2017年江苏省无锡市中考数学试卷

合集下载

2017年江苏省无锡市中考数学试卷

2017年江苏省无锡市中考数学试卷

2017年江苏省无锡市中考数学试卷.2017年江苏省无锡市中考数学试卷一、选择题(共10小题,每小题3分,计30分。

每小题只有一个选项是符合题意的)1.﹣5的倒数是()A. B.±5 C.5 D.﹣【答案】D 【解析】∵﹣5×(﹣)=1,∴﹣5的倒数是﹣。

故选D 。

2.函数y=中自变量x 的取值范围是( )A.x ≠2B.x ≥2C.x ≤2D.x >2 A 【答案】【解析】根据题意,得2-x ≠0,解得x ≠2。

故 选。

A ).下列运算正确的是(325232263=a ab . )(A.a=a B ()=ab C.a ÷a 523 =aaD.a?D 【答案】 236【解析】A ,(a )=a ,故此选项错误;B ,(ab )226233,故此选项=a ,a ÷a=abC ,故此选项错误;235错误;D ,a?a=a ,故此选项正确。

故选D 。

4.下列图形中,是中心对称图形的是( ) 第2页(共25页)BAC DC【答案】,不是中心对称图形,故此选项不符【解析】A,不是中心对称图形,故此选项不符B合题意;,是中心对称图形,故此选项符合题合题意;C,不是中心对称图形,故此选项不符合题意;D C。

意。

故选)等于(﹣.若5a-b=2,b-c=3,则a-c5 A.1 B.﹣1 D.﹣ C.5B【答案】 +)(﹣,【解析】∵a-b=2b-c=3,∴a-c=a-b 。

故选1B。

﹣)(b-c=2-3=名同学某次数学16.下表为初三()班全部43测验成绩的统计结果,则下列说法正确的是)(9080 70 成绩页(共3第25页)(分)男生 5 10 7(人) 4女生 13 4(人) A.男生的平均成绩大于女生的平均成绩 B.男生的平均成绩小于女生的平均成绩 C.男生成绩的中位数大于女生成绩的中位数男生成绩的中位数小于女生成绩的中位数D.A【答案】 10+90×5+80×∵男生的平均成绩是【解析】(7070(分),女生的平均成绩是(7×)÷22=80,∴男生的平(分)4+80××13+90×4)÷21=8022均成绩大于女生的平均成绩。

