医学统计学重点知识点
(完整版)医学统计学重点总结
1.简述总体和样本的定义,并且举例说明。
总体是研究目的确定的所有同质观察单位的全体。
样品是从研究总体中抽取部分有代表性的观察单位。
2.简述参数和统计量的定义,并且举例说明。
描述总体特征的指标称为参数,描述样本特征的指标称为统计量。
3.变量的类型有哪几种?举例说明各种类型变量有什么特点。
①定量数据:计量资料;定量的观测值是定量的,其特点是能够用数值的大小衡量其水平的高低。
②定性数据:计数资料;变量的观测值是定性的,表现为互不相容的类别或属性。
③有序数据:半定量数据/等级资料;变量的观测值是定性的,但各类别(属性)有程度或顺序上的差异。
4.请举例说明一种类型的变量如何变换为另一种类型的变量。
定量数据>有序数据>定性数据--------------->5.请简述什么是小概率事件?概率是描述事件发生可能性大小的度量,P≤0.05事件称为小概率事件。
6.举例说明什么是配对设计。
配对设计是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
①同源配对:同一受试对象或同一标本的两个部分,随机分配接受两种不同处理;②异源配对:为消除混杂因素的影响,将两个同质受试对象配对分别接受两种处理。
7.非参数假设检验适合什么类型数据进行分析?①总体分布类型未知或非正态分布数据;②定量或半定量数据;③数据两端无确定的数值。
8.简述P25 P50P75的统计学意义。
(条件:明显偏态且不能转化为正态或近似对称;一端或两端无确定数值;分布情况未知)用来描述资料的观测值序列在某百分位置的水平,四分位数间距可以作为说明个体差异的指标(说明个体在不同位置的变异情况)。
9.直条图、直方图、圆饼图的使用条件是什么?直条图:各自独立的统计指标的数值大小和他们之间的对比;直方图:连续变量频数分布情况;圆饼图:全体中各部分所占的比例。
10.统计分析包括哪两个方面的内容?为什么要进行统计推断?统计描述和统计分析;统计描述用来描述及总结一组数据的重要特征,其目的是使实验或观察得到的数据表达清楚并便于分析。
医学统计学知识点
医学统计学知识点 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。
2、研究对象:具有不确定性结果的事物。
3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。
4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。
5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。
6、医学统计学中的基本概念(1) 同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。
变异,指总体内的个体间存在的、绝对的差异。
统计学通过对变异的研究来探索事物。
(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。
变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。
(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。
包括二分类、无序多分类。
(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、AB等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。
统计方法的选用与数据类型有密切的关系。
(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。
样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。
抽样,是从研究总体中随机抽取部分有代表性的观察单位。
参数,指描述总体特征的指标。
统计量,指描述样本特征的指标。
(4)误差误差,指观测值与真实值、统计量与参数之间的差别。
可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。
医学统计学知识点汇总
医学统计学总结绪论1、随机现象:在同一条件下进行试验,一次试验结果不能确定,而在一定数量的重复试验之后呈现统计规律的现象。
2、同质:统计学中对研究指标影响较大的,可以控制的主要因素。
3、变异:同质基础上各观察单位某变量值的差异。
数值变量:变量值是定量的,由此而构成的资料称为数值变量资料或计量资料,其数值是连续性的,称之为连续型变量。
变量无序分类变量:所分类别或属性之间无顺序和程度上的差异分类变量:定性变量有序分类变量:有顺序和程度上的差异4、总体:根据研究目的确定的同质研究对象中所有观察单位某变量值的集合。
可以分为有限总体和无限总体。
5、样本:是按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
样本代表性的前提:同质总体,足够的观察单位数,随机抽样。
统计学中,描述样本特征的指标称为统计量,描述总体特征的指标称为参数。
