2014年广州市一模理科数学试题(含详细解答WORD版2)
2014年广东高考理科数学试卷参考答案与解析
2014年普通高等学校招生全国统一考试(广东卷)数学理一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1}2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.54.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B. (1,-1,0) C. (0,-1,1) D. (-1,0,1)6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A 、200,20B 、100,20C 、200,10D 、100,107、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60 B90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
2014年全国高考广东省数学(理)试卷及答案【精校版】
2014年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N =A. {0,1}B. {1,0,2}-C. {1,0,1,2}-D. {1,0,1}-2.已知复数Z 满足(34)25i z +=,则Z=A. 34i -+B. 34i --C. 34i +D. 34i -3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值 和最小值分别为m 和n ,则m n -=A.5B.6C.7D.84.若实数k 满足09k <<,则曲线221259x y k -=-与曲线221259x y k -=-的 A. 焦距相等 B. 实半轴长相等 C. 虚半轴长相等 D. 离心率相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示, 为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A.200,20B.100,20C.200,10D.100,10 7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则 下面结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A.60B.90C.120D.130小学 初中高中 年级 O二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
2014年广东高考理科数学试题含答案(Word版)-推荐下载
提示解: 法一由:射影定理知从பைடு நூலகம்而cos C c cos B a,
a 2b, a 2 . b
解法二: 由上弦定理得: sin B cos C sin C cos B 2sin B,即sin(B C) 2sin B,
sin A 2sin B,即a 2b, a 2 . b
D.130
: C12 C52 A52 40; D.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线0产中不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资22负料,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看2与全22过,22度并22工且22作尽2下可护1都能关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编5试技写、卷术重电保交要气护底设设装。备备4置管高调、动线中试电作敷资高气,设料中课并3技试资件且、术卷料拒管中试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2014广州一模(理数)【含答案--全WORD--精心排版】
2014年广州市普通高中毕业班综合测试(一)数学(理科)2n n ++=一、选择题:1.已知i 是虚数单位,若()2i 34i m +=-,则实数m 的值为( ) A .2-B .2±CD .22.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2C B =,则 ) A .2sin C B .2cos B C .2sin B D .2cos C3.圆()()22121x y -+-=关于直线y x =对称的圆的方程为( )A .()()22211x y -+-= B .()()22121x y ++-= C .()()22211x y ++-= D .()()22121x y -++= 4.的定义域为实数集R ,则实数a 的取值范围为( )A .()2,2-B .()(),22,-∞-+∞C .(][),22,-∞-+∞D .[]2,2-5.某中学从某次考试成绩中抽取若干名学生的分数,并绘制成如图1 的频率分布直方图.样本数据分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.若用分层抽样的方法从样本中抽取分数在 []80,100范围内的数据16个,则其中分数在[]90,100范围内的样本数据有( )A .5个B .6个C .8个D .10个 6.,则集合A 中的元素个数为( ) A .2 B .3 C .4D .57.设a ,b 是两个非零向量,则使a b =a b 成立的一个必要非充分条件是( ) A .=a b B .⊥a b C .λ=a b()0λ> D .ab8.设a ,b ,m 为整数(m>0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020202020C C 2C 2C 2a =+⋅+⋅++⋅,()mod10a b ≡,则b 的值可以是( )A .2011B .2012C .2013D .2014二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.图1分数9.,则实数a 的值为 .10.执行如图2的程序框图,若输出7S =,则输入k ()*k ∈N 的值为 .11.一个四棱锥的底面为菱形,其三视图如图3所示,则这个四棱锥的体积是 .12.设α为锐角,若13.在数列{}n a 中,已知11a =,,记n S 为数列{}n a 的前n 项和,则2014S = . (二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,直线()sin cos a ρθθ-=与曲线2cos 4sin ρθθ=-相交于A ,B 两点,若,则实数a 的值为 .15.的切线,切点为C ,直线PA与圆O 交于A ,B 两点,的平分线分别交弦CA ,CB 于D ,E 两点,已知3PC =,的值为 . 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin cos f x x a x =+的图象经过点(1)求实数a 的值;(2)设[]2()()2g x fx =-,求函数()g x 的最小正周期与单调递增区间. 侧(左)视图图3俯视图P图417.(本小题满分12分)(1)求乙,丙两人各自能被聘用的概率;(2)设ξ表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望).18.(本小题满分14分)如图5,在棱长为a 的正方体1111ABCD A B C D -中,点E 是棱1D D 的中点,点F 在 棱1B B 上,且满足12B F FB =.(1)求证:11EF AC ⊥;(2)在棱1C C 上确定一点G , 使A ,E ,G ,F 四点共面,并求此时1C G 的长;(3)求平面AEF 与平面ABCD 所成二面角的余弦值. C1C 1DABDEF1A1B图519.(本小题满分14分)已知等差数列{}n a 的首项为10,公差为2,等比数列{}n b 的首项为1,公比为2,*n ∈N . (1)求数列{}n a 与{}n b 的通项公式;(2)设第n 个正方形的边长为{}min ,n n n c a b =,求前n 个正方形的面积之和n S .(注:{}min ,a b 表示a 与b 的最小值.)20.(本小题满分14分)已知双曲线E :的中心为原点O ,左,右焦点分别为1F ,2F ,离,点P 是直线上任意一点,点Q 在双曲线E 上,且满足220PF QF =.(1)求实数a 的值;(2)证明:直线PQ 与直线OQ 的斜率之积是定值;(3)若点P 的纵坐标为1,过点P 作动直线l 与双曲线右支交于不同两点M ,N ,在线段MN 上取异于点M ,N 的点H ,满足,证明点H 恒在一条定直线上.21.(本小题满分14分)已知函数()()221e xf x x x =-+(其中e 为自然对数的底数).(1)求函数()f x 的单调区间;(2)定义:若函数()h x 在区间[],s t ()s t <上的取值范围为[],s t ,则称区间[],s t 为函数()h x 的“域同区间”.试问函数()f x 在()1,+∞上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.2014年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准一、选择题:二、填空题:三、解答题:本大题共6小题,满分80分. 16.(本小题满分1)解:(1)因为函数()sin cos f x x a x =+的图象经过点(2)方法1:由(1.所以()g x 的最小正周期为 因为函数sin y x =的单调递增区间为 时,函数()g x 单调递增, 时,函数()g x 递增.所以函数()g x 的增区间为方法2:由(1,因为函数cos y x =的单调递减区间为[]2,2k k ππ+π()k ∈Z , 时,函数()g x 单调递增.1D ABCD EF 1A1B1C (k ∈Z )时,函数()g x 递增.所以函数()g x 的增区间为 17.(本小题满分1)解:(1)记甲,乙,丙各自能被聘用的事件分别为1A ,2A ,3A ,由已知1A ,2A ,3A 相互独立,且满足所以乙, (2)ξ的可能取值为1,3.18.(本小题满分1)推理论证法:(1)证明:连结11B D ,BD ,因为四边形1111A B C D 是正方形,所以1111AC B D ⊥. 在正方体1111ABCD A B C D -中,1DD ⊥平面1111A B C D ,11AC ⊂平面1111A B C D , 所以111AC DD ⊥.因为1111B D DD D =,11B D ,1DD ⊂平面11BB D D ,所以11AC ⊥平面11BB D D .因为EF ⊂平面11BB D D ,所以11EF AC ⊥.(2)解:取1C C 的中点H ,连结BH ,则BH AE . 在平面11BB C C 中,过点F 作FG BH ,则FGAE .连结EG ,则A ,E ,G ,F 四点共面. EF DB M = 1DACD EF 1A1B1C 1D ABCD EF 1A1B 1CG H因为FB AM ⊥,FB BN B =,所以AM ⊥平面BNF .因为所以FNB ∠为平面AEF与平面ABCD 所成二面角的平面角.在△ABM 中,AB a =,135ABM ∠=,cos135= sin135, sin135a ⨯=空间向量法:(1)证明:以点D 为坐标原点,DA,DC ,1DD 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则(),0,0A a ,()1,0,A a a ,()10,,C a a ,所以()11,,0AC a a =-,,EF a a ⎛= 因为221100AC EF a a =-++=,所以11AC EF⊥.所以11EF AC ⊥. (2)解:设()0,,G a h ,因为平面11ADD A 平面11BCC B ,平面11ADD A 平面AEGF AE =,平面11BCC B 平面AEGF FG=,所以FG AE .所以存在实数λ,使得FG AE λ=.因为AE a ⎛=- ,FG a ⎛=- 所以1λ=,h .所以1C G CC =时,A ,E ,G ,F 四点共面.⎛⎛设(),,x y z =n 是平面AEF 的法向量,则0,0.AE AF ⎧=⎪⎨=⎪⎩nn即取6z =,则3x =,2y =-.所以()3,2,6=-n 是平面AEF 的一个法向量.而()10,0,DD a =是平面ABCD 的一个法向量, 设平面AEF 与平面ABCD 所成的二面角为θ,则11DD DD n n 0=故平面AEF 与平面ABCD 所成二面角的余弦值为第(1)、(2)问用推理论证法,第(3)问用空间向量法: (1)、(2)给分同推理论证法.(3)解:以点D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则(),0,0A a , 则AE a ⎛=- ,0,AF a ⎛= 设(),,x y z =n 是平面AEF 的法向量,则0,0.AE AF ⎧=⎪⎨=⎪⎩nn即1ax az -+取6z =,则3x =,2y =-.所以()3,2,6=-n 是平面AEF 的一个法向量.而()10,0,DD a =是平面ABCD 的一个法向量,设平面AEF 与平面ABCD 所成的二面角为θ,则11DD DD n n.故平面AEF 与平面ABCD19.(本小题满分1)解:(1)因为等差数列{}n a 的首项为10,公差为2,所以()1012n a n =+-⨯,即28n a n =+. 因为等比数列{}n b 的首项为1,公比为2,所以112n n b -=⨯,即12n n b -=. (2)因为110a =,212a =,314a =,416a =,518a =,620a =,11b =,22b =,34b =,48b =,516b =,632b =.易知当5n ≤时,n n a b >.方法1:①当6n =时,616232b -==620268a >=⨯+=,不等式显然成立. ②假设当n k =()6k ≥时,不等式成立,即1228k k ->+. 则有()()()()122222821826218kk k k k k -=⨯>+=++++>++.这说明当1n k =+时,不等式也成立.综合①②可知,不等式对6n ≥的所有整数都成立.所以当6n ≥时,n n b a >. 方法2:因为当6n ≥时()()()112281128n n n n b a n n ---=-+=+-+()()01211111C C C C 28n n n n n n -----=++++-+()()012321111111C C C C C C 28n n n n n n n n n n ---------≥+++++-+()()0121112C C C 28n n n n ---=++-+()()236460n n n n n =--=-+->,所以当6n ≥时,n n b a >.所以{}min ,n n n c a b =12,5,28,5.n n n n -⎧≤=⎨+>⎩则()22222,5,44, 5.n n n c n n -⎧≤⎪=⎨+>⎪⎩当5n ≤时,2222123n n S c c c c =++++2222123n b b b b =++++222n -++=.当5n >时, 2222123n n S c c c c =++++()()22222212567n b b b a a a =+++++++()4n +++()()()222341467867165n n n ⎡⎤=+++++++++-⎣⎦ ()()()()2222223414121253267645n n n ⎡⎤=++++-++++++++-⎣⎦20.(本小题满分1)(1)解:设双曲线E 的半焦距为c ,由题意可得 (2)证明:由(1)可知,直线x ,点()23,0F .设点因为220PF QF =,所以(03,x y ⎫--⎪⎭因为点()00,Q x y 在双曲线E 上,所以200x y -(3)证法1:设点(),H x y ,的直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,则22114520x y -=,22224520x y -=,即 ,则,.PM PN MH HNλλ⎧=⎪⎨=⎪⎩.即由①×③,②×⑦ .所以点H 恒在定直线43120x y --=上.证法2:依题意,直线l 的斜率k 存在.设直线l 的方程为消去y 得()()()22229453053255690k x k k x k k -+---+=.因为直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,设点(),H x y ,由.整理得()()1212635100x x x x x x -+++=.1 整理得()354150x k x --+=. ④,因为点H 在直线l 上,所以 ⑤联立④⑤消去k 得43120x y --=.所以点H 恒在定直线43120x y --=上.(本题(3)只要求证明点H 恒在定直线43120x y --=上,无需求出x 或y 的范围.)21.(本小题满分1)解:(1)因为()()221e x f x x x =-+,所以2()(22)e (21)e x x f x x x x '=-+-+()21e x x =-(1)(1)e x x x =+-. 当1x <-或1x >时,()0f x '>,即函数()f x 的单调递增区间为(),1-∞-和()1,+∞.当11x -<<时,()0f x '<,即函数()f x 的单调递减区间为()1,1-.所以函数()f x 的单调递增区间为(),1-∞-和()1,+∞,单调递减区间为()1,1-.(2)假设函数()f x 在()1,+∞上存在“域同区间”[,](1)s t s t <<,由(1)知函数()f x 在()1,+∞上是增函数,所以(),().f s s f t t =⎧⎨=⎩ 即22(1)e ,(1)e .s t s s t t ⎧-⋅=⎨-⋅=⎩也就是方程2(1)e x x x -=有两个大于1的相异实根. 设2()(1)e (1)xg x x x x =-->,则2()(1)e 1x g x x '=--.设()h x =2()(1)e 1x g x x '=--,则()()221e x h x x x '=+-. 因为在(1,)+∞上有()0h x '>,所以()h x 在()1,+∞上单调递增.因为()110h =-<,()223e 10h =->,即存在唯一的()01,2x ∈,使得()00h x =. 当()01,x x ∈时,()()0h x g x '=<,即函数()g x 在()01,x 上是减函数;① ② ③当()0,x x ∈+∞时,()()0h x g x '=>,即函数()g x 在()0,x +∞上是增函数. 因为()110g =-<,0()(1)0g x g <<,2(2)e 20g =->,所以函数()g x 在区间()1,+∞上只有一个零点. 这与方程2(1)e x x x -=有两个大于1的相异实根相矛盾,所以假设不成立. 所以函数()f x 在()1,+∞上不存在“域同区间”.。
2014年广州一模数学试题及答案
