五年级下册数学知识点总结

合集下载

五年级下册数学课本知识点总结

五年级下册数学课本知识点总结

五年级下册数学课本知识点总结第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:四舍五入法;进一法;去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b) 变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

五年级下册数学必考知识点汇总

五年级下册数学必考知识点汇总

一、旋转、平移时针旋转1小时是30度二、因数与倍数1、如果a×b=c(a、b、c都是不为0的整数),那么a、b就是c得因数,c就是a、b 的倍数。

2、一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数是无限的,其中最小的倍数是它本身,没有最大倍数。

3、奇数与偶数:自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

偶数:个位是0,2,4,6,8的数。

奇数:个位不是0,2,4,6,8的数。

4、倍数特征:2的倍数的特征:各位是0,2,4,6,8。

3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。

5的倍数的特征:各位是0,5。

5、质数与合数:质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

1不是质数,也不是合数。

1既不是质数也不是合数。

6、奇数与偶数的运算规律偶数+偶数=偶数奇数+奇数=奇数奇数+偶数=奇数偶数-偶数=偶数奇数-奇数=奇数奇数-偶数=奇数偶数个偶数相加是偶数,奇数个奇数相加是奇数。

偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数7、质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

8、分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。

9、100以内的质数表:2、3、5、7、11、13、17、1923、29、31、37、41、43、47、5359、61、67、71、73、79、83、89、97三、长方体的认识、表面积、体积和容积1. 长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。

2. 正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等。

3.正方体是特殊的长方体。

五年级数学下册数学知识点(推荐9篇)

五年级数学下册数学知识点(推荐9篇)

五年级数学下册数学知识点(推荐9篇)五年级数学下册数学知识点第1篇1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:÷表示已知两个因数的积与其中的一个因数,求另一个因数的运算。

小数除法的计算方法:计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。

计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。

2、取近似数的方法:取近似数的方法有三种,①四舍五入法②进一法③去尾法一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。

取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。

没有要求时,除不尽的一般保留两位小数。

3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

依次不断重复出现的数字,叫做这个循环小数的的循环节。

4、循环小数的表示方法:一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。

如:…………另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。

如:5、有限小数:小数部分的位数是有限的小数,叫做有限小数。

6、无限小数:小数部分的位数是无限的小数,叫做无限小数。

五年级数学下册数学知识点第2篇用天平找次品规律:1、把所有物品尽可能平均地分成3份,(如余1则放入到最后一份中;如余2则分别放入到前两份中),保证找出次品而且称的次数一定最少。

2、数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次4~9个物体,保证能找出次品需要测的次数是2次10~27个物体,保证能找出次品需要测的次数是3次28~81个物体,保证能找出次品需要测的次数是4次82~243个物体,保证能找出次品需要测的次数是5次244~739个物体,保证能找出次品需要测的次数是6次五年级数学下册数学知识点第3篇分数加减法1,异分母分数加减法:先通分,化成同分母分数,然后按照同分母分数加减法法则进行计算。

五年级下册数学总复习知识点归纳

五年级下册数学总复习知识点归纳

五年级下册数学知识点第一单元观察物体(三)1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面(或说成:最多同时能看到3个面)。

2、给出一个(或两个)方向观察的图形无法确定立体图形的形状。

由三个方向观察到的图形就可以确定立体图形的形状并还原立体图形。

3、从一个方向看到的图形摆立体图形,有多种摆法。

4、从多个角度观察立体图形先根据平面图分析出要拼搭的立体图形有几层;然后确定要拼搭的立体图形有几排;最后根据平面图形确定每层和每排的小正方体的个数。

第二单元因数和倍数1、因数和倍数。

在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数.又如整数a能被b整除(a÷b=c),那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

因数:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找,或用除法找。

倍数:一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘自然数。

2、自然数按能不能被2整除分为:奇数偶数偶数:是2的倍数的数叫做偶数。

最小的奇数是1,最小的偶数是0。

2、3、5倍数的特征:个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各个数位上的数的和是3的倍数,这个数就是3的倍数。