6、概率:描述随机事件发生的可能性大小的一个度量。
若P(A)=1,则称A为必然事件;若P(A)=0,则称A为不可能事件;随机事件A的概率为0<P<1.小概率事件:若随机事件A的概率P≤α,则称随机事件A为小概率事件,其统计学意义为:小概率事件在一次随机试验中认为是不可能发生的。
统计描述1、频数分布有两个重要的特征:集中趋势和离散程度。
频数分布有对称分布和偏态分布之分。
后者是指频数分布不对称,集中趋势偏向一侧,如偏向数值小的一侧为正偏态分布,如偏向数值大的一侧为负偏态分布。
2、常用的集中趋势的描述指标有:均数,几何均数,中位数等。
均数:适用于正态或近似正态的分布的数值变量资料。
样本均数用x表示,总体均数用μ表示。
几何均数:适用于等比级数资料和对数呈正态分布的资料。
注意观察值中不能有零,一组观察值中不能同时有正值和负值。
中位数:适用于偏态分布资料以及频数分布的一端或两端无确切数据的资料。
3、常用的离散程度的描述指标有:全距,四分位数间距,方差,标准差,变异系数。
全距:任何资料,一组中最大值与最小值的差。
医学统计学知识点
第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。
2、研究对象:具有不确定性结果的事物。
3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。
4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。
5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。
6、医学统计学中的基本概念(1) 同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。
变异,指总体内的个体间存在的、绝对的差异。
统计学通过对变异的研究来探索事物。
(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。
变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。
(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。
包括二分类、无序多分类。
(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、A B等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。
统计方法的选用与数据类型有密切的关系。
(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。
样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。
抽样,是从研究总体中随机抽取部分有代表性的观察单位。
参数,指描述总体特征的指标。
统计量,指描述样本特征的指标。
(4)误差误差,指观测值与真实值、统计量与参数之间的差别。
可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。
随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。
抽样误差,是抽样引起的统计量与参数间的差异。
抽样误差主要来源于个体的变异。
医学统计学重点知识点
<<医学统计学>>1. 总体:根据研究的目的确定的同质研究对象中所有的观察单位变量值的集合。
2. 样本:按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
3. 同质:影响研究指标的主要因素易控制的因素基本上相同。
4. 抽样误差:在抽样研究中,由于变异的存在,即使在同一总体中抽取的几个样本,各样本统计量往往不等。
样本统计量与总体参数也不等,这种由于抽样研究所至样本之间和样本与总体之间的差异称为--5. 变量:观察指标在统计学上统称为指标变量,它反应的是生物个体间的变异情况,根据其性质可分为定性变量(分类)和定量变量(连续)。
6. 截尾数据:生存时间观察过程被人为的截止称为截尾,又称删失或终检。
原因:失访/退出/终止(研究时限已到而终止观察)。
7. 卡方基本思想:X2分布是一种连续型分布,可用于检验资料的实际频数和按检验假设计算的理论频数是否相等等问题。
X2反应实现了实际频数与理论频数的吻合程度。
如果检验假设成立,则A-T一般不大,X2应很小,即出现大X2值概率很小。
即X2越大,P越小,若P≤a时,就怀疑假设的成立,拒绝H0。
若P>a则没有理由拒绝H0。
8. X2用途:(1)实际频数与拟合频数拟合优度:A推断两个或两个以上总体率或构成比有无差别(四格表/行x列表)。
B两变量之间有无相互关系。
C频数分布的拟合优度检验(判断次样本是否来自某种分布)。
(2)某些分布可用X2近似。
(3)间接应用:如t分布和F分布就是在X2分布基础上推导出来的。
9. 方差分析的基本思想:根据研究目的和设计类型,把总体变异中离均差平方和分解成两部分或更多部分,也把总变异中的自由度相应分成两部分或更多部分,然后再进行比较,评价由某种因素引起的变异是否具有统计学意义。