试卷类型:A2014年广州市普通高中毕业班综合测试(一)数学(理科)2014.3本试卷共4页,21小题, 满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. ()()22221211236n n n n ++++++=()*n ∈N . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 是虚数单位,若()2i 34i m +=-,则实数m 的值为A .2-B .2±C .D .22.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2C B =,则c b为 A .2sin C B .2cos B C .2sin B D .2cos C 3.圆()()22121x y -+-=关于直线y x =对称的圆的方程为A .()()22211x y -+-= B .()()22121x y ++-= C .()()22211x y ++-= D .()()22121x y -++=4.若函数()f x =R ,则实数a 的取值范围为A .()2,2-B .()(),22,-∞-+∞C .(][),22,-∞-+∞D .[]2,2-5.某中学从某次考试成绩中抽取若干名学生的分数,并绘制2成如图1的频率分布直方图.样本数据分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.若用分层抽样的方法从样本中抽取分数在[]80,100范围内的数据16个, 则其中分数在[]90,100范围内的样本数据有A .5个B .6个C .8个D .10个 6.已知集合32A x x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z 且,则集合A 中的元素个数为 A .2 B .3 C .4D .57.设a ,b 是两个非零向量,则使a b =a b 成立的一个必要非充分条件是A .=a bB .⊥a bC .λ=a b ()0λ>D .ab8.设a ,b ,m 为整数(0m >),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020202020C C 2C 2C 2a =+⋅+⋅++⋅,()mod10a b ≡,则b 的值可以是A .2011B .2012C .2013D .2014 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.若不等式1x a -<的解集为{}13x x <<,则实数a 的值为 . 10.执行如图2的程序框图,若输出7S =,则输入k ()*k ∈N 的值为 . 11.一个四棱锥的底面为菱形,其三视图如图3所示,则这个四棱锥的体积是 .12.设α为锐角,若cos 65α⎛⎫+= ⎪⎝⎭,则sin 12απ⎛⎫-= ⎪⎝⎭. 侧(左)视图图3俯视图爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 313.在数列{}n a 中,已知11a =,111n n a a +=-+,记n S 为数列{}n a 的前n 项和,则2014S = .(二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)在极坐标系中,直线()sin cos a ρθθ-=与曲线2cos 4sin ρθθ=-相交于A ,B 两点,若AB =3a 的值为 .15.(几何证明选讲选做题)如图4,PC 是圆O 的切线,切点为C ,直线PA 与圆O 交于A ,B 两点,APC ∠的平分线分别交弦CA ,CB 于D ,E两点,已知3PC =,2PB =,则PEPD的值为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,. (1)求实数a 的值;(2)设[]2()()2g x f x =-,求函数()g x 的最小正周期与单调递增区间.17.(本小题满分12分)甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是25,甲,丙两人同时不能被聘用的概率是625,乙,丙两人同时能被聘用的概率是310,且三人各自能否被聘用相互独立. (1)求乙,丙两人各自能被聘用的概率;(2)设ξ表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望).18.(本小题满分14分)如图5,在棱长为a 的正方体1111ABCD A B C D -中,点E 是棱1D D 的PEABCD 图4O 1C 1D DE1A 1B4中点,点F 在棱1B B 上,且满足12B F FB =. (1)求证:11EF A C ⊥;(2)在棱1C C 上确定一点G , 使A ,E ,G ,F 四点共面,并求此时1C G 的长;(3)求平面AEF 与平面ABCD 所成二面角的余弦值. 19.(本小题满分14分)已知等差数列{}n a 的首项为10,公差为2,等比数列{}n b 的首项为1,公比为2,*n ∈N .(1)求数列{}n a 与{}n b 的通项公式;(2)设第n 个正方形的边长为{}min ,n n n c a b =,求前n 个正方形的面积之和n S . (注:{}min ,a b 表示a 与b 的最小值.) 20.(本小题满分14分)已知双曲线E :()222104x y a a -=>的中心为原点O ,左,右焦点分别为1F ,2F ,离心率为35,点P 是直线23a x =上任意一点,点Q 在双曲线E 上,且满足220PF QF =.(1)求实数a 的值;(2)证明:直线PQ 与直线OQ 的斜率之积是定值;(3)若点P 的纵坐标为1,过点P 作动直线l 与双曲线右支交于不同两点M ,N ,在线段MN上取异于点M ,N 的点H ,满足PM MHPN HN=,证明点H 恒在一条定直线上. 21.(本小题满分14分)已知函数()()221e x f x x x =-+(其中e 为自然对数的底数). (1)求函数()f x 的单调区间;(2)定义:若函数()h x 在区间[],s t ()s t <上的取值范围为[],s t ,则称区间[],s t 为函数()h x 的“域同区间”.试问函数()f x 在()1,+∞上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.2014年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可C爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 5根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.题号 1 23 4 5 6 7 8答案 A B A D B C D A二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.题号 9 10 11 12131415答案23421020112-1-或5- 23三、解答题:本大题共6小题,满分80分. 16.(本小题满分1)(本小题主要考查三角函数图象的周期性、单调性、同角三角函数的基本关系和三角函数倍角公式等等知识,考查化归与转化的数学思想方法,以及运算求解能力)解:(1)因为函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,,所以03f π⎛⎫-= ⎪⎝⎭. 即ππsin cos 033a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭. 即302a+=. 解得3a =(2)方法1:由(1)得()sin 3f x x x =.所以2()[()]2g x f x =-()2sin 32x x=+-22sin 23cos 3cos 2x x x x =++-62cos 2x x =+122cos 22x x ⎫=+⎪⎪⎝⎭ 2sin 2cos cos 2sin 66x x ππ⎛⎫=+ ⎪⎝⎭π2sin 26x ⎛⎫=+ ⎪⎝⎭.所以()g x 的最小正周期为22π=π. 因为函数sin y x =的单调递增区间为2,222k k ππ⎡⎤π-π+⎢⎥⎣⎦()k ∈Z , 所以当πππ2π22π262k x k -≤+≤+()k ∈Z 时,函数()g x 单调递增, 即ππππ36k x k -≤≤+()k ∈Z 时,函数()g x 单调递增.所以函数()g x 的单调递增区间为πππ,π36k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z . 方法2:由(1)得()sin f x x x =+2sin cos cos sin 33x x ππ⎛⎫=+ ⎪⎝⎭π2sin 3x ⎛⎫=+ ⎪⎝⎭.所以2()[()]2g x f x =-2π2sin 23x ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦2π4sin 23x ⎛⎫=+- ⎪⎝⎭2π2cos 23x ⎛⎫=-+ ⎪⎝⎭分所以函数()g x 的最小正周期为22π=π分 因为函数cos y x =的单调递减区间为[]2,2k k ππ+π()k ∈Z , 所以当22223k x k ππ≤+≤π+π()k ∈Z 时,函数()g x 单调递增.爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 7即ππππ36k x k -≤≤+(k ∈Z )时,函数()g x 单调递增.所以函数()g x 的单调递增区间为πππ,π36k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z .17.(本小题满分1)(本小题主要考查相互独立事件、解方程、随机变量的分布列与均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) 解:(1)记甲,乙,丙各自能被聘用的事件分别为1A ,2A ,3A ,由已知1A ,2A ,3A 相互独立,且满足()()()()()113232,5611,253.10P A P A P A P A P A ⎧=⎪⎪⎪--=⎡⎤⎡⎤⎨⎣⎦⎣⎦⎪⎪=⎪⎩解得()212P A =,()335P A =. 所以乙,丙各自能被聘用的概率分别为12,35. (2)ξ的可能取值为1,3.因为()()()1231233P P A A A P A A A ξ==+()()()()()()123123111P A P A P A P A P A P A =+---⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦213312525525=⨯⨯+⨯⨯625=. 所以()()113P P ξξ==-=61912525=-=. 所以ξ的分布列为所以19613252525E ξ=⨯+⨯=.ξ 1 3P1925625818.(本小题满分1)(本小题主要考查空间线面关系、四点共面、二面角的平面角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)推理论证法:(1)证明:连结11B D ,BD ,因为四边形1111A B C D 是正方形,所以1111A C B D ⊥. 在正方体1111ABCD A B C D -中,1DD ⊥平面1111A B C D ,11A C ⊂平面1111A B C D ,所以111A C DD ⊥.因为1111B D DD D =,11B D ,1DD ⊂平面11BB D D ,所以11A C ⊥平面11BB D D .因为EF ⊂平面11BB D D ,所以11EF A C ⊥. (2)解:取1C C 的中点H ,连结BH ,则BHAE .在平面11BB C C 中,过点F 作FGBH ,则FGAE .连结EG ,则A ,E ,G ,F 四点共面.因为11122CH C C a ==,11133HG BF C C a ===, 所以1C G 116C C CH HG a =--=.故当1C G 16a =时,A ,E ,G ,F 四点共面.(3)延长EF ,DB ,设EFDB M =,连结AM ,则AM 是平面AEF 与平面ABCD 的交线.过点B 作BN AM ⊥,垂足为N ,连结FN , 因为FB AM ⊥,FB BN B =, 所以AM ⊥平面BNF .因为FN ⊂平面BNF ,所以AM ⊥FN . 所以FNB ∠为平面AEF 与平面ABCD 所成二面角的平面角.因为123132aMB BF MD DE a ===,23=,1D ABCD EF 1A1B1C MN1D ABCD EF 1A1B1C 1DABCDE F 1A1B 1C G H爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 9所以22MB a =.在△ABM 中,AB a =,135ABM ∠=, 所以2222cos135AM AB MB AB MB =+-⨯⨯⨯ ()222222222a aa a ⎛=+-⨯⨯⨯- ⎝⎭213a =. 即13AM a =. 因为11sin13522AM BN AB MB ⨯=⨯⨯, 所以222sin13521321313a a AB MB BN a AMa⨯⨯⨯===.所以2222121371331339FN BF BN a a ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭. 所以6cos 7BN FNB FN ∠==.故平面AEF 与平面ABCD 所成二面角的余弦值为67.空间向量法:(1)证明:以点D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系, 则(),0,0A a ,()1,0,A a a ,()10,,C a a ,10,0,2E a ⎛⎫ ⎪⎝⎭,1,,3F a a a ⎛⎫ ⎪⎝⎭,所以()11,,0AC a a =-,1,,6EF a a a ⎛⎫=- ⎪⎝⎭. 因为221100AC EF a a =-++=, 所以11AC EF ⊥.1D ABC D EF 1A1B1C xyz10所以11EF A C ⊥.(2)解:设()0,,G a h ,因为平面11ADD A 平面11BCC B ,平面11ADD A 平面AEGF AE =,平面11BCC B 平面AEGF FG =,所以FGAE .所以存在实数λ,使得FG AE λ=. 因为1,0,2AE a a ⎛⎫=- ⎪⎝⎭,1,0,3FG a h a ⎛⎫=-- ⎪⎝⎭, 所以11,0,,0,32a h a a a λ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭. 所以1λ=,56h a =. 所以1C G 15166CC CG a a a =-=-=. 故当1C G 16a =时,A ,E ,G ,F 四点共面. (3)解:由(1)知1,0,2AE a a ⎛⎫=- ⎪⎝⎭,10,,3AF a a ⎛⎫= ⎪⎝⎭. 设(),,x y z =n 是平面AEF 的法向量,则0,0.AE AF ⎧=⎪⎨=⎪⎩n n 即10,210.3ax az ay az ⎧-+=⎪⎪⎨⎪+=⎪⎩取6z =,则3x =,2y =-.所以()3,2,6=-n 是平面AEF 的一个法向量. 而()10,0,DD a =是平面ABCD 的一个法向量, 设平面AEF 与平面ABCD 所成的二面角为θ, 则11cos DD DD θ=n n (1)爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 11()()2220302667326a a⨯+⨯-+⨯==+-+⨯. 故平面AEF 与平面ABCD 所成二面角的余弦值为67.第(1)、(2)问用推理论证法,第(3)问用空间向量法: (1)、(2)给分同推理论证法. (3)解:以点D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系, 则(),0,0A a ,10,0,2E a ⎛⎫ ⎪⎝⎭,1,,3F a a a ⎛⎫ ⎪⎝⎭,则1,0,2AE a a ⎛⎫=- ⎪⎝⎭,10,,3AF a a ⎛⎫= ⎪⎝⎭.设(),,x y z =n 是平面AEF 的法向量,则0,0.AE AF ⎧=⎪⎨=⎪⎩nn即10,210.3ax az ay az ⎧-+=⎪⎪⎨⎪+=⎪⎩取6z =,则3x =,2y =-.所以()3,2,6=-n 是平面AEF 的一个法向量. 而()10,0,DD a =是平面ABCD 的一个法向量, 设平面AEF 与平面ABCD 所成的二面角为θ, 则11cos DD DD θ=n n (1)()()2220302667326a a⨯+⨯-+⨯==+-+⨯. 故平面AEF 与平面ABCD 所成二面角的余弦值为67. 19.(本小题满分1)(本小题主要考查等差数列、等比数列、分组求和等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)1D ABC DEF 1A1B1C xyz12解:(1)因为等差数列{}n a 的首项为10,公差为2,所以()1012n a n =+-⨯, 即28n a n =+.因为等比数列{}n b 的首项为1,公比为2,所以112n n b -=⨯, 即12n n b -=.(2)因为110a =,212a =,314a =,416a =,518a =,620a =,11b =,22b =,34b =,48b =,516b =,632b =.易知当5n ≤时,n n a b >.下面证明当6n ≥时,不等式n n b a >成立.方法1:①当6n =时,616232b -==620268a >=⨯+=,不等式显然成立.②假设当n k =()6k ≥时,不等式成立,即1228k k ->+.则有()()()()122222821826218kk k k k k -=⨯>+=++++>++.这说明当1n k =+时,不等式也成立.综合①②可知,不等式对6n ≥的所有整数都成立. 所以当6n ≥时,n n b a >. 方法2:因为当6n ≥时()()()112281128n n n n b a n n ---=-+=+-+()()01211111C C C C 28n n n n n n -----=++++-+()()012321111111C C C C C C 28n n n n n n n n n n ---------≥+++++-+ ()()0121112C C C 28n n n n ---=++-+()()236460n n n n n =--=-+->,所以当6n ≥时,n n b a >.所以{}min ,n n n c a b =12,5,28,5.n n n n -⎧≤=⎨+>⎩爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 13则()22222,5,44, 5.n n n c n n -⎧≤⎪=⎨+>⎪⎩当5n ≤时,2222123n n S c c c c =++++ 2222123n b b b b =++++024222222n -=++++1414n -=-()1413n=-.当5n >时,2222123n n S c c c c =++++()()22222212567n b b b a a a =+++++++()51413=-()()()222464744n ⎡⎤+++++++⎣⎦()()()222341467867165n n n ⎡⎤=+++++++++-⎣⎦ ()()()()2222223414121253267645n n n ⎡⎤=++++-++++++++-⎣⎦()()()()()121653414553264562n n n n n n +++-⎡⎤=+-+⨯+-⎢⎥⎣⎦3242421867933n n n =++-. 综上可知,n S ()32141,5,3424218679, 5.33nn n n n n ⎧-≤⎪⎪=⎨⎪++->⎪⎩20.(本小题满分1)(本小题主要考查直线的斜率、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力) (1)解:设双曲线E 的半焦距为c ,由题意可得22354.c a c a ⎧=⎪⎨⎪=+⎩解得5a =.14(2)证明:由(1)可知,直线2533a x ==,点()23,0F .设点5,3P t ⎛⎫⎪⎝⎭,()00,Q x y , 因为220PF QF =,所以()0053,3,03t x y ⎛⎫----= ⎪⎝⎭. 所以()00433ty x =-. 因为点()00,Q x y 在双曲线E 上,所以2200154x y -=,即()2200455y x =-. 