领域
工业自动化
用于生产线的控制、监测和数据采集。
医疗电子
用于医疗设备的信号处理和控制,如监护仪、 心电图机等。
航空航天
用于飞行器的导航、控制和监测。
环境监测
用于气象、水文、地质等方面的监测和数据 采集。
测控电路的基本组成
信号调理电路
用于对传感器输出的电信号进 行放大、滤波、线性化等处理。
执行器
用于将控制信号转换为实际的 控制动作。
测控电路实验报告(Multisim)

《测控电路》实验报告班级:测控091班学号:*********姓名:**机电学院测控技术教研室实验一波形生成电路一、实验目的1:了解multisim 软件进行电路的设计与仿真的步骤。
2:了解波形生成电路的结构和原理。
二、实验内容1:运用电子技术来设计振荡电路,通过实验完成功能验证。
2:学会对电子电路的检测和排除电路故障,进一步熟悉常有电子仪器,提高分析问题和解决问题的能力。
3:谈实验的收获与体会。
三、实验结果(一)实验所用设备及原件:直流稳压电源(20v);示波器;电阻、电感、电容、BJT等。
(二)实验电路及仿真结果:(1)三端振荡器(2)石英振荡器实验二信号的调制与解调一、实验目的1:熟悉和掌握调幅式电路的调制,解调的工作原理。
2:利用AD633AN乘法器的验证调幅式电路的调制原理。
3:验证调频式电路的调制原理。
二、实验内容1:运用电子技术来设计AM 、 FM 电路通过实验完成功能验证。
2:学会对电子电路的检测和排除电路故障,进一步熟悉常用电子仪器的使用,提高分析问题和解决问题的能力。
3:谈实验的收获与体会。
三、实验结果(一)实验所用设备及原件:AC 、DC电源;示波器;电阻、电感、电容、电位器等。
(二)实验电路及仿真结果:实验三脉宽调制器控制直流电机一、实验目的1:学习脉宽调制控制直流电机的基本工作原理。
2:掌握电路设计及调试的方法。
3:掌握有关仪器仪表的使用方法。
二、实验内容1:以实验电路板为实验平台,应用脉宽调制原理控制直流电机。
2:用示波器观察脉宽调制信号,并记录分析。
3:应用所学知识(综合型实验内容),进一步设计电路,测量电机转速,闭环控制电机转速。
三、实验结果(一)实验原理:脉宽调制控制电路,是利用半导体功率晶体管或晶阀管等开关器件的导通和关断,把直流电压变成电压脉冲列,控制电压脉冲的宽度或周期以达到变压的目的,或是控制电压脉冲宽度和脉冲列的周期已达到变压变频目的的一种变换电路。
(二) 实验电路一及仿真结果:此电路是通过改变占空比的方法,来调节直流电动机的转速。
测控电路总复习2009-12

1什么是包络检波? 从已调信号中检出调制信号的过程称为解调或检波。幅值调制就是让已调信号的幅值随调制信号的值变化,因此调幅信号的包 络线形状与调制信号一致。只要能检出调幅信号的包络线即能实现解调。这种方法称为包络检波。
特点:原理简单、电路简单,在通信中广泛应用。
包络检波的基本工作原理是什么? 包络检波输出不完全是调制信号,还含有直流分量,大小由载波信号幅值U m 决定。 在测控系统中包络检波输出直流成分与交流成分具有不同的含义是什么? 2为什么要采用精密检波电路?为了提高检波精度, 常需采用精密检波电路,它又称为线性检波电路。 ●二极管VD和晶体管V都有一定死区电压,即二极管的正向压降、晶体管 的发射结电压超过一定值时才导通, ●它们的特性也是一根曲线。二极管VD和晶体管V的特性偏离理想特性会 给检波带来误差。 (1) 半波精密检波电路 (2) 全波精密检波电路 3包络检波存在问题: 第一,解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。