【精校】2017年江苏省无锡市中考真题数学

【精校】2017年江苏省无锡市中考真题数学

2017年江苏省无锡市中考真题数学一、选择题(本大题共10小题,每小题3分,共30分)1. -5的倒数是( )A.1 5B.±5C.5D.-1 5解析:根据倒数的定义,即可求出-5的倒数. 答案:D.2.函数y=2xx中自变量x的取值范围是( )A.x≠2B.x≥2C.x≤2D.x>2解析:根据分式有意义的条件,分母不等于0,可以求出x的范围. 答案:A.3.下列运算正确的是( )A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2·a3=a5解析:利用幂的运算性质直接计算后即可确定正确的选项.答案:D.4.下列图形中,是中心对称图形的是( )A.B.C.D.解析:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意.答案:C.5.若a-b=2,b-c=-3,则a-c等于( )A.1B.-1C.5D.-5解析:∵a-b=2,b-c=-3,∴a-c=(a-b)+(b-c)=2-3=-1.答案:B.6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是( )A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数解析:根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.答案:A.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( )A.20%B.25%C.50%D.62.5%解析:设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.答案:C.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是( )A.a=3,b=2B.a=-3,b=2C.a=3,b=-1D.a=-1,b=3解析:说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b 的值分别难度验证即可.答案:B.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于( )A.5B.6解析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得OA OFBD BH,延长即可解决问题.答案:C.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于( )A.2B.5 4C.5 3D.7 5解析:如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE在Rt△BCE中,利用勾股定理即可解决问题.答案:D.二、填空题(本大题共8小题,每小题2分,共16分)11._____.=(a≥0,b≥0)进行计算即可得出答案.答案:6.12.分解因式:3a2-6a+3=_____.解析:首先提取公因式3,进而利用完全平方公式分解因式得出答案.答案:3(a-1)2.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为_____.解析:将250000用科学记数法表示为:2.5×105.答案:2.5×105.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是_____℃.解析:求出每天的最高气温与最低气温的差,再比较大小即可. 答案:11.15.若反比例函数y=kx的图象经过点(-1,-2),则k 的值为_____. 解析:由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数. 答案:2.16.若圆锥的底面半径为3cm ,母线长是5cm ,则它的侧面展开图的面积为_____cm 2. 解析:圆锥的侧面积=底面周长×母线长÷2. 答案:15π.17.如图,已知矩形ABCD 中,AB=3,AD=2,分别以边AD ,BC 为直径在矩形ABCD 的内部作半圆O 1和半圆O 2,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且EF=2(EF 与AB在圆心O 1和O 2的同侧),则由»AE ,EF ,»FB ,AB 所围成图形(图中阴影部分)的面积等于_____.解析:连接O 1O 2,O 1E ,O 2F ,过E 作EG ⊥O 1O 2,过F ⊥O 1O 2,得到四边形EGHF 是矩形,根据矩形的性质得到GH=EF=2,求得O 1G=12,得到∠O 1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.答案:346π--.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于_____.解析:根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan ∠BOD 的值. 答案:3.三、解答题(本大题共10小题,共84分) 19.计算:(1)|-6|+(-2)3)0;(2)(a+b)(a-b)-a(a-b)解析:(1)根据零指数幂的意义以及绝对值的意义即可求出答案; (2)根据平方差公式以及单项式乘以多项式法则即可求出答案. 答案:(1)原式=6-8+1=-1;(2)原式=a 2-b 2-a 2+ab=ab-b 2.20.(1)解不等式组:()2311222x x x +⎧⎪⎨-≤+⎪⎩>①② (2)解方程:53212x x =-+. 解析:(1)分别解不等式,进而得出不等式组的解集; (2)直接利用分式的性质求出x 的值,进而得出答案. 答案:(1)解①得:x >-1, 解②得:x ≤6,故不等式组的解集为:-1<x ≤6; (2)由题意可得:5(x+2)=3(2x-1), 解得:x=13,检验:当x=13时,(x+2)≠0,2x-1≠0, 故x=13是原方程的解.21.已知,如图,平行四边形ABCD 中,E 是BC 边的中点,连DE 并延长交AB 的延长线于点F ,求证:AB=BF.解析:根据线段中点的定义可得CE=BE ,根据平行四边形的对边平行且相等可得AB ∥CD ,AB=CD ,再根据两直线平行,内错角相等可得∠DCB=∠FBE ,然后利用“角边角”证明△CED 和△BEF 全等,根据全等三角形对应边相等可得CD=BF ,从而得证. 答案:∵E 是BC 的中点, ∴CE=BE ,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∴∠DCB=∠FBE ,在△CED 和△BEF 中,DCB FBE CE BE CED BEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CED ≌△BEF(ASA), ∴CD=BF , ∴AB=BF.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)解析:利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解. 答案:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率=41123=.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a=_____,b=_____;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是_____(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.解析:(1)观察表格中的数据即可解决问题;(2)根据第4天的人数600,画出条形图即可;(3)根据题意一一判断即可;答案:(1)由题意a=3903+653=4556,b=5156-4556=600.(2)统计图如图所示:(3)①正确.3353-153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC 上.解析:(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB于E,交AC 于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI即为所求正六边形.