激光测距仪的工作原理是怎样的.
激光测距技术原理
激光测距技术原理:1.激光的亮度高。
固体激光器的亮度更可高达1011W/cm2Sr这是因为激光虽然功率有限,但是由于光束极小,于是具有极高的功率密度,所以激光的亮度一般都大于我们所见所有光(包括可见光中的强者:太阳光),这也是激光可用于星际测量的根本原因所在;2.激光的单色性好。
这是因为激光的光谱频率组成单一。
3.激光的方向性好。
激光具有非常小的光束发散角,经过长距离的飞行以后仍然能够保持直线传输;4.激光的相干性好。
我们通常所见到的可见光是非相干光,激光可以做到他们都做不到的事情,比如说切割钢材。
在测距领域,激光的作用更是不容忽视,可以这样说,激光测距是激光应用最早的领域(1960年产生,1962年即被应用于地球与月球间距离的测量)。
测量的精确度和分辨率高、抗干扰能力强,体积小同时重量轻的激光测距仪受到了大多数有测距需求的企业、机构或个人的青睐,其市场需求空间大,应用领域广行业需求多,并且起着日益重要的作用。
一、相位法激光测距技术原理:当今市场上主流的激光测距仪是基于相位法的激光测距仪。
这是因为基于相位法的激光测距仪轻易地就可以克服超声波测距的一大缺陷:误差过大,使测量精度达到毫米级别。
而基于此法的激光测距仪主要的缺点在于电路复杂、作用距离较短(一百米左右,经过众多科学工作者的努力,现在也有作用距离在几百米的相位法激光测距仪)。
相位法激光测距技术,是采用无线电波段频率的激光,进行幅度调制并将正弦调制光往返测距仪与目标物间距离所产生的相位差测定,根据调制光的波长和频率,换算出激光飞行时间,再依次计算出待测距离。
该方法一般需要在待测物处放置反射镜,将激光原路反射回激光测距仪,由接收模块的鉴波器进行接收处理。
也就是说,该方法是一种有合作目标要求的被动式激光测距技术。
如下图所示:由图所显示的关系,我们可以知道,用正弦信号调制发射信号的幅度,通过检测从目标反射的回波信号与发射信号之间的相移φ,通过计算即可以得到待测距离。
激光测距的原理
激光测距的原理
激光测距是利用激光器发出的高能量、高频率的光束进行测量的一种方法。
它基于光的传播速度是一个已知的常数,并且在真空中时速为299,792,458米每秒的原理。
激光测距仪由发射器、接收器以及控制电路组成。
发射器发出一个短脉冲的激光束,该激光束经过一定的光学器件后,瞄准待测距物体上的目标点。
当激光束照射到目标点上后,部分能量会被目标吸收,而另一部分则会被反射回来。
接收器接收到反射回来的光束,并将其转换为电信号。
控制电路会根据接收到的信号,计算出激光从发射到返回所经过的时间差,即“飞行时间”。
由于光的传播速度已知,通过时间差可以计算出激光从发射到返回所经过的距离。
在实际测量中,激光测距仪会通过多次发射-接收的循环进行测量,从而提高测量的准确性。
通过对多次测量结果的处理,可以得到目标点与测量仪之间的距离。
激光测距的原理基于光的传播速度的稳定性和高精度,因此在许多领域中得到了广泛的应用,例如地质勘探、建筑测量、工业制造等。
它具有测量速度快、精度高、非接触测量等优点,成为现代测量技术中不可或缺的一部分。
激光测距仪讲解
0.05m至100m ±1.5 mm
最小显示单位: 激光等级:
1mm 二级
激光类型: 激光点直径(远距离): 自动关闭电源: 连续测量,最大、最小值测
635nm,<1mW 6/30/60毫米(10/50/100米) 180秒无操作后 有
量,显示屏照明: 储存历史数据: 尺寸和重量: 电池(AAA型,2×1.5伏): 贮存温度范围: 操作温度范围: 防雨/防尘:
Leica A5 激光测距仪
测量范围:
0.05m至100m
测量精度:
±1.5 mm
最小显示单位:
1mm
激光等级:
二级
激光类型:
19组 135*45*31mm,145g 可进行至少5000次测量 -25°C至70°C -10°C至50°C IP54
Leica A5 激光测距仪
Leica A5
标准型Leica DISTO A5以其符合工效 的外型及柔软的Softgrip令人信服。 采用这样独特的底座、众多的附加功 能和内置式望远镜瞄准器,使您为各 种测量做好了最充分的准备,当然, 您也可以通过直接按钮,快速方便地 调用最常用的计算功能。可靠、简便 -从现在开始随时随地轻松测量。无 论室内还是室外- Leica DISTO A5是 您永远可靠的伙伴!