?干扰和噪声无本质区别。外部来的扰动称为干扰;内部产生的称为噪声。 2.分类:白噪声/色噪声 ?白噪声(white noise):是指功率谱密度在整个频域内均匀分布的噪声。 所有频率具有相同能量的随机噪声称为白噪声.是一种功率频谱密度为常数的随机信号或随机过程。噪声的波形是随机的(幅 值、相位、频率),瞬时值无法预测,但每赫带宽内包含的噪声功率从统计观点来看是一个常量。
由传感器电桥和运算放大器组成的放大电路或由传感器和运算放大器构成的电桥。 应用于何种场合? 应用于电参量式传感器:如电感式、电阻应变式、电容式传感器等,经常通过电桥转换电路输出电压或电流信号,并用运算放 大器作进一步放大,或由传感器和运算放大器直接构成电桥放大电路,输出放大了的电压信号 (一)单端输入电桥放大电路 (二)差动输入电桥放大电路 (三)线性电桥放大电路 八、高输入阻抗放大电路 1 问题的提出: 电容式传感器、压电式传感器等具有很高输出阻抗(可达108以上),要求测量放大电路须有很高的输入阻抗匹配。 2 解决方法: 通用集成运算放大器组成自举电路 高输入阻抗集成运算放大器 3 应用场合: 常应用于传感器的输出阻抗很高的测量放大电路中。如电容式、压电式传感器等电荷式传感器的测量放大电路。 4 何谓自举电路? 是利用反馈使输入电阻的两端近似为等电位,减小向输入回路索取电流,从而提高输入阻抗的电路。 5 自举式高输入阻抗放大电路: 1)同相交流放大电路 2)交流电压跟随电路 3)自举组合电路 九、电荷放大电路 一种输出电压与输入电荷成比例关系的测量放大电路。用于放大来自压电器件的电荷信号的放大电路。比如:压电传感器或电 容式传感器等。 十、增益调整放大电路 既能方便调整放大电路的增益,又不降低放大电路共模抑制比的专门电路。 10.1 手动增益调整放大电路 10.2 自动增益调整放大电路 10.3 可编程增益调整放大电路 2.3 隔离放大电路 1 什么是隔离放大电路? 放大电路的输入、输出和电源电路之间没有直接的电路耦合,即信号在传输过程中没有公共的接地端,一种特殊的测量电路。 隔离包括:(1). 电源隔离(2). 地网络隔离(3 )信号线隔离 主要的隔离方式? ?电磁耦合(变压器):用以实现载波调制。 线性度好,隔离性能好,共模抑制比高,技术成熟。 缺点:带宽较窄(1kHz),体积大,工艺复杂,应用不便。 ?光电耦合:结构简单,成本低,重量轻,线性度好,有一定转换速率,带宽较宽,与TTL电路兼容。
测控电路复习重点

图5-9 指数运算电路
Is: PN结的反向饱和电流;UT: 热电压,UT=kT/q;
• 求如所示电路中输出电压uo和u1与u2的关 系式,并说明此电路可实现什么运算。
波形分析例题:由理想运算放大器构成如图4所示组合运算电路。其
中R2=R1=100KΩ, C1=10µF, C2=5µF。输入信号ui如图5所示,要求( 1)分别计算微分时间常数和积分时间常数;(2)分别画出u01和u0的
书上29,30页
双运放高共模抑制比放大电路
2. 同相串联结构型
ui2
uo1=(1+R2/R1) ui1
(uo1–ui2)/R3= (ui2–uo)/R4
uo=(1+R4/R3) ui2 -(1+R2/R1)(R4/R3)ui1
由于共模电压
ui1
差模电压
uic
1 2 (ui1
ui2 )
uid ui2 ui1
uo
∞ -
R2
R8
R6
+
ui2
+ N2
uo2 R4
图3 三运放高共模抑制比放大电路
解:(1)由于已知
IR
u02 ui2 R2
ui1 u01 R1
ui2 ui1 R0
所以
uo1
(1
R1 Ro
)ui1
R1 Ro
ui 2
, uo 2
(1
R2 Ro
)ui 2
R2 Ro
ui1
∞ +
+ - N2
∞ ++ - N1
8-1测控电路-课程小结

二、测控电路的发展趋势是什么?