所以20000200005533PQ OQy t y y ty k k x x x x --⋅=⋅=--()()2002004453453553x x x x ---==-.所以直线PQ 与直线OQ 的斜率之积是定值45.(3)证法1:设点(),H x y ,且过点5,13P ⎛⎫⎪⎝⎭的直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,则22114520x y -=,22224520x y -=,即()2211455y x =-,()2222455y x =-. 设PM MH PN HN λ==,则,.PM PN MH HN λλ⎧=⎪⎨=⎪⎩. 即()()1122112255,1,1,33,,.x y x y x x y y x x y y λλ⎧⎛⎫⎛⎫--=--⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=--⎩整理,得()()()1212121251,31,1,1.x x y y x x x y y y λλλλλλλλ⎧-=-⎪⎪⎪-=-⎨⎪+=+⎪+=+⎪⎩①②③④由①×③,②×④得()()22221222221251,31.x x x y y y λλλλ⎧-=-⎪⎨⎪-=-⎩⑤⑥将()2211455y x =-,()2222455y x =-代入⑥,爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 15得2221224451x x y λλ-=⨯--. ⑦ 将⑤代入⑦,得443y x =-. 所以点H 恒在定直线43120x y --=上.证法2:依题意,直线l 的斜率k 存在. 设直线l 的方程为513y k x ⎛⎫-=- ⎪⎝⎭,由2251,31.54y k x x y ⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪-=⎪⎩消去y 得()()()22229453053255690k x k k x k k -+---+=. 因为直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,则有()()()()()()()22222122212290053900455690,3053,95425569.954k k k k k k k x x k k k x x k ⎧⎪∆=-+--+>⎪⎪-⎪+=⎨-⎪⎪-+⎪=⎪-⎩设点(),H x y ,由PM MH PN HN =,得112125353x x x x x x --=--. 整理得()()1212635100x x x x x x -+++=.1 将②③代入上式得()()()()()2222150569303553100954954k k x k k x k k -++--+=--.整理得()354150x k x --+=. ④①② ③16因为点H 在直线l 上,所以513y k x ⎛⎫-=- ⎪⎝⎭. ⑤ 联立④⑤消去k 得43120x y --=. 所以点H 恒在定直线43120x y --=上.(本题(3)只要求证明点H 恒在定直线43120x y --=上,无需求出x 或y 的范围.) 21.(本小题满分1)(本小题主要考查函数的单调性、函数的导数、函数的零点等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识) 解:(1)因为()()221e x f x x x =-+,所以2()(22)e (21)e x x f x x x x '=-+-+()21e xx =-(1)(1)e x x x =+-. 当1x <-或1x >时,()0f x '>,即函数()f x 的单调递增区间为(),1-∞-和()1,+∞. 当11x -<<时,()0f x '<,即函数()f x 的单调递减区间为()1,1-.所以函数()f x 的单调递增区间为(),1-∞-和()1,+∞,单调递减区间为()1,1-. (2)假设函数()f x 在()1,+∞上存在“域同区间”[,](1)s t s t <<,由(1)知函数()f x 在()1,+∞上是增函数,所以(),().f s s f t t =⎧⎨=⎩ 即22(1)e ,(1)e .s ts s t t ⎧-⋅=⎨-⋅=⎩也就是方程2(1)e xx x -=有两个大于1的相异实根. 设2()(1)e (1)xg x x x x =-->,则2()(1)e 1xg x x '=--. 设()h x =2()(1)e 1xg x x '=--,则()()221e x h x x x '=+-.因为在(1,)+∞上有()0h x '>,所以()h x 在()1,+∞上单调递增. 因为()110h =-<,()223e 10h =->,即存在唯一的()01,2x ∈,使得()00h x =.当()01,x x ∈时,()()0h x g x '=<,即函数()g x 在()01,x 上是减函数; 当()0,x x ∈+∞时,()()0h x g x '=>,即函数()g x 在()0,x +∞上是增函数.因为()110g =-<,0()(1)0g x g <<,2(2)e 20g =->,爱迪教育 D 爱迪个性化教育发展中心D Idea Personalized Education Development C 17所以函数()g x 在区间()1,+∞上只有一个零点.这与方程2(1)e xx x -=有两个大于1的相异实根相矛盾,所以假设不成立. 所以函数()f x 在()1,+∞上不存在“域同区间”.。
2014年广东高考理科数学试卷(纯word版含答案)
2014年普通高等学校招生全国统一考试(广东卷)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃= A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1}【品题】B.考查集合的并集,目测就可以得出结果. 2、已知复数z 满足(34)25,i z +=则z = A .34i - B. 34i + C. 34i -- D. 34i -+ 【品题】A.考查复数的运算,()()()25342534343434i z i i i i ⋅-===-++⋅- 3、若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -=A .8 B.7 C.6 D.5【品题】C.考查线性规划,求出三条直线的交点为()111,1,(2,1),,22⎛⎫--- ⎪⎝⎭,故3,36m n m n ==--=,4、若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等C. 实半轴长相等D.焦距相等【品题】D.考查双曲线,注意到两条双曲线的22234c a b k =+=-相等,故而选D. 5、已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是 A .(-1,1,0)B. (1,-1,0)C. (0,-1,1)D. (-1,0,1)【品题】B.考查向量的夹角与运算,将ABCD 四个选项代入1cos ,cos602a b a b a b⋅===⋅即可选出正确答案6、已知某地区中小学学生人数和近视情况分别如图1和如图2所示,为了解该地区中下学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A. 100,10B. 200,10C. 100,20D. 200,20【品题】D.考查分层抽样.总人数为10000人,100002%200⋅=,其中高中生抽取20002004010000=⋅人,故抽取的高中生近视人数为4050%20⋅=人7、若空间中四条两两不同的直线1234,,,,l l l l 满足122334,,,l l l l l l ⊥⊥⊥则下面结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定 【品题】D.考查空间直线的位置关系.可利用正方体来判断,易得答案. 8、设集合(){}12345=,,,,1,0,1,1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A.130 B.120 C.90 D.60【品题】A.考查分类计数原理、排列组合.先分成3类,4个0、3个0、2个0 (1)4个0①4个0,1个1:155C =②4个0,1个-1:155C = (2)3个0:①3个0,2个1:2510C =②3个0,1个1,1个-1:115420=C C ⋅年级③3个0,2个-1:2510C =(3)2个0①2个0,3个1:3510C =②2个0,2个1,1个-1:215330C C ⋅= ③2个0,1个1,2个-1:215330C C ⋅= ④2个0,3个-1:3510C =综上所述,所有的可能性有130种【品味小题】选择很基础了,第8题稍微要一点点细心.答案是BACDBDDA ,选项延续了多年答案3221的模式二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9、不等式125x x -++≥的解集为【品题】(][),32,-∞-⋃+∞.考查简单的绝对值不等式,用几何意义很快得出答案. 10、曲线52x y e -=+在点(0,3)处的切线方程为 【品题】53y x =-+.考查复合函数求导、切线方程.'5'05,|5xx y e y -==-=-,故切线方程为53y x =-+.本题易错点在符合函数求导忘记乘以5-.11、从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为【品题】16.考查分步技术原理和古典概型.基本事件731010120C C ==种,包括6且6为中位数的,前3个数从0—5六个数中选3个,后三个数只能是7、8、9,故满足题意的事件有3620C =种,从而概率为16.本题主要分析准确6为7个数的中位数这个条件就可以很快做出来.12、在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+, 则ab=【品题】2.考查正余弦定理,边角互化.222222222a b c a c b b c b ab ac+-+-⋅+⋅=,化简即可.13、若等比数列{}n a 的各项均为正数,且512911102e a a a a =+, 则1220ln ln ln a a a +++=【品题】50.考查等比数列的基础知识.依题意有51011a a e ⋅=,所求等式左边()10501011ln ln 50a a e =⋅==(二)选做题(14、15题,考生只能从中选做一题)14、(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直角坐标为_________【品题】()1,1.考查极坐标方程.212:,:1C y x C y ==,联立方程很快得出结果15、(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且AE EB 2=,AC 与DE 交于点F ,则=∆∆的面积的面积AEF CDF 【品题】9.考查相似三角形面积比等于相似比的平方.【品填空题】10是易错点、11题有点新意;10、12、13等等是广东07—13年高考考过的. 【品小题】难度适中,出得不错。
2014广东省广州市高考数学一模试卷(理科)(含解析)
2014年广东省广州市高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i 是虚数单位,若2(i)34i m +=-,则实数m 的值为( ).A .2-B .2±C .D .2【答案】A【解答】解:∵2(i)34i m +=-, ∴222i i 34i m m ++=-, 即22i 134i m m +-=-, ∴22413m m =-⎧⎨-=⎩,解得2m =-,故选A .2.(5分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若2C B =,则cb为( ). A .2sin CB .2cos BC .2sin BD .2cos C【答案】B【解答】解:在ABC △中, ∵2C B =,∴sin sin 22sin cos C B B B ==, 即2cos c b B =,则2cos cB b=. 故选B .3.(5分)圆22(1)(2)1x y -+-=关于直线y x =对称的圆的方程为( ).A .22(2)(1)1x y -+-=B .22(1)(2)1x y ++-=C .22(2)(1)1x y ++-=D .22(1)(2)1x y -++=【答案】A【解答】解:∵点(,)P x y 关于直线y x =对称的点为(,)P y x ', ∴(1,2)关于直线y x =对称的点为(2,1),∴圆22(1)(2)1x y -+-=关于直线y x =对称的圆的方程为22(2)(1)1x y -+-=. 故选A .4.(5分)若函数()f x R ,则实数a 的取值范围为( ).A .(2,2)-B .(,2)(2,)-∞-+∞UC .]([,22,)-∞-+∞UD .[]2,2-【答案】D【解答】解:函数()f x R , 则210x ax ++≥恒成立,即240a ∆=-≤,解得22a -≤≤,即实数a 的取值范围是[]2,2-,故选D . 5.(5分)某中学从某次考试成绩中抽取若干名学生的分数,并绘制成如图的频率分布直方图.样本数据分组为[5060),,[60,70),[70,80),[80,90),[90,100].若用分层抽样的方法从样本中抽取分数在[80,100]范围内的数据16个,则其中分数在[90,100]范围内的样本数据有( ).A .5个B .6个C .8个D .10个【答案】B【解答】解:由频率分布直方图知:抽取分数在[80,100]范围内的频率为(0.0250.015)100.4+⨯=, 又在[80,100]范围内的数据有16个,∴样本容量16400.4==个, ∵分数在[90,100]范围内的频率为0.015100.15⨯=, ∴在[90,100]范围内的频数为0.15406⨯=个. 故选B .6.(5分)已知集合{|A x x =∈Z 且3}2x∈-Z ,则集合A 中的元素个数为( ). A .2B .3C .4D .5【答案】C【解答】解:∵{|A x x =∈Z 且{}3}=1,1,3,52x∈--Z , ∴集合A 中的元素有4个. 答案C .7.(5分)设a r ,b r 是两个非零向量,则使||||a b a b ⋅=r r r r成立的一个必要非充分条件是( ).A .a b =r rB .a b r r ⊥C .(0)a b λλ=>r rD .a b r r ∥【答案】D【解答】解:∵a r ,b r 是两个非零向量,则||||a b a b ⋅=r r r r , ∴||||cos ,||||a b a b a b a b ⋅==r r r r r r r r ,∴cos ,1a b =r r,∴,0a b =r r. ∴a b r r ∥. a r ,b r 是两个非零向量,则使||||a b a b ⋅=r r r r成立的一个必要非充分条件是a b r r ∥.故选D . 8.(5分)设a ,b ,m 为整数(0)m >,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为(mod )a b m ≡.若0122202020202020C C 2C 2C 2a =+⋅+⋅++⋅L ,(mod10)a b ≡,则b 的值可以是( ). A .2011 B .2012 C .2013 D .2014【答案】A【解答】解:∵0122202020202020C C 2C 2C 2a =+⋅+⋅++⋅L ,2020122202020202012312C 2C 2C +==++++L (),∴203a =.∵13个位是3,23个位是9,33个位是7,43个位是1,53个位是3,L ∴203个位是1,若(mod10)a b ≡,则b 的个位也是1.故选A .二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题) 9.(5分)若不等式||1x a -<的解集为{}3|1x x <<,则实数a 的值为__________. 【答案】2【解答】解:∵||1x a -<, ∴11x a -<-<, ∴11a x a -<<+,∴不等式||1x a -<的解集为{}1|1x a x a -<<+, ∵不等式||1x a -<的解集为{}3|1x x <<, ∴11a -=且13a +=, 解得:2a =. 故答案为:2.10.(5分)执行如图的程序框图,若输出7S =,则输入*()k k ∈N 的值为__________.【答案】3【解答】解:由程序框图知,程序第一次运行1n =,11021S -=+=; 第二次运行112n =+=,1123S =+=; 第三次运行3n =,121227S =++=. ∵输出7S =,∴程序运行终止时3n =, 又不满足条件n k <时输出S , ∴3k =,故答案为:3. 11.(5分)一个四棱锥的底面为菱形,其三视图如图所示,则这个四棱锥的体积是__________.正主()视图侧左()视图俯视图【答案】4【解答】解:由三视图知几何体为四棱锥,且四棱锥的一条侧棱垂直于底面, 3, ∵底面为菱形,对角线互相垂直平分,∴底面面积124142S =⨯⨯⨯=,∴几何体的体积14343V =⨯⨯=.故答案为:4.12.(5分)设α为锐角,若π3cos 65α⎛⎫+= ⎪⎝⎭,则πsin 12α⎛⎫-= ⎪⎝⎭ __________.【解答】解:∵α为锐角,π3cos 65α⎛⎫+= ⎪⎝⎭为正数,∴π6α+是锐角,π4sin 65α⎛⎫+= ⎪⎝⎭,∴πππsin sin 1264αα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,ππππsin cos cos sin 6464αα⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭4355=-=,.13.(5分)在数列{}n a 中,已知11a =,111n n a a ++=-,记n S 为数列{}n a 的前n 项和,则2014S =__________. 【答案】20112-【解答】解:∵11a =,111n n a a ++=-, ∴212a =-,312112a =-=-⎛⎫-+ ⎪⎝⎭,411(2)1a =-=-+,512a =-,L∴数列{}n a 是以3为周期的数列, 又3123131222S a a a =++=--=-,∴20142013201432013201167111222S S a ⎛⎫=+=⨯-+=-+=- ⎪⎝⎭.故答案为:20112-.三、选做题(14~15题,考生只能从中选做一题)(坐标系与参数方程选做题) 14.(5分)在极坐标系中,直线(sin cos )a ρθθ-=与曲线2cos 4sin ρθθ=-相交于A ,B 两点,若||AB =a 的值为__________. 【答案】1-或5-【解答】解:直线(sin cos )a ρθθ-=即0x y a -+=;曲线2cos 4sin ρθθ=-即22cos 4sin ρρθρθ=-,即22 240x y x y ++=-,即22(1)(2)5x y -++=,表示以(1,2)C -设圆心到直线的距离为d ,则d再根据点到直线的距离公式可得d解得1a =-,或5a =-, 故答案为:1-或5-.(几何证明选讲选做题)15.如图,PC 是圆O 的切线,切点为C ,直线PA 与圆O 交于A 、B 两点,APC ∠的平分线分别交弦CA ,CB 于D ,E 两点,已知3PC =,2PB =,则PEPD的值为__________.【答案】2 3【解答】解:作直线CF,连结BF,∴CF PC⊥,∴90PCB BCF∠+∠=︒,∵CF是直径,∴90BCF F∠+∠=︒,∴PCB F∠=∠,∵F A∠=∠,∴PCB A∠=∠,∴PCB PAC△∽△,∴23 PC PBPA PC==,∵PCE PCB A∠=∠=∠,CPE APD∠=∠,∴PCE PAD△∽△,∴23 PE PCPD PA==.