Power Ranger 技术可减少激光 衰减,提高接受灵敏度,在无反 射板的情况下,测程大大增加。 (在阳光下,激光测距仪A3对白 色墙面测程可达80米以上)备注: 对不同的反射目标,测程不同 面积:快速方便的测量 空间高度:轻松方便地按动按钮 即可得出结果。
Leica A3 激光测距仪
测量范围: 测量精度:
Leica A2 激光测距仪
Leica A2
激光测距工作原理
激光测距工作原理
激光测距的工作原理:激光测距的基本原理是以激光作为信号源,以调制光束作为目标,用激光测距仪接收目标反射回来的信号,并由激光测距仪计算出目标的距离。
而这里需要先介绍一下光的基本性质。
光是一种电磁波,它在空间传播时,遇到各种障碍都会被反射或折射。
比如,当一束光照射到水面上时,一部分光被反射到水面以下,还有一部分光被折射到了远处,这就是我们常说的“光的漫反射”现象。
如果你要测量光经过水面所花的时间,那么你可以把一束激光放在水中,然后测量这束激光通过水面所花的时间。
因为水具有“折射”性,所以经过水的反射后,距离就可以算出来了。
同理可知,其他物体也具有同样性质。
那么激光测距就是根据这一原理来进行测量的。
— 1 —。
激光测距原理
激光测距原理激光测距是一种利用激光束来测量目标距离的技术。
它主要应用于工业、建筑、地理测绘、军事等领域,具有测量精度高、速度快、非接触式测量等优点。
激光测距原理是基于光的传播速度和时间的关系,通过测量激光束从发射到接收的时间来计算目标距离。
下面我们来详细了解一下激光测距的原理。
1. 发射激光。
激光测距的第一步是发射激光。
激光器产生的激光束具有单色性、方向性和相干性,能够保持较小的束散。
这样就能够保证激光束在传播过程中能够保持一定的直线传播,从而保证测量的准确性。
2. 激光束传播。
激光束从激光器发射出来后,会沿着一定的方向传播。
在传播过程中,激光束会受到大气、地形等因素的影响,但由于激光束的单色性和方向性,这些影响相对较小,不会对测量结果产生显著影响。
3. 激光束照射目标。
激光束照射到目标后,会被目标表面反射或散射。
这时,激光束的能量会部分损失,但仍然能够保持一定的能量,以便接收器能够接收到足够的信号进行测量。
4. 接收激光。
接收器接收到目标反射或散射的激光束后,会将其转化为电信号。
这个过程需要非常快速和精确,以保证测量的准确性。
5. 计算距离。
接收到激光信号后,系统会通过计算激光从发射到接收的时间来确定目标距离。
由于光在真空中的传播速度是一个已知的常数,因此通过测量激光的时间,就可以准确地计算出目标距离。
总结。
激光测距原理是利用激光束的传播速度和时间的关系来实现对目标距离的测量。
通过发射激光、激光束传播、照射目标、接收激光和计算距离等步骤,可以实现对目标距离的快速、准确测量。
激光测距技术在工业、建筑、地理测绘、军事等领域有着广泛的应用前景,随着技术的不断发展和完善,相信激光测距技术会在未来发挥更加重要的作用。
激光测量仪的工作原理
激光测量仪的工作原理
激光测量仪的工作原理是利用激光束的发射、传播和接收来测量目标物体的距离和位置。
其主要包括激光器、发射器、接收器和电子控制器这几个部分。
1. 激光器:激光测量仪使用的激光器通常是半导体激光器,其特点是体积小、功耗低、发射能量高。
激光器通过激活半导体材料,使其产生激发,从而产生一束高度聚焦的激光束。
2. 发射器:激光测量仪的发射器将激光束从激光器中引导出来,经过透镜系统进行聚焦和准直,使激光束变得更加稳定和准确。
3. 接收器:激光测量仪的接收器主要是用来接收激光束反射回来的信号。
接收器中通常包含光电二极管或光电探测器,能够将激光束的光能转化为电信号。
4. 电子控制器:激光测量仪的电子控制器负责控制整个测量过程。
它可以控制激光器的开关,以及接收到的激光信号进行放大、滤波和数字化处理,最后通过计算和数据分析得到目标物体的距离和位置。
运行模式:
1. 时差测量法:通过测量激光束反射回来的时间差,根据光在真空中的传播速度,计算出目标物体与测量仪之间的距离。
这种方法适用于测量较长距离。