■ 优质化
■ 集成化
■ 数字化
■ 通用化
■ 模块化 ■ 测控一体化 ■ 自动化与智能化
2.1 运放的误差与补偿 实际运放、失调电压与失调电流、失调补偿 转换速率、最大不失真频率、振荡与相位补偿 2.2 噪声基础知识 噪声种类与性质:白、色、热、低频、散弹 处理噪声的方法:低噪声器件、屏蔽、降温、调制、 高共模抑制比电路 2.3 典型放大电路 反相放大:稳定、Ri低、输入阻抗与增益间矛盾 同相放大:Ri高Ro低、易受干扰、精度低 跟随器:电压跟随、电流放大、缓冲、隔离、提高带载 差动放大:共模抑制比高、输入阻抗低、增益调节困难 概念:高共模抑制电路、分贝(功率、场量、声音响度)
1 2 fm c mX m
窄脉冲鉴频
3.3 调相式测量电路 调相原理与方法: 传感器调相 电路调相(调相电桥) 鉴相电路:
乘法器与低通滤波
K uo 2
0
2
Usm cos(c t ) Ucm cos c t d (c t )
KU smU cm uo cos 2
作用:传感器输出的信号一般很微弱,而且含有 各种噪声。为了将测量信号从含有噪声的信号中 分离出来,便于放大与远距离传输。
■ 什么是信号调制?
调制就是用一个信号(称为调制信号)去控制另一个 做为载体的信号(称为载波信号),让后者的某一特征参 数(幅值、频率、相位、脉冲宽度)按前者的值变化。 ■ 什么是信号解调? 在将测量信号调制,并将它和噪声分离、放大等处 理后,还要从已经调制的信号中提取反映被测量值的测 量信号,这一过程称为解调。
2.3 典型放大电路 双运放高共模抑制比放大电路: 反相输入阻抗低、同相输入阻抗高、 共模抑制能力取决于电阻对称性 三运放高共模抑制比放大电路:(INA1114) 共模抑制能力不要求外部电阻对称、增益可调(R0) 有源屏蔽驱动电路:减小差模干扰 输入电缆的屏蔽层由共模输入电压驱动 电桥放大电路: 反相单端输入:增益与桥臂电阻无关,非线性 同相单端输入:输出与反相输出型符号相反 差动输入:增益与桥臂有关,增益不稳,且非线性 线性电桥放大电路:线性好,灵敏度不高 积分电路、微分电路
测控电路实训总结报告

测控电路实训总结报告在测控电路实训过程中,我学到了很多关于电路设计、测量和控制的知识,同时也提高了动手实践的能力。
本次实训项目的主要目标是设计一个能够测量电压和温度并进行控制的电路。
在实验的开始阶段,我首先进行了电路设计。
根据实验要求,我选择了合适的电压测量电路和温度测量电路,并将它们连接在一起。
这样,我可以通过测量电路采集到电压和温度数据。
在电路设计完成后,我开始着手实验的硬件搭建。
我按照电路图的要求,逐一连接电路元件,确保电路的连接正确无误。
在这个过程中,我学会了如何正确使用连接线、电阻器、电容器等各类元件,并且掌握了相关测量仪器的使用方法。
接下来,我开始进行电路的测试和调试工作。
通过连接示波器和多用表等测量仪器,我可以实时监测电路中的信号波形和电压数值。
通过观察和测量,我可以分析电路中是否存在问题,并根据需要进行调整和修正。
在测试和调试的过程中,我遇到了一些困难和问题。
例如,在连线过程中可能出现接触不良的情况,导致测量数据不准确。
此时,我需要仔细检查和调整连接,确保信号的传输畅通无阻。
在实验的最后阶段,我开始进行电路的控制设计。
通过连接微控制器和相应的控制元件,我可以根据测量到的电压和温度数据,进行相应的控制操作。
例如,当电压过高时,可以自动切换电路的输出,以保护电路和设备的安全。
通过本次实训,我不仅学到了电路设计和测量技术,还培养了动手实践和解决问题的能力。
通过自己亲手搭建电路并进行测试调试,我对电路设计和工作原理有了更深入的理解。
同时,我也意识到实际操作中可能出现的问题和困难,并学会了解决方法。
总的来说,本次测控电路实训对我来说是一个很有意义的经历。
通过实际操作和探索,我对电路设计、测量和控制有了更深入的了解,并培养了重要的动手实践和问题解决能力。
这对我的学习和未来的工作都具有很大的帮助。
测控电路-简答总结

1-4测控电路在整个测控系统中起着什么样的作用?传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。
在整个测控系统中,电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。
