2019-2020学年高中数学 第一章 常用逻辑用语 1.3 简单的逻辑联结词(2)教案 新人教A版选修2-1.doc

合集下载

19-20版 第1章 1.3 简单的逻辑联结词

19-20版 第1章 1.3 简单的逻辑联结词
[提示] 当 p∨q 为真命题时,参数的取值范围是 A∪B. 当 p∧q 为真命题时,参数的取值范围是 A∩B.
栏目导航
【例 3】 已知 p:关于 x 的方程 x2+mx+1=0 有两个不相等的 负根,q:关于 x 的方程 4x2+4(m-2)x+1=0 无实根.若 p∨q 为真 命题,p∧q 为假命题,求 m 的取值范围.
栏目导航
[解] ①∵p 是假命题,q 是真命题, ∴p∨q 是真命题,p∧q 是假命题,¬p 是真命题. ②∵p 是假命题,q 是假命题, ∴p∨q 是假命题,p∧q 是假命题,¬p 是真命题. ③∵p 是真命题,q 是真命题, ∴p∨q 是真命题,p∧q 是真命题,¬p 是假命题. ④∵p 是真命题,q 是假命题, ∴p∨q 是真命题,p∧q 是假命题,¬p 是假命题.
[解] 由例题知,当 p 为真时, m>2,当 q 为真时 1<m<3,则 当 p∨q 为真命题时,m>1,
当 p∧q 为真命题时,2<m<3.
栏目导航
2.本例题中,若命题 p 改为“关于 x 的不等式 ax>1(a>0,且 a≠1) 的解集是{x|x<0},命题 q 改为“函数 y=lg(ax2-x+a)的定义域为 R”.其他条件不变,试求 a 的取值范围.
栏目导航
3.若命题 p 为真,则“¬p”为假;若 p 为假,则“¬p”为真, 类比集合知识,“¬p”就相当于集合 p 在全集 U 中的补集 Up.因此 (¬p)∧p 为假,(¬p)∨p 为真.
4.命题的否定只否定结论,否命题既否定结论又否定条件,要 注意区别.
栏目导航
当堂达标 固双基
栏目导航
1.若命题“p∧q”为假,且¬p 为假,则( )

【2020】最新高中数学第一章常用逻辑用语1-3简单的逻辑联结词1-3-1且(and)1-3-2或(or)1-3-3非(not)学

【2020】最新高中数学第一章常用逻辑用语1-3简单的逻辑联结词1-3-1且(and)1-3-2或(or)1-3-3非(not)学
(2)有两个内角是45°的三角形是等腰直角三角形;
(3)±1是方程x3+x2-x-1=0的根.
[解](1)这个命题是“非p”形式的命题,其中
p:方程x2-3=0有有理根.
(2)这个命题是“p且q”形式的命题,其中p:有两个内角是45°的三角形是等腰三角形,q:有两个内角是45°的三角形是直角三角形.
1.3.3 非(not)
学习目标:1.了解逻辑联结词“且”“或”“非”的意义.(重点)2.能够判断命题“p且q”“p或q”“非p”的真假.(难点)3.会使用联结词“且”“或”“非”联结并改写成某些数学命题,会判断命题的真假.(易错点)
[自 主 预 习·探 新 知]
1.“且”
(1)定义
一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q.读作“p且q”.
[解](1)∵p是假命题,q是真命题,
∴p∧q为假命题,p∨q为真命题, p为真命题.
(2)∵p是真命题,q是假命题,
∴p∧q为假命题,p∨q为真命题, p为假命题.
(3)∵p是真命题,q是真命题,
∴p∧q为真命题,p∨q为真命题, p为假命题.
因为p∧q为假命题,p∨q为真命题,所以p与q一真一假.
若p真q假,则 所以m≥3.
若p假q真,则 所以1<m≤2.
所以m的取值范围为1<m≤2或m≥3.
母题探究:1.本例题条件不变,试求p∨q与p∧q分别为真命题时m的取值范围.
[解]由例题知,当p为真时,m>2,当q为真时1<m<3,则当p∨q为真命题时,m>1,
由复合命题的真假求参数的取值范围
[探究问题]
1.设集合A是p为真命题时参数的取值范围,则p为假命题时,参数的取值范围是什么?

高中数学第一章常用逻辑用语1.3简单的逻辑联结词

高中数学第一章常用逻辑用语1.3简单的逻辑联结词

想一想:命题 “菱形的对角线垂直且互相平分” 中使用的逻辑 联结词是 ,所以此命题是 形式的命题.(抢 答)
【解析】命题中出现了逻辑联结词“且”,是 p 且 q 形式的 命题. 【答案】且 p 且 q
1.已知 p,q 是两个命题,若 p∧q 为假,���p 为假,则( A.q 为真命题 B.q 为假命题 C.p,q 同为假命题 D.q 的真假性不能确定
【变式设问】针对本例(1)中的命题,你能否写出“p∨q”形 式的命题? 提示:能,48 是 16 或 12 的倍数. 【针对训练 1】指出下列命题是简单命题还是含逻辑联结词 的命题,若是含逻辑联结词的命题,写出构成它的简单命题. (1)两个角是 45°的三角形是等腰直角三角形; (2)若 x∈{x|x<1 或 x>2},则 x 是不等式(x-1)(x-2)>0 的解.
(2)用联结词“或”把命题 p 和命题 q 联结起来,就得到一个 新命题,记作 p∨q,读作“p 或 q”. (3)对一个命题 p 全盘否定,就得到一个新命题,记作���p,读 作“非 p”或“p 的否定”. 议一议:逻辑联结词“或”与生活用语中的“或”的含义 是否相同?
【解析】生活用语中的“或”表示不兼有,而在数学中所研 究的“或”则表示可兼有但不一定必须兼有.
4.分别指出下列各组命题构成的“p 或 q”“p 且 q”“非 p”形 式的命题的真假. (1)命题 p:正方形的两条对角线互相垂直,命题 q:正方形的两条 对角线相等. (2)命题 p:“x2-3x-4=0”是“x=4”的必要不充分条件, 命题 q:若函数 f(x)=sin(2x+φ)的图象关于 y 轴对称,则φ= .
全国名校高中数学优质学案汇编(附详解)
第 4 课时 简单的逻辑联结词