10. 假设检验中P,a,b(倍他)的关系及统计学意义:a:检验水准,即显着性检验,在此概率之下的认为是小概率事件,统计学上以为此事件“不可能发生”,以此判断是否不拒绝H0无效假设,在假设检验中,按a检验水准,拒绝了原来正确的H0,即犯了第1类错误,犯此错误的概率为a。
医科大学医学统计学重点知识总结
第一章绪论1、统计学的定义:统计学研究数据的收集、整理、分析的一门学科。
医学统计学:医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理、方法,研究医学资料的搜集、整理、分析和推断的一门科学。
2、医学统计研究三个步骤:研究设计、资料分析、结论3、(必考的)几个概念:(1)同质:性质相同异质:性质不同观察单位间的同质性是进行研究的前提同质是相对的(不同研究中或同一研究中不同观察指标对观察对象的同质性的要求不同)(2)个体变异:同质个体间的差异。
变异的两个方面:不同观察单位(个体)间的差别;同一个体在不同阶段的差别(重复测量)个体变异是普遍存在的;个体变异是有规律的。
注意:由于个体变异的存在,同质个体指标的取值会存在差异!(例:体温波动)(3)总体:按研究目的所确定的同质研究对象的全体。
有限总体:有时间、空间的概念,观察单位有限无限总体:无时间、空间的概念(例:某种治疗措施的效果,就包括接受这种治疗措施的所有病人过去、现在、未来,因而观察单位无限)(4)个体:组成总体的基本单位。
样本:从研究总体中随机抽取具有代表性的部分观察单位随机性的三个体现:抽样随机、分组随机、试验顺序随机(5)随机变量:观察对象个体的特征或测量的结果观察结果在一定范围内以一定的概率分布随机取值的变量,表示随机现象。
在一定条件下,并不总是出现相同结果变量值:个体观察指标具体取值(6)总体参数:总体的统计指标或特征值固有的、不变的,但往往是未知的(7)样本统计量:由样本所算出的统计指标或特征值已知的,且随着试验的不同而不同,但分布是有规律的(8)样本含量:样本中包含个体的数量(9)频率f=m/n,f的值随n的增大接近常数p,概率P(A)=p即:频率为一变量,是样本统计量;概率为常数,是一总体参数小概率事件:概率小于等于0.05小概率原理:小概率事件在一次试验中是不会发生的(10)抽样误差:两个表现:样本统计量与总体参数间的差别;不同样本统计量间的差别两个原因:个体变异;抽样过程抽样误差不可避免,但是有规律。
医学统计学重点
医学统计学重点说明:本重点仅供参考:不能包括所有选择题考题,名词和简答可信度高,计算题熟练运算过程;同时自己要清楚各种检验方法的基本思想,重点程度与星号数量相关)一、名词解释1、★★★医学统计学:用概率论和数理统计方法研究医学事件的群体特征的一门方法。
2、★总体:根据研究目的确定的同质的研究对象的全体(集合)。
3、样本:从总体中随机抽取的部分研究对象。
4、随机:总体中每个个体有同等的机会进入样本。
5、系统误差:指数据搜集和测量过程中由于仪器不准确、标准不规范等原因,造成观察结果呈倾向性的偏大或偏小,这种误差称为系统误差。
6、随机误差:由于一些非人为的偶然因素使得结果或大或小,是不确定、不可预知的。
7、★★抽样误差:由于抽样原因造成的样本指标与总体指标之间的差,或者是样本指标与样本指标之间的差。
8、准确度(accuracy)或真实性(validity):观察值与真值的接近程度,受系统误差的影响(9、可靠度(reliabiliy)——也称精密度(precision)或重复性(repeatability):重复观察时观察值与其均值的接近程度,受随机误差的影响。
10、★★★小概率事件:一般常将p ≤ 0.05或p ≤ 0.01称为小概率事件,表示某事件发生的可能性很小。
通俗讲一次抽样是不可能发生的事件。
11、★★正态分布定:又称高斯分布,是一条中间高,两头低,左右完全对称地下降,但永远不与横轴相交的钟形曲线。
12、★★医学参考值范围:指绝大多数正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。
最常用的是95%参考值范围。
13、★★标准误:用于反映均数抽样误差大小的指标,也叫样本均数的标准差,它反映了样本均数之间的离散程度。
14、★95%的可信区间:如果从同一总体中重复抽取100个独立样本,将可能有95个可信区间包括总体均数,有5个可信区间未包括总体均数。
二、填空题1、★医学统计学工作基本步骤:统计设计;收集资料.;整理资料;分析资料2、★统计分析包括:统计描述、统计推断3、频数分布的两个重要特征:集中趋势和离散趋势4、正态分布的两个参数:均数;标准差。
医学统计学重点重点知识总结
医学统计学重点选择1.几何均数:平均血清抗体滴度(如P9例2.4)2.正态分布:横轴为μ(界值、面积)2.5% I1.962.5%单侧双侧90%: 1.6495%: 1.64 1.9699%: 2.583.P值与α的关系,α是人为规定的,它们之间没有关系;P值f,Qt(X)4.方差分析自由度V的计算,V总=nT;V组间=组数(k)-1;V组间=V总-V组间5.理论秩和(n(n+1)∕2),实际秩和(通过平均秩次算)6.可信区间的正确应用:总体参数有95%的可能落在该区间内(X);有95%的总体参数在该区间内(X);该区间包含95%的总体参数(X);该区间有95%的可能包含总体参数。