测控电路在整个测控系统中起着十分关键的作用,测控系统、乃至整个机器和生产系统的性能在很大程度是取决于测控电路。
1-5影响测控电路(仪用电子线路)精度的主要因素有哪些,而其中哪几个因素又是最基本的,需要特别注意?影响测控电路精度的主要因素有:①噪声与干扰;②失调与漂移,主要是温漂;③线性度与保真度;④输入与输出阻抗的影响。
其中噪声与干扰,失调与漂移(含温漂)是最主要的,需要特别注意。
1-7为什么说测控电路是测控系统中最灵活的环节,它体现在哪些方面?为了适应在各种情况下测量与控制的需要,要求测控系统具有选取所需的信号、灵活地进行各种变换和对信号进行各种处理与运算的能力,这些工作通常由测控电路完成。
它包括:①模数转换与数模转换;②直流与交流、电压与电流信号之间的转换。
幅值、相位、频率与脉宽信号等之间的转换;③量程的变换;④选取所需的信号的能力,信号与噪声的分离,不同频率信号的分离等;⑤对信号进行处理与运算,如求平均值、差值、峰值、绝对值,求导数、积分等、非线性环节的线性化处理、逻辑判断等。
2-10何谓电桥放大电路?应用于何种场合?由传感器电桥和运算放大器组成的放大电路或由传感器和运算放大器构成的电桥都称为电桥放大电路。
应用于电参量式传感器,如电感式、电阻应变式、电容式传感器等,经常通过电桥转换电路输出电压或电流信号,并用运算放大器作进一步放大,或由传感器和运算放大器直接构成电桥放大电路,输出放大了的电压信号。
2-1 何谓测量放大电路?对其基本要求是什么?在测量控制系统中,用来放大传感器输出的微弱电压,电流或电荷信号的放大电路称为测量放大电路,亦称仪用放大电路。
测控电路文档

测控电路简介测控电路是一种用于测量和控制系统的电路设计。
它具有广泛的应用,常见于各类工业生产设备和科学研究实验中。
在测控电路中,通过使用传感器和执行器,可以对待测对象进行测量和控制操作,以实现对系统状态的监测和调节。
测控电路的组成一个典型的测控电路包含以下几个主要组成部分:1.传感器(Sensor):传感器是测控电路中的输入设备,用于将待测物理量转换为电信号。
常见的传感器有温度传感器、压力传感器、光敏传感器等。
传感器的选择取决于需要测量的物理量类型和精度要求。
2.信号调理电路(Signal Conditioning Circuit):信号调理电路用于对传感器输出的电信号进行放大、滤波、线性化等处理。
这些处理可使信号满足控制系统输入端的要求,并提高测量的准确性。
3.AD转换器(Analog-to-Digital Converter):AD转换器将传感器输出的模拟电信号转换为数字信号,以便控制系统对信号进行处理和运算。
AD转换器的精度和采样率决定了对待测信号的准确度和响应速度。
4.控制算法(Control Algorithm):控制算法根据经过信号处理的数据,计算出控制器对待控制对象的控制命令。
常见的控制算法有PID控制、模糊控制、自适应控制等。
5.控制器(Controller):控制器通过接收控制算法计算出的控制命令,驱动执行器对待控制对象进行控制操作。
控制器可采用模拟电路或数字电路实现,常见的控制器有比例控制器、PID控制器、PLC控制器等。
6.执行器(Actuator):执行器是测控电路中的输出设备,通过接收控制器的控制信号,对待控制对象进行控制。
常见的执行器有电动阀门、电动马达、液压缸等。
测控电路的应用测控电路在工业生产和科学研究中有着广泛的应用。
在工业上,测控电路常被应用于自动化生产线上。
通过对生产线上的关键参数进行实时监测和调节,可以提高生产效率和产品质量。
例如,在液体灌装生产线中,通过使用流量传感器测量液体的流量,控制阀门的开关,可以确保每个容器中的液体量精确达到设定值。
测控电路实验报告

测控电路实验报告班级:学号:姓名:实验一运算电路的仿真一、实验目的通过使用仿真软件和实验箱,学习并掌握各种运算电路的仿真,并且调试出各种电路的输入输出波形。
二、实验内容1、积分电路2 、微分电路3 、运算放大器积分电路R1=16K,C1=100nF4 、运算放大器微分电路R1=16K,C1=100nF 5、反相加法器6 、同相加法器7、减法器电路三、实验结果1、积分电路2、微分电路3、运算放大器积分电路4、运算放大器微分电路5、反向加法器6、同向加法器7、减法器电路实验二A/D 、D/A 转换实验一、实验目的1、掌握D/A和A/D转换器的基本工作原理和基本结构;2、掌握大规模集成D/A和A/D转换器的功能及其典型应用。
