2018普通高等学校招生全国统一考试理科数学全国卷2试题及答案解析(可编辑修改word版)
2018全国高考数学二试题及答案(理科)
的素数中,随机选取连个不同的数,其和等于 30 的概率是( )
A. 1 12
【答案】C
B. 1 14
C. 1 15
D. 1 18
9.在长方体 ABCD A1B1C1D1 中, AB BC 1, AA1 3 ,则异面直线 AD1 与 DB1 所成角的余弦值为( )
A. 1 5
【答案】C
为了预测该地区 2018 年的环境基础设施投资额, 建立了 y 与时间变量 t 的两 个线性回归模型.根据 2000 年至 2016 年的数据(时间 变量 t 的值依次为1, 2, ,17 )建立模型①:y 30.4 13.5t ;根据 2010 年至 2016
年的数据(时间变量 t 的值依次为1, 2, ,7 )建立模型②: y 99 17.5t . (1)分别利用这两个模型,求该地区 2018 年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由. 【解析】(1)由题意可知,用模型①预测 2018 年投资额为
(2)若 f (x) 在 (0, ) 只有一个零点,求 a .
【解析】(1)当 a 1时,f (x) ex x2 ,则 f x() e x2x .令 h(x) f (x) ex 2x ,
由 h(x) ex 2 知 h(x) 在 (0, ln 2) 上单调递减,在 (ln 2, ) 上单调递增.从而 h(x) f (x) h(ln 2) f (ln 2) 2 2ln 2 0 ,所以 f (x) 在 (0, ) 上单调递增.
S3 3a1 3d 21 3d 15 解得 d 2 .所以 an 7 2(n 1) 2n 9 . (2)由(1)可知 Sn n2 8n (n 4)2 16 .由二次函数性质可知当 n 4 时,Sn 取 得最小值 16 . 18.(12 分)下图是某地区 2000 年至 2016 年环境基础设施投资额 y (单位:亿 元)的折线图.
2018全国高考II卷理科数学试题和答案解析
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法:(1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期(3)由求对称轴,(4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。
2018高考全国新课标2卷理科数学版和答案解析(最新整理)
3 23029 绝密★启用前2018 年普通高等学校招生全国统一考试理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.1 + 2i =1 - 2i A .- 4 - 3 i 5 5B .- 4 + 3 i 5 5C .- 3 - 4 i 5 5 D .- 3 + 4 i 5 52. 已知集合 A ={( x ,y ) x 2+ y 2≤3,x ∈ Z ,y ∈ Z } ,则 A 中元素的个数为A .9B .8C .5D .4e x - e - x3. 函数 f ( x ) = x 2的图像大致为4.已知向量a , b 满足| a | = 1 , a ⋅ b = -1 ,则a ⋅ (2a - b ) = A .4B .3C .2D .0x 2-y2= > >5. 双曲线 a2b 21 (a 0, b 0) 的离心率为 ,则其渐近线方程为A. y = ± 2xB. y = ± 3xC. y = ± 2x2D. y = ± 3x26. 在△ABC 中, cosC= 5, BC = 1 , AC = 5 ,则 AB = 2 5A. 4 B . C . D . 2 5是i < 100否输出S结束S = N - T i = 1 x y ⎨ ⎩7.为计算 S = 1 - 1 + 1 - 1 +… + 1 - 1,设计了右侧的程序框图,2 3 4 99 100 则在空白框中应填入 A. i = i + 1 B. i = i + 2 C. i = i + 3D. i = i + 48. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 = 7 + 23 .在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是 A.112 B.1 14C.115 D.118 9. 在长方体 ABCD - A 1B 1C 1D 1 中, AB = BC = 1 , AA 1 =,则异面直线 AD 1 与 DB 1 所成角的余弦值为A.15B.6C.5D.210. 若 f (x ) = cos x - sin x 在[-a , a ] 是减函数,则 a 的最大值是A.π4B. π2C. 3π4D. π11.已知 f (x ) 是定义域为(-∞, +∞) 的奇函数,满足 f (1 - x ) = f (1 + x ) .若 f (1) = 2 ,则f (1) + f (2) + f (3) +… A .-50 + f (50) =B .0C .2D .502212. 已知 F 1 , F 2 是椭圆C : 2 + 2 =1 (a > b > 0) 的左,右焦点, A 是C 的左顶点,点 P 在过 A 且斜率 ab为 3的直线上, △PF F 为等腰三角形, ∠F F P = 120︒ ,则C 的离心率为6 1 2 1 22 A.3B.1 2C.1 3D.1 4二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2018年普通高等学校招生全国统一考试数学试题理(全国卷2,含解析)
2018年普通高等学校招生全国统一考试数学试题理(全国卷2)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果. 详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。
(完整word版)2018年全国2卷理科数学试卷及答案