(X);这个区间的可信度为95%(√);总体参数只有一个,要么在区间内,要么不在7.相关系数与回归系数:相关系数为0,两个变量之间没有相关关系(X);回归系数t,相关系数t(X);(要做假设检验)二、名解1.参考值范围:根据正常人的数据估计绝大多数的正常人所在的范围2.区间估计(可信区间):按一定的概率或可信度(bα)用一个区间估计总体参数所在范围。
这个范围称作可信度为1-a的可信区间,又称置信区间。
3.P值:拒绝HO时所冒的风险(或“作出拒绝HO而接受H1”结论时冒了P风险)4.a(第一类错误):HO真实时被拒绝(或HO真实时,拒绝H0,接受H1)5.β(第二类错误):HO不真实时不拒绝(或HO不真实时,不拒绝HO)1-β检验效能:对真实的H1做肯定结论之概率6.秩次:是指全部观察值按某种顺序排列的位序;7.秩和:同组秩次之和8.剩余标准差:扣除了X的影响后,Y方面的变异;引进回归方程后,Y方面的变异。
三、简答1.假设检验与可信区间的联系与区别分辨多个样本是否分别属于不同的总体,并对总体作出适当的结论。
分辨一个样本是否属于某特定总体等。
区间估计(可信区间):按一定的概率或可信度(1-a)用一个区间估计总体参数所在范围。
医学统计学重点官方版
一:基本概念:1.参数:反映总体的统计指标。
2. 统计量:反映样本的统计指标称为统计量。
3. 概率:描述随机事件发生的可能性的大小的一个量度4.小概率事件:把p小于等于0.05或小于等于0.01的随机事件。
资料类型:计量资料,计数资料,等级资料。
医学统计的基本步骤:研究设计,收集资料,整理资料,分析资料,结果报告与结论表达。
二:变量分布:1.正态分布:指变量的频数或频率呈中间最多,两端逐渐对称地减少,表现为钟形的一种概率分布。
特征:(1)正态分布曲线是单峰,对称,钟形曲线,X=μ时曲线达到最高峰。
(2)正态曲线有两个参数,总体均数μ和总体标准差σ,μ越大曲线右移,越小左移,故称位置参数,σ越小曲线越瘦高,越大曲线越矮胖,故称形状参数。
(3)正态分布曲线下的面积分布具有一定的规律。
P80页。
应用:(1)质量控制(2)是统计学的理论基础(3)制定医学参考值范围制定医学参考值范围:包括绝大多数正常人的人体形态功能和代谢反应等各种生理生化指标的波动范围,是作为判定某项指标正常与否的参考标准。
方法:确定正常人对象的范围,统一测量标准,确定分组,样本含量确定,确定参考值范围的但双侧,确定百分界值,医学参考值范围的估计。
2.二项分布特征:(1)二项分布的图形:当π=0.5时图形对称,π≠0.5时,图形呈偏态,且当n的含量增大时,图形趋于对称。
(2)二项分布的均数与标准差:μ=n π;σ²=nπ(1-π);σ=根号下nπ(1-π)(3)二项分布的正态近似:当n无限增大时越趋近于正态分布。
应用:对立性,独立性,重复性三:统计分析:㈠1.统计描述:图表和指标(1)图表:频数分布图分为正偏态和负偏态,长尾向右侧延伸为正偏态,向左侧延伸为负偏态。
频数分布的特点:集中趋势和离散趋势。
(2)指标:分为计数指标和计量指标。
计数指标:相对数。
应用相对数的注意事项:①计算相对数时分母不宜太小②观测单位数不等的几个率不能直接想加求其合计率③资料对比时注意可比性④资料分析时不能以构成比代替率⑤考虑存在抽样误差计量指标:1.集中趋势:①算数均数χ:适用于对称分布资料,特别是正态或近似正态分布的计量资料。
医学统计学 必过重点
1.总体:是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。
总体可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
2.随机抽样:随机抽样是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。
随机抽样是样本具有代表性的保证。
3.变异:在自然状态下,个体间测量结果的差异称为变异。
变异是生物医学研究领域普遍存在的现象。
严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。
4.计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(。
计数资料亦称定性资料或分类资料。
其观察值是定性的,表现为互不相容的类别或属性。
如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、无效的人数;调查一批少数民族居民的A、B、AB、O 四种血型的人数等。
等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位数,称为等级资料(ordinal data)。
等级资料又称有序变量。
如患者的治疗结果可分为治愈、好转、有效、无效或死亡,各种结果既是分类结果,又有顺序和等级差别,但这种差别却不能准确测量;一批肾病患者尿蛋白含量的测定结果分为+、++、+++等。
等级资料与计数资料不同:属性分组有程度差别,各组按大小顺序排列。
等级资料与计量资料不同:每个观察单位未确切定量,故亦称为半计量资料。
医学统计学重点
1. 变异:同质事物之间的差别。
2. 频数分布的两个特征:集中位置,离散趋势3. 数据分布的类型:对称分布和非对称分布。