故答案为:23.四、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)已知函数()sin cosf x x a x=+的图象经过点π,03⎛⎫-⎪⎝⎭.(1)求实数a的值.(2)设2()()2[]g x f x=-,求函数()g x的最小正周期与单调递增区间.【答案】见解析.【解答】解:(1)∵函数()sin cos f x x a x =+的图象经过点π,03⎛⎫- ⎪⎝⎭,∴π03f ⎛⎫-= ⎪⎝⎭,即ππsin cos 033a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即02a =,解得a(2)由(1)得()sin f x x x =. ∴2()()2[]g x f x =-2(sin )2x x =-22sin cos 3cos 2x x x x =++-2cos2x x +122cos22x x ⎫=+⎪⎪⎝⎭ ππ2sin 2cos cos2sin 66x x ⎛⎫=+ ⎪⎝⎭ π2sin 26x ⎛⎫=+ ⎪⎝⎭.∴函数的最小正周期为2ππ2=. ∵函数sin y x =的单调递增区间为ππ2π,2π()22k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,令πππ2π22π262k x k -++≤≤,k ∈Z ,求得ππππ36k x k -+≤≤,∴函数的单调递增区间为πππ,π()36k k k ⎡⎤-+∈⎢⎥⎣⎦Z .17.(12分)甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是25,甲,丙两人同时不能被聘用的概率是625,乙,丙两人同时能被聘用的概率是310,且三人各自能否被聘用相互独立.(1)求乙,丙两人各自能被聘用的概率.(2)设ξ表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望). 【答案】见解析.【解答】解:(1)记甲,乙,丙各自能被聘用的事件分别为1A ,2A ,3A , 由已知1A ,2A ,3A 相互独立,且满足113232()56[1()][1()]253()()10P A P A P A P A P A ⎧=⎪⎪⎪--=⎨⎪⎪=⎪⎩解得21()2P A =,33()5P A =. ∴乙,丙各自能被聘用的概率分别为12,35. (2)ξ的可能取值为1,3. ∵123123(3)()()P P A A A P ξ==+,123123)))[)][)][)(((1(1(1(]P A P A P A P A P A P A =+---213312525525=⨯⨯+⨯⨯ 625=. ∴619(1)1(3)12525P P ξξ==-==-=. ∴ξ的分布列为∵1963713252525E ξ=⨯+⨯=.18.(14分)如图,在棱长为a 的正方体1111ABCD A B C D -中,点E 是棱1D D 的中点,点F 在棱1B B 上,且满足12B F FB =. (1)求证:11EF AC ⊥.(2)在棱1C C 上确定一点G ,使A ,E ,G ,F 四点共面,并求此时1C G 的长. (3)求平面AEF 与平面ABCD 所成二面角的余弦值.D ABCE F A 1B 1D 1C 1【答案】见解析.【解答】(1)证明:连结11B D ,BD , ∵四边形1111A B C D 是正方形,∴1111B D AC ⊥.在正方体1111ABCD A B C D -中,∵1DD ⊥平面1111A B C D ,11AC ⊂平面1111A B C D , ∴111AC DD ⊥.∵1111B D DD D =I ,11B D ,1DD ⊂平面11BB D D , ∴11AC ⊥平面11BB D D . ∵EF ⊂平面11BB D D , ∴11EF AC ⊥.(2)解:以点D 为坐标原点,以DA ,DC ,1DD 所在的直线分别为x 轴,y 轴,z 轴, 建立如图的空间直角坐标系,则(,0,0)A a ,1,(0,)A a a ,10,(,)C a a ,10,0,2E a ⎛⎫ ⎪⎝⎭,1,,3F a a a ⎛⎫ ⎪⎝⎭,∴11(,,0)AC a a =-u u u u r ,1,,6EF a a a ⎛⎫=- ⎪⎝⎭u u u r . 设(0,,)G a h ,∵平面11ADD A ∥平面11BCC B ,平面11ADD A I 平面AEGF AE =, 平面11BCC B I 平面AEGF FG =,∴存在实数λ,使得FG AE λ=u u u r u u u r. ∵1,0,2AE a a ⎛⎫=- ⎪⎝⎭u u u r ,1,0,3FG a h a ⎛⎫=-- ⎪⎝⎭u u u r ,∴11,0,,0,32a h a a a λ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭.∴1λ=,56h a =.∴115166C G CC CG a a a =-=-=.∴当116C G a =时,A ,E ,G ,F 四点共面.(3)解:由(1)知1,0,2AE a a ⎛⎫=- ⎪⎝⎭u u u r ,10,,3AF a a ⎛⎫= ⎪⎝⎭u u u r .设(,,)n x y z =r是平面AEF 的法向量,则00n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r,即102103ax az ay az ⎧-+=⎪⎪⎨⎪+=⎪⎩取6z =,则3x =,2y =-. 所以(3,2,6)n =-r是平面AEF 的一个法向量. 而1(0,0,)DD a =u u u u r是平面ABCD 的一个法向量,设平面AEF 与平面ABCD 所成的二面角为θ,则6cos 7θ==.故平面AEF 与平面PQ 所成二面角的余弦值为67.C 1D 1B 1A 1F EC B AD19.(14分)已知等差数列{}n a 的首项为10,公差为2,等比数列{}n b 的首项为1,公比为2,*n ∈N . (1)求数列{}n a 与{}n b 的通项公式.(2)设第n 个正方形的边长为{}min ,n n n C a b =,求前n 个正方形的面积之和n S .(注:{}min ,a b 表示a 与b 的最小值.) 【答案】见解析.【解答】解:(1)因为等差数列{}n a 的首项为10,公差为2,所以10(1)2n a n =+-⨯,即28n a n =+.因为等比数列{}n b 的首项为1,公比为2,所以112n n b -=⨯,即12n n b -=.(2)因为110a =,212a =,314a =,416a =,518a =,620a =,11b =,22b =,34b =,48b =,516b =,632b =.易知当5n ≤时,n n a b >.下面证明当6n ≥时,不等式n n b a >成立.方法1:①当6n =时,616623220268b a -==>=⨯+=,不等式显然成立.②假设当(6)n k k =≥时,不等式成立,即1228k k ->+.则有12222(28)2(1)8(26)2(1)8k k k k k k -=⨯+=++++>++>.这说明当1n k =+时,不等式也成立.综合①②可知,不等式对6n ≥的所有整数都成立.所以当6n ≥时,n n b a >.方法2:因为当6n ≥时112(28)(11)(28)n n n n b a n n ---=-+=+-+ 01211111(C C C C )(28)n n n n n n -----=++++-+L 012321111111(C C C C C C )(28)n n n n n n n n n n ---------+++++-+≥ 0121112(C C C )(28)n n n n ---=++-+ 236(4)(6)0n n n n n =-=-+->-, 所以当6n ≥时,n n b a >.所以5n ≤时,22222222123123n n nS c c c c b b b b =++++=++++L L 024222222n -=++++L1414n-=-1(41)3n =-. 当5n >时,2222123n nS c c c c =++++L , 22222212567()()n b b b a a a =+++++++L L 52221(41)464)(74()3[(])4n =-+++++++L 2223414678(67)1[(6(5))]n n n =+++++++++-L L222222[()(34141212532(67)64(]5))n n n =++++++++++++--L L L(1)(21)(6)(5)3414553264(5)62n n n n n n +++-⎡⎤=+-+⨯+-⎢⎥⎣⎦3242421867933n n n =++-. 综上可知,321(41),53424218679,533n n n S n n n n ⎧-⎪⎪=⎨⎪++->⎪⎩≤.20.(14分)已知双曲线222:1(0)4x y E a a -=>的中心为原点O ,左,右焦点分别为1F ,2F ,,点P 是直线23a x =上任意一点,点Q 在双曲线E 上,且满足220PF QF ⋅=u u u u r u u u u r . (1)求实数a 的值.(2)证明:直线PQ 与直线OQ 的斜率之积是定值.(3)若点P 的纵坐标为1,过点P 作动直线l 与双曲线右支交于不同两点M ,N ,在线段MN 上取异于点M ,N 的点H ,满足||||||||PM MH PN HN =,证明点H 恒在一条定直线上. 【答案】见解析.【解答】(1)解:设双曲线E 的半焦距为c ,由题意可得224c a c a ⎧=⎪⎨⎪=+⎩,解得a(2)证明:由(1)可知,直线2533a x ==,点2)(3,0F . 设点5,3P t ⎛⎫ ⎪⎝⎭,00)(,Q x y , 因为220PF QF ⋅=u u u u r u u u u r ,所以0053,(3,)03t x y ⎛⎫--⋅--= ⎪⎝⎭, 所以004(3)3ty x =-. 因为点00)(,Q x y 在双曲线E 上,所以2200154x y -=,即22004(5)5y x =-. 所以220000002200000044(5)(3)4535555333PQ OQ x x y t y y ty k k x x x x x x -----⋅=⋅===---. 所以直线PQ 与直线OQ 的斜率之积是定值45. (3)证明:设点(,)H x y ,且过点5,13P ⎛⎫ ⎪⎝⎭的直线l 与双曲线E 的右支交于不同两点11)(,M x y ,22)(,N x y ,则22114520x y -=,22224520x y -=,即22114(5)5y x =-,22224(5)5y x =-. 设||||||||PM MH PN HN λ==,则PM PN MH HNλλ⎧=⎪⎨=⎪⎩u u u u r u u u r u u u u r u u u u r . 即1122112255,1,133(,)(,)x y x y x x y y x x y y λλ⎧⎛⎫⎛⎫--=--⎪ ⎪ ⎪⎝⎭⎝⎭⎨⎪--=--⎩, 整理,得121212125(1)31(1)(1)x x y y x x x y y y λλλλλλλλ⎧-=-⎪⎪⎪-=-⎨⎪+=+⎪+=+⎪⎩①②③④由①×③,②×④得2221222212x x y y λλ⎧-=⎪⎨⎪-⎩将22114(5)5y x =-,22224(5)5y x =-代入⑥, 得2221224451x x y λλ-=⨯--.⑦ 将⑤代入⑦,得443y x =-. 所以点H 恒在定直线43120x y --=上.21.(14分)已知函数2()(21)e x f x x x -=+(其中e 为自然对数的底数). (1)求函数()f x 的单调区间.(2)定义:若函数()h x 在区间[](,)s t s t <上的取值范围为[],s t ,则称区间[],s t 为函数()h x 的“域同区间”.试问函数()f x 在(1,)+∞上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.【答案】见解析.【解答】解:(1)因为2()(21)e x f x x x -=+,所以22()(22)e (21)e (1)e (1)(1)e x x x x f x x x x x x x '=-++==+---. 当1x <-或1x >时,()0f x '>,即函数()f x 的单调递增区间为(,1)-∞-和(1,)+∞. 当11x -<<时,()0f x '<,即函数()f x 的单调递减区间为(1,1)-. 所以函数()f x 的单调递增区间为(,1)-∞-和(1,)+∞,单调递减区间为(1,1)-. (2)假设函数()f x 在(1,)+∞上存在“域同区间”,1)[](s t s t <<, 由(1)知函数()f x 在(1,)+∞上是增函数,所以()()f s s f t t =⎧⎨=⎩即22(1)e (1)e s t s s t t ⎧-⋅=⎪⎨-⋅=⎪⎩, 也就是方程2(1)e x x x -=有两个大于1的相异实根.设2()(1)e (1)x g x x x x --=>,则2()(1)e 1x g x x -'=-. 设2()()(1)e 1x h x g x x '==--,则2()(21)e x h x x x '=+-. 因为在(1,)+∞上有()0h x '>,所以()h x 在(1,)+∞上单调递增. 因为(1)10h =-<,2(2)3e 10h =->,即存在唯一的0(1,2)x ∈,使得0)(0h x =.当0)(1,x x ∈时,()()0h x g x '=<,即函数()g x 在0(1,)x 上是减函数; 当0(),x x ∈+∞时,()()0h x g x '=>,即函数()g x 在0(),x +∞上是增函数. 因为(1)10g =-<,0)((1)0g x g <<,2(2)e 20g =->, 所以函数()g x 在区间(1,)+∞上只有一个零点.这与方程2(1)e x x x -=有两个大于1的相异实根相矛盾,所以假设不成立. 所以函数()f x 在(1,)+∞上不存在“域同区间”.故答案为:(1)函数()f x 的单调递增区间为(,1)-∞-和(1,)+∞,单调递减区间为(1,1)-. (2)函数()f x 在(1,)+∞上不存在“域同区间”.。
2014广一模(理数)word试题·答案
广州市2014届普通高中毕业班综合测试(一)数学(理科)本试卷共4页,21小题, 满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. ()()22221211236n n n n ++++++=()*n ∈N . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 是虚数单位,若()2i 34i m +=-,则实数m 的值为 A .2- B .2± C .2±D .22.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2C B =,则c b为 A .2sin C B .2cos B C .2sin B D .2cos C3.圆()()22121x y -+-=关于直线y x =对称的圆的方程为A .()()22211x y -+-= B .()()22121x y ++-= C .()()22211x y ++-= D .()()22121x y -++= 4.若函数()21f x x ax =++的定义域为实数集R ,则实数a 的取值范围为A .()2,2-B .()(),22,-∞-+∞C .(][),22,-∞-+∞ D .[]2,2-5.某中学从某次考试成绩中抽取若干名学生的分数,并绘制成如图1的频率分布直方图.样本数据分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.若用分层抽样的方法从样本中抽取分数在[]80,100范围内的数据16个, 则其中分数在[]90,100范围内的样本数据有A .5个B .6个C .8个D .10个 6.已知集合32A x x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z 且,则集合A 中的元素个数为 A .2 B .3 C .4D .57.设a ,b 是两个非零向量,则使a b =a b 成立的一个必要非充分条件是 A .=a b B .⊥a b C .λ=a b()0λ> D .ab8.设a ,b ,m 为整数(0m >),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020202020C C 2C 2C 2a =+⋅+⋅++⋅,()mod10a b ≡,则b 的值可以是A .2011B .2012C .2013D .2014二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.若不等式1x a -<的解集为{}13x x <<,则实数a 的值为 .10.执行如图2的程序框图,若输出7S =,则输入k ()*k ∈N 的值为 .11.一个四棱锥的底面为菱形,其三视图如图3所示,则这个四棱锥的体积是 .11 正(主)视图 侧(左)视图图3俯视图452 2图2开始 结束输入k否 是输出S 1n n =+?n k < 0,0n S ==log y x =12n S S -=+图1分数频率/组距50 60 70 80 90 100 0.0100.015 0.020 0.025 0.030 012.设α为锐角,若3cos 65απ⎛⎫+= ⎪⎝⎭,则sin 12απ⎛⎫-= ⎪⎝⎭ .13.在数列{}n a 中,已知11a =,111n n a a +=-+,记n S 为数列{}n a 的前n 项和,则2014S = .(二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)在极坐标系中,直线()sin cos a ρθθ-=与曲线2cos 4sinρθθ=-相交于A ,B 两点,若AB =23,则实数a 的值为 .15.(几何证明选讲选做题)如图4,PC 是圆O 的切线,切点为C ,直线PA 与圆O 交于A ,B 两点,APC ∠的平分线分别交弦CA ,CB 于D ,E两点,已知3PC =,2PB =,则PEPD的值为 .题号 1 23 4 5 67 8答案 A B A D B C D A二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.题号 9 10 11 12131415答案23421020112-1-或5-23PEABC D 图4O。
2014年广州市普通高中毕业班综合测试一(理数)
3.初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
2014年广东省广州市高考一模数学试卷(理科)【解析版】