2. 相位测量法:通过测量相位差,即测量激光束反射回来时的
相位与原先发射时的相位之间的差别,计算出目标物体与测量仪之间的距离。
这种方法适用于高精度测量。
总的来说,激光测量仪利用激光束的发射、传播和接收,通过测量时间差或相位差来计算目标物体的距离和位置。
其优点是测量精度高,测量范围大,适用于许多领域的精密测量和定位。
激光测距仪的工作原理
激光测距仪的工作原理一、激光测距仪简介激光测距仪是一种利用激光束进行测量的仪器,它能够高精度地测量物体的距离。
激光测距仪在工业、建筑、测绘等领域广泛应用,它的工作原理基于激光束的发射、接收和测量时间的原理。
二、激光发射原理激光测距仪通过激光器发射激光束,激光器是将电能转换为激光光束的装置。
激光器通常采用半导体激光器,其工作原理是利用半导体材料的正向电流和外界光的作用下,通过自发辐射实现光放大,进而形成激光束。
三、激光束的特性激光束具有高集中度、高单色性、高相干性和高直线度等特性。
这些特性使得激光束在传输过程中能够保持较小的发散度,从而实现高精度的测量。
四、激光的传播和反射1.激光的传播激光发射后呈直线传播,其传播路径遵循光的直线传播规律。
激光测距仪通过测量激光束的时延,可以计算出被测物体与激光测距仪的距离。
2.激光的反射当激光束照射到物体上时,一部分光线被物体吸收,另一部分光线被物体反射。
激光测距仪通过接收到的反射光信号来计算被测物体的距离。
五、激光测距原理激光测距仪的测量原理是基于激光束发射和接收的时间差来计算距离的。
具体步骤如下:1.发射激光束激光测距仪发射激光束,激光束照射到被测物体上。
2.接收反射光信号被测物体上的激光束被反射后,激光测距仪接收到反射光信号。
3.计算时间差激光测距仪通过计算激光发射和接收的时间差来确定物体的距离。
这是因为激光在空气中传播的速度是已知的,通过测量时间差,可以根据速度和时间的关系计算出距离。
4.输出测量结果激光测距仪将计算得到的距离结果输出给用户。
六、激光测距仪的应用激光测距仪在工业、建筑和测绘等领域有着广泛的应用。
1.工业领域在工业领域,激光测距仪常用于测量物体的尺寸、距离和位置。
例如,在生产线上使用激光测距仪可以高精度地测量产品的尺寸,从而保证产品的质量。
2.建筑领域在建筑领域,激光测距仪可以用于测量建筑物的高度、长度和角度。
它可以帮助工程师和建筑师进行精确的测量,从而提高建筑物的设计和施工质量。
激光测距仪
激光测距仪激光测距仪是利用激光对目标的距离进行准确测定的仪器。
激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。
若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。
若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。
世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的。
美国军方很快就在此基础上开展了对军用激光装置的研究。
1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用联合体。
激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。
它是提高高坦克、飞机、舰艇和火炮精度的重要技术装备。
由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。
国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。
主要分类一维激光测距仪用于距离测量、定位;激光测距仪二维激光测距仪(Scanning Laser Range finder)用于轮廓测量,定位、区域监控等领域;三维激光测距仪(3D Laser Range finder)用于三维轮廓测量,三维空间定位等领域。