答案:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为_____;若点M经过T变换后得到点N(6,-,则点M的坐标为_____.(2)A 是函数y=2x 图象上异于原点O 的任意一点,经过T 变换后得到点B. ①求经过点O ,点B 的直线的函数表达式;②如图2,直线AB 交y 轴于点D ,求△OAB 的面积与△OAD 的面积之比.解析:(1)连接CQ 可知△PCQ 为等边三角形,过Q 作QD ⊥PC ,利用等边三角形的性质可求得CD 和QD 的长,则可求得Q 点坐标;设出M 点的坐标,利用P 、Q 坐标之间的关系可得到点M 的方程,可求得M 点的坐标;(2)①可取A(2,利用T 变换可求得B 点坐标,利用待定系数示可求得直线OB 的函数表达式;②由待定系数示可求得直线AB 的解析式,可求得D 点坐标,则可求得AB 、AD 的长,可求得△OAB 的面积与△OAD 的面积之比.答案:(1)如图1,连接CQ ,过Q 作QD ⊥PC 于点D ,由旋转的性质可得PC=PQ ,且∠CPQ=60°, ∴△PCQ 为等边三角形, ∵P(a ,b), ∴OC=a ,PC=b , ∴CD=12PC=12b ,DQ=2PQ=2b ,∴Q(a+2b ,12b); 设M(x ,y),则N 点坐标为(x+2y ,12y), ∵N(6,),∴612x y y ⎧=⎪⎪⎨⎪=⎪⎩,解得9x y =⎧⎪⎨=-⎪⎩∴M(9,;(2)①∵A 是函数y=2x 图象上异于原点O 的任意一点, ∴可取A(2,∴722=,122=, ∴B(72,2), 设直线OB 的函数表达式为y=kx ,则72k=2,解得k=7, ∴直线OB 的函数表达式为; ②设直线AB 解析式为y=k ′x+b ,把A 、B坐标代入可得272k b k b ⎧'+=⎪⎨'+=⎪⎩,解得k b ⎧'=⎪⎪⎨⎪=⎪⎩, ∴直线AB 解析式为y=-3x+3, ∴D(0,3),且A(2),B(72,2), ∴=,=∴34OAB OAD S AB S AD ===V V .26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:已知商家售出的2台A 型、3台B 型污水处理器的总价为44万元,售出的1台A 型、4台B 型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?解析:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.答案:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有2344442x yx y+=⎧⎨+=⎩,解得108xy=⎧⎨=⎩.答:设每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买6台A型污水处理器、3台B型污水处理器,费用最少,10×6+8×3=60+24=84(万元).答:他们至少要支付84万元钱.27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.解析:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3-m.首先证明△ACP∽△ECH,推出12AC PC APCE CH HE===,推出CH=2n,EH=2m=6,再证明△DPB∽△DHE,推出144PB DP nEH DH n===,可得31264mm-=+,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x-5),求出E点坐标代入即可解决问题.答案:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3-m.∵EH∥AP,∴△ACP∽△ECH,∴12 AC PC APCE CH HE===,∴CH=2n,EH=2m=6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴144 PB DP nEH DH n===,∴31 264mm-=+,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OP,在Rt△OCP中,=∴,∴E(9,),∵抛物线的对称轴为CD,∴(-3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x-5),把E(9,)代入得到a=8,∴抛物线的解析式为(x+3)(x-5),即2x x--.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E 到直线BC的距离等于3,求所有这样的m的取值范围.解析:(1)如图1中,设PD=x.则PA=6-x.首先证明BP=BC=6,在Rt△ABP中利用勾股定理即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3.答案:(1)如图1中,设PD=x.则PA=6-x.∵P、B、E共线,∴∠BPC=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∴∠BPC=∠PCB,∴BP=BC=6,在Rt△ABP中,∵AB2+AP2=PB2,∴42+(6-x)2=62,∴或舍弃),∴,∴)s时,B、E、P共线.(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4易证四边形EMCQ 是矩形,∴CM=EQ=3,∠M=90°,∴==,∵∠DAC=∠EDM ,∠ADC=∠M ,∴△ADC ∽△DME ,AD DC DM EM=, ∴7AD =,∴,如图3中,当点P 与A 重合时,点E 在BC 的上方,点E 到BC 的距离为3.作EQ ⊥BC 于Q ,延长QE 交AD 于M.则EQ=3,CE=DC=4在Rt △ECQ 中,,由△DME ∽△CDA , ∴DM EM CD AD=,1AD=,∴AD=7, 综上所述,在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线≤m<.BC的距离等于3,这样的m的取值范围7考试考高分的小窍门1、提高课堂注意力2、记好课堂笔记3、做家庭作业4、消除焦虑、精中精力、5、不忙答题,先摸卷情、不要畏惧考试。

江苏省无锡市2017年中考数学试题(解析版)

江苏省无锡市2017年中考数学试题(解析版)

2017年江苏省无锡市中考数学试卷一、选择题(共10小题)1.(2017无锡)﹣2的相反数是()A. 2 B.﹣2 C.D.考点:相反数。

专题:探究型。

分析:根据相反数的定义进行解答即可.解答:解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选A.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(2017无锡)sin45°的值等于()A.B.C.D. 1考点:特殊角的三角函数值。

分析:根据特殊角度的三角函数值解答即可.解答:解:sin45°=.故选B.点评:此题比较简单,只要熟记特殊角度的三角函数值即可.3.(2017无锡)分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2)B.x2C.(x+1)2D.(x﹣2)2考点:因式分解-运用公式法。

分析:首先把x﹣1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解即可.解答:解:(x﹣1)2﹣2(x﹣1)+1=(x﹣1﹣1)2=(x﹣2)2.故选:D.点评:此题主要考查了因式分解﹣运用公式法,关键是熟练掌握完全平方公式:a2±2ab+b2=(a±b)2.4.(2017无锡)若双曲线y=与直线y=2x+1的一个交点的横坐标为﹣1,则k的值为()A.﹣1 B. 1 C.﹣2 D. 2考点:反比例函数与一次函数的交点问题。

专题:计算题。

分析:将x=1代入直线y=2x+1,求出该点纵坐标,从而得到此交点的坐标,将该交点坐标代入y=即可求出k的值.解答:解:将x=﹣1代入直线y=2x+1得,y=﹣2+1=﹣1,则交点坐标为(﹣1,﹣1),将(﹣1,﹣1)代入y=得,k=﹣1×(﹣1)=1,故选B.点评:本题考查了反比例函数与一次函数的交点问题,知道交点坐标符合两函数解析式是解题的关键.5.(2017无锡)下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况考点:全面调查与抽样调查。

江苏省无锡市2017年中考数学真题试题(含解析1) (1)

江苏省无锡市2017年中考数学真题试题(含解析1) (1)