2018年普通高等学校招生全国统一考试全国2卷数学(理科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。
1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,> )A .y =B .y =C .y x =D .y x =6.在ABC △中,cos 2C =,1BC =,5AC =,则AB =( )A .B C D .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( ) A .15B .56C .55D .2210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( ) A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
2018年高考理科数学全国卷2(含详细答案)
理科数学a 2b 2 1 a2 x 2 x准确粘贴在条 __ 卷__ _ __ __ __ 5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
考 上--------------------本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只7.为计算 S 1 1__ 答A. 4B.3C.3 4 D. 3 4__ 5 5 i55i 5 5 i 5 5 i __ __ __ -------------------- ee x 2的图象大致为A.1-------------绝密 ★ 启用前2018 年普通高等学校招生全国统一考试在--------------------本试卷共 23 题,共 150 分,共 5 页,考试结束后,将本试卷和答题卡一并交回。
4.已知向量 a,b 满足 a 1,a b 1 ,则 a 2a bA. 4B. 3C. 2D. 0x 2 y 25.双曲线 0,b 0 的离心率为 3 ,则其渐近线方程为注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码A. y 2xB. y 3xC.y 2D.y 3此--------------------形码区域内。
6.在 ABC 中, cos C 2 55 ,BC1,AC 5,则 AB =__3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效; 号 证 准__1 2i__名 A.9 B. 8 C. 5 D. 4姓 题2.选择题必须使用 2B 铅笔填涂;非选择题必须使用 0.5 毫米黑色字迹的签字笔书写, 字体工整、笔迹清楚。
--------------------在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
有一项是符合题目要求的.)__ 1. 1 2i-------------------- 3 42.已知集合 A x,y x 2 y 2 3,x Z ,y Z ,则 A 中元素的个数为x x3.函数 f(x)5B.4D.A .42B. 30 C . 29 D . 251 1 1 1234 99 100 ,设计了右侧的程序框图,则在空白框中应填入 A. i i 1B. i i 2C.i i 3D.i i 48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果 ,哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如 30=7+23 . 在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是1 1 112 B. 14 C. 15 D.18无--------------------9.在长方体 ABCD A B C D 中, AB BC 1,AA1 1 1 1成角的余弦值为1 3,则异面直线 AD 1 与 DB 1 所A. 15 6 C.5 5 D. 2210.若 f(x) cosx sinx 在 a,a 是减函数,则 a 的最大值是效----------------A.4 B.2 C.3理科数学试题 A 第 1 页(共 24 页)理科数学试题 A 第 2 页(共 24 页)6的直线上,PF F为等腰三角形,3B.8,SA与圆锥底面所成角为45.n 的通项公式;11.已知f(x)是定义域为,的奇函数,满足f(1x)f(1x).若f(1)2,则f(1)f(2)f(3)f(50)A.50B.0C.2D.50下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.12.已知F,F是椭圆C:12x2y2a2b21(a b0)的左、右焦点,A是C的左顶点,点P在过A且斜率为312F F P120,则C的离心率为12A.212C.113D.4二、填空题(本题共4小题,每小题5分,共20分)13.曲线y2ln(x1)在点0,0处的切线方程为_____________.x2y50,14.若x,y满足约束条件x2y30,则z x y的最大值为________.x50,15.已知sin cos1,cos sin0,则sin__________.16.已知圆锥的顶点为S,母线SA、SB所成角的余弦值为7若SAB的面积为515,则该圆锥的侧面积为__________.三、解答题(共70分。
2018高考全国2卷理科数学带详细标准答案
设平面 PAM 地法向量为 n ( x, y, z) .
uuur 由 AP n
uuur 0, AM n
0得 2y
2 3z
0
,可取
ax (4 a) y 0
n ( 3( a 4), 3a, a) ,
uuur 所以 cos OB , n
2 3( a 4)
.由已知得
2 3(a 4)2 3a 2 a2
uuur
5 / 12
个人收集整理 仅供参考学习
19.解:
( 1)由题意得 F (1,0) , l 地方程为 y k ( x 1)(k 0) .