如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

同时是2、3、5的倍数,个位上是0并且各位上的数的和是3的倍数,这个数就同时是2、3、5的倍数。

最小的两位数是30,最大的两位数是90,最小的三位数是120,最大三位数是990。

3、自然数按因数的个数来分:质数、合数、1.数。

如4,6,8,9都是合数。

合数至少有三个因数,1、它本身、别的因数1:只有1个因数。

“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4。

20以内的质数:有8个(2、3、5、7、11、13、17、19)4、100以内的质数(共 25 个):2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、975、奇数+奇数=偶数(如:5+7=12 3+5=8 ……)奇数+偶数=奇数(如:1+4=5 7+2=9 ……)偶数+偶数=偶数(如:2+4=6 8+6=14 ……)奇数×奇数=奇数(如:5×7=35 7×9=63 ……)奇数×偶数=偶数(如:5×8=40 7×8=56 ……)偶数×偶数=偶数(如: 8×12=96 14×24=336 ……)第三单元长方体和正方体1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

五年级下册数学各单元知识点整理

五年级下册数学各单元知识点整理

五年级下册数学各单元知识点整理五年级下册数学各单元知识点整理一、图形的变换(平移、旋转、轴对称)在研究图形的变换时,我们需要掌握以下几点知识:平移:需要明确平移的方向(上、下、左、右)和平移的距离(格数)。

旋转:需要明确旋转的中心点、旋转的方向(顺时针或逆时针)和旋转的角度。

轴对称:需要将图形沿着对称轴对折,使其与另一个图形重合。

轴对称的意义是将一个图形沿着一条直线对折,如果它与另一个图形重合,那么这两个图形就是轴对称的。

图形旋转的性质是,对应点和对应线段都旋转相同的角度。

而图形旋转的特征是,旋转后形状和大小不变,只是位置发生了变化。

对称轴用虚线表示,对称轴上各点到图形的距离相等。

二、因数和倍数在研究因数和倍数时,我们需要掌握以下几点知识:因数和倍数的意义:如果A×B=C(A、B、C都是不为零的整数),那么A、B就是C的因数,C就是A、B的倍数。

因数和倍数的关系:虽然因数和倍数是两个不同的概念,但它们是相互依存的,不能单独存在。

找一个数的因数的办法:可以列乘法算式或列除法算式。

找一个数的倍数的办法:就是用这个数依次与非零自然数相乘,所得的数就是这个数的倍数。

因数的特点:一个数的最小因数是1,最大因数是它本身,因数的个数是有限的。

倍数的特点:一个数的最小倍数是它本身,一个数没有最大的倍数,倍数的个数是无限的。

2的倍数的特征:个位是0、2、4、6、8的数都是2的倍数。

奇数、偶数的意义:在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。

5的倍数的特征:个位是0或5的数都是5的倍数。

既是2和5的倍数,又是3的倍数的特征:个位必须是0,其它各数位之和是3的倍数,最小的是30.3的倍数的特征:一个数各个数位上的和是3的倍数,这个数就是3的倍数。

质数和合数的定义:一个数如果只有1和它本身两个因数,那么这个数叫做质数(也叫素数);一个数如果除了1和它本身,还有别的因数,那么这个数叫做合数。

全部五年级数学知识点总结

全部五年级数学知识点总结

全部五年级数学知识点总结一、整数和小数1、认识整数和小数:整数是正整数、负整数和0,小数是整数部分和小数部分组成的数。

2、加减整数和小数:相同符号的整数相加减,不同符号的整数相加减。

3、整数和小数的乘法:乘法的积是正积或者负积。

4、整数和小数的除法:除数不为零,商是正数或者负数。

二、分数1、认识分数:分数是整数和整数的比例。

2、分数的加减:通分后相加减,再约分。

3、分数的乘法:乘法的结果是分子相乘,分母相乘。

4、分数的除法:转化为乘以倒数,再相乘。

三、数的倍数和约数1、倍数:一个数的倍数是这个数的整数倍。

2、约数:能够整除一个数的整数。

四、数的整数倍与小数和分数1、认识整数倍:一个数是另一个数的倍数,就是这个数的整数倍。

2、认识小数和分数的整数倍:一个小数或分数的整数倍是这个小数或分数的整数倍。

五、图形的认识1、认识平行四边形、矩形和正方形。

2、认识梯形、三角形和五边形。

六、分数和小数比较大小1、分数和小数比较:把分数和小数转化成同一个分母或者位数,再进行比较。

七、单位换算1、长度的单位换算:厘米、分米、米、千米之间的换算。

2、容积的单位换算:毫升、升之间的换算。

八、分数的加减1、分数的加减法:通分后相加减,再约分。

九、算式的认识1、认识算式:算式是一些数的运算过程。

2、简单的算式计算。

十、角和角度1、角的认识:两条射线之间的夹角。

十一、时间1、认识时间:时、分、秒之间的换算。

2、认识时间的加减法和乘法。

十二、数据的统计1、统计图的认识:条形统计图、折线统计图。

2、数据的平均数、中位数、众数的计算。

以上是五年级数学知识点的总结,五年级的小朋友可以根据这些知识点进行学习和巩固,以便在学习数学时更加深入的理解和掌握。

五年级下册数学知识点归纳(完整版)