2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是()A.B.±5 C.5 D.﹣2.函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>23.下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a54.下列图形中,是中心对称图形的是()A.B.C. D.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣56.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.310.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.二、填空题(本大题共8小题,每小题2分,共16分)11.计算×的值是.12.分解因式:3a2﹣6a+3= .13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF 与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(1)解不等式组:(2)解方程: =.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人) 153 550 653 b 725累计总人数(人) 3353 3903 a 5156 5881(1)表格中a= ,b= ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T 变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T变换后得到点N(6,﹣),则点M的坐标为.(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号 A型 B型处理污水能力(吨/月) 240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B 型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.2017年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是()A.B.±5 C.5 D.﹣【考点】17:倒数.【分析】根据倒数的定义,即可求出﹣5的倒数.【解答】解:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.2.函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>2【考点】E4:函数自变量的取值范围.【分析】根据分式的意义的条件,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选A.3.下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】利用幂的运算性质直接计算后即可确定正确的选项.【解答】解:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.4.下列图形中,是中心对称图形的是()A.B.C. D.【考点】R5:中心对称图形.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【考点】44:整式的加减.【分析】根据题中等式确定出所求即可.【解答】解:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【考点】W4:中位数;W1:算术平均数.【分析】根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.【解答】解:∵男生的平均成绩是:(70×5+80×10+90×7)÷22=1780÷22=80,女生的平均成绩是:(70×4+80×13+90×4)÷21=1680÷21=80,∴男生的平均成绩大于女生的平均成绩.∵男生一共22人,位于中间的两个数都是80,所以中位数是(80+80)÷2=80,女生一共21人,位于最中间的一个数是80,所以中位数是80,∴男生成绩的中位数等于女生成绩的中位数.故选A.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【考点】AD:一元二次方程的应用.【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选:C.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【考点】O1:命题与定理.【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别难度验证即可.【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b 的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.3【考点】MC:切线的性质;L8:菱形的性质.【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,延长即可解决问题.【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2.故选C.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.【考点】PB:翻折变换(折叠问题);KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE在Rt△BCE中,利用勾股定理即可解决问题.【解答】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故选D.二、填空题(本大题共8小题,每小题2分,共16分)11.计算×的值是 6 .【考点】75:二次根式的乘除法.【分析】根据•=(a≥0,b≥0)进行计算即可得出答案.【解答】解:×===6;故答案为:6.12.分解因式:3a2﹣6a+3= 3(a﹣1)2.【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.13.贵州FA ST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为 2.5×105.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将250000用科学记数法表示为:2.5×105.故答案为:2.5×105.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是11 ℃.【考点】18:有理数大小比较;1A:有理数的减法.【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【解答】解:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.故答案为:11.15.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为 2 .【考点】G7:待定系数法求反比例函数解析式.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为15πcm2.【考点】MP:圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF 与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于3﹣﹣.【考点】MO:扇形面积的计算;LB:矩形的性质.【分析】连接O1O2,O1E,O2F,过E作EG⊥O1O2,过F⊥O1O2,得到四边形EGHF是矩形,根据矩形的性质得到GH=EF=2,求得O1G=,得到∠O1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.【解答】解:连接O1O2,O1E,O2F,则四边形O1O2FE是等腰梯形,过E作EG⊥O1O2,过F⊥O1O2,∴四边形EGHF是矩形,∴GH=EF=2,∴O1G=,∵O1E=1,∴GE=,∴=;∴∠O1EG=30°,∴∠AO1E=30°,同理∠BO2F=30°,∴阴影部分的面积=S﹣2S﹣S=3×1﹣2×﹣(2+3)×=3﹣﹣.故答案为:3﹣﹣.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于 3 .【考点】T7:解直角三角形.【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan ∠BOD的值.,本题得以解决【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)【考点】4F:平方差公式;2C:实数的运算;4A:单项式乘多项式;6E:零指数幂.【分析】(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.【解答】解:(1)原式=6﹣8+1=﹣1(2)原式=a2﹣b2﹣a2+ab=ab﹣b220.(1)解不等式组:(2)解方程: =.【考点】B3:解分式方程;CB:解一元一次不等式组.【分析】(1)分别解不等式,进而得出不等式组的解集;(2)直接利用分式的性质求出x的值,进而得出答案.【解答】解:(1)解①得:x>﹣1,解②得:x≤6,故不等式组的解集为:﹣1<x≤6;(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED 和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.【解答】证明:∵E是BC的中点,∴CE=BE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠DCB=∠FBE,在△CED和△BEF中,,∴△CED≌△BEF(ASA),∴CD=BF,∴AB=BF.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【考点】X6:列表法与树状图法.【分析】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.【解答】解:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率==.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人) 153 550 653 b 725累计总人数(人) 3353 3903 a 5156 5881(1)表格中a= 4556 ,b= 600 ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是①(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【考点】VC:条形统计图.【分析】(1)观察表格中的数据即可解决问题;(2)根据第4天的人数600,画出条形图即可;(3)根据题意一一判断即可;【解答】解:(1)由题意a=3903+653=4556,b=5156﹣4556=600.故答案为4556,600.(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.故答案为①24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【考点】N3:作图—复杂作图;KK:等边三角形的性质;MA:三角形的外接圆与外心.【分析】(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB于E,交AC于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI即为所求正六边形.【解答】解:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T 变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为(a+b, b);若点M经过T 变换后得到点N(6,﹣),则点M的坐标为(9,﹣2).(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【考点】FI:一次函数综合题.【分析】(1)连接CQ可知△PCQ为等边三角形,过Q作QD⊥PC,利用等边三角形的性质可求得CD和QD的长,则可求得Q点坐标;设出M点的坐标,利用P、Q坐标之间的关系可得到点M的方程,可求得M点的坐标;(2)①可取A(2,),利用T变换可求得B点坐标,利用待定系数示可求得直线OB的函数表达式;②由待定系数示可求得直线AB的解析式,可求得D点坐标,则可求得AB、AD的长,可求得△OAB的面积与△OAD的面积之比.【解答】解:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=PC=b,DQ=PQ=b,∴Q(a+b, b);设M(x,y),则N点坐标为(x+y, y),∵N(6,﹣),∴,解得,∴M(9,﹣2);故答案为:(a+b, b);(9,﹣2);(2)①∵A是函数y=x图象上异于原点O的任意一点,∴可取A(2,),∴2+×=,×=,∴B(,),设直线OB的函数表达式为y=kx,则k=,解得k=,∴直线OB的函数表达式为y=x;②设直线AB解析式为y=k′x+b,把A、B坐标代入可得,解得,∴直线AB解析式为y=﹣x+,∴D(0,),且A(2,),B(,),∴AB==,AD==,∴===.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号 A型 B型处理污水能力(吨/月) 240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B 型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y 万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.【解答】解:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有,解得.答:设每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买6台A型污水处理器、3台B型污水处理器,费用最少,10×6+8×3=60+24=84(万元).答:他们至少要支付84万元钱.27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.【考点】MR:圆的综合题.【分析】(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出===,推出CH=2n,EH=2m=6,再证明△DPB∽△DHE,推出===,可得=,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题;【解答】解:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.∵EH∥AP,∴△ACP∽△ECH,∴===,∴CH=2n,EH=2m=6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴===,∴=,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OP,在Rt△OCP中,PC==2,∴CH=2PC=4,PH=6,∴E(9,6),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6)代入得到a=,∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E 到直线BC的距离等于3,求所有这样的m的取值范围.【考点】LO:四边形综合题.【分析】(1)只要证明△ABD∽△DPC,可得=,由此求出PD即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC 的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E 到BC的距离为3;【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴∠ADC=∠A=90°,∴∠DCP+∠CPD=90°,∵∠CPD+∠ADB=90°,∴∠ADB=∠PCD,∵∠A=∠CDP=90°,∴△ABD∽△DPC,∴=,∴=,∴PD=,∴t=s时,B、E、D共线.(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4易证四边形EMCQ是矩形,∴CM=EQ=3,∠M=90°,∴EM===,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,=,∴=,∴AD=4,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3.作EQ⊥BC于Q,延长QE交AD于M.则EQ=3,CE=DC=4在Rt△ECQ中,QC=DM==,由△DME∽△CDA,∴=,∴=,∴AD=,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,这样的m的取值范围≤m<4.。