设 A( x1, y1), B(x2, y2 ) ,
由
y y2
k(x 4x
1),得 k 2 x2
(2k 2
4) x k 2
0.
16k 2 16 0 ,故 x1 x2
( 2)你认为用哪个模型得到地预测值更可靠?并说明理由.
19.( 12 分) 设抛物线 C:y 2 4x 地焦点为 F ,过 F 且斜率为 k( k 0) 地直线 l 与 C 交于 A ,B 两点,
| AB | 8 . ( 1)求 l 地方程; ( 2)求过点 A , B 且与 C 地准线相切地圆地方程.
2 / 12
个人收集整理 仅供参考学习
三、解答题:共 70 分 .解答应写出文字说明、证明过程或演算步骤 .第 17~21 题为必考题,
每个试题考生都必须作答 .第 22、 23 为选考题 .考生根据要求作答 .RTCrpUDGiT
(一)必考题:共 60 分 .
17.( 12 分) 记 Sn 为等差数列 { an } 地前 n 项和,已知 a1
1. 1 2i 1 2i
(完整word版)2018年全国2卷理科数学试卷及答案(2),推荐文档
2018年普通高等学校招生全国统一考试全国2卷数学(理科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。
1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,> )A .y =B .y =C .y x =D .y x =6.在ABC △中,cos 2C =,1BC =,5AC =,则AB =( )A .B C D .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( ) A .15B .5 C .5 D .210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( ) A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且斜率为3的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
2018年高考理科数学全国2卷(附答案)
学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2018年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共10页)(适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆) 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答案卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
1.12i12i+=- A .43i 55-- B .43i 55-+ C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y x =D .y x = 6.在ABC △中,cos2C =1BC =,5AC =,则AB = A . B C D . 7.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =则异面直线1AD 与1DB 所成角的余弦值为 A .15B C D10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11. 已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。
2018年全国普通高等学校招生统一考试理科数学(新课标II卷)-附答案解析
学校:___________姓名:___________班级:___________考号:___________
1.
A. B. C. D.
2.已知集合 ,则 中元素的个数为
A.9B.8C.5D.4
3.函数 的图像大致为()
A. B.
C. D.
8.C
【解析】
分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.
详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为 ,选C.
(1)证明: 平面 ;
(2)若点 在棱 上,且二面角 为 ,求 与平面 所成角的正弦值.
21.已知函数 .
(1)若 ,证明:当 时, ;
(2)若 在 只有一个零点,求 的值.
22.在直角坐标系 中,曲线 的参数方程为 ( 为参数),直线 的参数方程为 ( 为参数).
(1)求 和 的直角坐标方程;
(2)若曲线 截直线 所得线段的中点坐标为 ,求 的斜率.
分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.
详解:因为
所以 ,选A.
点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.
7.B
【解析】
分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.