五年级下册数学知识点归纳(完整版)

五年级下册数学知识点归纳第一单元:观察物体-站在任意位置,最多只能看到长方体的3个面。

-从不同位置观察物体,看到的形状可能不同。

-从一个或两个方向看到的图形无法确定立体图形的形状。

-从物体的右面观察,看到的不一定和从左面看到的完全相同。

第二单元:因数和倍数-被除数是除数的倍数,商是整数且没有余数。

-因数和倍数相互依存,不能单独存在。

-数的因数个数有限,最小因数是1,最大因数是数本身。

-数的倍数个数无限,最小倍数是数本身,没有最大倍数。

-特定数字的倍数特征,如2的倍数末位为0、2、4、6、8;3的倍数各位数之和是3的倍数等。

-自然数可分为偶数和奇数两类,偶数是2的倍数,奇数不是2的倍数。

第三单元:长方体和正方体-长方体的长、宽、高是相交于一个顶点的三条棱的长度。

-最多有6个面是长方形,最少4个面是长方形,最多有2个面是正方形。

-正方体是长、宽、高都相等的长方体,是特殊的长方体。

-正方体的6个面相同,12条棱相等。

-长方体和正方体都有6个面,8个顶点,12条棱,相对的面完全相同,相对的棱长度相等。

-长方体的棱长总和为4×(长+宽+高),正方体的棱长总和为棱长×12。

-表面积是长方体或正方体6个面的总面积。

-长方体的表面积为(长×宽+长×高+宽×高)×2,正方体的表面积为棱长×棱长×6。

-体积是物体所占空间的大小,长方体的体积为长×宽×高,正方体的体积为棱长×棱长×棱长。

第四单元:分数的意义和性质-分数表示整体中的一份或几份,分子表示份数,分母表示分数单位。

-分数的大小可以通过分子与分母的比较确定。

-分数可以是真分数(小于1)、假分数(大于或等于1)或带分数(整数和真分数组成)。

-分数的分子和分母同时乘或除以相同的数时,分数的大小不变。

-两个数的最大公因数与最小公倍数的积等于这两个数的乘积。

(完整版)人教版五年级数学下册知识点归纳总结

(完整版)人教版五年级数学下册知识点归纳总结

人教版五年级数学下册知识点归纳总结第一单元观察物体(三)1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。

2、不可能一次看到长方体或正方体相对的面。

注意点1)这里所说的正面、左面和上面,都是相对于观察者而言的。

2)站在任意一个位置,最多只能看到长方体的3个面。

3)从不同的位置观察物体,看到的形状可能是不同的。

4)从一个或两个方向看到的图形是不能确定立体图形的形状的。

5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。

6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。

第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。

2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3)个位上是0或5的数,是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

3、自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数。

叫奇数。

也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是0.关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。