江苏省无锡市中考数学试卷(word版,无答案)

江苏省无锡市中考数学试卷(word版,无答案)

江苏省无锡市2017年中考数学试卷(word 精校版)第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.5-的倒数是( ) A .15 B .5± C .5 D .15- 2.函数2x y x=-中自变量x 的取值范围是( )A .2x ≠B .2x ≥C .2x ≤D .2x > 3.下列运算正确的是( ) A .()437aa = B .()22ab ab = C .824a a a ÷= D .246a a a ⋅=4.下列图形中,是中心对称图形的是( )A .B . C. D . 5.若2a b -=,3b c -=-,则a c -等于( ) A .1 B .1- C.5 D .5-6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是 A .男生的平均成绩大于女生的平均成绩 B .男生的平均成绩小于女生的平均成绩 C.男生成绩的中位数大于女生成绩的中位数 D .男生成绩的中位数小于女生成绩的中位数7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( )A .20%B .25% C.50% D .62.5%8.对于命题“若22a b >,则a b >.”下面四组关于a 、b 的值中,能说明这个命题是假命题的是( ) A .3a =,2b = B .3a =-,2b = C.3a =,1b =- D .1a =-,3b = 9.如图,菱形CD AB 的边20AB =,面积为320,D 90∠BA <o,O e 与边AB 、D A 都相切,10AO =,则O e 的半径长等于( )A .5B .6 C.25 D .3210.如图,C ∆AB 中,C 90∠BA =o,3AB =,C 4A =,点D 是C B 的中点,将D ∆AB 沿D A 翻折得到D ∆AE ,连C E ,则线段C E 的长等于( ) A .2 B .54 C.53 D .75第Ⅱ卷(共100分)二、填空题(每题2分,满分16分,将答案填在答题纸上)11.123的值是 . 12.分解因式:2363a a -+= .13.贵州F S A T 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约2500002m ,这个数据用科学记数法可表示为 .14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是Co.15.已知反比例函数kyx=的图像经过点()1,2--,则k的值为.16.已知圆锥的底面半径为3cm,母线长为5cm,则它的侧面展开图的面积等于2cm.17.如图,已知矩形CDAB中,3AB=,D2A=,分别以边DA、CB为直径在矩形CDAB的内部作半圆1O和半圆2O,一平行于AB的直线FE与这两个半圆分别交于点E、点F,且F2E=(FE与AB在圆1O和2O的同侧),则由»AE、FE、»F B、AB所围成图形(图中阴影部分)的面积等于.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都在格点处,AB与CD相交于O,则tan D∠BO的值等于.三、解答题(本大题共10小题,共84分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分8分)计算:(1)()()03627-+-+;(2)()()()a b a b a a b+---.20. (本题满分8分)(1)解不等式组:()2311222xx x+>⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎧⎪⎨-≤+⋅⋅⋅⋅⎪⎩①②;(2)解方程:53212x x=-+.21. (本题满分8分)已知,如图,平行四边形CDAB中,E是CB边的中点,连D E并延长交AB的延长线于点F,求证:FAB=B.22. (本题满分8分)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档.现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23. (本题满分8分)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动.在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a =,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.(本题满分6分)如图,已知等边C∆AB,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作C∆AB的外心O;(2)设D是AB边上一点,在图中作出一个正六边形D FGE HI,使点F,点H分别在边CB和CA 上.25.(本题满分10分)操作:“如图1,P 是平面直角坐标系中一点(x 轴上的点除外),过点P 作C x P ⊥轴于点C ,点C 绕点P 逆时针旋转60o得到点Q .”我们将此由点P 得到点Q 的操作称为点的T 变换. (1)点(),a b P 经过T 变换后得到的点Q 的坐标为 ;若点M 经过T 变换后得到点()6,3N -,则点M 的坐标为 .(2)A 是函数3y x =图像上异于原点O 的任意一点,经过T 变换后得到点B . ①求经过点O 、点B 的直线的函数表达式;②如图2,直线AB 交y 轴于点D ,求∆OAB 的面积与D ∆OA 的面积之比.26.(本题满分10分)某地新建的一个企业,每月将产生1960吨污水.为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A 型、3台B 型污水处理器的总价为44万元;售出的1台A 型、4台B 型污水处理器的总价为42万元.(1)求每台A 型、B 型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.(本题满分10分)如图,以原点O 为圆心、3为半径的圆与x 轴分别交于A 、B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与O e 分别交于C 、D 两点(点C 在点D 的上方),直线C A 、D B 交于点E .若C:C 1:2A E =,(1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.28.(本题满分8分)如图,已知矩形CD AB 中,4AB =,D m A =.动点P 从点D 出发,在边D A 上以每秒1个单位的速度向点A 运动,连接C P ,作点D 关于直线C P 的对称点E .设点P 的运动时间为()s t . (1)若6m =,求当P 、E 、B 三点在同一直线上时对应的t 的值.(2)已知m 满足:在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线C B 的距离等于3,求所有这样的m 的取值范围.(无锡润禾教育提供试卷)润禾教育2016高考成绩榜(部分名单)陈璨 北京大学 王卓颖 中国地质大学 魏逸丹 南京理工大学 钱婧 北京大学 俞濒城 中国地质大学 朱逸凡 南京理工大学 金洋 清华大学 陈昊洋 中国海洋大学 杨曜岭 北京化工大学 王奕韬 清华大学 訾亦轩 中国药科大学 沈菡 东北财经大学 施滢璐 浙江大学 王卓筠 中国政法大学 周舜韬 对外经济贸易大学 陶甄 浙江大学 周文卉 中国政法大学 蔡湲 南京师范大学 关欣欣 复旦大学 邓娴仪 中央财经大学 华宇雯 南京师范大学 吕瑶瑶复旦大学 丁雪卿 中央财经大学 姜炜 南京师范大学 秦晟昊 复旦大学 林欣忆 中央财经大学 吕寅政 南京师范大学 邓智暄 南京大学 蔡尧 北京交通大学 权辰妍 南京师范大学 蒋佳锐 南京大学 杨浩 北京交通大学 尤宗涛 南京师范大学 尤一凡 南京大学 张无极 华东理工大学 周炘 南京师范大学 李雨桐 上海交通大学 华臻浩 华中科技大学 朱韵奇 南京师范大学 刘韵一 上海交通大学 张悦 华中科技大学 惠沁怡 南京中医药大学 邹雨瑶 上海交通大学 沈杰 西安交通大学 张俊怡 南京中医药大学 朱洁仪 上海外国语大学 范一 西南财经大学 方西子 西安电子科技大学 徐笑远 北京外国语大学 邱武强 大连理工大学 王榆杰 西安电子科技大学顾佳晟 北京航空航天大学 尤伟康 大连理工大学 程馨仪 苏州大学 冯嘉颖 北京航空航天大学郑光聪 东北大学 顾珏如 苏州大学 吴梓铃 湖南大学 林家驹 上海海洋大学 顾铭淳 苏州大学 张梦婷 湖南大学 周寅 上海纽约大学 蒋雨菡 苏州大学 林辰 吉林大学 纪宇婕 上海师范大学 李佳航 苏州大学 曹旭璋 厦门大学 王家辉 上海政法大学 刘清源 苏州大学 万昕 山东大学 江柯 哈尔滨工程大学 鲁嘉楠 苏州大学 唐烨四川大学顾茜婷哈尔滨工程大学陆恺苏州大学毛绮妤武汉大学王恒哈尔滨工程大学张铭蕙苏州大学吴瀚文武汉大学袁成哈尔滨工程大学朱梦柯苏州大学周滢武汉大学钱加骏南京航空航天大学顾宇文河海大学杜雅馨东南大学吴泓耘南京航空航天大学顾志远河海大学钱昀东南大学吴嘉昊南京航空航天大学潘佳佳河海大学任彦桥东南大学徐容南京航空航天大学孙梓雯河海大学荣悦东南大学杨正昊南京航空航天大学周辛瑜华中农业大学张权东南大学徐容南京航天航空大学林钰芸江南大学赵威威东南大学郭柯晴西交利物浦钱靖江南大学王维恺中南大学吴知行西交利物浦徐纯熙江南大学范佳怡东华大学周玥西交利物浦盛一珺宁波诺丁汉大学朱奕霖东华大学侯怡琳西交利物浦大学荣尤琦宁波诺丁汉大学周锦宇兰州大学平雪烨西交利物浦大学徐致钦南昌大学马跃成西北工业大学魏逸丹南京理工大学沈雨灏西北大学谭舒菲西北工业大学毛陆霄南京理工大学曹子浩长安大学润禾教育介绍:无锡润禾新课程教育培训中心是一家结合优质教育资源和先进信息技术,专注与研究国家新课程标准、家庭教育及学生课外学习辅导的教育机构,以“倡导优质教育,真诚服务社会”为宗旨,充分发挥教师资源优势,为锡城中小学生提供最优质的课外学习辅导。