A. B. C. D.
9.在长方体 中, , ,则异面直线 与 所成角的余弦值为
2018高考全国新课标2卷理科数学版及答案解析
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =C .2y x = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .2B 30C 29 D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA ,则异面直线1AD 与1DB 所成角的余弦值为 A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。
2018年高考理科数学全国卷2(含详细答案)
理科数学a 2b 2 1 a2 x 2 x准确粘贴在条 __ 卷__ _ __ __ __ 5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
考 上--------------------本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只7.为计算 S 1 1__ 答A. 4B.3C.3 4 D. 3 4__ 5 5 i55i 5 5 i 5 5 i __ __ __ -------------------- ee x 2的图象大致为A.1-------------绝密 ★ 启用前2018 年普通高等学校招生全国统一考试在--------------------本试卷共 23 题,共 150 分,共 5 页,考试结束后,将本试卷和答题卡一并交回。
4.已知向量 a,b 满足 a 1,a b 1 ,则 a 2a bA. 4B. 3C. 2D. 0x 2 y 25.双曲线 0,b 0 的离心率为 3 ,则其渐近线方程为注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码A. y 2xB. y 3xC.y 2D.y 3此--------------------形码区域内。
6.在 ABC 中, cos C 2 55 ,BC1,AC 5,则 AB =__3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效; 号 证 准__1 2i__名 A.9 B. 8 C. 5 D. 4姓 题2.选择题必须使用 2B 铅笔填涂;非选择题必须使用 0.5 毫米黑色字迹的签字笔书写, 字体工整、笔迹清楚。
--------------------在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
有一项是符合题目要求的.)__ 1. 1 2i-------------------- 3 42.已知集合 A x,y x 2 y 2 3,x Z ,y Z ,则 A 中元素的个数为x x3.函数 f(x)5B.4D.A .42B. 30 C . 29 D . 251 1 1 1234 99 100 ,设计了右侧的程序框图,则在空白框中应填入 A. i i 1B. i i 2C.i i 3D.i i 48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果 ,哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如 30=7+23 . 在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是1 1 112 B. 14 C. 15 D.18无--------------------9.在长方体 ABCD A B C D 中, AB BC 1,AA1 1 1 1成角的余弦值为1 3,则异面直线 AD 1 与 DB 1 所A. 15 6 C.5 5 D. 2210.若 f(x) cosx sinx 在 a,a 是减函数,则 a 的最大值是效----------------A.4 B.2 C.3理科数学试题 A 第 1 页(共 24 页)理科数学试题 A 第 2 页(共 24 页)6的直线上,PF F为等腰三角形,3B.8,SA与圆锥底面所成角为45.n 的通项公式;11.已知f(x)是定义域为,的奇函数,满足f(1x)f(1x).若f(1)2,则f(1)f(2)f(3)f(50)A.50B.0C.2D.50下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.12.已知F,F是椭圆C:12x2y2a2b21(a b0)的左、右焦点,A是C的左顶点,点P在过A且斜率为312F F P120,则C的离心率为12A.212C.113D.4二、填空题(本题共4小题,每小题5分,共20分)13.曲线y2ln(x1)在点0,0处的切线方程为_____________.x2y50,14.若x,y满足约束条件x2y30,则z x y的最大值为________.x50,15.已知sin cos1,cos sin0,则sin__________.16.已知圆锥的顶点为S,母线SA、SB所成角的余弦值为7若SAB的面积为515,则该圆锥的侧面积为__________.三、解答题(共70分。
2018普通高等学校招生全国统一考试理科数学全国卷2试题及答案解析