二、实验内容1、A/D转换实验2、D/A转换实验图1 所示电路是4 位数字—模拟转换电路。
它可将4 位二进制数字信号转换为模拟信号。
R f=26kΩ,R=4kΩ,求当[u1u2u3u4]=[1110]和[u1u2u3u4]=[0010]时,输出电压u0。
三、实验结果1、A/D转换实验2、D/A转换实验被选模拟通道输入模拟量地址输出数字量IN V1(V) A2A1 A0D7 D6 D5 D4 D3 D2 D1 D0 十进制IN0 4.5 0 0 0 0 1 1 1 0 0 1 1 115 IN1 4.0 0 0 1 0 1 1 0 0 1 1 0 102 IN2 3.5 0 1 0 1 0 1 0 1 0 0 1 89 IN3 3.0 0 1 1 0 1 0 0 1 1 0 0 76 IN4 2.5 1 0 0 0 0 1 1 1 1 1 1 63 IN5 2.0 1 0 1 0 0 1 1 0 0 1 1 51 IN6 1.5 1 1 0 0 0 1 0 0 1 1 0 38 IN7 1.0 1 1 1 0 0 0 1 1 0 0 1 25实验三乘法器实验一、实验目的通过实验学习乘法器的知识,并掌握乘法器的原理。
测控电路 第03章 信号调制解调电路

Uo
R4 R3
RR1 RR2 + RR3 RR4 ≈ U 2 4R U R R R R = 1 2+ 3 4 4 R R R R
+ U
-
5
1,调幅原理与方法
(3)电路调制
① 乘法器调制
ux uc
Kxy x y uo
a)原理图
6
+12V 1k 0.1F 1k 51 uc ux 20F 750 750 47k 0.1F 3.3k 3 82 6 10 1MC149612 4 14 5 680k 3.3k uo 0.1F 1k
uC
R1 10k C
+ N
30
2,鉴频电路
(1)微分鉴频
① 工作原理 ② 微分鉴频电路
us C1 ie ic RL V Ec C1 + + us +
+ C2 -
VD
uo
微分 网络
包络 检波
r
ud -
31
③窄脉冲鉴频电路
us
放大与电 平鉴别器
Us
单稳态 触发器
Us ˊ
低通 滤波器
uo
us
a) O t
VD1 us1 us2 RL VD2 uo1 RL
fc
C1 u uo2 o C2
Ωt
f)
33
�
(2)传感器调制
通过交流供电实现调制
R1 R1 R2 R3 R4 F R4 U
应变片测量梁的变形
R2 Uo R3
4
受力后,令R1 = R R1,R2 = R R2,R3 = R R3,R4 = R R4,则
R R2 R R3 Uo = R R + R R R R + R R U 1 2 3 4 R R3 R R2 = 2 R R R 2 R R R U 1 2 3 4 ≈ RR1 RR2 + RR3 RR4 U 2 4 R 2 R(R1 + R2 + R3 + R4 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1何谓测量放大电路?对其基本要求是什么?在测量控制系统中,用来放大传感器输出的微弱电压,电流或电荷信号的放大电路称为测量放大电路,亦称仪用放大电路。
对其基本要求是:①输入阻抗应与传感器输出阻抗相匹配;②一定的放大倍数和稳定的增益;③低噪声;④低的输入失调电压和输入失调电流以及低的漂移;⑤足够的带宽和转换速率(无畸变的放大瞬态信号);⑥高输入共模范围(如达几百伏)和高共模抑制比;⑦可调的闭环增益;⑧线性好、精度高;⑨成本低。
2.2什么是高共模抑制比放大电路?应用何种场合?有抑制传感器输出共模电压(包括干扰电压)的放大电路称为高共模抑制比放大电路。
应用于要求共模抑制比大于100dB 的场合,例如人体心电测量。
2.3图2-8b 所示电路,N1、N2为理想运算放大器,R4=R2=R1=R3=R ,试求其闭环电压放大倍数。
由图2-8b 和题设可得u01 =ui1 (1+R2 /R1) = 2ui1 , u0=ui2 (1+R4 /R3 )–2ui1 R4/R3 =2ui2–2 ui1=2(ui2-ui1),所以其闭环电压放大倍数Kf=2。