江苏省无锡市中考数学试卷

江苏省无锡市中考数学试卷

2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣5的倒数是()A.B.±5 C.5 D.﹣2.(3分)函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>23.(3分)下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a54.(3分)下列图形中,是中心对称图形的是()A.B.C.D.5.(3分)若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣56.(3分)如表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.(3分)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.(3分)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.(3分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2D.310.(3分)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)计算×的值是.12.(2分)分解因式:3a2﹣6a+3= .13.(2分)贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.(2分)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.(2分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.16.(2分)若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.(2分)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于.18.(2分)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D 都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.(8分)计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(8分)(1)解不等式组:(2)解方程:=.21.(8分)已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.22.(8分)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.(8分)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a= ,b= ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.(6分)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC 和AC上.25.(10分)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T变换后得到点N(6,﹣),则点M的坐标为.(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.(10分)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.(10分)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.(8分)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.2017年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•无锡)﹣5的倒数是()A.B.±5 C.5 D.﹣【分析】根据倒数的定义,即可求出﹣5的倒数.【解答】解:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017•无锡)函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>2【分析】根据分式有意义的条件,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选A.【点评】本题考查了求函数自变量取值范围,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(2017•无锡)下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【分析】利用幂的运算性质直接计算后即可确定正确的选项.【解答】解:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.【点评】本题考查了幂的运算性质,解题的关键是了解这些性质并能正确的计算,难度不大.4.(3分)(2017•无锡)下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.【点评】本题考查了对中心对称图形的定义,能熟知中心对称图形的定义是解此题的关键.5.(3分)(2017•无锡)若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【分析】根据题中等式确定出所求即可.【解答】解:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.(3分)(2017•无锡)如表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【分析】根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.【解答】解:∵男生的平均成绩是:(70×5+80×10+90×7)÷22=1780÷22=80,女生的平均成绩是:(70×4+80×13+90×4)÷21=1680÷21=80,∴男生的平均成绩大于女生的平均成绩.∵男生一共22人,位于中间的两个数都是80,所以中位数是(80+80)÷2=80,女生一共21人,位于最中间的一个数是80,所以中位数是80,∴男生成绩的中位数等于女生成绩的中位数.故选A.【点评】本题为统计题,考查平均数与中位数的意义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.7.(3分)(2017•无锡)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.【点评】本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份销售额的代数式.8.(3分)(2017•无锡)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.【点评】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.9.(3分)(2017•无锡)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O 与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2D.3【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,即可解决问题.【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接OF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2.故选C.【点评】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.10.(3分)(2017•无锡)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE 是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【解答】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故选D.【点评】本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)(2017•无锡)计算×的值是 6 .【分析】根据•=(a≥0,b≥0)进行计算即可得出答案.【解答】解:×===6;故答案为:6.【点评】此题考查了二次根式的乘除,掌握二次根式乘除的法则是解题的关键,是一道基础题.12.(2分)(2017•无锡)分解因式:3a2﹣6a+3= 3(a﹣1)2.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.13.(2分)(2017•无锡)贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为 2.5×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将250000用科学记数法表示为:2.5×105.故答案为:2.5×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2分)(2017•无锡)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是11 ℃.【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【解答】解:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.故答案为:11.【点评】本题考查的是有理数的大小比较,熟知有理数比较大小的法则是解答此题的关键.15.(2分)(2017•无锡)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为 2 .【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.【点评】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.16.(2分)(2017•无锡)若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为15πcm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.17.(2分)(2017•无锡)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于3﹣﹣.【分析】连接O1O2,O1E,O2F,过E作EG⊥O1O2,过F⊥O1O2,得到四边形EGHF是矩形,根据矩形的性质得到GH=EF=2,求得O1G=,得到∠O1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.【解答】解:连接O1O2,O1E,O2F,则四边形O1O2FE是等腰梯形,过E作EG⊥O1O2,过FH⊥O1O2,∴四边形EGHF是矩形,∴GH=EF=2,G=,∴O1E=1,∵O1∴GE=,∴=;EG=30°,∴∠O1E=30°,∴∠AO1F=30°,同理∠BO2∴阴影部分的面积=S﹣2S﹣S=3×1﹣2×﹣(2+3)×=3﹣﹣.故答案为:3﹣﹣.【点评】本题考查了扇形面积的计算,矩形的性质,梯形的性质,正确的作出辅助线是解题的关键.18.(2分)(2017•无锡)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于 3 .【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan∠BOD的值,本题得以解决.【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.【点评】本题考查解直角三角形,解答本题的关键是明确题意,作出合适的辅助线,利用勾股定理和等积法解答.三、解答题(本大题共10小题,共84分)19.(8分)(2017•无锡)计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)【分析】(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.【解答】解:(1)原式=6﹣8+1=﹣1(2)原式=a2﹣b2﹣a2+ab=ab﹣b2【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(8分)(2017•无锡)(1)解不等式组:(2)解方程:=.【分析】(1)分别解不等式,进而得出不等式组的解集;(2)直接利用分式方程的解法去分母,进而求出x的值,再检验得出答案.【解答】解:(1)解①得:x>﹣1,解②得:x≤6,故不等式组的解集为:﹣1<x≤6;(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.【点评】此题主要考查了解分式方程以及解不等式组,正确掌握基本解题方法是解题关键.21.(8分)(2017•无锡)已知,如图,平行四边形ABCD中,E是BC边的中点,连DE 并延长交AB的延长线于点F,求证:AB=BF.【分析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.【解答】证明:∵E是BC的中点,∴CE=BE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠DCB=∠FBE,在△CED和△BEF中,,∴△CED≌△BEF(ASA),∴CD=BF,∴AB=BF.【点评】本题考查了全等三角形的判定与性质,平行四边形的性质,熟记性质并确定出三角形全等的条件是解题的关键.22.(8分)(2017•无锡)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【分析】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.【解答】解:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率==.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.(8分)(2017•无锡)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a= 4556 ,b= 600 ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是①(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【分析】(1)观察表格中的数据即可解决问题;(2)根据第4天的人数600,画出条形图即可;(3)根据题意一一判断即可;【解答】解:(1)由题意a=3903+653=4556,b=5156﹣4556=600.故答案为4556,600.(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.故答案为①【点评】本题考查条形统计图,解题的关键是能读懂表格以及条形图的信息,属于中考常考题型.24.(6分)(2017•无锡)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC 和AC上.【分析】(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)取BF=CH=AD构成等边三角形,作新等边三角形边的垂直平分,确定外心,再作圆确定另外三点,六边形DEFGHI即为所求正六边形.【解答】解:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.【点评】本题考查了作图﹣复杂作图.解决此类题目的关键是熟悉基本几何图形的性质.25.(10分)(2017•无锡)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P 得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为(a+b,b);若点M经过T变换后得到点N(6,﹣),则点M(9,﹣2).(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【分析】(1)连接CQ可知△PCQ为等边三角形,过Q作QD⊥PC,利用等边三角形的性质可求得CD和QD的长,则可求得Q点坐标;设出M点的坐标,利用P、Q坐标之间的关系可得到点M的方程,可求得M点的坐标;(2)①可设A(t,t),利用T变换可求得B点坐标,利用待定系数示可求得直线OB 的函数表达式;②方法1、由待定系数示可求得直线AB的解析式,可求得D点坐标,则可求得AB、AD 的长,可求得△OAB的面积与△OAD的面积之比.方法2、先确定出△BOD比△OAD(B与A横坐标绝对值的比更简单)得出面积关系,即可得出结论.【解答】解:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=PC=b,DQ=PQ=b,∴Q(a+b,b);设M(x,y),则N点坐标为(x+y,y),∵N(6,﹣),∴,解得,∴M(9,﹣2);故答案为:(a+b,b);(9,﹣2);(2)①∵A是函数y=x图象上异于原点O的任意一点,∴可设A(t,t),∴t+×t=t,×t=t,∴B(t,t),设直线OB的函数表达式为y=kx,则tk=t,解得k=,∴直线OB的函数表达式为y=x;②方法1、设直线AB解析式为y=k′x+b,把A、B坐标代入可得,解得,∴直线AB解析式为y=﹣x+t,∴D(0,t),且A(t,t),B(t,t),∴AB==|t|,AD==|t|,∴===.方法2、由(1)知,A(t,t),B(t,t),∴==,∵△AOB、△AOD和△BOD的边AB、AD和BD上的高相同,∴=.【点评】本题为一次函数的综合应用,涉及等边三角形的判定和性质、待定系数法、三角形的面积及方程思想等知识,理解题目中的T变换是解题的关键.本题考查知识点较多,综合性较强,难度适中.26.(10分)(2017•无锡)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【分析】(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y 万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.【解答】解:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有,解得.答:每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买9台A型污水处理器,费用为10×9=90(万元);购买8台A型污水处理器、1台B型污水处理器,费用为10×8+8=80+8=88(万元);购买7台A型污水处理器、2台B型污水处理器,费用为10×7+8×2=70+16=86(万元);购买6台A型污水处理器、3台B型污水处理器,费用为10×6+8×3=60+24=84(万元);购买5台A型污水处理器、5台B型污水处理器,费用为10×5+8×5=50+40=90(万元);购买4台A型污水处理器、6台B型污水处理器,费用为10×4+8×6=40+48=88(万元);购买3台A型污水处理器、7台B型污水处理器,费用为10×3+8×7=30+56=86(万元);购买2台A型污水处理器、9台B型污水处理器,费用为10×2+8×9=20+72=92(万元);购买1台A型污水处理器、10台B型污水处理器,费用为10×1+8×10=10+90=90(万元);.购买11台B型污水处理器,费用为8×11=88(万元).故购买6台A型污水处理器、3台B型污水处理器,费用最少.答:他们至少要支付84万元钱.【点评】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.27.(10分)(2017•无锡)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B 两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.【分析】(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设C(m,n),则P(m,0),PA=m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出===,推出CH=2n,EH=2m+6,再证明△DPB∽△DHE,推出===,可得=,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题;【解答】解:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设C(m,n),则P(m,0),PA=m+3,PB=3﹣m.∵EH∥AP,∴△ACP∽△ECH,∴===,∴CH=2n,EH=2m+6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴===,∴=,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OC,在Rt△OCP中,PC==2,∴CH=2PC=4,PH=6,∴E(9,6),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6)代入得到a=,∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣.【点评】本题考查圆综合题、平行线的性质、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,构造相似三角形解决问题,学会用方程的思想思考问题,属于中考压轴题.28.(8分)(2017•无锡)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【分析】(1)如图1中,设PD=t.则PA=6﹣t.首先证明BP=BC=6,在Rt△ABP中利用勾股定理即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3;【解答】解:(1)如图1中,设PD=t.则PA=6﹣t.。