高中数学 第1章 常用逻辑用语 1

高中数学 第1章 常用逻辑用语 1

§1.3简单的逻辑联结词知识点一由简单命题写出复合命题分别写出由下列各组命题构成的“p或q”、“p且q”、“非p”形式的复合命题:(1)p:2是无理数,q:2大于1;(2)p:N⊆Z,q:0∈N;(3)p:x2+1>x-4,q:x2+1<x-4.解(1)p∨q:2是无理数或大于1;p∧q:2是无理数且大于1;綈p:2不是无理数.(2)p∨q:N⊆Z或0∈N;p∧q:N⊆Z且0∈N;綈p:N⃘Z.(3)p∨q:x2+1≠x-4;p∧q:x2+1>x-4且x2+1<x-4;綈p:x2+1≤x-4.知识点二从复合命题中找出简单命题指出下列复合命题的形式及构成它的简单命题.(1)96是48与16的倍数;(2)方程x2-3=0没有有理数解;(3)不等式x2-x-2>0的解集是{x|x<-1或x>2};(4)他是运动员兼教练员.解(1)“p且q”形式,其中p:96是48的倍数,q:96是16的倍数.(2)“非p”形式,其中p:方程x2-3=0有有理数解.(3)“p或q”形式,其中p:不等式x2-x-2>0的解集是{x|x<-1},q:不等式x2-x-2>0的解集是{x|x>2}.(4)“p且q”形式,其中p:他是运动员,q:他是教练员.知识点三判断含有逻辑联结词的命题的真假分别指出由下列各组命题构成的“p或q”“p且q”“非p”形式的命题的真假.(1)p:3>3,q:3=3;(2)p:∅{0},q:0∈∅;(3)p:A⊆A,q:A∩A=A;(4)p:函数y=x2+3x+4的图象与x轴有交点,q:方程x2+3x-4=0没有实根.解(1)因为p假q真,所以“p∨q”为真,“p∧q”为假,“綈p”为真.(2)因为p真q假,所以“p∨q”为真,“p∧q”为假,“綈p”为假.(3)因为p真q真,所以“p∨q”为真,“p∧q”为真,“綈p”为假.(4)因为p假q假,所以“p∨q”为假,“p∧q”为假,“綈p”为真.知识点四非命题与否命题写出下列命题的否定及命题的否命题:(1)菱形的对角线互相垂直;(2)面积相等的三角形是全等三角形.解(1)命题的否定:存在一个菱形,其对角线不互相垂直.否命题:不是菱形的四边形,其对角线不互相垂直.(2)命题的否定:存在面积相等的三角形不是全等三角形.否命题:面积不相等的三角形不是全等三角形.考题赏析1.(广东高考)已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是()A.(綈p)∨q B.p∧qC.(綈p)∧(綈q) D.(綈p)∨(綈q)解析不难判断命题p为真命题,命题q为假命题,从而上述叙述中只有(綈p)∨(綈q)为真命题.答案 D2.(如皋联考)已知命题:p:若实数x,y满足x2+y2=0,则x,y全为0;命题q:若a>b,则1a<1b.给出下列四个复合命题:①p且q;②p或q;③綈p;④綈q.上述命题中为真命题的是________.解析p为真,q为假,故p或q,綈q为真命题.答案②④1.如果命题“非p或非q”是假命题,则在下列各结论中,正确的为()①命题“p且q”是真命题;②命题“p且q”是假命题;③命题“p或q”是真命题;④命题“p或q”是假命题.A.②③B.②④C.①③D.①④答案 C解析因“p且q”的否定为“綈p或綈q”,即綈(p且q)等价于綈p或綈q,所以“綈p或綈q”是假命题等价于“綈(p且q)”是假命题,即p且q为真命题.故选C.2.条件p:x∈A∪B,则綈p是()A.x∉A或x∉B B.x∉A且x∉BC .x ∈A ∩BD .x ∉A 或x ∈B 答案 B解析 因x ∈A ∪B ⇔x ∈A 或x ∈B ,所以綈p 为x ∉A 且x ∉B ,故选B.3.对于命题p 和q ,若p 且q 为真命题,则下列四个命题: ①p 或綈q 是真命题; ②p 或綈q 是假命题; ③綈p 且綈q 是假命题; ④綈p 或q 是假命题, 其中真命题是( )A .①②B .③④C .①③D .②④ 答案 C解析 因为p 且q 为真,所以p 与q 都为真,所以綈p 且綈q 为假.所以只有①③是真命题,所以选C. 4.若命题“p ∧q ”为假,且“綈p ”为假,则( ) A .p ∨q 为假 B .q 假C .q 真D .不能判断q 的真假 答案 B解析 綈p 为假,则p 为真,又p ∧q 为假,所以q 为假.所以选B. 5.“a ≥5且b ≥2”的否定是________. 答案 a <5或b <2解析 本题考查命题的否定,“p 或q ”的否定是“綈p 且綈q ”,“p 且q ”的否定是“綈p 或綈q ”. 6.命题p :{2}∈{2,3},q :{2}⊆{2,3},则下列对复合命题的判断,正确的是________.(填上所有正确的序号)①p 或q 为真;②p 或q 为假;③p 且q 为真;④p 且q 为假;⑤非p 为真;⑥非q 为假. 答案 ①④⑤⑥解析 由题可知p 为假,q 为真,所以p 或q 为真,p 且q 为假,非p 为真,非q 为假.答案为①④⑤⑥.7.已知p :3-x ≤0或3-x >4,q :5x +2<1,求p ∧q .解 由3-x ≤0或3-x >4,解得p :x ≥3或x <-1; 由5x +2-1<0,即3-x x +2<0, 解得q :x <-2或x >3.所以p ∧q :x <-2或x >3.8.已知a >0,a ≠1,设p :函数y =log a (x +1)在x ∈(0,+∞)内单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点.如果p 与q 有且只有一个正确,求a 的取值范围.解 当0<a <1时,函数y =log a (x +1)在(0,+∞)内单调递减;当a >1时,y =log a (x +1)在(0,+∞)内不是单调递减,曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点等价于(2a -3)2-4>0,即a <12或a >52.若p真q 假,则a ∈(0,1)∩⎩⎨⎧⎭⎬⎫⎣⎡⎭⎫12,1∪⎝⎛⎦⎤1,52=⎣⎡⎭⎫12,1. 若p 假q 真,注意到已知a >0,a ≠1,所以有 a ∈(1,+∞)∩⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫0,12∪⎝⎛⎭⎫52,+∞=⎝⎛⎭⎫52,+∞. 综上可知,a 的取值范围为⎣⎡⎭⎫12,1∪⎝⎛⎭⎫52,+∞.讲练学案部分知识点一 含逻辑联结词的命题的构成将下列命题写成“p ∧q ”“p ∨q ”和“綈p ”的形式: (1)p :菱形的对角线互相垂直,q :菱形的对角线互相平分;(2)p :能被5整除的整数的个位数一定为5,q :能被5整除的整数的个位数一定为0. 解 (1)p ∧q :菱形的对角线互相垂直且平分. p ∨q :菱形的对角线互相垂直或平分. 綈p :菱形的对角线不互相垂直.(2)p ∧q :能被5整除的整数的个位数一定为5且一定为0; p ∨q :能被5整除的整数的个位数一定为5或一定为0;綈p :能被5整除的整数的个位数一定不为5.【反思感悟】 简单命题用联结词“或”、“且”、“非”联结得到的新命题是复合命题,联结后可以综合起来叙述,但综合叙述不能叙述成条件复合的简单命题或叙述成结论复合的简单命题.如(2)中的p ∨q 不能叙述成:能被5整除的整数的个位数一定为5或0,因为p 、q 都是假命题,则p ∨q 也为假命题.判断下列命题是否是复合命题并说明理由.(1)2是4和6的约数;(2)不等式x 2-5x +6>0的解为x >3或x <2.解 (1)是“p 且q ”形式的复合命题,其中p :2是4的约数;q :2是6的约数.(2)是简单命题,而不是用“或”联结的复合命题,因不等式x 2-5x +6>0的解为x >3是假命题,不等式x 2-5x +6>0的解为x <2也是假命题,而命题(2)是真命题,这与p 、q 都假,则p ∨q 一定假矛盾.命题“不等式x 2-5x +6>0的解为x >3或解为x <2”是p ∨q 的形式.知识点二 含逻辑联结词的命题的真假判断分别指出下列命题的形式及构成它的命题,并判断真假:(1)相似三角形周长相等或对应角相等; (2)9的算术平方根不是-3;(3)垂直于弦的直径平分这条弦,并且平分弦所对的两段弧.解 (1)这个命题是p ∨q 的形式,其中p :相似三角形周长相等,q :相似三角形对应角相等,因为p 假q 真,所以p ∨q 为真.