非对称分布又称偏态分布,包括正偏态和负偏态。
单峰分布,双峰分布,多峰分布。
4. 统计描述:用统计表、统计图和统计指标等方法对资料的数量特征与分布规律进行描述。
5. 集中位置的描述,集中位置指标又称平均数指标。
有哪些及适用条件?(1) 算数平均数:最适用于单峰对称分布资料的平均水平的描述,特别是正态分布资料 (2) 几何平均数:适用于 ①等比资料 ② 对数正态分布资料(3) 中位数和百分位数:适用于 ①偏态分布的资料 ②开口资料 ③资料分布不明等 6. 离散趋势的描述四分位数间距,适用于单峰小样本资料方差和标准差,适用于对称分布尤其是正态分布资料变异系数,常用于 ①比较度量衡单位不同的两组或多种资料的变异度 差悬殊的两组或多组资料的变异度7. 常用相对数(1 )率,是二分类指标(2)构成比(3)比 8. 正确应用相对数应注意几个问题:分析时不能以构成比代替率对观察单位数不等的几个率,不能直接相加求其总率计算率时要注意资料的同质性,对比分析时应注意资料的可比性 也有抽样误差,需要假设检验。
9. 率的标准法(1) 基本思想:采用统一的标准,以消除病情构成不同对治愈率比较的影响,使算得的标准化治愈率有可比性。
(2) 目的:控制混杂因素对研究结果的影响。
10.正态分布 (1)概念P16X(2)标准正态分布,U 变换:u=,u 是标准正态离差,卩是均数,b 是标准差。
(1) 全距亦称极差,适用于单峰小样本资料②比较均数相 (1) 计算相对数的分母不宜过小U 〜N (0, 1)(3) 正态分布的特征:① 是单峰分布,高峰位置在均数 X=u 处。
② 以均数为中心,左右完全对称。
③ 取决于两个参数,均数卩和标准差b 。
卩为位置参数,卩越大,则曲线沿横轴向右移动; 卩越小,则曲线沿横轴向左移动。
(完整版)医学统计学知识点汇总
医学统计学总结绪论1、随机现象:在同一条件下进行试验,一次试验结果不能确定,而在一定数量的重复试验之后呈现统计规律的现象。
2、同质:统计学中对研究指标影响较大的,可以控制的主要因素。
3、变异:同质基础上各观察单位某变量值的差异。
数值变量:变量值是定量的,由此而构成的资料称为数值变量资料或计量资料,其数值是连续性的,称之为连续型变量。
变量无序分类变量:所分类别或属性之间无顺序和程度上的差异分类变量有序分类变量:有顺序和程度上的差异4、总体:根据研究目的确定的同质研究对象中所有观察单位某变量值的集合。
可以分为有限总体和无限总体。
5、样本:是按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
样本代表性的前提:同质总体,足够的观察单位数,随机抽样。
统计学中,描述样本特征的指标称为统计量,描述总体特征的指标称为参数。
6、概率:描述随机事件发生的可能性大小的一个度量。
若P(A)=1,则称A为必然事件;若P(A)=0,则称A为不可能事件;随机事件A的概率为0<P<1.小概率事件:若随机事件A的概率P≤α,则称随机事件A为小概率事件,其统计学意义为:小概率事件在一次随机试验中认为是不可能发生的。
统计描述1、频数分布有两个重要的特征:集中趋势和离散程度。
频数分布有对称分布和偏态分布之分。
后者是指频数分布不对称,集中趋势偏向一侧,如偏向数值小的一侧为正偏态分布,如偏向数值大的一侧为负偏态分布。
2、常用的集中趋势的描述指标有:均数,几何均数,中位数等。
x均数:适用于正态或近似正态的分布的数值变量资料。
样本均数用表示,总体均数用μ表示。
几何均数:适用于等比级数资料和对数呈正态分布的资料。
注意观察值中不能有零,一组观察值中不能同时有正值和负值。
中位数:适用于偏态分布资料以及频数分布的一端或两端无确切数据的资料。
3、常用的离散程度的描述指标有:全距,四分位数间距,方差,标准差,变异系数。
全距:任何资料,一组中最大值与最小值的差。
医学统计学重点
医学统计学重点第一章绪论1.基本概念:总体:根据研究目的确定的性质相同或相近的研究对象的某个变量值的全体。
样本:从总体中随机抽取部分个体的某个变量值的集合。
总体参数:刻画总体特征的指标,简称参数。
是固定不变的常数,一般未知。
统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。
抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。
频率:若事件A在n次独立重复试验中发生了m次,则称m为频数。
称m/n为事件A在n次试验中出现的频率或相对频率。
概率:频率所稳定的常数称为概率。
统计描述:选用合适统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。
统计推断:包括参数估计和假设检验。
用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。
用样本差别或样本与总体差别推断总体之间是否可能存在差别,称为假设检验。
2.样本特点:足够的样本含量、可靠性、代表性。
3.资料类型:(1)定量资料:又称计量资料、数值变量或尺度资料。
是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。
每个个体都能观察到一个观察指标的数值,有度量衡单位。