图:使用激光测量月球到地球距离的示意图激光测距仪的测量原理及方法1.利用红外线测距或激光测距的原理是什么?测距原理基本可以归结为测量光往返目标所需要时间,然后通过光速c =29979 2458m/s 和大气折射系数n 计算出距离D。
由于直接测量时间比较困难,通常是测定连续波的相位,称为测相式测距仪。
当然,也有脉冲式测距仪,典型的是WILD的DI-3000需要注意,测相并不是测量红外或者激光的相位,而是测量调制在红外或者激光上面的信号相位。
激光测距仪原理
激光测距仪原理
激光测距仪原理:
激光测距仪通常使用时间差法来测量距离。
其原理基于光的速度恒定不变,并且利用激光器产生的脉冲激光束和物体反射回来的光信号之间的时间差来计算出待测目标与仪器之间的距离。
具体操作过程如下:
1. 发送脉冲激光束:激光测距仪通过内部的激光器产生一束高能量脉冲激光束,并通过透镜将它聚焦成一个极小的光斑。
2. 激光束照射目标:激光束被照射到待测目标上,并经过反射后返回测距仪。
3. 接收反射光信号:测距仪上的接收器接收到反射回来的光信号,并将其转化为电信号。
4. 计算时间差:测距仪内部的计算器开始计时,记录激光束发射和接收到反射光信号之间的时间差。
5. 计算距离:知道光在真空中的速度(约为3×10^8 m/s),测距仪使用时间差乘以光速的公式来计算目标与仪器之间的距离。
激光测距仪的测量精度通常在几毫米到几厘米之间,具有高精度、高灵敏度和非接触测量的特点。
它在工程测绘、建筑施工、地质勘探等领域具有广泛应用。
测距仪的工作原理
测距仪的工作原理测距仪是一种常见的测量工具,广泛应用于建筑、工程、地理、环境等领域。
它能够快速、简单地测量距离,并且具有较高的精度和可靠性。
下面将详细介绍测距仪的工作原理,包括激光测距仪和超声波测距仪两种类型。
一、激光测距仪的工作原理:1. 激光发射:激光测距仪通过内置的激光器发射一束激光束,通常使用红色或绿色激光。
2. 激光接收:激光束照射到被测物体上,部分激光经过散射、反射后被激光接收器接收。
3. 时间测量:激光接收器接收到反射的光后,通过内部的光电元件将光信号转化为电信号,并记录下该时刻。
4. 计算距离:测距仪根据激光发射与接收之间的时间差以及光在空气中的传播速度(一般采用光速)来计算出距离。
二、超声波测距仪的工作原理:1. 超声波发射:超声波测距仪通过内置的超声波传感器发射一束超声波。
2. 超声波接收:超声波照射到被测物体上后,部分超声波经过散射、反射后被超声波接收器接收。
3. 时间测量:超声波接收器接收到反射的超声波后,通过内部的压电元件将超声波信号转化为电信号,并记录下该时刻。
4. 计算距离:测距仪根据超声波发射与接收之间的时间差以及超声波在空气中的传播速度(一般约为340米/秒)来计算出距离。
三、激光测距仪与超声波测距仪的比较:1. 测量精度:激光测距仪的测量精度一般在几毫米左右,远高于超声波测距仪的测量精度(通常在几厘米到一米之间)。
2. 测量范围:激光测距仪的测量范围较广,可以达到几百米甚至上千米,而超声波测距仪的测量范围一般较短,通常在几米到几十米之间。
3. 测量环境:激光测距仪对环境条件要求较高,可在室内和室外使用。
而超声波测距仪对环境的影响较大,容易受到气温、湿度等因素的影响。
4. 使用方便性:激光测距仪体积小巧、操作简便,可以携带随时使用。
超声波测距仪体积较大,操作稍显复杂。
5. 应用领域:由于激光测距仪具备高精度、远距离和适应性广等特点,常被应用于建筑、测绘、工程勘察、地理测量等领域。
激光测距仪原理
激光测距仪原理
激光测距仪原理是利用激光束的发射和接收时间差来计算目标物体与测距仪的距离。
其基本原理如下:
1. 激光发射:测距仪内部装有激光器,通过电路控制激光器发射一束高能激光束。
激光束在发出时具有很小的发散角度,可保持激光束的较小直径,以获得更高的测距精度。
2. 激光照射:发出的激光束照射到目标物体上,并被目标物体表面反射。
目标物体可以是墙壁、地面、物体等。
3. 激光接收:测距仪内部装有光电元件,通常是光敏二极管(Photodiode)。
当被照射物体反射的激光束到达测距仪后,光电元件会将激光束转换为电信号。
4. 电信号处理:测距仪内部的电路会对接收到的电信号进行处理和分析。