(2)这个命题是綈p 的形式,其中p :9的算术平方根是-3,因为p 假,所以綈p 为真.(3)这个命题是p ∧q 的形式,其中p :垂直于弦的直径平分这条弦,q :垂直于弦的直径平分这条弦所对的两段弧,因为p 真q 真,所以p ∧q 为真.【反思感悟】 判断含逻辑联结词的命题的真假,关键是对应p 、q 的真假及“p ∧q ”“p ∨q ”为真时的判定依据,至于“綈p ”的真假,可就p 的真假判断,也可就“綈p ”直接判断.判断下列命题的真假:(1)-1是偶数或奇数;(2)2属于集合Q ,也属于集合R ; (3)A ⃘(A ∪B ).解 (1)此命题为“p ∨q ”的形式,其中p :-1是偶数,q :-1是奇数,因为p 为假命题,q 为真命题,所以“p ∨q ”为真命题,故原命题为真命题.(2)此命题为“p ∧q ”的形式,其中p :2属于Q ,q :2属于R ,因为p 为假命题,q 为真命题,所以“p ∧q ”为假命题,故原命题为假命题.(3)此命题为“綈p ”的形式,其中p :A ⊆(A ∪B ).因为p 为真命题,所以“綈p ”为假命题,故原命题为假命题.知识点三 简单的逻辑联结词的综合应用已知p :函数y =x 2+mx +1在(-1,+∞)上单调递增,q :函数y =4x 2+4(m -2)x +1大于零恒成立.若p 或q 为真,p 且q 为假,求m 的取值范围.解 若函数y =x 2+mx +1在(-1,+∞)上单调递增,则-m2≤-1,∴m ≥2,即p :m ≥2;若函数y =4x 2+4(m -2)x +1恒大于零, 则Δ=16(m -2)2-16<0, 解得1<m <3,即q :1<m <3.因为p 或q 为真,p 且q 为假,所以p 、q 一真一假,当p 真q 假时,由⎩⎨⎧m ≥2m ≥3或m ≤1,得m ≥3,当p 假q 真时,由⎩⎨⎧m <21<m <3,得1<m <2.综上,m 的取值范围是{m |m ≥3或1<m <2}.【反思感悟】 由p 、q 的真假,可以判断“p ∨q ”“p ∧q ”“綈p ”的真假.反之,由“p ∧q ”“p ∨q ”“綈p ”的真假,也能推断p 、q 的真假,如“p ∧q ”为假,则包括“p 真q 假”“p 假q 真”“p 假q 假”三种情况.已知p :方程x 2+mx +1=0有两个不等负根.q :方程4x 2+4(m -2)x +1=0无实根.(1)当m 为何值时,p 或q 为真? (2)当m 为何值时,p 且q 为真?解 由已知可知:p 真时m >2,q 真时1<m <3, (1)若p 或q 为真,只需m ∈{m |m >2}∪{m |1<m <3} ={m |m >1}.(2)若p 且q 为真,只需m ∈{m |m >2}∩{m |1<m <3} ={m |2<m <3}.课堂小结:1. 从集合的角度理解“且”“或”“非”. 设命题p :x ∈A.命题q :x ∈B. 则p ∧qx ∈A 且x ∈Bx ∈A ∩B ;p ∨q x ∈A 或x ∈B x ∈A ∪B ;2.对有逻辑联结词的命题真假性的判断 当p 、q 都为真,p ∧q 才为真;⌝p 与p 的真假性相反且一定有一个为真.当p 、q 有一个为真,p ∨q 即为真; 3.含有逻辑联结词的命题否定(1)“x=0或x=1”的否定是“x ≠0且x ≠1”而不是“x ≠0或x ≠1”; (2)“x 、y 全为0”的否定是“x 、y 不全为0”,而不是“x 、y 全不为0”;(3)“全等三角形一定是相似三角形”的否定是“全等三角形一定不是相似三角形”而不是“全等三角形不一定是相似三角形”.一、选择题1.p :点P 在直线y =2x -3上,q :点P 在抛物线y =-x 2上,则使“p ∧q ”为真命题的一个点P (x ,y )是( )A .(0,-3)B .(1,2)C .(1,-1)D .(-1,1) 答案 C解析 点P (x ,y )满足⎩⎪⎨⎪⎧y =2x -3,y =-x 2.可验证各选项中,只有C 正确.2.如果原命题的结论是“p 且q ”的形式,那么否命题的结论形式为( ) A .綈p 且綈q B .綈p 或綈q C .綈p 或q D .綈q 或p 答案 B解析 注意逻辑联结词的否定,“或”的否定是“且”,“且”的否定为“或”,所以p 且q 的否定为綈p 或綈q .所以选B.3.命题p :函数y =log a (ax +2a )(a >0且a ≠1)的图象必过定点(-1,1);命题q :如果函数y =f (x )的图象关于(3,0)对称,那么函数y =f (x -3)的图象关于原点对称,则有( )A .“p 且q ”为真B .“p 或q ”为假C .p 真q 假D .p 假q 真 答案 C解析 由于将点(-1,1)代入y =log a (ax +2a )成立,故p 真;由y =f (x )的图象关于(3,0)对称,知y =f (x -3)的图象关于(6,0)对称,故q 假.4.若p 、q 是两个简单命题,p 或q 的否定是真命题,则必有( ) A .p 真q 真 B .p 假q 假 C .p 真q 假 D .p 假q 真答案 B解析 因为p 或q 的否定綈p 且綈q 为真命题,所以綈p 与綈q 都是真命题,所以p 与q 都为假命题.所以选B.5.下列命题中既是p ∧q 形式的命题,又是真命题的是( ) A .10或15是5的倍数B .方程x 2-3x -4=0的两根是-4和1C .方程x 2+1=0没有实数根D .有两个角为45°的三角形是等腰直角三角形 答案 D解析 A 中的命题是条件复合的简单命题,B 中的命题是结论复合的简单命题,C 中的命题是綈p 的形式,D 中的命题为p ∧q 型. 二、填空题6.由命题p :6是12的约数,命题q :6是24的约数.构成的“p ∨q ”形式的命题是______________________________,“p ∧q ”形式的命题是______________________________,“綈p ”形式的命题是________________________________.答案 6是12或24的约数 6是12和24的约数 6不是12的约数7.若“x ∈[2,5]或x ∈{x |x <1或x >4}”是假命题,则x 的范围是________. 答案 [1,2)解析 x ∈[2,5]或x ∈(-∞,1)∪(4,+∞), 即x ∈(-∞,1)∪[2,+∞),由于命题是假命题,所以1≤x <2,即x ∈[1,2).8.已知a 、b ∈R ,设p :|a |+|b |>|a +b |,q :函数y =x 2-x +1在(0,+∞)上是增函数,那么命题:p ∨q 、p ∧q 、綈p 中的真命题是________.答案 綈p 解析 对于p 当a >0,b >0时,|a |+|b |=|a +b |,故p 假,綈p 为真;对于q ,抛物线y =x 2-x +1的对称轴为x =12,故q 假,所以p ∨q 假,p ∧q 假.这里綈p 应理解成|a |+|b |>|a +b |不恒成立,而不是|a |+|b |≤|a +b |.三、解答题9.判断下列复合命题的真假:(1)等腰三角形顶角的平分线平分底边并且垂直于底边; (2)x =±1是方程x 2+3x +2=0的根; (3)A ⃘(A ∪B ).解 (1)这个命题是“p 且q ”的形式,其中p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边,因为p 真q 真,则“p 且q ”真,所以该命题是真命题.(2)这个命题是“p 或q ”的形式,其中p :1是方程x 2+3x +2=0的根,q :-1是方程x 2+3x +2=0的根,因为p 假q 真,则“p 或q ”真,所以该命题是真命题.(3)这个命题是“非p ”的形式,其中p :A ⊆(A ∪B ),因为p 真,则“非p ”假,所以该命题是假命题. 10.已知p :x 2+4mx +1=0有两个不等的负数根,q :函数f (x )=-(m 2-m +1)x 在(-∞,+∞)上是增函数.若p 或q 为真,p 且q 为假,求实数m 的取值范围.解 p :x 2+4mx +1=0有两个不等的负根⇔⎩⎪⎨⎪⎧Δ=16m 2-4>0-4m <0⇔m >12.q :函数f (x )=-(m 2-m +1)x 在(-∞,+∞)上是增函数 ⇔0<m 2-m +1<1⇔0<m <1.(1)若p 真,q 假,则⎩⎪⎨⎪⎧m >12,m ≤0或m ≥1.⇒m ≥1.(2)若p 假,q 真,则⎩⎪⎨⎪⎧m ≤120<m <1⇒0<m ≤12综上,得m ≥1或0<m ≤12.。