(2)分类资料:包括无序分类资料(计数资料)和有序分类资料(等级资料)①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。
包括二分类资料和多分类资料。
二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。
多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。
4.统计工作基本步骤:统计设计、资料收集、资料整理、统计分析。
第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2.误差分类:随机误差(抽样误差、随机测量误差)、系统误差、过失误差。
3.实验设计的三个基本原则:对照原则、随机化分组原则、重复原则。
医学统计学知识点
第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。
2、研究对象:具有不确定性结果的事物。
3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。
4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。
5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。
6、医学统计学中的基本概念(1) 同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。
变异,指总体内的个体间存在的、绝对的差异。
统计学通过对变异的研究来探索事物。
(2) 变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。
变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果。
(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。
包括二分类、无序多分类。
(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、AB 等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。
统计方法的选用与数据类型有密切的关系。
(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。
样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。
v1.0 可编辑可修改抽样,是从研究总体中随机抽取部分有代表性的观察单位。
参数,指描述总体特征的指标。
统计量,指描述样本特征的指标。
(4)误差误差,指观测值与真实值、统计量与参数之间的差别。
可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。
随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。
抽样误差,是抽样引起的统计量与参数间的差异。
(完整版)医学统计学复习要点
..第一章绪论1、数据/资料的分类:①、计量资料,又称定量资料或者数值变量;为观测每个观察单位某项治疗的大小而获得的资料。
②、计数资料,又称定性资料或者无序分类变量;为将观察单位按照某种属性或者类别分组计数,分组汇总各组观察单位数后而得到的资料。
③、等级资料,又称半定量资料或者有序分类变量。
为将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位数后而得到的资料。
2、统计学常用基本概念:①、统计学(statistics )是关于数据的科学与艺术,包括设计、搜集、整理、分析和表达等步骤,从数据中提炼新的有科学价值的信息。
②、总体(population )指的是根据研究目的而确定的同质观察单位的全体。
③、医学统计学(medical statistics ):用统计学的原理和方法处理医学资料中的同质性和变异性的科学和艺术,通过一定数量的观察、对比、分析,揭示那些困惑费解的医学问题背后的规律性。
④、样本(sample ):指的是从总体中随机抽取的部分观察单位。
⑤、变量(variable ):对观察单位某项特征进行测量或者观察,这种特征称为变量。
⑥、频率(frequency ):指的是样本的实际发生率。
⑦、概率(probability):指的是随机事件发生的可能性大小。
用大写的P 表示。
3、统计工作的基本步骤:①、统计设计:包括对资料的收集、整理和分析全过程的设想与安排;②、收集资料:采取措施取得准确可靠的原始数据;③、整理资料:将原始数据净化、系统化和条理化;④、分析资料:包括统计描述和统计推断两个方面。
第二章计量资料的统计描述1. 频数表的编制方法,频数分布的类型及频数表的用途①、求极差(range ):也称全距,即最大值和最小值之差,记作R ;②、确定组段数和组距,组段数通常取10-15组;③、根据组距写出组段,每个组段的下限为L ,上限为U ,变量X 值得归组统一定为L ≤X <U ,最后一组包括下限。