新人教版小学五年级数学下册知识点归纳

新人教版小学五年级数学下册知识点归纳

新人教版小学五年级数学下册知识点归纳新人教版小学五年级下册数学知识点归纳第一单元观察物体1.从任意一个位置观察长方体,最多只能看到3个面。

2.从不同的位置观察物体,可能看到的形状不同。

3.从一个或两个方向看到的图形不能确定立体图形的形状。

4.从物体的右面观察和从左面观察看到的不一定完全相同。

第二单元因数和倍数1.在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

2.因数和倍数是相互依存的,不能单独存在。

3.一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。

一个数的最大因数与最小倍数都是这个数本身。

4.1是所有非零自然数的因数。

5.2、3、5的倍数特征:1) 个位上是2、4、6、8的数都是2的倍数。

2) 一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3) 个位上是0或5的数是5的倍数。

4) 如果一个数同时是2和5的倍数,那它的个位上的数字一定是0或5.6.自然数可以分为偶数和奇数两类。

偶数:是2的倍数的数叫做偶数,2是最小的偶数。

奇数:不是2的倍数的数叫做奇数,1是最小的奇数。

关系:奇数+偶数=奇数奇数+奇数=偶数偶数+偶数=偶数奇数x奇数=奇数奇数x偶数=偶数偶数x偶数=偶数7.按因数的个数对自然数分类,可以分为质数、合数、1三类。

1) 质数(或素数):一个数,如果只有1和它本身两个因数,这样的数叫质数。

合数:一个数,如果除了1和它本身还有别的因数,至少有三个因数,这样的数叫合数。

2) “1”不是质数,也不是合数。

3) 最小的质数是2,最小的合数是4,连续的两个质数是2和3.4) 20以内的质数有8个:2、3、5、7、11、13、17、195) 关系:质数x质数=合数第三单元长方体和正方体1.长方体有6个面,12条棱,8个顶点。

相交于一个顶点的三条棱分别是长方体的长、宽、高。

2.长方体最多有6个面是长方形,至少4个面是长方形,最多2个面是正方形。

五年级下册数学知识点总结(精彩12篇)

五年级下册数学知识点总结(精彩12篇)

五年级下册数学知识点总结(精彩12篇)五年级数学下册知识总结篇一1、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。

找因数的方法:一个数的因数的个数是有限的,其中最小的因数是1,1的因数是它本身。

一个数的倍数的个数是无限的,最小的倍数是它本身。

2、自然数按是否是2的倍数来分:奇数偶数奇数:不是2的倍数偶数:是2的。

倍数(0也是偶数)最小的奇数是1,最小的偶数是0.个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时是2、3、5的倍数的的两位数是90,最小的三位数是120。

3、自然数按因数的个数来分:质数、合数、1.质数:有且只有两个因数,1和它本身合数:至少有三个因数,1、它本身、别的因数1:只有1个因数。

“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4。

20以内的质数:有8个(2、3、5、7、11、一三、一qi、19)100以内的质数:2、3、5、7、11、一三、一qi、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、974、分解质因数用短除法分解质因数(一个合数写成几个质数相乘的形式)5、公因数、公因数几个数公有的因数叫这些数的公因数。

其中的那个就叫它们的公因数。

用短除法求两个数或三个数的公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。

两数互质的特殊情况:⑴1和任何自然数互质;⑴相邻两个自然数互质;⑴两个质数一定互质;⑴2和所有奇数互质;⑴质数与比它小的合数互质;6、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。

其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来) 如果两数是倍数关系时,那么较小的数就是它们的公因数;较大的数就是它们的最小公倍数。

五年级下册全部知识点数学

五年级下册全部知识点数学

五年级下册全部知识点数学一、因数与倍数。

1. 因数和倍数的概念。

- 在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

例如:12÷2 = 6,12是2和6的倍数,2和6是12的因数。

- 注意:因数与倍数是相互依存的,不能单独说某个数是因数或倍数。

2. 找一个数的因数和倍数的方法。

- 找因数:从1开始,一对一对地找。

例如,18的因数有1、2、3、6、9、18。

- 找倍数:用这个数分别乘1、2、3……。

例如,3的倍数有3、6、9、12……(倍数的个数是无限的)。

3. 2、3、5的倍数的特征。

- 2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数(偶数)。

个位上是1、3、5、7、9的数是奇数。

- 3的倍数的特征:一个数各位上的数字之和是3的倍数,这个数就是3的倍数。

例如,123各位数字之和为1 + 2+3=6,6是3的倍数,所以123是3的倍数。

- 5的倍数的特征:个位上是0或5的数是5的倍数。

- 既是2又是5的倍数的特征:个位上是0的数。

4. 质数与合数。

- 质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

例如,2、3、5、7等。

- 合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

例如,4、6、8、9等。

- 1既不是质数也不是合数。

二、分数的意义和性质。

1. 分数的意义。

- 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

例如,把一个蛋糕看作单位“1”,平均分成4份,其中的1份就是(1)/(4)。

- 分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

例如,(3)/(5)的分数单位是(1)/(5)。

2. 分数与除法的关系。

- 被除数÷除数=(被除数)/(除数)(a÷ b=(a)/(b)(b≠0))。

例如,3÷4=(3)/(4)。

3. 真分数和假分数。

小学五年级下册数学知识点总结

小学五年级下册数学知识点总结

小学五年级下册数学知识点总结五年级数学下册知识点第一单元:观察物体1.当我们从不同角度观察长方体(或正方体)时,最多可以同时看到三个面。

2.如果我们只给出一个(或两个)方向的观察图形,无法确定立体图形的形状。

只有从三个方向观察到的图形才能确定立体图形的形状并还原立体图形。

3.当我们从一个方向看到的图形摆立体图形时,有多种摆法。

4.为了从多个角度观察立体图形,我们需要先根据平面图分析出要拼搭的立体图形有几层,然后确定要拼搭的立体图形有几排,最后根据平面图形确定每层和每排的小正方体的个数。