高中数学知识点总结(第一章 集合与常用逻辑用语)

高中数学知识点总结(第一章 集合与常用逻辑用语)

第一章 集合与常用逻辑用语第一节 集 合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A .A B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A .(3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B .两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁U A.二、常用结论(1)子集的性质:A⊆A,∅⊆A,A∩B⊆A,A∩B⊆B.(2)交集的性质:A∩A=A,A∩∅=∅,A∩B=B∩A.(3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∅=∅∪A=A.(4)补集的性质:A∪∁U A=U,A∩∁U A=∅,∁U(∁U A)=A,∁A A=∅,∁A∅=A.(5)含有n个元素的集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集.(6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.第二节命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词3.全称命题与特称命题4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.。

高中数学常用逻辑用语简单的逻辑联结词且and或or非not学案

高中数学常用逻辑用语简单的逻辑联结词且and或or非not学案

1.3 简单的逻辑联结词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)学习目标:1.了解逻辑联结词“且”“或”“非”的意义.(重点)2.能够判断命题“p 且q”“p或q”“非p”的真假.(难点)3.会使用联结词“且”“或”“非”联结并改写成某些数学命题,会判断命题的真假.(易错点)[自主预习·探新知]1.“且”(1)定义一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q.读作“p且q”.(2)真假判断当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q 是假命题.2.“或”(1)定义一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q.读作“p或q”.(2)真假判断当p,q两个命题有一个命题是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题.思考1:(1)p∨q是真命题,则p∧q是真命题吗?(2)若p∨q与p∧q一个是真命题,一个是假命题,那么谁是真命题?[提示](1)不一定,p∨q是真命题,p与q可能一真一假,此时p∧q是假命题.(2)p∨q是真命题,p∧q是假命题.3.“非”(1)定义一般地,对一个命题p全盘否定,就得到一个新命题,记作p,读作“非p”或“p的否定”.(2)真假判断若p是真命题,则p必是假命题;若p是假命题,则p必是真命题.思考2:命题的否定与否命题的区别是什么?[提示](1)命题的否定是直接对命题的结论进行否定,而否命题则是对原命题的条件和结论分别否定.(2)命题的否定(非p)的真假与原命题(p)的真假总是相对的,即一真一假,而否命题的真假与原命题的真假无必然的联系.4.复合命题:用逻辑联结词“且”;“或”;“非”把命题p和命题q联结来的命题称为复合命题.复合命题的真假判断p1.思考辨析(1)若p∧q为真,则p,q中有一个为真即可.( )(2)若命题p为假,则p∧q一定为假.( )(3)“p∨q为假命题”是“p为假命题”的充要条件.( )(4)“梯形的对角线相等且互相平分”是“p∨q”形式的命题.( )[答案](1)×(2)√(3)×(4)×2.“xy≠0”是指( )A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0D.x,y不都是0A[xy≠0⇔x≠0且y≠0,故选A.]3.已知p,q是两个命题,若“(p)∨q”是假命题,则( )【导学号:97792023】A.p,q都是假命题B.p,q都是真命题C.p是假命题,q是真命题D.p是真命题,q是假命题D[若(p)∨q为假命题,则p,q都是假命题,即p真q假,故选D.][合作探究·攻重难](1)方程x2-3=0没有有理根;(2)有两个内角是45°的三角形是等腰直角三角形;(3)±1是方程x3+x2-x-1=0的根.[解](1)这个命题是“非p”形式的命题,其中p:方程x2-3=0有有理根.(2)这个命题是“p且q”形式的命题,其中p:有两个内角是45°的三角形是等腰三角形,q:有两个内角是45°的三角形是直角三角形.(3)这个命题是“p或q”形式的命题,其中p:1是方程x3+x2-x-1=0的根,q:-1是方程x3+x2-x-1=0的根.1.分别写出由下列命题构成的“p∨q”、“p∧q”、“p”形式的命题.(1)p:梯形有一组对边平行,q:梯形有一组对边相等;(2)p:-1是方程x2+4x+3=0的解,q:-3是方程x2+4x+3=0的解.【导学号:97792024】[解](1)p∧q:梯形有一组对边平行且有一组对边相等.p∨q:梯形有一组对边平行或有一组对边相等.p:梯形没有一组对边平行.(2)p∧q:-1与-3是方程x2+4x+3=0的解.p∨q:-1或-3是方程x2+4x+3=0的解.p:-1不是方程x2+4x+3=0的解.的已知命题p:方程x2-2ax-1=0有两个实数根;命题q:函数f(x)=x+x 最小值为4.给出下列命题:①p∧q;②p∨q;③p∧(q);④(p)∨(q).则其中真命题的个数为( )A.1 B.2 C.3 D.4[思路探究] 判断p,q的真假→判断p,q的真假→判断所给命题的真假[解析]由于Δ=(-2a)2-4×1×(-1)=4a2+4>0,所以方程x2-2ax-1=0有两个实数根,所以命题p是真命题;当x<0时,f(x)=x+4x<0,所以命题q为假命题,所以p∨q,p∧(q),(p)∨(q)是真命题,故选C.[答案] C”还是“2.(1)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(q);④(p)∨q中,真命题是( )A.①③ B.①④C.②③ D.②④C[由不等式的性质可知,命题p为真命题,命题q为假命题,故①p∧q为假命题,②p∨q为真命题,③q为真命题,则p∧(q)为真命题,④p为假命题,则(p)∨q为假命题.](2)分别指出由下列命题构成的“p∨q”“p∧q”“p”形式的命题的真假.【导学号:97792025】①p:1∈{2,3},q:2∈{2,3};②p:2是奇数,q:2是合数;③p:4≥4,q:23不是偶数;④p:不等式x2-3x-10<0的解集是{x|-2<x<5},q:不等式x2-3x-10<0的解集是{x|x>5或x<-2}.[解] ①∵p 是假命题,q 是真命题,∴p ∨q 是真命题,p ∧q 是假命题,p 是真命题. ②∵p 是假命题,q 是假命题,∴p ∨q 是假命题,p ∧q 是假命题,p 是真命题. ③∵p 是真命题,q 是真命题,∴p ∨q 是真命题,p ∧q 是真命题,p 是假命题. ④∵p 是真命题,q 是假命题,∴p ∨q 是真命题,p ∧q 是假命题,p 是假命题.1.设集合A 是p 为真命题时参数的取值范围,则p 为假命题时,参数的取值范围是什么?提示:p 为假命题时,参数的取值范围是∁R A .2.设集合M 、N 分别是p ,q 分别为真命题时参数的取值范围,则p ∨q 与p ∧q 分别为真命题时参数的取值范围分别是什么?提示:当p ∨q 为真命题时,参数的取值范围是A ∪B . 当p ∧q 为真命题时,参数的取值范围是A ∩B .已知p :关于x 的方程x 2+mx +1=0有两个不相等的负根,q :关于x 的方程4x 2+4(m -2)x +1=0无实根.若p ∨q 为真命题,p ∧q 为假命题,求m 的取值范围.[思路探究][解] 当x 2+mx +1=0有两个不相等的负根为真时,⎩⎪⎨⎪⎧m 2-4>0,-m <0,解之得m >2,当4x 2+4(m -2)x +1=0无实根为真时,16(m -2)2-16<0,解之得1<m <3. 因为p ∧q 为假命题,p ∨q 为真命题,所以p 与q 一真一假.若p 真q 假,则⎩⎪⎨⎪⎧m >2,m ≥3或m ≤1,所以m ≥3.若p 假q 真,则⎩⎪⎨⎪⎧m ≤2,1<m <3,所以1<m ≤2.所以m 的取值范围为1<m ≤2或m ≥3.求出根据命题根据1.若命题“p∧q”为假,且p为假,则( )A.p∨q为假B.q假C.q真D.p假B[由p为假知,p为真,又p∧q为假,则q假,故选B.]2.给出下列命题:①2>1或1>3;②方程x2-2x-4=0的判别式大于或等于0;③25是6或5的倍数;④集合A∩B是A的子集,且是A∪B的子集.其中真命题的个数为( )A.1 B.2 C.3 D.4D[对于①,是“或”命题,且2>1是真命题,故①是真命题.对于②,是“或”命题,且Δ=(-2)2+16=20>0,故②是真命题.对于③,是“或”命题,且25是5的倍数,故③是真命题.对于④,是“且”命题,且集合A ∩B 是A 的子集,也是A ∪B 的子集.故④是真命题,故选D.]3.已知命题:p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( ) A .p ∧q B .p ∧q C .p ∧qD .p ∧qD [因为指数函数的值域为(0,+∞),所以对任意x ∈R ,y =2x>0恒成立,故p 为真命题;因为当x >1时,x >2不一定成立,反之当x >2时,一定有x >1成立,故“x >1”是“x >2”的必要不充分条件,故q 为假命题,则p ∧q 、p 为假命题,q 为真命题,p ∧q 、p ∧q 为假命题,p ∧q 为真命题,故选D.]4.已知命题p :函数f (x )=(2a -1)x +b 在R 上是减函数;命题q :函数g (x )=x 2+ax 在[1,2]上是增函数,若p ∧q 为真,则实数a 的取值范围是________.【导学号:97792026】⎣⎢⎡⎭⎪⎫-2,12 [p 为真时,2a -1<0,即a <12,q 为真时,-a2≤1,即a ≥-2,则p ∧q 为真时,-2≤a <12.]5.分别指出由下列各组命题构成的“p ∧q ”“p ∨q ”“ p ”形式的命题的真假:(1)p :点P (1,1)在直线2x +y -1=0上,q :直线y =x 过圆x 2+y 2=4的圆心; (2)p :4∈{2,3,4},q :不等式x 2-x -2>0的解集为{x |-2<x <1}; (3)p :若a >b ,则2a>2b,q :若a >b ,则a 3>b 3. [解] (1)∵p 是假命题,q 是真命题,∴p ∧q 为假命题,p ∨q 为真命题,p 为真命题. (2)∵p 是真命题,q 是假命题,∴p ∧q 为假命题,p ∨q 为真命题,p 为假命题. (3)∵p 是真命题,q 是真命题,∴p ∧q 为真命题,p ∨q 为真命题,p 为假命题.。

1.3简单的逻辑联结词、全称量词与存在量词

1.3简单的逻辑联结词、全称量词与存在量词
2
1 ∵c>0 且 c≠1,∴綈 q:c> 且 c≠1. 2 又∵“p 或 q”为真, “p 且 q”为假,∴p 与 q 一真一假.
1 1 ①当 p 真,q 假时,{c|0<c<1}∩ c c> ,且c≠1 = c <c<1. 2 2 1 ②当 p 假,q 真时,{c|c>1}∩ c 0<c≤ =∅. 2 1 综上所述,实数 c 的取值范围是 c <c<1. 2 1 故填c <c<1. 2
x
2
类型一
含有逻辑联结词的命题及其真假判断
指出下列命题的构成形式,并对该命题进行分解, 然后判断其真假. (1)矩形的对角线相等且垂直; (2)3≥3; (3)10 是 2 或 5 的倍数; (4)10 是 2 和 5 的倍数; (5)2 是 4 和 6 的约数; (6)2 是 4 和 6 的公约数.
q 为真命题,有 Δ=[4(m-2)] -4×4×1<0,解得 1<m<3. 由“p∨q”为真命题, “p∧q”为假命题,知 p 与 q 一真一假. m>2, 当 p 真,q 假时,由 得 m≥3; m≤1或m≥3, m≤2, 当 p 假,q 真时,由 得 1<m≤2. 1<m<3, 综上,实数 m 的取值范围是(1,2]∪[3,+∞). 故填(1,2]∪[3,+∞).
1 已知命题 p:∃x0∈R,sinx0< x0,则綈 p 为( 2 1 A.∃x0∈R,sinx0= x0 2 1 C.∃x0∈R,sinx0≥ x0 2 1 B.∀x∈R,sinx< x 2 1 D.∀x∈R,sinx≥ x 2