2014年广东省广州市高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i是虚数单位,若(m+i)2=3﹣4i,则实数m的值为()A.﹣2B.±2C.D.22.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若C=2B,则为()A.2sin C B.2cos B C.2sin B D.2cos C3.(5分)圆(x﹣1)2+(y﹣2)2=1关于直线y=x对称的圆的方程为()A.(x﹣2)2+(y﹣1)2=1B.(x+1)2+(y﹣2)2=1C.(x+2)2+(y﹣1)2=1D.(x﹣1)2+(y+2)2=14.(5分)若函数f(x)=的定义域为实数集R,则实数a的取值范围为()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]5.(5分)某中学从某次考试成绩中抽取若干名学生的分数,并绘制成如图的频率分布直方图.样本数据分组为[50,60),[60,70),[70,80),[80,90),[90,100].若用分层抽样的方法从样本中抽取分数在[80,100]范围内的数据16个,则其中分数在[90,100]范围内的样本数据有()A.5个B.6个C.8个D.10个6.(5分)已知集合A=,则集合A中的元素个数为()A.2B.3C.4D.57.(5分)设,是两个非零向量,则使•=||||成立的一个必要非充分条件是()A.=B.⊥C.=λ(λ>0)D.∥8.(5分)设a,b,m为整数(m>0),若a和b被m除得的余数相同,则称a 和b对模m同余,记为a≡b(modm).若,a≡b(mod10),则b的值可以是()A.2011B.2012C.2013D.2014二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)若不等式|x﹣a|<1的解集为{x|1<x<3},则实数a的值为.10.(5分)执行如图的程序框图,若输出S=7,则输入k(k∈N*)的值为.11.(5分)一个四棱锥的底面为菱形,其三视图如图所示,则这个四棱锥的体积是.12.(5分)设α为锐角,若cos()=,则sin(α﹣)=.13.(5分)在数列{a n}中,已知a1=1,a n+1=﹣,记S n为数列{a n}的前n 项和,则S2014=.(坐标系与参数方程选做题)14.(5分)在极坐标系中,直线ρ(sinθ﹣cosθ)=a与曲线ρ=2cosθ﹣4sinθ相交于A,B两点,若|AB|=,则实数a的值为.(几何证明选讲选做题)15.如图,PC是圆O的切线,切点为C,直线P A与圆O交于A、B两点,∠APC的平分线分别交弦CA,CB于D,E两点,已知PC=3,PB=2,则的值为.四、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)已知函数f(x)=sin x+a cos x的图象经过点(,0).(1)求实数a的值;(2)设g(x)=[f(x)]2﹣2,求函数g(x)的最小正周期与单调递增区间.17.(12分)甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是,甲,丙两人同时不能被聘用的概率是,乙,丙两人同时能被聘用的概率是,且三人各自能否被聘用相互独立.(1)求乙,丙两人各自能被聘用的概率;(2)设ξ表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望).18.(14分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,点E是棱D1D 的中点,点F在棱B1B上,且满足B1F=2FB.(1)求证:EF⊥A1C1;(2)在棱C1C上确定一点G,使A,E,G,F四点共面,并求此时C1G的长;(3)求平面AEF与平面ABCD所成二面角的余弦值.19.(14分)已知等差数列{a n}的首项为10,公差为2,等比数列{b n}的首项为1,公比为2,n∈N*.(1)求数列{a n}与{b n}的通项公式;(2)设第n个正方形的边长为∁n=min{a n,b n},求前n个正方形的面积之和S n.(注:min{a,b}表示a与b的最小值.)20.(14分)已知双曲线E:=1(a>0)的中心为原点O,左,右焦点分别为F1,F2,离心率为,点P是直线x=上任意一点,点Q在双曲线E上,且满足=0.(1)求实数a的值;(2)证明:直线PQ与直线OQ的斜率之积是定值;(3)若点P的纵坐标为1,过点P作动直线l与双曲线右支交于不同两点M,N,在线段MN上取异于点M,N的点H,满足,证明点H恒在一条定直线上.21.(14分)已知函数f(x)=(x2﹣2x+1)e x(其中e为自然对数的底数).(1)求函数f(x)的单调区间;(2)定义:若函数h(x)在区间[s,t](s<t)上的取值范围为[s,t],则称区间[s,t]为函数h(x)的“域同区间”.试问函数f(x)在(1,+∞)上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.2014年广东省广州市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i是虚数单位,若(m+i)2=3﹣4i,则实数m的值为()A.﹣2B.±2C.D.2【解答】解:∵(m+i)2=3﹣4i,∴m2+2mi+i2=3﹣4i,即m2+2mi﹣1=3﹣4i,∴,解得m=﹣2,故选:A.2.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若C=2B,则为()A.2sin C B.2cos B C.2sin B D.2cos C【解答】解:在△ABC中,∵C=2B,∴sin C=sin2B=2sin B cos B,即c=2b cos B,则=2cos B.故选:B.3.(5分)圆(x﹣1)2+(y﹣2)2=1关于直线y=x对称的圆的方程为()A.(x﹣2)2+(y﹣1)2=1B.(x+1)2+(y﹣2)2=1C.(x+2)2+(y﹣1)2=1D.(x﹣1)2+(y+2)2=1【解答】解:∵点P(x,y)关于直线y=x对称的点为P'(y,x),∴(1,2)关于直线y=x对称的点为(2,1),∴圆(x﹣1)2+(y﹣2)2=1关于直线y=x对称的圆的方程为(x﹣2)2+(y﹣1)2=1.故选:A.4.(5分)若函数f(x)=的定义域为实数集R,则实数a的取值范围为()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]【解答】解:函数f(x)=的定义域为实数集R,则x2+ax+1≥0恒成立,即△=a2﹣4≤0,解得﹣2≤a≤2,即实数a的取值范围是[﹣2,2],故选:D.5.(5分)某中学从某次考试成绩中抽取若干名学生的分数,并绘制成如图的频率分布直方图.样本数据分组为[50,60),[60,70),[70,80),[80,90),[90,100].若用分层抽样的方法从样本中抽取分数在[80,100]范围内的数据16个,则其中分数在[90,100]范围内的样本数据有()A.5个B.6个C.8个D.10个【解答】解:由频率分布直方图知:抽取分数在[80,100]范围内的频率为(0.025+0.015)×10=0.4,又在[80,100]范围内的数据有16个,∴样本容量==40个,∵分数在[90,100]范围内的频率为0.015×10=0.15,∴在[90,100]范围内的频数为0.15×40=6个.故选:B.6.(5分)已知集合A=,则集合A中的元素个数为()A.2B.3C.4D.5【解答】解:∵A={x|x∈Z且}={﹣1,1,3,5},∴集合A中的元素有4个,故选:C.7.(5分)设,是两个非零向量,则使•=||||成立的一个必要非充分条件是()A.=B.⊥C.=λ(λ>0)D.∥【解答】解:∵,是两个非零向量,则•=||||,∴•=||||cos=||||,∴cos=1,∴.∴∥.,是两个非零向量,则使•=||||成立的一个必要非充分条件是∥.故选:D.8.(5分)设a,b,m为整数(m>0),若a和b被m除得的余数相同,则称a 和b对模m同余,记为a≡b(modm).若,a≡b(mod10),则b的值可以是()A.2011B.2012C.2013D.2014【解答】解:∵,(1+2)20=320=1+2C201+22C202+…+220C2020,∴a=320.∵31个位是3,32个位是9,33个位是7,34个位是1,35个位是3,…∴320个位是1,若a≡b(mod10),则b的个位也是1.故选:A.二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)若不等式|x﹣a|<1的解集为{x|1<x<3},则实数a的值为2.【解答】解:∵|x﹣a|<1,∴﹣1<x﹣a<1,∴a﹣1<x<a+1,∴不等式|x﹣a|<1的解集为{x|a﹣1<x<a+1},∵不等式|x﹣a|<1的解集为{x|1<x<3},∴a﹣1=1且a+1=3,解得:a=2.故答案为:2.10.(5分)执行如图的程序框图,若输出S=7,则输入k(k∈N*)的值为3.【解答】解:由程序框图知,程序第一次运行n=1,S=0+21﹣1=1;第二次运行n=1+1=2,S=1+21=3;第三次运行n=3,S=1+21+22=7.∵输出S=7,∴程序运行终止时n=3,又不满足条件n<k时输出S,∴k=3,故答案为:3.11.(5分)一个四棱锥的底面为菱形,其三视图如图所示,则这个四棱锥的体积是4.【解答】解:由三视图知几何体为四棱锥,且四棱锥的一条侧棱垂直于底面,由正视图可得高为=3,∵底面为菱形,对角线互相垂直平分,∴底面面积S=2××4×1=4,∴几何体的体积V=×4×3=4.故答案为:4.12.(5分)设α为锐角,若cos()=,则sin(α﹣)=.【解答】解:∵α为锐角,cos()=为正数,∴α+是锐角,sin(α+)=,∴sin(α﹣)=sin[(α+)﹣]=sin(α+)cos﹣cos(α+)sin=﹣=,故答案为:.13.(5分)在数列{a n}中,已知a1=1,a n+1=﹣,记S n为数列{a n}的前n项和,则S2014=﹣.【解答】解:∵a1=1,a n+1=﹣,∴a2=﹣,a3=﹣=﹣2,a4=﹣=1,a5=﹣,…∴数列{a n}是以3为周期的数列,又S3=a1+a2+a3=1﹣﹣2=﹣,∴S2014=S2013+a2014=671×(﹣)+1=﹣+1=﹣.故答案为:﹣.(坐标系与参数方程选做题)14.(5分)在极坐标系中,直线ρ(sinθ﹣cosθ)=a与曲线ρ=2cosθ﹣4sinθ相交于A,B两点,若|AB|=,则实数a的值为﹣1或﹣5.【解答】解:直线ρ(sinθ﹣cosθ)=a即x﹣y+a=0;曲线ρ=2cosθ﹣4sinθ即ρ2=2ρcosθ﹣4ρsinθ,即x2+y2﹣2x+4y=0,即(x﹣1)2+(y+2)2=5,表示以C(1,﹣2)为圆心、半径等于的圆.设圆心到直线的距离为d,则d==,再根据点到直线的距离公式可得d=,∴=.解得a=﹣1,或a=﹣5,故答案为:﹣1或﹣5.(几何证明选讲选做题)15.如图,PC是圆O的切线,切点为C,直线P A与圆O交于A、B两点,∠APC的平分线分别交弦CA,CB于D,E两点,已知PC=3,PB=2,则的值为.【解答】解:作直线CF,连结BF,∴CF⊥PC,∴∠PCB+∠BCF=90°,∵CF是直径,∴∠BCF+∠F=90°,∴∠PCB=∠F,∵∠F=∠A,∴∠PCB=∠A,∴△PCB∽△P AC,∴,∵∠PCE=∠PCB=∠A,∠CPE=∠APD,∴△PCE∽△P AD,∴=.故答案为:.四、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)已知函数f(x)=sin x+a cos x的图象经过点(,0).(1)求实数a的值;(2)设g(x)=[f(x)]2﹣2,求函数g(x)的最小正周期与单调递增区间.【解答】解:(1)∵函数f(x)=sin x+a cos x的图象经过点,∴,即,即,解得.(2)由(1)得.∴g(x)=[f(x)]2﹣2======.∴函数的最小正周期为.∵函数y=sin x的单调递增区间为(k∈Z),令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,∴函数的单调递增区间为(k∈Z).17.(12分)甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是,甲,丙两人同时不能被聘用的概率是,乙,丙两人同时能被聘用的概率是,且三人各自能否被聘用相互独立.(1)求乙,丙两人各自能被聘用的概率;(2)设ξ表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望).【解答】解:(1)记甲,乙,丙各自能被聘用的事件分别为A1,A2,A3,由已知A1,A2,A3相互独立,且满足解得,.∴乙,丙各自能被聘用的概率分别为,.(2)ξ的可能取值为1,3.∵=P(A1)P(A2)P(A3)+[1﹣P(A1)][1﹣P(A2)][1﹣P(A3)]==.∴P(ξ=1)=1﹣P(ξ=3)=.∴ξ的分布列为∵.18.(14分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,点E是棱D1D 的中点,点F在棱B1B上,且满足B1F=2FB.(1)求证:EF⊥A1C1;(2)在棱C1C上确定一点G,使A,E,G,F四点共面,并求此时C1G的长;(3)求平面AEF与平面ABCD所成二面角的余弦值.【解答】(1)证明:连结B1D1,BD,∵四边形A1B1C1D1是正方形,∴B1D1⊥A1C1.在正方体ABCD﹣A1B1C1D1中,∵DD1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴A1C1⊥DD1.∵B1D1∩DD1=D1,B1D1,DD1⊂平面BB1D1D,∴A1C1⊥平面BB1D1D.∵EF⊂平面BB1D1D,∴EF⊥A1C1.(2)解:以点D为坐标原点,以DA,DC,DD1所在的直线分别为x轴,y轴,z轴,建立如图的空间直角坐标系,则A(a,0,0),A1(a,0,a),C1(0,a,a),,,∴,.设G(0,a,h),∵平面ADD1A1∥平面BCC1B1,平面ADD1A1∩平面AEGF=AE,平面BCC1B1∩平面AEGF=FG,∴存在实数λ,使得.∵,,∴.∴λ=1,.∴C1G=.∴当C1G=时,A,E,G,F四点共面.(3)解:由(1)知,.设=(x,y,z)是平面AEF的法向量,则,即取z=6,则x=3,y=﹣2.所以=(3,﹣2,6)是平面AEF的一个法向量.而是平面ABCD的一个法向量,设平面AEF与平面ABCD所成的二面角为θ,则cosθ=.故平面AEF与平面PQ所成二面角的余弦值为.19.(14分)已知等差数列{a n}的首项为10,公差为2,等比数列{b n}的首项为1,公比为2,n∈N*.(1)求数列{a n}与{b n}的通项公式;(2)设第n个正方形的边长为∁n=min{a n,b n},求前n个正方形的面积之和S n.(注:min{a,b}表示a与b的最小值.)【解答】解:(1)因为等差数列{a n}的首项为10,公差为2,所以a n=10+(n﹣1)×2,即a n=2n+8.因为等比数列{b n}的首项为1,公比为2,所以,即.(2)因为a1=10,a2=12,a3=14,a4=16,a5=18,a6=20,b1=1,b2=2,b3=4,b4=8,b5=16,b6=32.易知当n≤5时,a n>b n.下面证明当n≥6时,不等式b n>a n成立.方法1:①当n=6时,>20=2×6+8=a6,不等式显然成立.②假设当n=k(k≥6)时,不等式成立,即2k﹣1>2k+8.则有2k=2×2k﹣1>2(2k+8)=2(k+1)+8+(2k+6)>2(k+1)+8.这说明当n=k+1时,不等式也成立.综合①②可知,不等式对n≥6的所有整数都成立.所以当n≥6时,b n>a n.方法2:因为当n≥6时===n2﹣3n﹣6=n(n﹣4)+(n﹣6)>0,所以当n≥6时,b n>a n.所以n≤5时,==20+22+24+…+22n﹣2==.当n>5时,==+4[(6+4)2+(7+4)2+…+(n+4)2]=341+4[(62+72+…+n2)+8(6+7+…+n)+16(n﹣5)]=341+4[(12+22+…+n2)﹣(12+22+…+52)]+32(6+7+…+n)+64(n﹣5)==.综上可知,S n=20.(14分)已知双曲线E:=1(a>0)的中心为原点O,左,右焦点分别为F1,F2,离心率为,点P是直线x=上任意一点,点Q在双曲线E上,且满足=0.(1)求实数a的值;(2)证明:直线PQ与直线OQ的斜率之积是定值;(3)若点P的纵坐标为1,过点P作动直线l与双曲线右支交于不同两点M,N,在线段MN上取异于点M,N的点H,满足,证明点H恒在一条定直线上.【解答】(1)解:设双曲线E的半焦距为c,由题意可得,解得.(2)证明:由(1)可知,直线,点F2(3,0).设点,Q(x0,y0),因为,所以,所以.因为点Q(x0,y0)在双曲线E上,所以,即.所以=.所以直线PQ与直线OQ的斜率之积是定值.(3)证明:设点H(x,y),且过点的直线l与双曲线E的右支交于不同两点M(x1,y1),N(x2,y2),则,,即,.设,则.即整理,得由①×③,②×④得将,代入⑥,得.⑦将⑤代入⑦,得.所以点H恒在定直线4x﹣3y﹣12=0上.21.(14分)已知函数f(x)=(x2﹣2x+1)e x(其中e为自然对数的底数).(1)求函数f(x)的单调区间;(2)定义:若函数h(x)在区间[s,t](s<t)上的取值范围为[s,t],则称区间[s,t]为函数h(x)的“域同区间”.试问函数f(x)在(1,+∞)上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.【解答】解:(1)因为f(x)=(x2﹣2x+1)e x,所以f'(x)=(2x﹣2)e x+(x2﹣2x+1)e x=(x2﹣1)e x=(x+1)(x﹣1)e x.当x<﹣1或x>1时,f'(x)>0,即函数f(x)的单调递增区间为(﹣∞,﹣1)和(1,+∞).当﹣1<x<1时,f'(x)<0,即函数f(x)的单调递减区间为(﹣1,1).所以函数f(x)的单调递增区间为(﹣∞,﹣1)和(1,+∞),单调递减区间为(﹣1,1).(2)假设函数f(x)在(1,+∞)上存在“域同区间”[s,t](1<s<t),由(1)知函数f(x)在(1,+∞)上是增函数,所以即也就是方程(x﹣1)2e x=x有两个大于1的相异实根.设g(x)=(x﹣1)2e x﹣x(x>1),则g'(x)=(x2﹣1)e x﹣1.设h(x)=g'(x)=(x2﹣1)e x﹣1,则h'(x)=(x2+2x﹣1)e x.因为在(1,+∞)上有h'(x)>0,所以h(x)在(1,+∞)上单调递增.因为h(1)=﹣1<0,h(2)=3e2﹣1>0,即存在唯一的x0∈(1,2),使得h(x0)=0.当x∈(1,x0)时,h(x)=g'(x)<0,即函数g(x)在(1,x0)上是减函数;当x∈(x0,+∞)时,h(x)=g'(x)>0,即函数g(x)在(x0,+∞)上是增函数.因为g(1)=﹣1<0,g(x0)<g(1)<0,g(2)=e2﹣2>0,所以函数g(x)在区间(1,+∞)上只有一个零点.这与方程(x﹣1)2e x=x有两个大于1的相异实根相矛盾,所以假设不成立.所以函数f(x)在(1,+∞)上不存在“域同区间”.故答案为:(1)函数f(x)的单调递增区间为(﹣∞,﹣1)和(1,+∞),单调递减区间为(﹣1,1).(2)函数f(x)在(1,+∞)上不存在“域同区间”.。
2014年广东高考试卷理科数学(含全部答案)