2017年江苏省无锡市中考数学试卷-答案

2017年江苏省无锡市中考数学试卷-答案

江苏省无锡市2017中考试卷数学答案解析,设O与AB⊥,∴AE BD=∠=DHB88536022463232222BD O F a a aO D a''=='',L OL OL ,3【解析】解:根据题意画图如下:【提示】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解. 【考点】等可能事件的概率. 23.【答案】(1)4556,600 (2)答案见解析 (3)①【解析】解:(1)由题意3903653455651564556600a b =+==-=,. (2)统计图如图所示,(3)①正确.33531533200-=故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数1535506536007252681=++++=,故错误. 【提示】(1)观察表格中的数据即可解决问题. (2)根据第4天的人数600,画出条形图即可. (3)根据题意一一判断即可. 【考点】统计表,条形统计图. 24.【答案】(1)答案见解析 (2)答案见解析【解析】解:(1)如图所示:点O 即为所求.(2)如图所示:六边形DEFGHI 即为所求正六边形.3的面积与OAD △的面积之比.方法2.先确定出OAB △比OAD △(B 与A 横坐标绝对值的比更简单)得出面积关系,即可得出结论.【考点】旋转的性质.26.【答案】(1)答案见解析(2)84万元【解析】解:(1)可设每台A 型污水处理器的价格是x 万元,每台B 型污水处理器的价格是y 万元,依题意有2344442x y x y +=⎧⎨+=⎩,解得108x y =⎧⎨=⎩. 所以每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;(2)购买9台A 型污水处理器,费用为1099()0⨯=万元;购买8台A 型污水处理器,1台B 型污水处理器,费用为1088=88()⨯+万元购买7台A 型污水处理器,2台B 型污水处理器,费用为10782=86()⨯+⨯万元购买6台A 型污水处理器,3台B 型污水处理器,费用为10683=84()⨯+⨯万元购买5台A 型污水处理器,5台B 型污水处理器,费用为10585=90()⨯+⨯万元购买4台A 型污水处理器,6台B 型污水处理器,费用为10486=88()⨯+⨯万元购买3台A 型污水处理器,7台B 型污水处理器,费用为10387=86()⨯+⨯万元购买2台A 型污水处理器,9台B 型污水处理器,费用为10289=92()⨯+⨯万元购买1台A 型污水处理器,10台B 型污水处理器,费用为101810=90()⨯+⨯万元购买11台B 型污水处理器,费用为∴()1,0P .2作于,延长交AD于M.则DM EM。

2017年江苏省无锡市中考数学试卷-答案

2017年江苏省无锡市中考数学试卷-答案

江苏省无锡市2017中考试卷数学答案解析90,90∠,ABEOA90,∴△,∴885a b ab=【考点】二次根式的乘法.∠,同理30,30,∴30230π11-(2360224630,根据三角形,梯形,扇形的面积公式即可得90,∵∠L OL OL,390,【解析】解:根据题意画图如下:【提示】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解. 【考点】等可能事件的概率. 23.【答案】(1)4556,600 (2)答案见解析 (3)①【解析】解:(1)由题意3903653455651564556600a b =+==-=,. (2)统计图如图所示,(3)①正确.33531533200-=故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数1535506536007252681=++++=,故错误. 【提示】(1)观察表格中的数据即可解决问题. (2)根据第4天的人数600,画出条形图即可. (3)根据题意一一判断即可. 【考点】统计表,条形统计图. 24.【答案】(1)答案见解析 (2)答案见解析【解析】解:(1)如图所示:点O 即为所求.(2)如图所示:六边形DEFGHI 即为所求正六边形.60,∴△3的面积与OAD △的面积之比.方法2.先确定出OAB △比OAD △(B 与A 横坐标绝对值的比更简单)得出面积关系,即可得出结论.【考点】旋转的性质.26.【答案】(1)答案见解析(2)84万元【解析】解:(1)可设每台A 型污水处理器的价格是x 万元,每台B 型污水处理器的价格是y 万元,依题意有2344442x y x y +=⎧⎨+=⎩,解得108x y =⎧⎨=⎩. 所以每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;(2)购买9台A 型污水处理器,费用为1099()0⨯=万元;购买8台A 型污水处理器,1台B 型污水处理器,费用为1088=88()⨯+万元购买7台A 型污水处理器,2台B 型污水处理器,费用为10782=86()⨯+⨯万元购买6台A 型污水处理器,3台B 型污水处理器,费用为10683=84()⨯+⨯万元购买5台A 型污水处理器,5台B 型污水处理器,费用为10585=90()⨯+⨯万元购买4台A 型污水处理器,6台B 型污水处理器,费用为10486=88()⨯+⨯万元购买3台A 型污水处理器,7台B 型污水处理器,费用为10387=86()⨯+⨯万元购买2台A 型污水处理器,9台B 型污水处理器,费用为10289=92()⨯+⨯万元购买1台A 型污水处理器,10台B 型污水处理器,费用为101810=90()⨯+⨯万元购买11台B 型污水处理器,费用为∴()1,0P .290,∴EM 作于,延长交AD 于M .则34EQ CE DC ===,DM EM。

2017年无锡数学中考试卷

2017年无锡数学中考试卷

2017年无锡市初中毕业升学考试数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.5-的倒数是( )A .15B .5±C .5D .15- 2.函数2x y x =-中自变量x 的取值范围是( ) A .2x ≠ B .2x ≥ C .2x ≤ D .2x >3.下列运算正确的是( )A .()437a a =B .()22ab ab = C .824a a a ÷= D .246a a a ⋅= 4.下列图形中,是中心对称图形的是( )A .B . C. D .5.若2a b -=,3b c -=-,则a c -等于( )A .B .1- C.5 D .5-6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是A .男生的平均成绩大于女生的平均成绩B .男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数 D .男生成绩的中位数小于女生成绩的中位数7.某商店今年月份的销售额是2万元,3月份的销售额是4.5万元,从月份到3月份,该店销售额平均每月的增长率是( )A .20%B .25% C.50% D .62.5%8.对于命题“若22a b >,则a b >.”下面四组关于a 、b 的值中,能说明这个命题是假命题的是( )A .3a =,2b =B .3a =-,2b = C.3a =,1b =- D .1a =-,3b =9.如图,菱形CD AB 的边20AB =,面积为320,D 90∠BA <o ,O e 与边AB 、D A 都相切,10AO =,则O e 的半径长等于( )A .5B .6 C.25 D .3210.如图,C ∆AB 中,C 90∠BA =o ,3AB =,C 4A =,点D 是C B 的中点,将D ∆AB 沿D A 翻折得到D ∆AE ,连C E ,则线段C E 的长等于( )A .2B .54 C.53 D .75第Ⅱ卷(共100分)二、填空题(每题2分,满分16分,将答案填在答题纸上)11.计算123⨯的值是 .12.分解因式:2363a a -+= .13.贵州F S A T 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约2500002m ,这个数据用科学记数法可表示为 .14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 C o .15.已知反比例函数k y x=的图像经过点()1,2--,则k 的值为 . 16.已知圆锥的底面半径为3cm ,母线长为5cm ,则它的侧面展开图的面积等于 2cm .17.如图,已知矩形CD AB 中,3AB =,D 2A =,分别以边D A 、C B 为直径在矩形CD AB 的内部作半圆1O 和半圆2O ,一平行于AB 的直线F E 与这两个半圆分别交于点E 、点F ,且F 2E =(F E 与AB 在圆1O 和2O 的同侧),则由»AE、F E 、»F B 、AB 所围成图形(图中阴影部分)的面积等于 .18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都在格点处,AB与CD相交于O,则tan D∠BO的值等于.三、解答题(本大题共10小题,共84分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分8分)计算:(1)()()03627-+-+;(2)()()()a b a b a a b+---.20. (本题满分8分)(1)解不等式组:()2311222xx x+>⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎧⎪⎨-≤+⋅⋅⋅⋅⎪⎩①②;(2)解方程:53212x x=-+.21. (本题满分8分)已知,如图,平行四边形CDAB中,E是CB边的中点,连D E并延长交AB的延长线于点F,求证:FAB=B.22. (本题满分8分)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档.现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23. (本题满分8分)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动.在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a = ,b = ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是 (只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.(本题满分6分)如图,已知等边C ∆AB ,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作C ∆AB 的外心O ;(2)设D 是AB 边上一点,在图中作出一个正六边形D FG E HI ,使点F ,点H 分别在边C B 和C A 上.25.(本题满分10分)操作:“如图1,P 是平面直角坐标系中一点(x 轴上的点除外),过点P 作C x P ⊥轴于点C ,点C 绕点P 逆时针旋转60o 得到点Q .”我们将此由点P 得到点Q 的操作称为点的T 变换.(1)点(),a b P 经过T 变换后得到的点Q 的坐标为 ;若点M 经过T 变换后得到点(6,3N ,则点M 的坐标为 .(2)A 是函数3y x =图像上异于原点O 的任意一点,经过T 变换后得到点B . ①求经过点O 、点B 的直线的函数表达式;②如图2,直线AB 交y 轴于点D ,求∆OAB 的面积与D ∆OA 的面积之比.26.(本题满分10分)某地新建的一个企业,每月将产生1960吨污水.为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A 型、3台B 型污水处理器的总价为44万元;售出的台A 型、4台B 型污水处理器的总价为42万元.(1)求每台A 型、B 型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.(本题满分10分)如图,以原点O 为圆心、3为半径的圆与x 轴分别交于A 、B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与O e 分别交于C 、D 两点(点C 在点D 的上方),直线C A 、D B 交于点E .若C :C 1:2A E =,(1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.28.(本题满分8分) 如图,已知矩形CD AB 中,4AB =,D m A =.动点P 从点D 出发,在边D A 上以每秒个单位的速度向点A 运动,连接C P ,作点D 关于直线C P 的对称点E .设点P 的运动时间为()s t .(1)若6m =,求当P 、E 、B 三点在同一直线上时对应的的值.(2)已知m 满足:在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻,使点E 到直线C B 的距离等于3,求所有这样的m 的取值范围.。