2019_2020学年高中数学第1章常用逻辑用语的命题的否定讲义苏教版选修2_1

2019_2020学年高中数学第1章常用逻辑用语的命题的否定讲义苏教版选修2_1

1.2 简单的逻辑联结词(不作要求)1.3 全称量词与存在量词1.3.1 量词1.3.2 含有一个量词的命题的否定学习目标核心素养1.理解全称量词与存在量词的意义,能准确地利用全称量词和存在量词叙述简单的数学内容.(重点)2.能判定全称命题和存在性命题的真假.(难点)3.了解对含有一个量词的命题的否定的意义,能正确地对含有一个量词的命题进行否定.(易错点)1.通过对含有量词的命题的否定,培养逻辑推理素养.2.借助含量词的命题的真假求参数问题,提升数学运算素养.1.全称量词和全称命题全称量词“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词符号表示∀全称命题含有全称量词的命题称为全称命题符号表示∀x∈M,p(x)存在量词“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词符号表示∃存在性命题含有存在量词的命题称为存在性命题符号表示∃x∈M,p(x)写成相应命题的形式.(2)“不等式(m+1)x2-(m-1)x+3(m-1)<0对任意实数x恒成立”是存在性命题还是全称命题?请改写成相应命题的形式.[提示] (1)是存在性命题,可改写为“∃x∈R,使ax2+2x+1=0”(2)是全称命题,可改写成:“∀x∈R,(m+1)x2-(m-1)x+3(m-1)<0”.3.全称命题和存在性命题的否定1.下列命题中为全称命题的是( ) A .至少有一个自然数是2的倍数 B .存在小于零的整数 C .方程3x =2有实数根 D .无理数是小数D [D 中“无理数”指的是所有的无理数.] 2.下列语句是存在性命题的是( ) A .整数n 是2和7的倍数 B .存在整数n ,使n 能被11整除 C .x >7D .∀x ∈M ,p (x )成立B [B 选项中有存在量词“存在”,故B 项是存在性命题,A 和C 不是命题,D 是全称命题.]3.下列四个命题中的真命题为( ) A .∃x ∈Z,1<4x <3 B .∃x ∈Z,5x +1=0 C .∀x ∈R ,x 2-1=0 D .∀x ∈R ,x 2+x +2>0D [当x ∈R 时,x 2+x +2=⎝ ⎛⎭⎪⎫x +122+74>0,故选D.]4.已知命题p :∀x ∈R ,sin x ≤1,则命题p 的否定是________.∃x ∈R ,sin x >1 [命题p 是全称命题,其否定应为存在性命题,即綈p :∃x ∈R ,sinx >1.]两种命题的概念及真假判断【例1(1)∀x ∈N,2x +1是奇数;(2)存在一个x ∈R ,使1x -1=0; (3)能被5整除的整数末位数是0; (4)有一个角α,使sin α>1[解] (1)是全称命题,因为∀x ∈N,2x +1都是奇数,所以该命题是真命题. (2)是存在性命题.因为不存在x ∈R ,使1x -1=0成立,所以该命题是假命题. (3)是全称命题.因为25能被5整除,但末位数不是0,因此该命题是假命题. (4)是存在性命题,因为∀α∈R ,sin α∈[-1,1],所以该命题是假命题.1.判断命题是全称命题还是存在性命题的方法 (1)分析命题中是否含有量词; (2)分析量词是全称量词还是存在量词;(3)若命题中不含量词,要根据命题的意义去判断. 2.全称命题与存在性命题真假的判断方法(1)要判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中每个元素x ,证明p (x )都成立;如果在集合M 中找到一个元素x ,使得p (x )不成立,那么这个全称命题就是假命题.(2)要判定存在性命题“∃x ∈M ,p (x )”是真命题,只需在集合M 中找到一个元素x ,使p (x )成立即可;如果在集合M 中,使p (x )成立的元素x 不存在,那么这个存在性命题就是假命题.1.(1)以下四个命题既是存在性命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2B [A 中锐角三角形的内角是锐角或钝角是全称命题;B 中x =0时,x 2=0,所以B 既是存在性命题又是真命题;C 中因为3+(-3)=0,所以C 是假命题;D 中对于任一个负数x ,都有1x<0,所以D 是假命题.](2)下列命题中,真命题是( ) A .∃x ∈⎣⎢⎡⎦⎥⎤0,π2,sin x +cos x ≥2B .∀x ∈(3,+∞),x 2>2x +1 C .∃x ∈R ,x 2+x =-1D .∀x ∈⎝ ⎛⎭⎪⎫π2,π,tan x >sin x B [(1)对于选项A ,sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2,∴此命题不成立;对于选项B ,x 2-2x -1=(x -1)2-2,当x >3时,(x -1)2-2>0,∴此命题成立;对于选项C ,x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0,∴x 2+x =-1对任意实数x 都不成立,∴此命题不成立;对于选项D ,当x ∈⎝ ⎛⎭⎪⎫π2,π时,tan x <0,sin x >0,命题显然不成立.故选B.]含有一个量词的命题的否定x x 2x A .∀x ∉R ,x 2≠x B .∀x ∈R ,x 2=x C .∃x ∉R ,x 2≠x D .∃x ∈R ,x 2=x(2)写出下列命题的否定,并判断其真假: ①p :∀x ∈R ,x 2-x +14≥0;②p :所有的正方形都是菱形; ③p :至少有一个实数x ,使x 3+1=0.[思路探究] 先判定命题是全称命题还是存在性命题,再针对不同的形式加以否定. (1)D [原命题的否定为∃x ∈R ,x 2=x ,故选D.] (2)[解] ①綈p :∃x ∈R ,x 2-x +14<0,假命题.因为∀x ∈R ,x 2-x +14=⎝ ⎛⎭⎪⎫x -122≥0恒成立.②綈p :至少存在一个正方形不是菱形,假命题. ③綈p :∀x ∈R ,x 3+1≠0,假命题. 因为x =-1时,x 3+1=0.对全称命题和存在性命题进行否定的步骤与方法1.确定类型:是存在性命题还是全称命题.2.改变量词:把全称量词换为恰当的存在量词;把存在量词换为恰当的全称量词. 3.否定结论:原命题中“是”“有”“存在”“成立”等改为“不是”“没有”“不存在”“不成立”等.提醒:无量词的全称命题要先补回量词再否定.2.(1)命题“∃x ∈(0,+∞),ln x =x -1”的否定是( ) A .∀x ∈(0,+∞),ln x ≠x -1 B .