2014年普通高等学校招生全国统一考试(广东卷)数学(理)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 答案:B2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+ 答案:A 2525(34)25(34):=34,.34(34)(34)25i i z i i i i --===-++-提示故选A 3.若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5:(),(2,1)(1,1)3,3,6,.CM m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选4.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+答案:D提示:从而两曲线均为双曲线,又25故两双曲线的焦距相等,选D.5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)0222222:(1,0,1)(1,1,0)11:,,60,.2210(1)1(1)0B B -⋅-=∴++-⋅+-+答案提示即这两向量的夹角余弦值为从而夹角为选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20 B. 100,20 C. 200,10 D. 100,10::(350045002000)2%200,20002%50%20,.AA ++⋅=⋅⋅=∴答案提示样本容量为抽取的高中生近视人数为:选7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是 A.14l l ⊥ B.14//l l C.14,l l 既不垂直也不平行 D.14,l l 的位置关系不确定 答案:D 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x xx i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130答案: D1234511122252551311225254:1,2,31:C 10;:C 40;:C C C 80.104080130,D .x x x x x C C A C C ++++=+=+=++=提示可取和为的元素个数为和为2的元素个数为和为3的元素个数为故满足条件的元素总的个数为选二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 .(][)(][),32,:12532,,32,.-∞-+∞---∞-+∞答案:提示数轴上到与距离之和为的数为和故该不等式的解集为:10.曲线25+=-xe y 在点)3,0(处的切线方程为 .'5'0:530:5,5,35,530.xx x y y eyy x x y -=+-==-∴=-∴-=-+-=答案提示所求切线方程为即11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .367101:6:67,36,136,.6C C =答案提示要使为取出的个数中的中位数则取出的数中必有个不大于另外个不小于故所求概率为12.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+, 则=ba. 2222222:2::cos cos ,2, 2.sin cos sin cos 2sin ,sin()2sin ,sin 2sin ,2, 2.::2,24,222, 2.ab Cc B a a b bB C C B B B C B aA B a b ba b c a c b b b a ab ab ac aa b b+==∴=+=+=∴==∴=+-+-⋅+==∴==答案提示解法一由射影定理知从而解法二:由上弦定理得:即即解法三由余弦定理得即即13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220l n l n l n a a a +++= .51011912101112202019151201011:100:,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100.a a a a a a e S a a a S a a a S a a a a e =∴==+++=+++∴====答案提示设则(二)选做题(14~15题,考生从中选做一题)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sincos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__221212:(1,1):(sin )cos ,,:1,(1,1).C y x C y C C ρθρθ===∴答案提示即故其直角坐标方程为:的直角坐标方程为与的交点的直角坐标为15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___22:9:,()()9.CDFAEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆答案提示显然的面积的面积三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和 演算步骤.16、(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf , (1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f . 552332:(1)()sin()sin , 3.121243223(2)(1):()3sin(),4()()3sin()3sin()443(sin cos cos sin )3(sin()cos cos()sin )444423cos sin 46cos 326cos ,(0,),42f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴+-=++-+=++-+-===∴=∈解由得10sin 4331030()3sin()3sin()3sin 3.44444f θπππθθπθθ∴=∴-=-+=-==⨯=17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值; (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,50]的概率.(](]12120044472:(1)7,2,0.28,0.08;2525(2);(3),30,50:10.120.88,130,503:1(0.88)(0.12)1().25n n f f C ======-=-=-解略根据频率分布直方图可得工人们日加工零件数落在区间的概率为故至少有人的日加工零件数落在区间的概率为18.(13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =030,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E.(1)证明:CF ⊥平面ADF ;(2)求二面角D -AF -E 的余弦值.:(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则0022,CD 2,30,130,==1,213324,,,=,,,3,2222333319322EG .,7,,42231933193193622,()()474747EHG D AF E DPC CDF CF CD DE CF DE CP EF DC DE DF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴==⋅⋅======⋅⋅∴====-=为二面角的平面角设从而∥即还易求得EF=从而易得故3,476347257cos .1947319GH EHG EH ∴∠==⋅=12:,,,,,2,1(0,0,2),C(0,2,0),P(23,0,0),,(23,22,0),,,43331(,,0),(,0,0),ADF CP (3,1,0),2222AEF (x DP DC DA x y z DC A CF CP F DF CF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,43257(4,0,3),.19||||219n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为19.(14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =. (1)求123,,a a a 的值; (2)求数列{}n a 的通项公式;211222122331212121331221232121:(1)2314127+=432424()204(15)20,+83,,1587,53,5,7,(2)2342,2(1)3(1)4(n n n n a S a a a a S a S a a a a a a a a S a a a a a a S na n nn S n a n n +-==-⨯-⨯=-=-⨯-⨯=---=---∴==⎧∴=--=-=⎨=⎩====--∴≥=-----解①②联立①②解得综上③当时11121)2161,22(1)21,:()(1),1,3211,;(),,21,21611,22211(21)322411322232(1)11n n n k k k n n a a n na n i n a ii n k a k k k n k a a k k k k k k k k k k k n k ++-+-=+=+===⨯+==+-+=+=+-=⋅+++-=++=+=++=+④③④并整理得:由猜想以下用数学归纳法证明由知当时猜想成立假设当时猜想成立即则当时这就是说,,,2 1.n n N a n *∈=+时猜想也成立从而对一切20.(14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为(5,0),离心率为53,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.222220022002255:(1)5,,3,954,31.94(2),,4(3,2),(3,2).(),(),194(94)18(c c e a b a c a a x y C x y y y k x x x y y k x x y k x k y ====∴==-=-=∴+=-±±-=-=-++=++解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:2000022222200000022220000012202200)9()40,,0,(18)()36()4(94)0,4()4(94)0,4(9)240,,1,:1,913,(3,2),(3,2)kx x y kx k y kx y kx k y kx k y x k x y k y k k x x y ⎡⎤-+--=∆=⎣⎦⎡⎤----+=--+=⎣⎦-∴--+-=∴=-=--∴+=-±±依题意即:即两切线相互垂直即显然这四点也满足以上方22,13.P x y ∴+=程点的轨迹方程为21.(本题14分)设函数2221()(2)2(2)3f x x x k x x k =+++++-,其中2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示). .解:(1)可知222(2)2(2)30x x k x x k +++++->,22[(2)3][(2)1]0x x k x x k ∴+++⋅++->, 223x x k ∴++<-或221x x k ++>,2(1)2x k ∴+<--(20)k -->或2(1)2x k +>-(20)k ->,|1|2x k ∴+<--或|1|2x k +>-,12k ∴----<12x k <-+--或12x k <---或12x k >-+-, 所以函数()f x 的定义域D 为(,12)k -∞---(12,k ----12)k -+--(12,)k -+-+∞; (2)232222(2)(22)2(22)'()2(2)2(2)3x x k x x f x x x k x x k +++++=-+++++-23222(21)(22)(2)2(2)3x x k x x x k x x k ++++=-+++++-, 由'()0f x >得2(21)(22)0x x k x ++++<,即(1)(1)(1)0x k x k x +++-+<,1x k ∴<---或11x k -<<-+-,结合定义域知12x k <---或112x k -<<-+--, 所以函数()f x 的单调递增区间为(,12)k -∞---,(1,12)k --+--,同理递减区间为(12,1)k -----,(12,)k -+-+∞;(3)由()(1)f x f =得2222(2)2(2)3(3)2(3)3x x k x x k k k +++++-=+++-,2222[(2)(3)]2[(2)(3)]0x x k k x x k k ∴++-++++-+=, 22(225)(23)0x x k x x ∴+++⋅+-=,(124)(124)(3)(1)0x k x k x x ∴++--+---⋅+-=, 124x k ∴=----或124x k =-+--或3x =-或1x =, 6k <-,1(1,12)k ∴∈--+--,3(12,1)k -∈-----,12412k k ----<---,12412k k -+-->-+-, 结合函数()f x 的单调性知()(1)f x f >的解集为(124,12)k k -------(12,3)k -----(1,12)k -+--(12,124)k k -+--+--..。
2014年高考理科数学广东卷有答案
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前2014年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N = ( ) A .{0,1} B .{1,0,2}- C .{1,0,1,2}-D .{1,0,1}- 2.已知复数z 满足(34i)25z +=,则z =( )A .34i -+B .34i --C .34i +D .34i -3.若变量x ,y 满足约束条件,1,1,y x x y y ⎧⎪+⎨⎪-⎩≤≤≥且2z x y =+的最大值和最小值分别为m 和n ,则m n -=( )A .5B .6C .7D .84.若实数k 满足9k 0<<,则曲线221259x y k-=-与曲线221259x y k -=-的 ( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等5.已知向量(1,0,1)=-a ,则下列向量中与a 成60夹角的是( )A .(1,1,0)-B .(1,1,0)-C .(0,1,1)-D .(1,0,1)-6.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .200,20B .100,20C .200,10D .100,10 7.若空间中四条两两不同的直线1l ,2l ,3l ,4l ,满足12l l ⊥,23l l ⊥,34l l ⊥,则下列结论一定正确的是( )A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定8.设集合12345{(,,,,)|{1,0,1},1,2,3,4,5}i A x x x x x xi =∈-=,那么集合A 中满足条件“12345||||||||||3x x x x x ++++1≤≤”的元素个数为( )A .60B .90C .120D .130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式|1||2|x x -++≥5的解集为 . 10.曲线52x y e -=+在点(0,3)处的切线方程为 .11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .12.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知cos cos 2b C c B b +=,则ab= . 13.若等比数列{}n a 的各项均为正数,且510119122e a a a a +=,则1220ln ln ln =a a a +++… .姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 和2C 的交点的直角坐标为 . 15.(几何证明选讲选做题)如图,在平行四边形ABCD 中,点E 在AB 上且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆=∆的面积的面积 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数π()sin()4f x A x =+,x ∈R ,且5π3()122f =.(Ⅰ)求A 的值; (Ⅱ)若3()()2f f θθ+-=,π(0,)2θ∈,求3π()4f θ-.17.(本小题满分13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36. 根据上述数据得到样本的频率分布表如下:分组 频数 频率 [25,30] 3 0.12 (30,35] 5 0.20 (35,40] 80.32(40,45] 1n 1f (45,50]2n2f(Ⅰ)确定样本频率分布表中1n ,2n ,1f 和2f 的值; (Ⅱ)根据上述频率分布表,画出样本频率分布直方图;(Ⅲ)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,50]的概率.18.(本小题满分13分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,30DPC ∠=,AF PC ⊥于点F ,FE CD ∥,交PD于点E .(Ⅰ)证明:CF ⊥平面ADF ; (Ⅱ)求二面角D AF E --的余弦值.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足21234n n S na n n +=--,*n ∈N ,且315S =. (Ⅰ)求1a ,2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式.20.(本小题满分14分)已知椭圆C :22221(0)x y a b a b+=>>的一个焦点为,离心率为3.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.21.(本小题满分14分)设函数()f x =,其中2k <-.(Ⅰ)求函数()f x 的定义域D (用区间表示); (Ⅱ)讨论函数()f x 在D 上的单调性;(Ⅲ)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).数学试卷 第5页(共16页) 数学试卷 第6页(共16页){1,0,1,2}M N =-在点(1,1)--处目标函数分别取得最小值3n =-,则6m n -=,故选B.【解析】09k <<(9)34k -=-【提示】根据k 的取值范围,判断曲线为对应的双曲线,以及221)(1,1,0)(1)1--+22221)(1,1,0)1(1)0-=+-+221)(0,1,1)1(1)-+-221)(1,0,1)1(1)-+-【提示】根据空间向量数量积的坐标公式,即可得到结论2000)2%200=20002%50%20=可得总体个数,根据抽取比例可得样本容量,计算分层抽样的抽取比例,求得样本中的高中学生数,再利用图可得出结论,14l l ,的位置关系不确定.3)(2,)+∞式|1|x-+3)(2,)+∞.【提示】把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求20ln a++=220)a=ln(直接由等比数列的性质结合已知得到数学试卷第7页(共16页)数学试卷 第9页(共16页) 数学试卷 第10页(共16页)32A32=,3A =.(Ⅰ)PD ⊥平面PD CD D =,,数学试卷 第11页(共16页) 数学试卷 第12页(共16页)m AF m EF ⎧⊥⎪⎨⊥⎪⎩,又330AE EF ⎧⎛=⎪ ⎪⎝⎨⎪⎛= ⎪⎩,3434m AF x m EF y ⎧=⎪⎪⎨⎪==(Ⅰ)知平面ADF 的一个法向量(3,1,0)PC =-,设二面角|m PCm PC m PC <>==419(Ⅰ)324a S =(21k +++数学试卷 第13页(共16页) 数学试卷 第14页(共16页))(12,12)(12,)k k k -----+---+--+∞,12)k ---和(1,12)k --+-,1)k --和(12,)k -+-+∞)(12,3)(1,12)(12,1k k k ------+---+--+3]2[(2x x +3或22x x +(20)k k -->)(12,12)(12,)k k k -----+---+--+∞.232222)(22)2(22)2)2(2)3x x k x x x x k x x k +++++⎤+++++-⎦)(12,3)(1,12)(12,1k k k ------+---+--+数学试卷 第15页(共16页) 数学试卷 第16页(共16页).【提示】(Ⅰ)由题意可知222(2)2(2)30x x k x x k +++++->,又2k <-,解不等式即可求出函数的定义域.(Ⅱ)根据复合函数的定义域之间的关系即可得到结论. (Ⅲ)根据函数的单调性,即可得到不等式的解集.【考点】函数的定义域,导数的运算,利用导数求函数的单调性,函数单调性的应用。