WORD整理版分享2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的XX、XX号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.12i1 2iA.4 3 4 3i3 4 3 4 5i B.5C.i D.i5 5 5 5 5 52.已知集合A x,y x2y2≤3,x Z,y Z,则A中元素的个数为A.9 B.8 C.5 D.43.函数fe x e x的图像大致为xx24.已知向量a,b满足|a| 1,ab 1,则a(2ab)A.4 B.3 C.2 D.05.双曲线x2y2221(a 0,b0)的离心率为3,则其渐近线方程为a bA.y 2x B.y 3x C.y2D.y3x x 2 26.在△ABC中,cos C5,BC 1,AC 5,则AB2 5A.42 B.30 C.29 D.25X文X例参考指导WORD 整理版分享7.为计算S 1 1 1 1 ⋯1 1,设计了右侧的程序框图,开始 2 3 4 99 100则在空白框中应填入N 0,T0A .i i 1i1B .i i 2是 否 i 100 C .i i 31N SNT D .i i 4NiT T 1输出S i1结束8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30 7 23.在不超过30的素数中,随 机选取两个不同的数,其和等于 30的概率是A .1B .1C .1D .1121415189.在长方体ABCDA1B1C1D1中,ABBC1,AA 13,则异面直线 AD 1与DB 1 所成角 的余弦值为A .1B . 5C .5 D . 2 565 210.若f(x)cosxsinx 在[ a,a]是减函数,则a 的最大值是A .πB .πC .3πD .π42411.已知f(x)是定义域为( , )的奇函数,满足 f(1 x) f(1x) .若f(1) 2,则 f(1)f(2) f(3)⋯ f(50)A .50B .0C .2D .5012.已知F 1,F 2 x 2y 21(a b0) 的左、右焦点, A 是C 的左顶点,点P 在是椭圆C :22 a b过A 且斜率为 3的直线上,△PF 1F 2 为等腰三角形, F 1F 2P120,则C 的离心率为6 A .2B .1C .1D .13 2 3 4二、填空题:本题共 4小题,每小题 5分,共20分.13.曲线y2ln(x 1)在点(0,0)处的切线方程为__________.X文X例参考指导WORD整理版分享x 2y50 ,14.若x,y满足约束条件x 2y30 ,则zx y的最大值为__________.x 5 0,15.已知sinαcosβ1,cosαsinβ0,则sin(αβ) __________.16.已知圆锥的顶点为S ,母线SA,所成角的余弦值为7,与圆锥底面所成角为45°,SB SA8若△SAB的面积为515,则该圆锥的侧面积为__________.三、解答题:共70分。
2018年高考真题理科数学全国卷II含解析
适用全国卷Ⅱ(甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆)2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国卷2理科数学真题附含答案解析
2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。
若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年高考理科数学全国卷II及答案
2018年普通高等学校招生全国统一考试理科数学(II)一、选择题:本题共12小题,每小题5分,共60分. 1.=-+i i2121 ( ) .A i 5354--.B i 5354+-.C i 5453--.D i 5453+-2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 ( ).A 9.B 8.C 5.D 43.函数()2e e x xf x x --=的图像大致为 ( )4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b ( ).A 4.B 3.C 2.D 05.双曲线22221(0,0)x y a b a b-=>>3( ).A x y 2±=.B x y 3±= .C x y 22±= .D x y 23±=6.在ABC △中,5cos2C =1BC =,5AC =,则AB = ( ) .A 24.B 30 .C 29 .D 527.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入( ) .A 1+=i i .B 2+=i i .C 3+=i i .D 4+=i i8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 ( ) .A 121.B 141.C 151.D 1819.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为( ).A 51.B 65.C 55.D 2210.