第二单元:因数和倍数1.整除是指被除数、除数和商都是自然数,并且没有余数。

如果一个大数能被小数整除,那么大数是小数的倍数,小数是大数的因数。

一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数个数是无限的,最小的倍数是它本身。

2.自然数按能否被2整除来分为奇数和偶数。

奇数是不能被2整除的数,偶数是能被2整除的数。

最小的奇数是1,最小的偶数是0.个位上是2、4、6、8的数都是2的倍数。

个位上是0或5的数是5的倍数。

如果一个数各位上的数的和是3的倍数,那么这个数就是3的倍数。

能同时被2、3、5整除的最大的两位数是90,最小的三位数是120.3.自然数按因数的个数来分为质数、合数、1.质数有且只有两个因数,1和它本身;合数至少有三个因数,1、它本身、别的因数;1只有1个因数。

最小的质数是2,最小的合数是4.20以内的质数有8个(2、3、5、7、11、13、17、19),100以内的质数有25个(2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97)。

第三单元:长方体和正方体1.由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

在一个长方体中,相对面完全相同,相对的棱长度相等。

2.两个面相交的边叫做棱。

五年级数学下册知识点总结(最新)

五年级数学下册知识点总结(最新)

五年级数学下册知识点总结(最新)五年级数学下册知识点总结1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

表示其中一份的数,叫做分数单位。

一个分数的分母是几,它的分数单位就是几分之一。

2、分母越大,分数单位越小,最大的分数单位是2(1)。

3、举例说明一个分数的意义:7(3)表示把单位“1”平均分成7份,表示这样的3份.还表示把3平均分成7份,表示这样的1份。

7(3)吨表示把1吨平均分成7份,表示这样的3份.还表示把3吨平均分成7份,表示这样的1份。

4、4米的5(1)和1米的5(4)同样长。

5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

6、真分数小于1。

假分数大于或等于1。

真分数总是小于假分数。

7、男生人数是女生人数的4(3),则女生人数是男生人数的3(4)。

8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。

被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)9、能化成整数的假分数,它们的分子都是分母的倍数。

反过来,分子是分母倍数的假分数,都能化成整数。

(用分子除以分母)10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。

带分数是假分数的另一种形式。

例如,3(4)就可以看作是3(3)(就是1)和3(1)合成的数,写作13(1),读作一又三分之一。

带分数都大于真分数,同时也都大于1。

11、把分数化成小数的:用分数的分子除以分母。

12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

数学五年级下册知识点(13篇)

数学五年级下册知识点(13篇)