电路会检测激光发射和接收的时间差,即激光束从发射到反射回来的时间。
5. 距离计算:根据光在空气中的传播速度和激光的发射与接收时间差,可以计算出激光束从测距仪发射到目标物体反射回来所经历的时间。
通过时间乘以光速,可以得到目标物体与测距仪之间的距离。
激光测距仪的测量精度通常在毫米级别,并且具有较长的测距范围。
这使得激光测距仪在建筑、工程测量、地质勘察等领域有着广泛的应用。
激光测距仪原理图
激光测距仪原理图
激光测距仪是一种利用激光技术进行测距的仪器,其原理图如下所示:
1. 发射器。
激光测距仪的发射器部分主要包括激光发生器和光学系统。
激光发生器产生一
束高能激光,并通过光学系统将其聚焦成一束细线,以便于准确照射到目标物体上。
2. 接收器。
激光测距仪的接收器部分包括接收光电探测器和信号处理器。
接收光电探测器
接收被测物体反射回来的激光,并将其转换成电信号,然后通过信号处理器进行处理和放大,以便后续的测距计算。
3. 时间测量模块。
时间测量模块是激光测距仪的核心部分,它利用接收到的激光信号的时间差来
计算目标物体与测距仪之间的距离。
通过精确的时间测量,可以实现对目标物体距离的高精度测量。
4. 数据处理与显示模块。
数据处理与显示模块接收时间测量模块传递过来的距离数据,并进行进一步的
处理和计算,最终将测得的距离数据显示在仪器的显示屏上,以便用户进行观测和记录。
5. 电源模块。
激光测距仪的电源模块提供仪器所需的电能,以保证仪器正常工作。
通常采用
锂电池或者充电电池供电,以便于激光测距仪在户外环境下进行使用。
激光测距仪的原理图如上所述,通过发射器发射激光,接收器接收反射激光并
进行时间测量,最终通过数据处理与显示模块将测距结果显示出来。
激光测距仪在
工程测量、地质勘探、建筑施工等领域有着广泛的应用,其原理图的了解对于深入理解激光测距仪的工作原理具有重要意义。
激光测距仪原理
激光测距仪原理激光测距仪,是利用激光对目标的距离进行准确测定的仪器。
激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时刻,计算出从观测者到目标的距离。
激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一。
一.激光测距仪大体原理激光测距仪一样采纳两种方式来测量距离:脉冲法和相位法。
脉冲法测距的进程是如此的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光来回的时刻。
光速和来回时刻的乘积的一半,确实是测距仪和被测量物体之间的距离。
脉冲法测量距离的精度是一样是在+/- 1米左右。
另外,此类测距仪的测量盲区一样是15米左右。
激光测距是光波测距中的一种测距方式,若是光以速度c在空气中传播在A、B两点间来回一次所需时刻为t,那么A、B两点间距离D可用以下表示。
D=ct/2式中:D——测站点A、B两点间距离;c——光在大气中传播的速度;t——光来回A、B一次所需的时刻。
由上式可知,要测量A、B距离事实上是要测量光传播的时刻t,依照测量时刻方式的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。
相位式激光测距仪相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光来回测线一次所产生的相位延迟,再依照调制光的波长,换算此相位延迟所代表的距离。
即用间接方式测定出光经来回测线所需的时刻,如下图。
相位式激光测距仪一样应用在周密测距中。
由于其精度高,一样为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。
假设调制光角频率为ω,在待测量距离D上来回一次产生的相位延迟为φ,那么对应时刻t 可表示为:t=φ/ω将此关系代入(3-6)式距离D可表示为D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ)=c/4f (N+ΔN)=U(N+)式中:φ——信号来回测线一次产生的总的相位延迟。