∀x ∉(0,+∞),ln x =x -1 C .∃x ∈(0,+∞),ln x 0≠x 0-1 D .∃x ∉(0,+∞),ln x 0=x 0-1A [存在性命题的否定是全称命题,故原命题的否定是∀x ∈(0,+∞),ln x ≠x -1.] (2)写出下列命题的否定,并判断其真假.①p :不论m 取何实数,方程x 2+x -m =0必有实数根; ②q: 存在一个实数x ,使得x 2+x +1≤0; ③r :等圆的面积相等,周长相等; ④s :对任意角α,都有sin 2α+cos 2α=1.[解] ①这一命题可以表述为p :“对所有的实数m ,方程x 2+x -m =0有 实数根”,其否定形式是綈p :“存在实数m ,使得x 2+x -m =0没有实数根”.注意到当Δ=1+4m <0时,即m <-14时,一元二次方程没有实数根,所以綈p 是真命题.②这一命题的否定形式是綈q :“对所有的实数x ,都有x 2+x +1>0”,利用配方法可以证得綈q 是真命题.③这一命题的否定形式是綈r :“存在一对等圆,其面积不相等或周长不相等”,由平面几何知识知綈r 是假命题.④这一命题的否定形式是綈s :“存在α∈R ,sin 2α+cos 2α≠1”,由于命题s 是真命题,所以綈s 是假命题.由命题的真假确定参数的范围1.若含参数的命题p 是假命题,如何求参数的取值范围? 提示:先求綈p ,再求参数的取值范围.2.全称命题和存在性命题与恒成立问题和存在性问题有怎样的对应关系?提示:全称命题与恒成立问题对应,存在性命题与存在性问题对应.【例3】 (1)若命题p “∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是________.(2)已知命题p :∃x ∈R,9x -3x-a =0,若命题p 是真命题,求实数a 的取值范围. [思路探究] (1)先求綈p ,再求参数的取值范围. (2)令3x=t ,看作一元二次方程有解问题.(1) [-22,22] [綈p :∀x ∈R,2x 2-3ax +9≥0为真命题. 则Δ=9a 2-72≤0,解得-22≤a ≤22] (2)解:设3x=t ,由于x ∈R ,则t ∈(0,+∞),则9x-3x-a =0⇔a =(3x )2-3x⇔a =t 2-t ,t ∈(0,+∞),设f (t )=t 2-t ,t ∈(0,+∞),则f (t )=⎝ ⎛⎭⎪⎫t -122-14,当t =12时,f (t )min =-14,则函数f (t )的值域是⎣⎢⎡⎭⎪⎫-14,+∞,所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫-14,+∞.母题探究:1.若将本例题(2)条件“∃x ∈R ”,改为“∃x ∈[0,1]”,其他不变,试求实数a 的取值范围.[解] 设3x=t ,x ∈[0,1],∴t ∈[1,3].a =t 2-t ,∵t 2-t =⎝ ⎛⎭⎪⎫t -122-14,∴a =t 2-t 在t ∈[1,3]上单调递增.∴t 2-t ∈[]0,6.即a 的取值范围是[]0,6.2.将本例题(2)换为“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m 是真命题”,试求m 的最小值.[解] 由已知可得m ≥tan x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π4恒成立.设f (x )=tan x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π4,显然该函数为增函数,故f (x )的最大值为f ⎝ ⎛⎭⎪⎫π4=tan π4=1,由不等式恒成立可得m ≥1,即实数m的最小值为1.应用两种命题求参数范围的两类题型1.全称命题的常见题型是“恒成立”问题,全称命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以可以利用代入体现集合中相应元素的具体性质中求解;也可以根据函数等数学知识来解决.2.存在性命题的常见题型是以适合某种条件的结论“存在”“不存在”“是否存在”等语句表述.解答这类问题,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.1.判断命题是全称命题还是存在性命题,主要是看命题中是否含有全称量词或存在量词,有些全称命题不含全称量词,可以根据命题涉及的意义去判断.2.要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.3.要确定一个存在性命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该存在性命题是假命题.4.对含有一个量词的命题的否定要注意以下问题:(1)确定命题类型,是全称命题还是存在性命题.(2)改变量词:把全称量词改为恰当的存在量词;把存在量词改为恰当的全称量词.(3)否定结论:原命题中的“是”“有”“存在”“成立”等分别改为“不是”“没有”“不存在”“不成立”等.(4)无量词的全称命题要先补回量词再否定.1.判断(正确的打“√”,错误的打“×”)(1)命题“对数函数都是单调函数”是全称命题.( )(2)命题“有些菱形是正方形”是全称命题.( )(3)命题:∀x∈R,x2-3x+3>0的否定是∀x∉R,x2-3x+3≤0.()[答案] (1)√(2)×(3)×2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数D[全称命题的否定为相应的存在性命题,即将“所有”变为“存在”,并且将结论进行否定.]3.命题p:∃x∈R,x2+2x+5<0是________(填“全称命题”或“存在性命题”),它是________命题(填“真”或“假”),它的否定为綈p:________.存在性命题假∀x∈R,x2+2x+5≥0[命题p:∃x∈R,x2+2x+5<0是存在性命题.因为x2+2x+5=(x+1)2+4>0恒成立,所以命题p为假命题.命题p的否定为:∀x∈R,x2+2x+5≥0.]4.判断下列命题是全称命题还是存在性命题,并判断其真假;(1)对某些实数x,有2x+1>0;(2)∀x∈{3,5,7},3x+1是偶函数;(3)∃x∈Q,x2=3[解] (1)命题中含有存在量词“某些”,因此是存在性命题,真命题.(2)命题中含有全称量词的符号“∀”,因此是全称命题.把3,5,7分别代入3x+1,得10,16,22,都是偶数,因此,该命题是真命题.(3)命题中含有存在量词的符号“∃”,因此是存在性命题.由于使x2=3成立的实数只有±3,且它们都不是有理数,因此,没有一个有理数的平方等于3,所以该命题是假命题.。