数学五年级下册知识点(13篇)数学五年级下册知识点11.众数的意义:在一组数据中,出现次数最多的数,是这组数据的众数。

数学五年级下册知识点2一、图形的变换1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。

3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。

旋转只改变物体的位置,不改变物体的形状、大小。

二、因数与倍数1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。

2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。

3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。

4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。

一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。

如何能轻松学好数学学好小学数学认真听课很重要小学学生想要学好数学,在课上一定要认真听老师讲课。

老师在课堂上讲的是非常重要的知识点,但是在小学数学课上选择做笔记并不是一个正确的做法。

在小学数学课上你需要做的就是跟住老师的思维,学好老师的思维方式,这个阶段要培养自己的数学逻辑思维能力。

大部分的小学数学老师,对于这门学科都有自己的见解,所以跟住老师的思路久而久之就会逐渐转换成自己解题的思路。

小学生学习数学要会独立思考小学是数学开窍的阶段,在解题上小学生一定要学会自己独立去思考。

数学五年级下册各章节重点知识点归纳

数学五年级下册各章节重点知识点归纳

数学五年级下册各章节重点知识点归纳第一章:分数和小数的互换1.1 知识点- 理解分数与小数之间的关系。

- 学会将小数转换为分数的方法。

- 学会将分数转换为小数的方法。

1.2 重点难点- 掌握分数与小数互换的规律和方法。

- 理解分数值与小数值之间的等价关系。

第二章:简易方程2.1 知识点- 认识简易方程的概念。

- 学会解一元一次方程的方法。

- 理解等式的性质。

2.2 重点难点- 掌握方程的解法和技巧。

- 理解等式两边同时加减乘除同一个数的性质。

第三章:几何图形的认识3.1 知识点- 认识长方形、正方形、三角形、圆等基本几何图形。

- 学会用尺子和圆规画简单几何图形。

- 理解几何图形的基本性质和特征。

3.2 重点难点- 掌握几何图形的画法和技巧。

- 理解几何图形之间的相互关系。

第四章:计量单位4.1 知识点- 认识长度、面积、体积、重量等基本计量单位。

- 学会进行单位换算。

- 理解不同计量单位之间的换算关系。

4.2 重点难点- 掌握单位换算的方法和技巧。

- 理解不同计量单位之间的换算规律。

第五章:数据的收集与处理5.1 知识点- 学会使用统计图表来表示数据。

- 学会进行数据的收集和整理。

- 理解平均数、中位数、众数等概念。

5.2 重点难点- 掌握统计图表的画法和解读。

- 理解数据分析的方法和技巧。

以上是数学五年级下册各章节重点知识点的归纳,希望对学生们有所帮助。

五年级数学下册知识点整理

五年级数学下册知识点整理

五年级数学下册知识点整理第一单元:图形的变换1.轴对称图形:一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

这条直线叫做它的对称轴。

2.轴对称图形的特征:1、对称点到对称轴的距离相等;2、对应点连线与对称轴互相垂直。

3.旋转:图形或物体绕着一个点或一条轴运动的现象叫做旋转。

第二单元:因数与倍数4.因数和倍数:如果a×b=c,那么a和b是c的因数,c是a和b的倍数。

5.为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。

6.一个数的最小因数是1,最大因数是它本身。

一个数的因数的个数是有限的。

7.一个数的最小倍数是它本身,没有最大的倍数。

一个数的倍数的个数是无限的。

8.个位上是0、2、4、6、8的数都是2的倍数。

9.个位上是0、5的数都是5的倍数。

10.一个数,每个数位上的数的和是3的倍数,这个数就是3的倍数。

11.自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

12.一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数。

1既不是质数,也不是合数。

13.自然数按照因数的个数多少,可以分为质数和合数;按是否是2的倍数,可以分为奇数和偶数。

14.100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

第三单元:长方体和正方体15.长方体的特征:①长方体有6个面;②每个面都是长方形(特殊情况下有两个相对的面是正方形);③相对的面完全相同;④有12条棱;⑤相对的棱长度相等;⑥有8个顶点。

16.相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

17.正方体可以看成是长、宽、高都相等的长方体。

正方体是特殊的长方体。

18.正方体的特征:①正方体有6个面;②每个面都是正方形;③所有的面都完全相同;④有12条棱;⑤所有的棱长度都相等;⑥有8个顶点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级下册知识点班级姓名学号二因数和倍数1、整除:被除数、除数和商都是非0自然数,并且没有余数。

大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

找因数的方法:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数的个数是无限的,最小的倍数是它本身。

2、自然数按能不能被2整除来分:奇数偶数奇数:不能被2整除的数偶数:能被2整除的数。

最小的奇数是1,最小的偶数是0.个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。

3、自然数按因数的个数来分:质数、合数、1.质数:有且只有两个因数,1和它本身合数:至少有三个因数,1、它本身、别的因数1:只有1个因数。

“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4。

20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、974、分解质因数用短除法分解质因数(一个合数写成几个质数相乘的形式)5、公因数、最大公因数几个数公有的因数叫这些数的公因数。

其中最大的那个就叫它们的最大公因数。

用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。

两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;如果两数是倍数关系时,那么较小的数就是它们的最大公因数。

如果两数互质时,那么1就是它们的最大公因数。

6、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。

其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

如果两数互质时,那么它们的积就是它们的最小公倍数。

三长方体和正方体【概念】1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

在一个长方体中,相对面完全相同,相对的棱长度相等。

2、两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体有12条棱,它们的长度都相等,所有的面都完全相同。