激光测距仪的原理
激光测距仪的原理
激光测距仪的原理是利用激光束的传播特性来测量目标物体与测距仪之间的距离。
具体原理如下:
1. 发射阶段:激光测距仪首先通过一个激光发射器产生一束激光束。
激光发射器发出的激光束通常是一束激光脉冲,其脉冲宽度很短,频率很高。
2. 发射与接收的同步:在发射激光脉冲的同时,激光测距仪还会启动一个高精度的计时器。
该计时器可以精确地记录激光脉冲发射的时间。
3. 反射阶段:激光束被发射后,会迅速地传播到目标物体上,并发生反射。
如果目标物体是光滑的(如镜面),则激光束很可能会直接反射回激光测距仪;如果目标物体是粗糙的,则激光束很可能会发生散射。
4. 接收阶段:激光测距仪上有一个接收器,用于接收反射回来的激光束。
接收器通常会过滤掉不必要的光线,并只接收与激光发射器发出的激光脉冲相对应的反射激光脉冲。
5. 时间测量:一旦接收到反射激光脉冲,激光测距仪的计时器就会停止计时。
通过计时器记录的时间,可以计算出激光脉冲从发射到接收的时间差Δt。
6. 距离计算:根据光在真空中的传播速度(约为每秒30万千米)和已知的Δt时间差,可以通过简单的公式计算出目标物
体与激光测距仪之间的距离。
公式为:距离 = (光速× Δt) / 2。
通过以上原理,激光测距仪可以实现非常精确的距离测量,适用于各种工程、建筑、测绘以及室内外等领域。
激光测距仪的原理和应用
激光测距仪的原理和应用1. 激光测距仪的原理激光测距仪是一种使用激光技术进行测量距离的设备。
它使用激光发射器发射一束激光束,通过检测激光束的时间和空间信息来确定目标物体与测量仪的距离。
1.1 阶段法激光测距仪使用的一种常见原理是阶段法。
阶段法基于测量激光光束从发射到接收的时间差来计算距离。
具体步骤如下:1.激光发射器发射出一束短时宽的激光脉冲。
2.激光脉冲照射到目标物体上并反射回来。
3.接收器接收到反射的激光脉冲。
4.通过测量激光脉冲的时间差,使用光速与时间的关系来计算目标物体与激光测距仪的距离。
1.2 相移法另一种常见的激光测距仪的原理是相移法。
相移法使用了激光光束的相位变化来计算距离。
具体步骤如下:1.激光发射器发射出一束激光光束。
2.激光光束照射到目标物体上并反射回来。
3.接收器接收到反射的激光光束。
4.在接收器中,激光光束与一个参考光束进行干涉,形成干涉条纹。
5.通过测量干涉条纹的变化,计算出目标物体与激光测距仪的距离。
2. 激光测距仪的应用激光测距仪广泛应用于各个领域,包括建筑、制造业、地质测量、机械加工等。
以下是激光测距仪的一些常见应用:2.1 建筑测量激光测距仪在建筑领域中起到了重要的作用。
它可以用来测量建筑物的长度、高度、宽度等尺寸。
在建筑设计和施工过程中,激光测距仪可以精确地确定建筑物的各个方面,提高施工的精度和效率。
2.2 制造业在制造业中,激光测距仪常常被用于测量机器零件的尺寸。
它可以快速、准确地测量零件的长度、宽度、高度等维度。
这对于制造精度高的产品至关重要,可以大大提高生产效率和质量。
2.3 地质测量地质测量中也经常使用激光测距仪。
它可以用来测量地质剖面、地层的厚度、地表与地下水位的距离等。
通过使用激光测距仪,地质学家可以更准确地了解地质环境,进行地质勘探和资源评估。
2.4 机械加工激光测距仪在机械加工过程中也有广泛的应用。
它可以用来测量机械零件的尺寸,确保零件的准确度和精度。
激光测距仪用什么的原理
激光测距仪用什么的原理
激光测距仪是一种利用激光技术进行测距的仪器,它是利用激光器产生的激光束对目标进行测距的仪器。
激光测距仪的测距原理主要包括发射激光、接收反射光、计算反射时间等几个步骤。
首先,激光测距仪通过激光器产生一束激光,这种激光具有高能量、高方向性和高单色性的特点,能够在空气中迅速传播并精确的照射到目标上。
当激光束照射到目标表面时,部分激光能量被目标物体吸收,而大部分激光则会反射回来。
其次,激光测距仪接收到目标反射回来的激光,并通过专门的接收器将其接收下来。
在这一过程中,接收器会将接收到的激光能量转化为电信号,并传输给计时电路进行信号处理。