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( ).A 4π.B 2π.C 43π.D π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则( )(1)(2)(3)(50)f f f f ++++=….A 50-.B 0.C 2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ).A 23.B 12.C 13.D 14二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 2302018 年普通高等学校招生全国统一考试理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.1 + 2i =1 - 2iA .- 4 - 3 i 5 5B .- 4 + 3 i 5 5C .- 3 - 4 i 5 5 D .- 3 + 4 i 5 52. 已知集合 A ={( x ,y ) x 2+ y 2≤3,x ∈ Z ,y ∈ Z } ,则 A 中元素的个数为A .9B .8C .5D .4e x - e - x3. 函数 f ( x ) = x 2的图像大致为4.已知向量a , b 满足| a | = 1 , a ⋅ b = -1 ,则a ⋅ (2a - b ) =A .4B .3C .2D .0x 2 - y 2= > >5. 双曲线 a 2b 21 (a 0, b 0) 的离心率为 ,则其渐近线方程为A. y = ± 2xB. y = ± 3xC. y = ± 2x 2D. y = ± 3x26. 在△ABC 中, cosC =5, BC = 1 , AC = 5 ,则 AB = 25 A. 4 B . C .D . 2 2953 3 是i < 100否输出S结束S = N - T i = 1 x y 7.为计算 S = 1 - 1 + 1 - 1+… + 1 - 1 ,设计了右侧的程序框图,2 3 4 99 100 则在空白框中应填入 A. i = i + 1 B. i = i + 2 C. i = i + 3 i = i + 4D .8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 = 7 + 23 .在不超过 30 的素数中, 随机选取两个不同的数,其和等于 30 的概率是 1 1 1 1 A .12B .14C .15D . 189. 在长方体 ABCD - A 1B 1C 1D 1 中, AB = BC = 1 , AA 1 = ,则异面直线 AD 1 与DB 1 所成角的余弦值为 1A. 5B.6C.5D.210. 若 f (x ) = cos x - sin x 在[-a , a ] 是减函数,则 a 的最大值是π π A.B .42 3π C . 4D .π 11. 已知 f (x ) 是定义域为 (-∞, +∞) 的奇函数, 满足 f (1 - x ) = f (1 + x ) . 若 f (1) = 2 , 则f (1) + f (2) + f (3) +… A .-50 + f (50) =B .0C .2D .502 212.已知 F 1 , F 2 是椭圆C :2 + 2 = 1 (a > b > 0) 的左、右焦点, A 是C 的左顶点,点 P 在 a b过 A 且斜率为 的直线上, △PF F 为等腰三角形, ∠F F P = 120︒ ,则C 的离心率为1 2 1 22 1 1 1 A .3 B .2 C .3 D . 4二、填空题:本题共 4 小题,每小题 5 分,共 20 分. 13.曲线y = 2 ln(x + 1) 在点(0, 0) 处的切线方程为 .开始 N = 0, T = 06N = N + 1 iT = T + 1i +115 ⎨⎩⎧x + 2 y - 5 ≥ 0 ,14. 若 x , y 满足约束条件⎪x - 2 y + 3 ≥ 0 , 则 z = x + y 的最大值为.⎪x - 5 ≤ 0 , 15. 已知sin α + cos β = 1 , cos α + sin β = 0 ,则sin(α + β) =.16. 已知圆锥的顶点为 S ,母线 SA , SB 所成角的余弦值为 7 , SA 与圆锥底面所成角为845°,若△SAB 的面积为5 ,则该圆锥的侧面积为 .三、解答题:共 70 分。
解答应写出文字说明、证明过程或演算步骤。
第 17~21 题为必考题,每个试题考生都必须作答.第 22、23 为选考题,考生根据要求作答.学科*网 (一)必考题:共 60 分。
17.(12 分)记 S n 为等差数列{a n } 的前 n 项和,已知 a 1 = -7 , S 3 = -15 .(1) 求{a n } 的通项公式; (2) 求 S n ,并求 S n 的最小值.18.(12 分)下图是某地区 2000 年至 2016 年环境基础设施投资额 y (单位:亿元)的折线图.为了预测该地区 2018 年的环境基础设施投资额,建立了 y 与时间变量t 的两个线性回归模型.根据 2000 年至 2016 年的数据(时间变量t 的值依次为1,2 ,… ,17 )建立模型①: y ˆ = -30.4 + 13.5t ;根据 2010 年至 2016 年的数据(时间变量t 的值依次为1,2 ,… ,7 )建立模型②: y ˆ = 99 + 17.5t .(1) 分别利用这两个模型,求该地区 2018 年的环境基础设施投资额的预测值;(2) 你认为用哪个模型得到的预测值更可靠?