2014广东高考理数试题和答案
2014年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N =A.{1,0,1}-B.{1,0,1,2}-C.{1,0,2}-D.{0,1}2.已知复数Z 满足(34)25i z +=,则Z= A.34i -B.34i +C.34i --D.34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -=A.8B.7C.6D.54.若实数k 满足09k <<,则曲线221259x y k -=-与曲线221259x y k -=-的 A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是 A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A.200,20B.100,20C.200,10D.100,10小学初中高中年级O7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A.60 B.90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
2014广东高考理科数学试卷及详细答案
2014年普通高等学校招生全国统一考试(广东卷)数学(理)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 答案:B2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+ 答案:A 2525(34)25(34):=34,.34(34)(34)25i i z i i i i --===-++-提示故选A3.若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5:(),(2,1)(1,1)3,3,6,.CM m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选4.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+答案:D提示:从而两曲线均为双曲线,又25故两双曲线的焦距相等,选D.5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)0:11,,60,.22B B =∴答案提示即这两向量的夹角余弦值为从而夹角为选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20 B. 100,20 C. 200,10 D. 100,10::(350045002000)2%200,20002%50%20,.AA ++⋅=⋅⋅=∴答案提示样本容量为抽取的高中生近视人数为:选7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是 A.14l l ⊥ B.14//l l C.14,l l 既不垂直也不平行 D.14,l l 的位置关系不确定 答案:D 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130 答案: D1234511122252551311225254:1,2,31:C 10;:C 40;:C C C 80.104080130, D.x x x x x C C A C C ++++=+=+=++=提示可取和为的元素个数为和为2的元素个数为和为3的元素个数为故满足条件的元素总的个数为选二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 .(][)(][),32,:12532,,32,.-∞-+∞---∞-+∞答案:提示数轴上到与距离之和为的数为和故该不等式的解集为:10.曲线25+=-xe y 在点)3,0(处的切线方程为 .'5'0:530:5,5,35,530.xx x y y eyy x x y -=+-==-∴=-∴-=-+-=答案提示所求切线方程为即11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .367101:6:67,36,136,.6C C =答案提示要使为取出的个数中的中位数则取出的数中必有个不大于另外个不小于故所求概率为12.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+, 则=ba. 2222222:2::cos cos ,2, 2.sin cos sin cos 2sin ,sin()2sin ,sin 2sin ,2, 2.::2,24,222, 2.ab Cc B a a b bB C C B B B C B aA B a b ba b c a c b b b a ab ab acaa b b+==∴=+=+=∴==∴=+-+-⋅+==∴==答案提示解法一由射影定理知从而解法二:由上弦定理得:即即解法三由余弦定理得即即13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln l n l n a a a +++= .51011912101112202019151201011:100:,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100.a a a a a a e S a a a S a a a S a a a a e =∴==+++=+++∴====答案提示设则(二)选做题(14~15题,考生从中选做一题)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sincos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__221212:(1,1):(sin )cos ,,:1,(1,1).C y x C y C C ρθρθ===∴答案提示即故其直角坐标方程为:的直角坐标方程为与的交点的直角坐标为15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___22:9:,()()9.CDFAEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆答案提示显然的面积的面积三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和 演算步骤.16、(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf ,(1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f. 55233:(1)()sin()sin ,12124322(2)(1):()sin(),4()()sin()sin()44coscos sin )(sin()cos cos()sin )44443cos sin 42cos (0,),2f A A A fx x f f πππππππθθθθππππθθθθπθθπθθ=+==∴===+∴+-=+-+=+-+-===∴=∈解由得sin 33()sin())444f θπππθθπθθ∴=∴-=-+=-===17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,50]的概率.121272:(1)7,2,0.28,0.08;2525(2):n n f f ======解频率分布直方图如下所示(](]00444(3),30,50:10.120.88,130,503390544:1(0.88)(0.12)1().25390625C -=-=-=根据频率分布直方图可得工人们日加工零件数落在区间的概率为故4人中,至少有人的日加工零件数落在区间的概率为18.(13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =030,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E.(1)证明:CF ⊥平面ADF ;(2)求二面角D -AF -E 的余弦值. :(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CDDE CF CP EF DC DEDF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴==⋅=====⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠===12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431(,0),(ADF CP (3,1,0),2222AEF (x DPDC DA x y z DC A CF CP F DFCF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,19||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为19.(14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =. (1)求123,,a a a 的值; (2)求数列{}n a 的通项公式;211222122331212121331221232121:(1)2314127+=432424()204(15)20,+83,,1587,53,5,7,(2)2342,2(1)3(1)4(n n n n a S a a a a S a S a a a a a a a a S a a a a a a S na n nn S n a n n +-==-⨯-⨯=-=-⨯-⨯=---=---∴==⎧∴=--=-=⎨=⎩====--∴≥=-----解①②联立①②解得综上③当时11121)2161,22(1)21,:()(1),1,3211,;(),,21,21611,22211(21)322411322232(1)11n n n k k k n n a a n na n i n a ii n k a k k k n k a a k k k k k k k k k k k n k ++-+-=+=+===⨯+==+-+=+=+-=⋅+++-=++=+=++=+④③④并整理得:由猜想以下用数学归纳法证明由知当时猜想成立假设当时猜想成立即则当时这就是说,,,2 1.n n N a n *∈=+时猜想也成立从而对一切20.(14分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为,离心率为3,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.2222200220022:(1)3,954,1.94(2),,4(3,2),(3,2).(),(),194(94)18(c c e a b a c a x y C x y y y k x x x y y k x x y k x k y ====∴==-=-=∴+=-±±-=-=-++=++解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:2000022222200000022220000012202200)9()40,,0,(18)()36()4(94)0,4()4(94)0,4(9)240,,1,:1,913,(3,2),(3,2)kx x y kx k y kx y kx k y kx k y x k x y k y k k x x y ⎡⎤-+--=∆=⎣⎦⎡⎤----+=--+=⎣⎦-∴--+-=∴=-=--∴+=-±±依题意即:即两切线相互垂直即显然这四点也满足以上方22,13.P x y ∴+=程点的轨迹方程为21.(本题14分)设函数()f x =,其中2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).222222122222:(1)(2)2(2)30,2123:210,44(1)4(2)0(2),21=01210:11230,23044(3)x x k x x k x x k x x k x x k k k k x x k x x k x x x x k x x k k +++++->++>++<-++->∆=--=-><-∴++--±∴++-><->-+++<+++=∆=-+=解则①或②由①得方程的解为由得由②得:方程的判别式23'24(2)0(2),1230:112,11111(,1(12,12)(12,).(2)0,1()2(2k k x x k x k D k k k u f x u x ---><-∴-+++<-<-+<-∴-<-<-<-+-∴=-∞------+---+-+∞=>=-⋅⋅该方程的解为由得设则23222'2'22)(22)2(22)2(1)(21)()(,1,10,21110,()0;()(11),10,21310,()0;()(1,1,10,21310,x k x x u x x x k i x x x x k f x ii x x x x k f x iii x x x x k f -⎡⎤++⋅+++⎣⎦=-+⋅+++∈-∞--+<+++>+>∴>∈--+<+++<-+<∴<∈--+>+++<-+<∴当时当时当时'2'()0;()(1),10,21110,()0.,():(,11,1,():(11),(1).x iv x x x x k f x f x D f x D >∈-+∞+>+++>+>∴<-∞------+∞当时综上在上的单调增区间为在上的单调减区间为22222222222(3)g(x)(2)2(2)3,(1),x D ,g(x)0;g(1)(3k)2(3)3(6)(2),,6,(1)0,()(1)()(1),()(1)[(2)2(2)3][(3k)2(3)3][(2)(3k)]x x k x x k k k k k g f x f g x g g x g x x k x x k k x x k =+++++-∈>=+++-=++<->>⇔<-=+++++--+++-=++-+设由知当时又显然当时从而不等式2222[(2)(3)](3)(1)(225),()(3)(1)0,()(1),()(11,6,113,1),2250,111111x x k k x x x x k i x x x f x f g x g x k x x x k -<------<<-++++-+=+-+++<+->∴><->---++-+<<<当欲使即于则即即而亦由从2222(3)(1)0,225(2)(5)3(5)0,()(1),()(1);(iii)31,(3)(1)0,2253(5)0,()(1),;(iv)1(3)1()13,1(1)0,,2xx x x k xx k k k g x g f x f x x x x x k k g x g x x x x i x i x --+->+++=++++<-++<<>-<<+-<+++<-++<∴>-<<<--+<+->++时此时即时不合题意21,111111253(5)0,()(1),;(v)(3)(1)0,()(1),2250,()(1)1,11((1x k k g x g x x x g x g x x k x f x x f --<---+-+-+<----⋃-+<-++<∴<>+->∴<+++<>>考虑到又需合题意欲使则即的解集为:从而综上所述3)(1(11,1-⋃-⋃-+--。
2014年广东高考理科数学试题参考答案与解析
2014年普通高等学校招生全国统一考试(广东卷)数学理一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1}2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.54.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B. (1,-1,0) C. (0,-1,1) D. (-1,0,1)6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A 、200,20B 、100,20C 、200,10D 、100,107、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60 B90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
2014高考广东卷理科数学真题及答案解析 .doc
2014高考广东卷理科数学真题及答案解析新东方在线举国瞩目的2014高考数学科目的考试已结束,新东方在线高考名师团队第一时间对2014全国高考各科真题进行了点评,希望能对考生、家长有所帮助,也希望对2015高考考生提供借鉴。
以下是广州新东方高考名师团队对广东卷理科数学真题提供的参考答案及解析,供广大考生参考。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃= 【答案】BA .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 2.已知复数Z 满足(34)25,i z +=则Z=AA .34i - B. 34i + C. 34i -- D. 34i -+ 【答案】A3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5 【答案】C4.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等【答案】D5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B. (1,-1,0) C. (0,-1,1) D. (-1,0,1) 【答案】B6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A 、200,20B 、100,20C 、200,10D 、100,10 【答案】A7、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是 A .14l l ⊥ B .14//l l C .14,l l 既不垂直也不平行 D .14,l l 的位置关系不确定33255.23)125(),4sin()(=+=f x A x f ππ且Θ【答案】D 8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60 B90 C.120 D.130 【答案】D二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
2014年广东高考理科数学试题含答案(Word版)