2.4图2-9所示电路,N1、N2、N3工作在理想状态,R1=R2=100k ,RP=10k ,R3=R4=20k ,R5=R6=60k ,N2同相输入端接地,试求电路的差模增益?电路的共模抑制能力是否降低?为什么?由图2-9和题设可得uo = (uo2–uo1) R5 / R3 =3(uo2–uo1 ), uo1 = ui1 (1 + R1 /Rp)–ui2 R1/Rp=11ui1, uo2= ui2(1+R2/Rp)–ui1 R2/Rp=–10ui1, 即uo=3(–10ui1–11ui1)=–63ui1,因此,电路的差模增益为63。
电路的共模抑制能力将降低,因N2同相输入端接地,即ui2=0,ui1的共模电压无法与ui2的共模电压相抵消。
2.9何谓自举电路?应用于何种场合?请举一例说明之。
自举电路是利用反馈使输入电阻的两端近似为等电位,减小向输入回路索取电流,从而提高输入阻抗的电路。
应用于传感器的输出阻抗很高(如电容式,压电式传感器的输出阻抗可达108Ω以上)的测量放大电路中。
图2-7所示电路就是它的例子。
2.12什么是可编程增益放大电路?请举例说明之。
放大电路的增益通过数字逻辑电路由确定的程序来控制,这种电路称为可编程增益放大电路,亦称程控增益放大电路,简称PGA 。
例如图X2-2,程序为A=0(开关A 断开) 、B=0(开关B 断开)时,放大电路的电压放大倍数为-R/R1;当程序为A=1(开关A 闭合) 、B=0(开关B 断开)时,放大倍数为- R2R/[R1(R2+R )];当程序为A=0(开关A 断开)、B=1(开关B 闭合),放大倍数为 –R3R/[R1(R3+R )];当程序为A=1、B=1(开关A 、B 均闭合),放大倍数为–R2R3R/[R1(R2 R3+R3 R +R R2)]。
2.13请根据图2-22b ,画出可获得1、10、100十进制增益的电路原理图。
由图X2-3可得:当开关A 闭合时,Uo=Ui ;当开关B 闭合时,Uo=10Ui ,当开关C 闭合时,Uo=100Ui 。
C R ∞- + + NUB A U i 90R图X2-32.15什么是隔离放大电路?应用于何种场合?隔离放大电路的输入、输出和电源电路之间没有直接的电路耦合,即信号在传输过程中没有公共的接地端。
隔离放大电路主要用于便携式测量仪器和某些测控系统(如生物医学人体测量、自动化试验设备、工业过程控制系统等)中,能在噪声环境下以高阻抗、高共模抑制能力传送信号。
3.1什么是信号调制?在测控系统中为什么要采用信号调制?什么是解调?在测控系统中常用的调制方法有哪几种?在精密测量中,进入测量电路的除了传感器输出的测量信号外,还往往有各种噪声。
而传感器的输出信号一般又很微弱,将测量信号从含有噪声的信号中分离出来是测量电路的一项重要任务。
为了便于区别信号与噪声,往往给测量信号赋以一定特征,这就是调制的主要功用。
调制就是用一个信号(称为调制信号)去控制另一作为载体的信号(称为载波信号),让后者的某一特征参数按前者变化。
在将测量信号调制,并将它和噪声分离,放大等处理后,还要从已经调制的信号中提取反映被测量值的测量信号,这一过程称为解调。
在信号调制中常以一个高频正弦信号作为载波信号。
一个正弦信号有幅值、频率、相位三个参数,可以对这三个参数进行调制,分别称为调幅、调频和调相。
也可以用脉冲信号作载波信号。
可以对脉冲信号的不同特征参数作调制,最常用的是对脉冲的宽度进行调制,称为脉冲调宽。
3.2什么是调制信号?什么是载波信号?什么是已调信号?调制是给测量信号赋以一定特征,这个特征由作为载体的信号提供。
常以一个高频正弦信号或脉冲信号作为载体,这个载体称为载波信号。
用需要传输的信号去改变载波信号的某一参数,如幅值、频率、相位。
这个用来改变载波信号的某一参数的信号称调制信号。
在测控系统中需传输的是测量信号,通常就用测量信号作调制信号。
经过调制的载波信号叫已调信号。
3.3-3.5分别解释调幅调频调相并写出数学表达式和画出图形。
3.11双边带调幅,写出数学表达式和画出图形。
3.14为什么要采用精密检波电路?试述图3-11 b 所示全波线性检波电路工作原理,电路中哪些电阻的阻值必须满足一定的匹配关系,并说明其阻值关系。
二极管和晶体管V 都有一定死区电压,即二极管的正向压降、晶体管的发射结电压超过一定值时才导通,它们的特性也是一根曲线。
二极管和晶体管V 的特性偏离理想特性会给检波带来误差。
在一般通信中,只要这一误差不太大,不致于造成明显的信号失真。
而在精密测量与控制中,则有较严格的要求。
为了提高检波精度,常需采用精密检波电路,它又称为线性检波电路。