并说明理由.PO BM⎩ ⎩ 19.(12 分)设抛物线 C :y 2 = 4x 的焦点为 F ,过 F 且斜率为 k (k > 0) 的直线l 与 C 交于 A , B 两点, | AB | = 8 .(1) 求l 的方程;学科&网(2) 求过点 A , B 且与C 的准线相切的圆的方程.20.(12 分)如图,在三棱锥 P - ABC 中, AB = BC = 2 点.(1) 证明: PO ⊥ 平面 ABC ;, PA = PB = PC = AC = 4 , O 为 AC 的中 (2) 若点 M 在棱 BC 上,且二面角 M - PA - C 为30︒ ,求 PC 与平面 PAM 所成角的正弦值.AC21.(12 分)已知函数 f (x ) = e x - ax 2 .(1)若 a = 1 ,证明:当 x ≥ 0 时, f (x ) ≥ 1 ; (2)若 f (x ) 在(0, +∞) 只有一个零点,求 a .(二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答。
如果多做,则按所做的第一题计分.22.[选修 4-4:坐标系与参数方程](10 分)在直角坐标系xOy 中,曲线C 的参数方程为⎧x = 2 cos θ ,θ l方程为⎧x = 1 + t cos α , t⎨ y = 4sin θ ( 为参数),直线 的参数 ⎨ y = 2 + t sin α (为参数).(1) 求C 和l 的直角坐标方程;(2) 若曲线C 截直线l 所得线段的中点坐标为(1, 2) ,求l 的斜率.23.[选修 4-5:不等式选讲](10 分)2设函数f (x) = 5 - | x +a | - | x - 2 | .(1)当a =1 时,求不等式f (x) ≥ 0 的解集;(2)若f (x) ≤1 ,求a 的取值范围.n2018 年普通高等学校招生全国统一考试理科数学试题参考答案2(1)设{a n } 的公差为 d ,由题意得3a 1 + 3d =-15 . 由 a 1 = -7 得 d =2.所以{a n } 的通项公式为 a n = 2n - 9 .(2)由(1)得 S = n 2-8n = (n - 4)2 -16 . 所以当 n =4 时, S n 取得最小值,最小值为−16.18. 解:(1) 利用模型①,该地区 2018 年的环境基础设施投资额的预测值为y ˆ = -30.4 +13.5⨯19 = 226.1 (亿元). 利用模型②,该地区 2018 年的环境基础设施投资额的预测值为y ˆ = 99 +17.5⨯ 9 = 256.5 (亿元).(2) 利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000 年至 2016 年的数据对应的点没有随机散布在直线y = -30.4 +13.5t 上下.这说明利用 2000 年至 2016 年的数据建立的线性模型①不能很一、选择题 1.D 2.A 3.B 4.B 5.A 6.A 7.B二、填空题 8.C 9.C10.A11.C12.D13.y = 2x14.915. - 116.402π三、解答题17.解:好地描述环境基础设施投资额的变化趋势.2010 年相对 2009 年的环境基础设施投资额有明显增加,2010 年至 2016 年的数据对应的点位于一条直线的附近,这说明从 2010⎩ 年开始环境基础设施投资额的变化规律呈线性增长趋势,利用 2010 年至 2016 年的数据建立的线性模型 yˆ = 99 +17.5t 可以较好地描述 2010 年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.学科*网(ⅱ)从计算结果看,相对于 2016 年的环境基础设施投资额 220 亿元,由模型①得到的预测值 226.1 亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.以上给出了 2 种理由,考生答出其中任意一种或其他合理理由均可得分. 19.解:(1)由题意得 F (1, 0) ,l 的方程为 y = k (x -1)(k >0) .设 A (x 1 , y 1 ), B (x 2 , y 2 ) ,⎧ y = k (x -1),由⎨ y 2= 4x得 k 2 x 2 - (2k 2 + 4)x + k 2 = 0 .∆ = 16k 2+16 > 0 ,故 x 1 + x 2 =2k 2 + 4.k 2所以| AB |=| AF | + | BF |= (x 1 +1) + (x 2 +1) =4k 2+ 4.k24k 2 + 4 由题设知 = k28 ,解得 k = -1 (舍去), k = 1 .因此 l 的方程为 y = x -1 .(2)由(1)得 AB 的中点坐标为(3, 2) ,所以 AB 的垂直平分线方程为 y - 2 = -(x - 3) , 即 y = -x + 5 .设所求圆的圆心坐标为(x 0 , y 0 ) ,则⎧ y 0 = -x 0 + 5,⎪⎧x 0= 3,⎧x 0= 11, ⎨ ( y - x +1)2 解得⎨ 或⎨ ⎪(x +1)2 = 00 +16. ⎩ y 0 = 2 ⎩ y 0 = -6. ⎩ 0 2因此所求圆的方程为(x - 3)2 + ( y - 2)2 = 16 或(x -11)2 + ( y + 6)2 = 144 .20. 