高中数学 第一章 常用逻辑用语 1.3 简单的逻辑联结词课件3 新人教A版选修1-1.ppt

高中数学 第一章 常用逻辑用语 1.3 简单的逻辑联结词课件3 新人教A版选修1-1.ppt
5
➡根据以上探究过程,试着写出“且”的含义及命题“p∧q”真假的 判断规则: 1.“且”的含义 一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命 题,记作_p_∧__q_,读作“_p_且__q_”. 2.“p∧q”命题的真假 当p,q都是真命题时,p∧q是_真__命__题__;当p,q两个命题中有一个命 题是假命题时,p∧q是_假__命__题__.
6
【合作探究】 1.若“p∧q”是假命题,则命题p,q都是假命题吗?为什么? 提示:不一定,因为命题p,q中只要有一个是假命题,“p∧q”就是 假命题. 2.判断“p∧q”命题真假的关键是什么? 提示:关键是判断p,q命题的真假.
7
【过关小练】 1.将命题p:lg0.1<0,q:lg11>0用联结词“且”联结得到新命题为: ____________,其为________命题.(填“真”或“假”) 【解析】由“且”的含义知,p∧q为lg0.1<0且lg11>0,为真命题. 答案:lg0.1<0且lg11>0 真
15
2.命题①sinx≤1或cosx>2是________命题; ②10<10或lg100>2是________命题.(填“真”或“假”) 【解析】①sinx≤1为真,cosx>2为假,故“p∨q”为真. ②10<10为假,lg100=2>2为假,故“p∨q”为假. 答案:①真 ②假
16
主题三:非p(﹁)p) 【自主认知】 1.观察下列两个命题(1)(2),它们之间有什么关系? (1)6是3的倍数. (2)6不是3的倍数. 提示:命题(2)是命题(1)的否定.
12
【合作探究】 1.若“p∨q”是假命题,p,q一定是假命题吗? 提示:是,只要p,q中有一个为真命题,则p∨q是真命题,只有p,q 都是假命题时,p∨q才是假命题.