图3-11b 是一种由集成运算放大器构成的精密检波电路。
在调幅波u s 为正的半周期,由于运算放大器N 1的倒相作用,N 1输出低电平,因此V 1导通、V 2截止,A 点接近于虚地,u a ≈0。
在u s 的负半周,有u a 输出。
若集成运算放大器的输入阻抗远大于R 2,则i ≈- i 1 。
按图上所标注的极性,可写出下列方程组:1s s 11s iR u u R i u -'='+=s 2u iR u u u u a a'++=+=' s d u K u a'-=' 其中K d 为N 1的开环放大倍数。
解以上联立方程组得到u R R K u R R K R R u a )1(1)]1(1[21d 21d 21s +-++-= 通常,N 1的开环放大倍数K d 很大,这时上式可简化为:a u R R u 21s -=或s 21u R R u a -= 二极管的死区和非线性不影响检波输出。
图3-11b 中加入V 1反馈回路一是为了防止在u s 的正半周期因V 2截止而使运放处于开环状态而进入饱和,另一方面也使u s 在两个半周期负载基本对称。
图中N 2与R 3、R 4、C 等构成低通滤波器。
对于低频信号电容C 接近开路,滤波器的增益为-R 4/R 3。
对于载波频率信号电容C 接近短路,它使高频信号受到抑制。
因为电容C 的左端接虚地,电容C 上的充电电压不会影响二极管V 2的通断,这种检波器属于平均值检波器。
为了构成全波精密检波电路需要将u s 通过3R '与u a 相加,图3-11b 中N 2组成相加放大器,为了实现全波精密检波必须要求332R R ='。
在不加电容器C 时,N 2的输出为: )2(s 34o u u R R u a +-= 图X3-11a 为输入调幅信号u s 的波形,图b 为N 1输出的反相半波整流信号u a ,图c 为N 2输出的全波整流信号u o 。
电容C 起滤除载波频率信号的作用。
a) 输入信号 b) 半波整流信号波形 c) 全波整流输出3.15什么是相敏检波?为什么要采用相敏检波?相敏检波电路是能够鉴别调制信号相位的检波电路。
包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。
如u u u a)c)b)在图1-3所示用电感传感器测量工件轮廓形状的例子中,磁芯3由它的平衡位置向上和向下移动同样的量,传感器的输出信号幅值相同,只是相位差180°。
从包络检波电路的输出无法确定磁芯向上或向下移动。
第二,包络检波电路本身不具有区分不同载波频率的信号的能力。
对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。
为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。
5.2试画出一个能实现()()5i 2i 1i 5i 2i 1i o 5151U U U U U U U '++'+'-+++= 的加减混合运算电路。
该加减混合运算电路如图X5-1所示。
6.4如果要将4~20mA 的输入直流电流转换为0~10V 的输出直流电压, 试设计其转换电路。
该转换电路如图X6-3所示。
根据图X6-3电路,有取R 1=250Ω,当i =4mA 时,u i =1V ,当i =20mA 时,u i =5V 。
因此要求b 23123o )1(U R R iR R R u -+=图X6-3 ,1b 23=U R R 1151(23=⨯+R R有 R 3/ R 2=6/5,U b =5/6(V),取R 2=10k ,R 3=12k ,R 4= R 2// R 3=5.45k ,取R 4=5.6k 。
6.7一个6bit 的D/A 转换器,具有单向电流输出,当D in =110100时,i o =5mA ,试求D in =110011时的i o 值。
当D in =110100时,k 值为: 因此当D in =110011时,i o 为:6.8一个6bit 逐次逼近式A/D 转换器,分辨率为0.05V ,若模拟输入电压u i =2.2V ,试求其数字输出量的数值。
根据题意可知,2.2V 的输入电压对应的数字量为101100。
(),220055o D D k i +⋅⋅⋅+=5252225245=++=k ()mA 904.41222525145o =+++=i。