解:33 ⎨(1) 因为AP = CP = AC = 4 , O 为 AC 的中点,所以OP ⊥ AC ,且OP = 2 .连结OB .因为 AB = BC =2 AC ,所以△ABC 为等腰直角三角形,2且OB ⊥ AC , OB = 1AC = 2 .2由OP 2 + OB 2 = PB 2 知 PO ⊥ OB .由OP ⊥ OB , OP ⊥ AC 知 PO ⊥ 平面 ABC .(2) 如图,以O 为坐标原点, OB 的方向为 x 轴正方向,建立空间直角坐标系O - xyz .由已知得 O (0, 0, 0), B (2, 0, 0), A (0, -2, 0), C (0, 2, 0), P (0, 0, 2 3), AP = (0, 2, 2 3),取平面 PAC 的法向量OB = (2, 0, 0) .设 M (a , 2 - a , 0)(0 < a ≤ 2) ,则 AM = (a , 4 - a ,0) . 设平面 PAM 的法向量为 n = (x , y , z ) .由 AP ⋅ n = 0, AM ⋅ n = 0 得⎧⎪2 y + 2 3z = 0⎪⎩ax + (4 - a ) y = 0,可取 n = ( 3(a - 4), 3a , -a ) ,所以cos u u u rOB , n 2 3(a - 4).2 3(a - 4)2 + 3a 2 + a 2u u u r由已知可得| cos OB , n |=.2=2 3 | a - 4|2 3(a - 4)2 + 3a 2 + a 2= 3e e所以=3 .解得 a = -4 (舍去), a = 4.所以 n = (- 8 3 , 4 3 , - 4) . 3 3 3PC = (0, 2, -2 3)23u u u r 又,所以cos PC , n . 4所以 PC 与平面 PAM 所成角的正弦值为 3.421. 解:(1)当 a = 1 时, f (x ) ≥ 1等价于(x 2 +1)e -x -1 ≤ 0 .设函数 g (x ) = (x 2 +1)e -x -1,则 g'(x ) = -(x 2 - 2x +1)e -x = -(x -1)2e -x . 当 x ≠ 1 时, g'(x ) < 0 ,所以 g (x ) 在(0, +∞) 单调递减.而 g (0) = 0 ,故当 x ≥ 0 时, g (x ) ≤ 0 ,即 f (x ) ≥ 1.(2) 设函数 h (x ) = 1- ax 2e -x .f (x ) 在(0, +∞) 只有一个零点当且仅当 h (x ) 在(0, +∞) 只有一个零点.(i ) 当 a ≤ 0 时, h (x ) > 0 , h (x ) 没有零点;(ii ) 当 a > 0 时, h'(x ) = ax (x - 2)e -x .当 x ∈(0, 2) 时, h'(x ) < 0 ;当 x ∈(2, +∞) 时, h'(x ) >0 . 所以 h (x ) 在(0, 2) 单调递减,在(2, +∞) 单调递增.故 h (2) = 1-4a是 h (x ) 在[0, +∞) 的最小值.e2①若 h (2) > 0②若 h (2) = 02,即a < ,42,即a = ,4h (x )h (x )在(0, +∞)在(0, +∞)没有零点;只有一个零点;e e y ⎨ ⎩③若 h (2) < 0 2 ,即a > ,由于 4h (0) = 1 ,所以 h (x ) 在(0, 2)有一个零点, 由( 1) 知 , 当 x > 0 时 , e x > x 2 , 所 以16a 3 16a 3 16a 3 1 h (4a ) = 1- = 1- > 1- = 1- > 0 . e 4a (e 2a )2 (2a )4 a 故 h (x ) 在(2, 4a ) 有一个零点,因此 h (x ) 在(0, +∞) 有两个零点.综上, f (x ) 在(0, +∞)2 只有一个零点时,a = . 422. 解:(1) 曲线C 的直角坐标方程为 x 2 + = 1.4 16当cos≠ 0 时, l 的直角坐标方程为 y = tan ⋅ x + 2 - tan ,当cos = 0 时, l 的直角坐标方程为 x = 1 . (2) 将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+ 3cos 2)t 2 + 4(2 cos + sin )t - 8 = 0 .①因为曲线C 截直线l 所得线段的中点(1, 2) 在C 内,所以①有两个解,设为t 1 , t 2 ,则 t 1 + t 2 = 0 .又由①得 t + t = -4(2 cos + sin ) , 故 2 cos + sin = 0 , 于是直线 l 的斜率1 2k = tan= -2 . 23. 解: 1+ 3cos 2⎧2x + 4, x ≤ -1, (1)当 a = 1 时, f (x ) = ⎪2, -1 < x ≤ 2,⎪-2x + 6, x > 2. 可得 f (x ) ≥ 0 的解集为{x | -2 ≤ x ≤ 3} .(2) f (x ) ≤ 1等价于| x + a | + | x - 2 |≥ 4 .而| x + a | + | x - 2 |≥| a + 2 | ,且当 x = 2 时等号成立.故 f (x ) ≤ 1等价于| a + 2 |≥ 4 . 2由| a + 2 |≥ 4 可得a ≤-6 或a ≥ 2 ,所以a 的取值范围是(-∞, -6] [2, +∞) .。