高中数学第一章常用逻辑用语1.3简单的逻辑联结词课件新人教A版选修110829247

高中数学第一章常用逻辑用语1.3简单的逻辑联结词课件新人教A版选修110829247

1
,
4
< < 4;
1
如果 q 真,且 p 假,有 a<0 或 a≥4,且 a≤4 , 那么a<0.
1
因此实数 a 的取值范围为(-∞,0)∪ ,4 .
4
第十八页,共22页。
题型一
题型二
题型三
题型四
反思 解决此类问题的方法,一般是先假设p,q分别为真,化简其中的参
数取值范围,然后当它们(tā men)为假时取其补集,最后确定参数的取值
范围.当p,q中参数的范围不易求出时,也可以利用 p与p, q与q
不能同真同假的特点,先求 p, q中参数的取值范围.
第十九页,共22页。
题型一
题型二
题型三
题型四
【变式训练3】 设有两个命题,命题p:不等式x2-(a+1)x+1≤0的解集是⌀;命
题q:函数f(x)=(a+1)x在定义域内是增函数.如果p∧q为假命题,p∨q为真命题,
1.3
简单(jiǎndān)的逻辑联结词
第一页,共22页。
1.了解联结词“且”“或”“非”的含义.
2.会使用(shǐyòng)联结词“且”“或”“非”联结或改写某些数学命题,并
判断新命题的真假.
第二页,共22页。
1
2
3
4
1.一般地,用联结词“且”把命题p和命题q联结起来得到的新命题,记作p∧q,读
当p真q假时有-3<a≤0,当p假q真时有a≥1.
综上所述,a的取值范围是(-3,0]∪[1,+∞).
第二十页,共22页。
题型一
题型二
题型三
题型四
题型四
易错辨析

高中数学第1章常用逻辑用语1.3简单的逻辑联结词a21a高二21数学

高中数学第1章常用逻辑用语1.3简单的逻辑联结词a21a高二21数学

A.p 且 q 为假
B.p 或 q 为假
C.非 p 为真
D.非 p 为假
12/8/2021
第二十页,共四十页。
(2)已知命题 p:方程 x2-2ax-1=0 有两个实数根;命题 q:
函数 f(x)=x+4x的最小值为 4,给出下列命题:①p∧q;②p∨q;
③p∧(﹁q);④(﹁p)∨(﹁q).
则其中真命题的个数是( )
12/8/2021
第三十六页,共四十页。
5.已知命题 p:“任意的 x∈[1,2]x2-a≥0”;命题 q:“存 在 x0∈R,x20+2ax0+2-a=0”.若命题“p 且 q”是真命题.求 实数 a 的取值范围.
12/8/2021
第三十七页,共四十页。
解:由“p 且 q”是真命题,则 p 为真命题,q 也为真命题. 若 p 为真命题,a≤x2 恒成立,∵x∈[1,2]∴a≤1. 若 q 为真命题,即 x2+2ax+2-a=0 有实根, Δ=4a2-4(2-a)≥0,即 a≥1 或 a≤-2. 综上可知实数 a 的取值范围为{a|a≤-2 或 a=1}.
12/8/2021
第三十一页,共四十页。
解析:当 a=0 时,方程 ax+1=0 无解,故 p 是假命题.若 直线 x+my=0 与直线 2x+y+1=0 平行,则 m=12,所以命题 q 为假命题,故(﹁p)∨q 为真命题.
答案:C
12/8/2021
第三十二页,共四十页。
2.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题
12/8/2021
第十一页,共四十页。
【解】 (1)这个命题是“p∧q”的形式,其中 p:12 是 2 的倍数,q:12 是 3 的倍数.
(2)这个命题是“p∨q”的形式,其中 p:3>2,命题 q:3 =2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学第一章常用逻辑用语 1.3 简单的逻辑联结词
(2)教案新人教A版选修2-1
教学目标:
知识与技能目标:
(1)掌握逻辑联结词“非”的含义
(2)正确应用逻辑联结词“非”解决问题
(3)掌握真值表并会应用真值表解决问题
过程与方法目标:
观察和思考中,在解题和证明题中,本节课要特别注重学生思维能力中严密性品质的培养.
情感态度价值目标:
激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.
教学重点:通过数学实例,了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容. 教学难点:1、正确理解命题“¬P”真假的规定和判定.
2、简洁、准确地表述命题“¬P”.
教学用具:多媒体
教学方法:归纳,分析
教学过程:
1、思考、分析
问题1:下列各组命题中的两个命题间有什么关系?
(1)①35能被5整除;②35不能被5整除;
(2)①方程x2+x+1=0有实数根。

②方程x2+x+1=0无实数根。

学生很容易看到,在每组命题中,命题②是命题①的否定。

2、归纳定义
一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p
读作“非p”或“p的否定”。

3、命题“¬p”与命题p的真假间的关系
命题“¬p”与命题p的真假之间有什么联系?
引导学生分析前面所举例子中命题p与命题¬p的真假性,概括出这两个命题的真假之间的关系的一般规律。

例如:在上面的例子中,第(1)组命题中,命题①是真命题,而命题②是假命题。

第(2)组命题中,命题①是假命题,而命题②是真命题。

由此可以看出,既然命题¬P是命题P的否定,那么¬P与P不能同时为真命题,也不能同时为假命题,也就是说,
若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题;
4、命题的否定与否命题的区别
让学生思考:命题的否定与原命题的否命题有什么区别?
命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定,因此在解题时应分请命题的条件和结论。

例:如果命题p:5是15的约数,那么
命题¬p:5不是15的约数;
p的否命题:若一个数不是5,则这个数不是15的约数。

显然,命题p为真命题,而命题p的否定¬p与否命题均为假命题。

5.例题分析
例1 写出下表中各给定语的否定语。

分析:“等于”的否定语是“不等于”;
“大于”的否定语是“小于或者等于”;
“是”的否定语是“不是”;
“都是”的否定语是“不都是”;
“至多有一个”的否定语是“至少有两个”;
“至少有一个”的否定语是“一个都没有”;
例2 写出下列命题的否定,判断下列命题的真假
(1)p:y = sinx 是周期函数;
(2)p:3<2;
(3)p:空集是集合A的子集。

解略.
6.练习巩固:P218 练习第3题
7.小结
(1)正确理解命题“¬P”真假的规定和判定.
(2)简洁、准确地表述命题“¬P”.。

相关文档
最新文档