接下来,计时电路通过测量从激光测距仪发射激光到接收到目标反射光的时间差来计算出激光的往返时间。
由于激光在空气中的传播速度是已知的,因此通过计算出来的往返时间可以转换为目标物体与激光测距仪的距离。
总的来说,激光测距仪的工作原理是通过发射一束激光,接收目标反射的激光,最后通过计算反射时间来获取目标和激光测距仪之间的距离。
激光测距仪具有测距精度高、测距快速、非接触式测距等优点,因此在工程测量、地质测量、建筑测量等领域得到了广泛的应用。
激光测距仪原理
激光测距仪原理
激光测距仪是一种利用激光技术进行测距的仪器,它利用激光的高度定向性和
单色性来实现高精度的测距。
激光测距仪原理主要包括激光发射、激光接收和数据处理三个方面。
首先,激光测距仪的工作原理是利用激光器发射一束激光,激光束经过光学系
统聚焦成一束细小的光斑,然后照射到目标物体上。
目标物体上的光斑被反射回来,经过光学系统再次聚焦到光电探测器上。
光电探测器接收到反射光信号后,将其转换成电信号,并传输给数据处理系统。
其次,激光测距仪的激光接收原理是利用光电探测器接收反射光信号,并将其
转换成电信号。
光电探测器通常采用光电二极管或光电倍增管等器件,能够将光信号转换成电信号。
在激光测距仪中,光电探测器的性能直接影响着测距仪的测距精度和测距范围。
最后,激光测距仪的数据处理原理是利用数据处理系统对接收到的电信号进行
处理,包括信号放大、滤波、时序测量等步骤,最终得到目标物体与测距仪之间的距离信息。
数据处理系统通常由微处理器、存储器、显示器和通信接口等部分组成,能够实现对测距仪的控制和数据处理。
综上所述,激光测距仪的原理主要包括激光发射、激光接收和数据处理三个方面。
通过激光器发射激光束,经过光学系统聚焦到目标物体上,再经过光电探测器接收反射光信号,并将其转换成电信号,最后经过数据处理系统进行处理,得到目标物体与测距仪之间的距离信息。
激光测距仪以其高精度、高可靠性和非接触测距等优点,在工业、军事、测绘等领域得到了广泛的应用。
拓展资料:激光测距仪的原理
激光测距仪的原理
激光测距仪(Laserrangefinder),是利用调制激光的某个参数实现对目标的距离测量的仪器。
激光测距仪测量范围为
~5000米。
按照测距方法分为相位法测距仪和脉冲法测距仪,脉冲式激光测距仪是在工作时向目标射出一束或一序列短暂的脉冲激光束,由光电元件接收目标反射的/s和大气折射系数n计算出距离D。
由于直接测量时间比较困难,通常是测定连续波的相位,称为测相式测距仪。
当然,也有脉冲式测距仪。
需要注意,测相并不是测量红外或者激光的相位,而是测量调制在红外或者激光上面的信号相位。
建筑行业有一种手持式的激光测距仪,用于房屋测量,其工作原理与此相同。
2测物体平面必须与光线垂直
通常精密测距需要全反射棱镜配合,而房屋量测用的测距仪,直接以光滑的墙面反射测量,主要是因为距离比较近,光反射回来的信号强度够大。
与此可以知道,一定要垂直,否则返回信号过于微弱将无法得到精确距离。
3可以测物体平面为漫反射
通常也是可以的,实际工程中会采用薄塑料板作为反射面以解决漫反射严重的问题。
4.脉冲法激光测距仪
娱乐级产品可以达到显示精度1米,测量精度±1米,测量级产品显示精度米,测量精度±米。
5相位式激光测距仪
精度可达到1毫米误差,适合各种高精度测量用途。
激光测量尺的原理
激光测量尺的原理
激光测量尺是一种利用激光束进行长度测量的仪器,其原理基于光的反射和传播速度。
具体原理如下:
1. 光的反射原理:当激光束照射到物体上时,物体会反射出一部分光。
根据光的反射定律,入射光线与反射光线在入射点处的法线上有相同的入射角和反射角。
2. 传播速度原理:光在真空中传播的速度为光速c,当光从真空传播到其他介质(如空气或物体表面)时,光速会发生变化,这种变化使得光线发生折射。
基于以上原理,激光测量尺的工作原理可以描述如下:
1. 激光发射器产生一束具有高相干性、窄束宽和单色性的激光束。
激光束通过发射器的光学系统进行整形,使其成为平行光束。
2. 平行光束照射到目标物体上,并被反射回激光测量尺。