医学统计学 重点知识总结
名词解释1、一类错误:拒绝了实际上成立的H。
,这类“弃真”的错误称为I型错误或第一类错误。
2、参数和统计量:这些总体的统计指标或特征值称为参数。
由样本所算出的统计指标或特征值称为统计量。
3、变异系数:亦称离散系数,为标准差与均数之比,常用百分数表示。
4、P值:即概率,反映某一事件发生的可能性大小。
5、检验效能:B称为检验效能或把握度,即两总体却有差别,按α水准能发现它们有差别的能力。
简答题1、描述数值变量资料(统计资料)的集中程度有哪些指标,有何运用条件?算数均数:单峰对称分布的资料几何均数:对数变换后的单峰对称的资料中位数:偏态分布,分布不明资料,有不确定值的资料。
百分位数:当样本含量较少时不宜用靠近俩端的百分位数来估计频数分布范围。
2、实验研究的基本要素和基本原则是什么?基本要素:处理因素、受试对象和实验效应。
基本原则:对照原则、随机化原则和重狂原则大题1、(1)变量资料(2)成组t检验对立性正态性方差齐性(3)H0ιμ1=μ2,新药与常规药物的疗效相同H1rμ1≠μ2,新药与常规药物的疗效不同α=0.05T=1.0195V=n1+n2-2=18(2)t<t0.05z18,p>0.05,按a=0.05水准,不拒绝H0,差别无统计学意义。
结论:t检验结果表明,故尚不能认为新药与常规药物的疗效相同。
2、(1)T=13×17/47=4.7(2)x2检验(3)X2>X2(0.05,1),p<0.05,按a=0.05水准,拒绝H0,接受HQ差别有统计学意义。
结论:x2检验结果表明,乙疗法比甲疗法好。
3、(1)成组设计两样本比较的秩和检验(2)实验组秩次:13、I15、8.5、14、15.5、15.5、17、18对照组秩次:1、2、4、3、5、6、8.5、7、10、11.5(3)H0:两组局部温热的疗效总体分布相同H1:两组局部温热的疗效总体分布不同4(1)Ho:P=O,即母体内时间与体重无线性相关关系H1:P≠0,即母体内时间与体重有线性相关关系a=0.05F>5.23,拒绝HO,接受HI,相关系数有统计学意义。
医学统计学考试重点整理知识讲解
医学统计学考试重点整理一、基本概念1.总体与样本总体:所有同质观察单位某种观察值(即变量值)的全体样本:是总体中抽取部分观察单位的观察值的集合2.普查与抽样调查普查:就是全面调查,即调查目标总体中全部观察对象抽样调查:是一种非全面调查,即从总体中抽取一定数量的观察单位组成样本,对样本进行调查3.参数与统计量参数:总体的某些数值特征统计量:根据样本算得的某些数值特征4.Ⅰ型与Ⅱ型错误假设检验的结论真实情况拒绝H0不拒绝H0H0正确Ⅰ型错误(ɑ) 推断正确(1−ɑ)H0不正确推断正确(1−β) Ⅱ型错误(β)Ⅰ型错误(ɑ错误): H0为真时却被拒绝,弃真错误Ⅱ型错误(β错误): H0为假时却被接受,取伪错误5.随机化原则与安慰剂对照随机化原则:是将研究对象随机分配到实验组和对照组,使每个研究对象都有同等机会被分配到各组中去,以平衡两组中已知和未知的混杂因素,从而提高两组的可比性,避免造成偏倚。
(意义: ①是提高组间均衡性的重要设计方法;②避免有意扩大或缩小组间差别导致的偏倚;③各种统计学方法均建立在随机化基础上)安慰剂对照:是一种常用的对照方法。
安慰剂又称伪药物,是一种无药理作用的制剂,不含试验药物的有效成分,但其感观如剂型、大小、颜色、质量、气味及口味等都与试验药物一样,不能被受试对象和研究者所识别。
(安慰剂对照主要用于临床试验,其目的在于控制研究者和受试对象的心理因素导致的偏倚,并提高依从性。
安慰剂对照还可以控制疾病自然进程的影响,显示试验药物的效应)6.误差与标准误(区分率与均数)㈠均数抽样误差:由个体变异产生的、随机抽样引起的样本统计量与总体参数间的差异。
标准误:是指样本均数的标准差,反映抽样误差大小的定量指标,其公式表示为S x =S/√n㈡样本率率的抽样误差:样本率p和总体率π的差异率的标准误:样本率的标准差,公式为σp=√π(1-π)/n7.方差分析方差分析:又称F检验,是通过对数据变异按设计类型的不同,分解成两个或多个样本均数所代表总体均数是否有差别的一种统计学方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
<<医学统计学>>
1. 总体:根据研究的目的确定的同质研究对象中所有的观察单位变量值的集合。
2. 样本:按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
3. 同质:影响研究指标的主要因素易控制的因素基本上相同。
4. 抽样误差:在抽样研究中,由于变异的存在,即使在同一总体中抽取的几个样本,各样本统计量往往不等。
样本统计量与总体参数也不等,这种由于抽样研究所至样本之间和样本与总体之间的差异称为--
5. 变量:观察指标在统计学上统称为指标变量,它反应的是生物个体间的变异情况,根据其性质可分为定性变量(分类)和定量变量(连续)。
6. 截尾数据:生存时间观察过程被人为的截止称为截尾,又称删失或终检。
原因:失访/退出/终止(研究时限已到而终止观察)。
7. 卡方基本思想:X2分布是一种连续型分布,可用于检验资料的实际频数和按检验假设计算的理论频数是否相等等问题。
X2反应实现了实际频数与理论频数的吻合程度。