2014年普通高等学校招生全国统一考试(广东卷)数学(理)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 答案:B2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+ 答案:A2525(34)25(34):=34,.34(34)(34)25i i z i i i i --===-++-提示故选A3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5:(),(2,1)(1,1)3,3,6,.CM m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选4.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+答案:D提示:从而两曲线均为双曲线,又25故两双曲线的焦距相等,选D.5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)0:11,,60,.22B B =∴答案提示即这两向量的夹角余弦值为从而夹角为选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20 B. 100,20 C. 200,10 D. 100,10::(350045002000)2%200,20002%50%20,.AA ++⋅=⋅⋅=∴答案提示样本容量为抽取的高中生近视人数为:选7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是 A.14l l ⊥ B.14//l l C.14,l l 既不垂直也不平行 D.14,l l 的位置关系不确定 答案:D8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130 答案: D1234511122252551311225254:1,2,31:C 10;:C 40;:C C C 80.104080130,D .x x x x x C C A C C ++++=+=+=++=提示可取和为的元素个数为和为2的元素个数为和为3的元素个数为故满足条件的元素总的个数为选二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 .(][)(][),32,:12532,,32,.-∞-+∞---∞-+∞答案:提示数轴上到与距离之和为的数为和故该不等式的解集为:10.曲线25+=-xey 在点)3,0(处的切线方程为 .'5'0:530:5,5,35,530.xx x y y eyy x x y -=+-==-∴=-∴-=-+-=答案提示所求切线方程为即11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .367101:6:67,36,136,.6C C =答案提示要使为取出的个数中的中位数则取出的数中必有个不大于另外个不小于故所求概率为12.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+,则=ba. 2222222:2::cos cos ,2, 2.sin cos sin cos 2sin ,sin()2sin ,sin 2sin ,2, 2.::2,24,222, 2.ab Cc B a a b bB C C B B B C B aA B a b ba b c a c b b b a ab ab ac aa b b+==∴=+=+=∴==∴=+-+-⋅+==∴==答案提示解法一由射影定理知从而解法二:由上弦定理得:即即解法三由余弦定理得即即13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= . 51011912101112202019151201011:50,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100,50.a a a a a a e S a a a S a a a S a a a a e S =∴==+++=+++∴====∴=答案提示:设则(二)选做题(14~15题,考生从中选做一题)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__221212:(1,1):(sin )cos ,,:1,(1,1).C y x C y C C ρθρθ===∴答案提示即故其直角坐标方程为:的直角坐标方程为与的交点的直角坐标为15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___22:9:,()()9.CDF AEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆答案提示显然的面积的面积三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和 演算步骤.16、(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf , (1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f. 55233:(1)()sin()sin ,12124322(2)(1):()sin(),4()()sin()sin()44coscos sin )(sin()cos cos()sin )44443sin 42cos (0,),2f A A A f xx f f πππππππθθθθππππθθθθπθθπθθ=+==∴===+∴+-=+-+=++-+-===∴=∈解由得sin 33()sin())444f θπππθθπθθ∴=∴-=-+=-===17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.121272:(1)7,2,0.28,0.08;2525(2):n n f f ======解频率分布直方图如下所示(](](]044(3),30,350.2,30,35(4,0.2),130,35:1(0.2)(0.8)10.40960.5904.B C ξξ-=-=根据频率分布直方图可得工人们日加工零件数落在区间的概率为设日加工零件数落在区间的人数为随机变量,则故4人中,至少有人的日加工零件数落在区间的概率为18.(13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =030,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E.(1)证明:CF ⊥平面ADF ; (2)求二面角D -AF -E 的余弦值.:(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CD DECF CP EF DCDE DF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴==⋅====⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠==12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431,0),ADF CP (3,1,0),22AEF (x DP DC DA x y z DC A CF CP F DF CF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为19.(14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =. (1)求123,,a a a 的值; (2)求数列{}n a 的通项公式;211222122331212121331221232121:(1)2314127+=432424()204(15)20,+83,,1587,53,5,7,(2)2342,2(1)3(1)4(n n n n a S a a a a S a S a a a a a a a a S a a a a a a S na n nn S n a n n +-==-⨯-⨯=-=-⨯-⨯=---=---∴==⎧∴=--=-=⎨=⎩====--∴≥=-----解①②联立①②解得综上③当时11121)2161,22(1)21,:()(1),1,3211,;(),,21,21611,22211(21)322411322232(1)11n n n k k k n n a a n na n i n a ii n k a k k k n k a a k k k k k k k k k k k n k ++-+-=+=+===⨯+==+-+=+=+-=⋅+++-=++=+=++=+④③④并整理得:由猜想以下用数学归纳法证明由知当时猜想成立假设当时猜想成立即则当时这就是说,,,2 1.n n N a n *∈=+时猜想也成立从而对一切20.(14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.2222200220022:(1)3,954,1.94(2),,4(3,2),(3,2).(),(),194(94)18(c c e a b a c a x y C x y y y k x x x y y k x x y k x k y ====∴==-=-=∴+=-±±-=-=-++=++解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:2000022222200000022220000012202200)9()40,,0,(18)()36()4(94)0,4()4(94)0,4(9)240,,1,:1,913,(3,2),(3,2)kx x y kx k y kx y kx k y kx k y x k x y k y k k x x y ⎡⎤-+--=∆=⎣⎦⎡⎤----+=--+=⎣⎦-∴--+-=∴=-=--∴+=-±±依题意即:即两切线相互垂直即显然这四点也满足以上方22,13.P x y ∴+=程点的轨迹方程为21.(本题14分)设函数()f x =2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).222222122222:(1)(2)2(2)30,2123:210,44(1)4(2)0(2),21=01210:11230,23044(3)x x k x x k x x k x x k x x k k k k x x k x x k x x x x k x x k k +++++->++>++<-++->∆=--=-><-∴++--∴++-><-->-++++<+++=∆=-+=解则①或②由①得方程的解为由得由②得:方程的判别式23'24(2)0(2),1230:112,11111(,1(12,12)(12,).(2)0,1()2(2k k x x k x k D k k k u f x u x ---><-∴-+++<-<-+<-∴-<--<-<-+-∴=-∞------+---+-+∞=>=-⋅⋅该方程的解为由得设则23222'2'22)(22)2(22)2(1)(21)()(,1,10,21110,()0;()(11),10,21310,()0;()(1,1,10,21310,x k x x u x x x k i x x x x k f x ii x x x x k f x iii x x x x k f -⎡⎤++⋅+++⎣⎦=-+⋅+++∈-∞-+<+++>+>∴>∈--+<+++<-+<∴<∈--++>+++<-+<∴当时当时当时'2'()0;()(1),10,21110,()0.,():(,11,1,():(11),(1).x iv x x x x k f x f x D f x D >∈-+∞+>+++>+>∴<-∞------++∞当时综上在上的单调增区间为在上的单调减区间为22222222222(3)g(x)(2)2(2)3,(1),x D,g(x)0;g(1)(3k)2(3)3(6)(2),,6,(1)0,()(1)()(1),()(1)[(2)2(2)3][(3k)2(3)3][(2)(3k)]x x k x x k k k k k g f x f g x g g x g x x k x x k k x x k =+++++-∈>=+++-=++<->>⇔<-=+++++--+++-=++-+设由知当时又显然当时从而不等式2222[(2)(3)](3)(1)(225),()(3)(1)0,()(1),()(6,111311111,1111),2250,k x x k k x x x x k i x x x f x f g x x g x k x x +++-+=+-++<-∴-<----<<--+-+--+<+->∴><+<<-+++<当欲使即亦即即2222(3)(1)0,225(2)(5)3(5)0,()(1),()(1);(1iii)31,(3)(1)0,2253(5)0,()(1),;(iv)1(()13,13)(1)0,,2ii xx x x xk x x k k kg x g f x f x x x x x k k g x g x x x x x <+->+++=++++<-++<<>-<<+---<<--+<+++<-++<∴><<+->++时此时即时不合题意21,11253(5)0,()(1),;(v)(3)(1)0,()(1),2250,()(1)11,11(13)(1(1(,11k k g x x g x x x g x g x x x k f x f --<<-+<-++<∴<>+->∴<++-<-+---⋃--⋃-⋃-+-++<>从而综合题意欲使则即的解集为:上所述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学(理科)试题参考答案及评分标准 第 1 页 共 13 页
试卷类型:A
2014年广州市普通高中毕业班综合测试(一)
数学(理科)
2014.3
本试卷共4页,21小题, 满分150分.考试用时120分钟 注意事项:
1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 3
1
=
,其中S 是锥体的底面积,h 是锥体的高. ()()
2
2
2
21211236
n n n n +++++
+=
()*n ∈N . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合
题目要求的. 1.已知i 是虚数单位,若()2
i 34i m +=-,则实数m 的值为
A .2-
B .2±
C .
D .2
2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2C B =,则
c b
为
A .2sin C
B .2cos B
C .2sin B
D .2cos C 3.圆()()2
2
121x y -+-=关于直线y x =对称的圆的方程为
A .()()2
2
211x y -+-= B .()()2
2
121x y ++-= C .()()2
2
211x y ++-= D .()()2
2
121x y -++= 4.若函数()f x =
R ,则实数a 的取值范围为
A .()2,2-
B .()(),22,-∞-+∞
C .(][),22,-∞-+∞
D .[]2,2-
5.某中学从某次考试成绩中抽取若干名学生的分数,并绘制
成如图1的频率分布直方图.样本数据分组为[)50,60,
[)60,70,[)70,80,[)80,90,[]90,100.若用分层抽
样的方法从样本中抽取分数在[]80,100范围内的数据16个, 则其中分数在[]90,100范围内的样本数据有
A .5个
B .6个
C .8个
D .10个 6.已知集合32A x x x ⎧⎫
=∈∈⎨⎬-⎩⎭
Z Z 且
,则集合A 中的元素个数为 A .2 B .3 C .4
D .5
7.设a ,b 是两个非零向量,则使a b =a b 成立的一个必要非充分条件是 A .=a b B .⊥a b C .λ=a b
()0λ> D .a
b
8.设a ,b ,m 为整数(0m >),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为
()mod a b m ≡.若0122
20
2020202020C C 2C 2C 2a =+⋅+⋅+
+⋅,()mod10a b ≡,则b 的值可以是
A .2011
B .2012
C .2013
D .2014
二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)
9.若不等式1x a -<的解集为{}
13x x <<,则实数a 的值为 .
10.执行如图2的程序框图,若输出7S =,则输入k ()
*
k ∈N 的值为 .
11.一个四棱锥的底面为菱形,其三视图如图3所示,则这个四棱锥的体积是 .
侧(左)视图
图1
分数
数学(理科)试题参考答案及评分标准 第 3 页 共 13 页
12.设α为锐角,若3cos 65απ⎛⎫+
= ⎪⎝⎭,则sin 12απ⎛
⎫-= ⎪⎝
⎭ .
13.在数列{}n a 中,已知11a =,11
1
n n a a +=-
+,记n S 为数列{}n a 的前n 项和,则2014S = .
(二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)
在极坐标系中,直线
()sin cos a ρθθ-=与曲线2cos 4sin
ρθθ=-相交于A ,B 两点,若AB
=a 的值为 .
15.(几何证明选讲选做题)
如图4,PC 是圆O 的切线,切点为C ,直线PA 与圆O 交于
A ,
B 两点,AP
C ∠的平分线分别交弦CA ,CB 于
D ,E
两点,已知3PC =,2PB =,则PE
PD
的值为 .
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)
已知函数()sin cos f x x a x =+的图象经过点π
03
⎛⎫- ⎪⎝⎭
,. (1)求实数a 的值;
(2)设[]2
()()2g x f x =-,求函数()g x 的最小正周期与单调递增区间. 17.(本小题满分12分)
P
图4
数学(理科)试题参考答案及评分标准 第 4 页 共 13 页
甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是
2
5
,甲,丙两人同时不能被聘用的概率是625,乙,丙两人同时能被聘用的概率是310
,且三人各自能否被聘用相互独立. (1)求乙,丙两人各自能被聘用的概率;
(2)设ξ表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列
与均值(数学期望).
18.(本小题满分14分)
如图5,在棱长为a 的正方体1111ABCD A B C D -中,点E 是棱1D D 的 中点,点F 在棱1B B 上,且满足12B F FB =. (1)求证:11EF AC ⊥;
(2)在棱1C C 上确定一点G , 使A ,E ,G ,F 四点共面,并求
此时1C G 的长;
(3)求平面AEF 与平面ABCD 所成二面角的余弦值. 19.(本小题满分14分)
已知等差数列{}n a 的首项为10,公差为2,等比数列{}n b 的首项为1,公比为2,*
n ∈N . (1)求数列{}n a 与{}n b 的通项公式;
(2)设第n 个正方形的边长为{}min ,n n n c a b =,求前n 个正方形的面积之和n S . (注:{}min ,a b 表示a 与b 的最小值.) 20.(本小题满分14分)
已知双曲线E :()222104x y a a -=>的中心为原点O ,左,右焦点分别为1F ,2F
,
点P 是直线2
3
a x =上任意一点,点Q 在双曲线E 上,且满足220PF QF =.
(1)求实数a 的值;
(2)证明:直线PQ 与直线OQ 的斜率之积是定值;
(3)若点P 的纵坐标为1,过点P 作动直线l 与双曲线右支交于不同两点M ,N ,在线段MN 上取
异于点M ,N 的点H ,满足
PM MH
PN HN
=
,证明点H 恒在一条定直线上. C
1C 1D A
B
D
E
F
1A
1B
图5
数学(理科)试题参考答案及评分标准 第 5 页 共 13 页
21.(本小题满分14分)
已知函数()()
221e x
f x x x =-+(其中e 为自然对数的底数).
(1)求函数()f x 的单调区间;。