3. 接收器中的光电探测器接收到反射回来的光,并将其转换为电信号。
接收到的光信号经过放大和处理后,可以进行后续的计算和分析。
4. 根据光的传播速度和接收到的反射光信号的时间间隔,可以计算出光传播的时间差,进而得到目标物体到激光测量尺的距离。
激光测量尺能够实现高精度的长度测量,广泛应用于工业、建筑、测绘等领域。
激光测距技术原理
激光测距技术原理:1.激光的亮度高。
固体激光器的亮度更可高达1011W/cm2Sr这是因为激光虽然功率有限,但是由于光束极小,于是具有极高的功率密度,所以激光的亮度一般都大于我们所见所有光(包括可见光中的强者:太阳光),这也是激光可用于星际测量的根本原因所在;2.激光的单色性好。
这是因为激光的光谱频率组成单一.3.激光的方向性好。
激光具有非常小的光束发散角,经过长距离的飞行以后仍然能够保持直线传输;4.激光的相干性好。
我们通常所见到的可见光是非相干光,激光可以做到他们都做不到的事情,比如说切割钢材。
在测距领域,激光的作用更是不容忽视,可以这样说,激光测距是激光应用最早的领域(1960年产生,1962年即被应用于地球与月球间距离的测量).测量的精确度和分辨率高、抗干扰能力强,体积小同时重量轻的激光测距仪受到了大多数有测距需求的企业、机构或个人的青睐,其市场需求空间大,应用领域广行业需求多,并且起着日益重要的作用。
一、相位法激光测距技术原理:当今市场上主流的激光测距仪是基于相位法的激光测距仪。
这是因为基于相位法的激光测距仪轻易地就可以克服超声波测距的一大缺陷:误差过大,使测量精度达到毫米级别。
而基于此法的激光测距仪主要的缺点在于电路复杂、作用距离较短(一百米左右,经过众多科学工作者的努力,现在也有作用距离在几百米的相位法激光测距仪)。
相位法激光测距技术,是采用无线电波段频率的激光,进行幅度调制并将正弦调制光往返测距仪与目标物间距离所产生的相位差测定,根据调制光的波长和频率,换算出激光飞行时间,再依次计算出待测距离。
该方法一般需要在待测物处放置反射镜,将激光原路反射回激光测距仪,由接收模块的鉴波器进行接收处理。
也就是说,该方法是一种有合作目标要求的被动式激光测距技术.如下图所示:由图所显示的关系,我们可以知道,用正弦信号调制发射信号的幅度,通过检测从目标反射的回波信号与发射信号之间的相移φ,通过计算即可以得到待测距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光测距仪的工作原理是怎样的?
激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。
脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。
光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。
脉冲法测量距离的精度是一般是在+/-1米左右。
另外,此类测距仪的测量盲区一般是15米左右。
激光测距仪的应用领域主要是那些方面?
激光测距仪已经被广泛应用于以下领域:电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,反恐/军事,农业,林业,房地产,休闲/户外运动等。
为什么激光测距仪还有所谓“安全”和“不安全”的区别?
顾名思义,激光测距仪是用激光做为主要工作物质来进行工作的。
目前,市场上的手持式激光测距仪的工作物质主要有以下几种:工作波长为905纳米和1540纳米的半导体激光,工作波长为1064纳米的YAG激光。
1064纳米的波长对人体皮肤和眼睛是害的,特别是如果眼睛不小心接触到了1064纳米波长的激光,对眼睛的伤害可能将是永久性的。
所以,在国外,手持激光测距仪中,完全取缔了1064纳米的激光。
在国内,某些厂家还有生产1064纳米的激光测距仪。
对于905纳米和1540纳米的激光测距仪,我们就称之为“安全”的。
对于1064纳米的激光测距仪,由于它对人体具有潜在的危害性,所以我们就称之为“不安全”的。
2005/12/30。