4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。

长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4长=棱长总和÷4-宽-高 a=L÷4-b-h宽=棱长总和÷4-长-高 b=L÷4-a-h高=棱长总和÷4-长-宽 h=L÷4-a-b正方体的棱长总和=棱长×12 L=a ×12正方体的棱长=棱长总和÷12 a=L ÷126、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab +ah +bh )无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2S=2(ab +ah +bh )-ab S=2(ah +bh )+ab无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah +bh )正方体的表面积=棱长×棱长×6 S=a ×a ×66、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高 V=abh长=体积÷宽÷高 a=V ÷b ÷h宽=体积÷长÷高 b=V ÷a ÷h高=体积÷长÷宽 h= V ÷a ÷b正方体的体积=棱长×棱长×棱长 V=a ×a ×a7、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

常用的容积单位有升和毫升也可以写成L 和ml 。

1升=1立方分米 1毫升=1立方厘米 1升=1000毫升8、a 3读作“a 的立方”表示3个a 相乘,(即a ·a ·a )【体积单位换算】 高级单位 低级单位低级单位 高级单位进率: 1立方米=1000立方分米=1000000立方厘米1立方分米=1000立方厘米=1升=1000毫升1立方厘米=1毫升1平方米=100平方分米=10000平方厘米1平方千米=100公顷=1000000平方米重量单位进率,时间单位进率,长度单位进率四 分数的意义和性质×进率 ÷进率分数的产生 分数的意义 分数与意义 :把单位1平均分成几份,表示其中的一份或几份分数与除法 :分子(被除数),分母(除数),分数值(商)真分数 真分数小于1真分数与假分数 假分数 假分数大于1或等于1.带分数 (整数部分和真分数)假分数化带分数、整数(分子除以分母,商作整数部分 余数作分子)分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,分数的基本性质 分数的大小不变。

通分、通分子:化成分母不同,大小不变的分数(通分)求最大公因数约 分 最简分数 分子分母互质的分数(最简真分数、最简假分数)约分及其方法最小公倍数通 分 求最小公倍数分数比大小 (通分、通分子、化成小数)通分及其方法小数化分数 小数化成分母是10、100、1000的分数再化简分数和小数的互化分数化小数 分子除以分母,除不尽的取近似值最简分数的分母只含有质因数2和5,这个分数一定能化成有限小数。

分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

21=0.5 41=0.25 43=0.75 51=0.2 52=0.4 53=0.6 54=0.881=0.125 83=0.375 85=0.625 87=0.875 201=0.05 251=0.04。

五 分数的加法和减法同分母分数加、减法(分母不变,分子相加减)分数数的加法和减法异分母分数加、减法(通分后再加减)分数加减混合运算带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。

六统计与数学广角众数一组数据中出现次数最多的数叫众数。

众数能够反映一组数据的集中情况。

统计在一组数据中,众数可能不止一个,也可能没有众数。

复式折线统计图综合应用打电话的最优方案中位数的求法:1、按大小排列。

2、如果数据的个数是单数,那么最中间的那个数就是中位数;如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。

平均数的求法:总数÷总份数=平均数七数学广角1、数目与测试的次数的关系:(知道次品的轻重时)2~3个物体,保证能找出次品需要称的次数是1次4~9个物体,保证能找出次品需要称的次数是2次10~27个物体,保证能找出次品需要的称次数是3次28~81个物体,保证能找出次品需要的称次数是4次82~243个物体,保证能找出次品需要的称次数是5次244~729个物体,保证能找出次品需要的称次数是6次(不知道次品的轻重时,在以上基础上加称1次)2、打电话的规律:知道人数=(n2 );通知人数=(n2-1 )。

3、当一组数据相差不是很大时,可以用平均数来表示;如果有偏大偏小数据出现,而中间的数比较集中,可以用中位数来表示;如果有一个数据出现的次数超过一半或一半以上的时候,用众数来表示这组数据的总体情况比较好。

在实际生活中,有时候很难说用哪个统计量是对的,只能说用哪个统计量表示一组数据的总体情况更合适一些。

所以在分析具体问题时,要根据数据的特点和我们所关心的问题来确定。

4、折线统计图能反映出数据的变化趋势。

而条形统计图能根据直条的高矮或长短直观反映出数据的多少,却不能看出变化趋势。

轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化叫做旋转,定点O 叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

旋转的性质:图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变;两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点。

画出对称图形按旋转的角度画出旋转图形。

相关文档
最新文档