如果检验假设成立,则A-T一般不大,X2应很小,即出现大X2值概率很小。
即X2越大,P越小,若P≤a时,就怀疑假设的成立,拒绝H0。
若P>a则没有理由拒绝H0。
8. X2用途:(1)实际频数与拟合频数拟合优度:A推断两个或两个以上总体率或构成比有无差别(四格表/行x列表)。
B两变量之间有无相互关系。
C频数分布的拟合优度检验(判断次样本是否来自某种分布)。
(2)某些分布可用X2近似。
(3)间接应用:如t分布和F分布就是在X2分布基础上推导出来的。
9. 方差分析的基本思想:根据研究目的和设计类型,把总体变异中离均差平方和分解成两部分或更多部分,也把总变异中的自由度相应分成两部分或更多部分,然后再进行比较,评价由某种因素引起的变异是否具有统计学意义。
10. 假设检验中P,a,b(倍他)的关系及统计学意义:
a:检验水准,即显著性检验,在此概率之下的认为是小概率事件,统计学上以为此事件“不可能发生”,以此判断是否不拒绝H0无效假设,在假设检验中,按a检验水准,拒绝了原来正确的H0,即犯了第1类错误,犯此错误的概率为a。
b:在T假设检验中,按照a检验标准,没有拒绝原来错误的无效假设,即犯了第2类错误,犯次错误的概率是b。
P:是在H0成立时大于等于用样本计算的统计值出现的概率用P值与检验水准a 比较,根据比较的结果作出统计判断。
如果P≤a时,就怀疑假设的成立,拒绝H0。
若P>a则接受H0拒绝H1。
P值越小只能说明作出拒绝H0,接受H1的推论时犯错误的机会越小。
11.行x列表X2检验应注意:(1)行x列表中不宜有1/5以上格子的理论频数小于5或有一个格子的理论频数小于1,若发生上述情况可采用:A将理论频数过小的格子所在的行或列与性质相近的邻近行或列中的实际频数合并,使重新计算的理论频数增大。
B删去理论频数过小的行或列。
C增大样本含量以增大理论频数。
(2)当效应按强弱分为若干级别,则按实验结果可整理为单向有序行x 列表,在比较各处理组的效应有无差别时,宜用秩和检验,ridit分析等。
如作X2检验只说明各组构成比的差异有无统计学意义。
(3)当多个样本或构成比比较的X2检验,统计推论为拒绝检验假设,只认为总体率或总体构成比之间总的来说有差别,但不能说明每两两之间有差别,若对每两个率或构成比进行比较须进行行x列表的X2分割。
12.四格表X2检验注意:(1)1≤T<S,而n≥40时,需要计算校正X2值或改用四格表资料的确切概率法计算。
(2)T<1,或n<40时,改用四格表确切。
(3)n≥40且T ≥S时用基本或专用公式,但当P约等于a时,用Fisher确切。
(4)X2连续性校正只用于四格表资料。
13.假设检验的步骤:(1)建立假设检验和确定检验水准。
(2)选择检验方法和计算检验统计量。
(3)确定概率值作出推断(包括统计专业推断)。
14.制定参考值步骤:(1)从正常人总体中抽样(2)控制测量误差(3)判定是否需要分组确定参考值范围(4)决定单侧还是双侧(5)选择合适的百分上限(6)对资料的分布进行正态性检验(7)根据资料的分配类型选定恰当的方法进行参考值范围的估计。
15.标准差与标准误不同:(1)二者描述内容不同:前者个体变异;后者群体变异。
(2)二者与n样本含量关系不同:n很小时S不稳定,n足够大时S接近总体标准差;而S不变时,n接近无穷大时,标准误接近0。
(3)二者用途不同:S:描述观察值的离散程度/计算CV即变异系数/估计医学参考值范围/计算标准误;标准误:反映均数抽样误差大小/估计总体均数可信区间/用于假设检验。
16.判断直线回归的效果:(1)散点图:回归效果好,散点呈直线趋势。
(2)确定系数r2指的是应变量Y的总变异中归因与X的部分,若r2=1则SS回归。
=0则各点严格遵守函数关系。
(3)标准估计误差即剩余标准差Syx,它越小,回归效果越好。
(4)残差(Y-X),即实测值Y与预测值X之差,反映了X对Y的影响之外的一切因素对Y的变异影响,也就是在总平方和中无法用X解释的部分。
17.直线回归与相关:回归与相关是研究两个或多个随即变量之间相互关系的一种统计分析方法,应用较广,回归是研究随即变量之间的数量依存关系,相关是研究随即变量之间相互联系的密切程度和方向。
(1)区别:A在资料要求上若应变量Y是随即变量,服从正态分布,自变量是固定的
随机变量,在确定自变量的基础上,建立Y回归于X的直线方程,,这样就可以确定当X为某一定值时,Y将会在什么范围内波动这种模型称为1型回归模型。
相关要求XY都是随机变量,而且服从双变量正态分布,这种资料若进行回归分析,一般称为2型回归模型,在这种模型中,X和Y可任意代表两个变量中的某一个,这可根据专业或由实际需要来确定,故对于2型模型,可计算两个回归方程:对X推Y,Y=ayx+byxX,Y推X,X=axy+bxyY.B在意义和应用上,回归反映两变量间依存关系,相关反映两变量间相互关系。
(2)联系:A同一资料的r,b符号相同,如r为正,说明X增大,Y也增大,b 为正,说明为X增加一个单位,Y平均增加b个单位。
B:r和b的假设检验等价,即对同一样本,两者的t值等价,由于r的假设检验可直接查表,较简单,而b 的假设检验较复杂故可用r的假设检验代替b的假设检验。
C:r,b可相互换算。
D:回归与相关可以相互解释。
相关系数的平方r2是应变量Y的总变异中归因于X的部分,r2又称确定系数。