江苏省无锡市2017年中考数学真题试题(含解析1) (1)[真题试卷]

江苏省无锡市2017年中考数学真题试题(含解析1) (1)[真题试卷]


12.分解因式:3a2﹣6a+3=

13.贵州 FAST 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约 250000m2,这
个数据用科学记数法可表示为

14.如图是我市某连续 7 天的最高气温与最低气温的变化图,根据图中信息可知,这 7 天中
最大的日温差是
℃.
15.若反比例函数 y= 的图象经过点(﹣1,﹣2),则 k 的值为
人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法
写出分析过程)
23.某数学学习网站为吸引更多人注册加入,举行了一个为期 5 天的推广活动,在活动期间,
加入该网站的人数变化情况如下表所示:
时间
第1天 第2天 第3天 第4天 第5天
新加入人数(人)
153
550
653
b
725
的是( )
成绩(分)
70
80
90
男生(人)
5
10
7
女生(人)
4
13
4
A.男生的平均成绩大于女生的平均成绩
B.男生的平均成绩小于女生的平均成绩
C.男生成绩的中位数大于女生成绩的中位数
D.男生成绩的中位数小于女生成绩的中位数
【考点】W4:中位数;W1:算术平均数.
【分析】根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出
列出方程,求解即可. 【解答】解:设该店销售额平均每月的增长率为 x,则二月份销售额为 2(1+x)万元,三月 份销售额为 2(1+x)2 万元, 由题意可得:2(1+x)2=4.5, 解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去), 答即该店销售额平均每月的增长率为 50%; 故选:C.

2017年江苏省无锡市中考数学试卷及答案

2017年江苏省无锡市中考数学试卷及答案

数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前江苏省无锡市2017中考试卷数学 .......................................................................................... 1 江苏省无锡市2017中考试卷数学答案解析 .. (5)江苏省无锡市2017中考试卷数学本试卷满分130分,考试时间120分钟.一、选择题(每小题3分,共30分) 1.5-的倒数是( ) A .15B .5±C .5D .15- 2.函数2xy x=-中自变量x 的取值范围是( ) A .2x ≠B .2x ≥C .2x ≤D .2x > 3.下列运算正确的是( ) A .235()a a =B .22()ab ab =C .632a a a ÷=D .235a a a = 4.下列图形中,是中心对称图形的是( )5.若2,3a b b c -=-=-,则a c -等于( )A .1B .1-C .5D .5- 6.下表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是( )A .男生的平均成绩大于女生的平均成绩B .男生的平均成绩小于女生的平均成绩C .男生成绩的中位数大于女生成绩的中位数D .男生成绩的中位数小于女生成绩的中位数7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .20%B .25%C .50%D .62.5%8.对于命题“若22a b >,则a b >”,下面四组关于,a b 的值中,能说明这个命题是假命题的是( )A .3,2a b ==B .3,2a b =-=C .3,1a b ==-D .1,3a b =-=9.如图,菱形ABCD 的边20AB =,面积为320,90,BAD ∠<O 与边,AB AD 都相切,10AO =,则O 的半径长等于( )A .5B .6C .D .10.如图,ABC △中,90,3,4BAC AB AC ∠===,点D 是BC 的中点,将ABD △沿AD 翻折得到AED △,连接CE ,则线段CE 的长等于( )A .2B .54 C .53D .75二、填空题(每小题2分,共16分) 11.的值是 . 12.分解因式:2363a a -+= .13.贵州FAST 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约ABC D 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)2250000m ,这个数据用科学记数法可表示为 .14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.15.若反比例函数ky x=的图象经过点(1,2)--,则k 的值为 . 16.已知圆锥的底面半径为3cm ,母线长是5cm ,则它的侧面展开图的面积等于2cm .17.如图,已知矩形ABCD 中,3,2AB AD ==,分别以边,AD BC 为直径在矩形ABCD 的内部作半圆1O 和半圆2O ,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且2EF =(EF 与AB 在圆心1O 和2O 的同侧),则由,,,AE EF FB AB 所围成图形(图中阴影部分)的面积等于 .18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A B C D 、、、都在格点处,AB 与CD 相交于O ,则tan BOD ∠的值等于 . 三、解答题(本大题共10小题,共84分) 19.(8分)计算:(1)30|6|(2)-+-+ ; (2)()()().a b a b a a b +---20.(8分)(1)解不等式组:231,12(2)2x x x +⎧⎪⎨-+⎪⎩>①≤②; (2)解方程:53.212x x =-+21.(8分)如图,平行四边形ABCD 中,E 是BC 边的中点,连接DE 并延长交AB 的延长线于点F ,求证:AB BF =.22.(8分)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档.现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.(8分)某数学学习网站为吸引更多人注册加入,举行了(1)表格中a = ,b = ; (2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是 (只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.(6分)如图,已知等边ABC △,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹): (1)作ABC △的外心O ;(2)设D 是AB 边上一点,在图中作出一个正六边形DEFGHI ,使点F 、点H 分别在边BC 和AC 上.数学试卷 第5页(共26页) 数学试卷 第6页(共26页)25.(10分)操作:“如图1,P 是平面直角坐标系中一点(x 轴上的点除外),过点P 作PC x ⊥轴于点C ,点C 绕点P 逆时针旋转60得到点Q .”我们将此由点P 得到点Q 的操作称为点的T 变换.(1)点(,)P a b 经过T 变换后得到的点Q 的坐标为 ;若点M 经过T 变换后得到点(6,N -,则点M 的坐标为 . (2)A是函数y x =图像上异于原点O 的任意一点,经过T 变换后得到点B . ①求经过点O 、点B 的直线的函数表达式;②如图2,直线AB 交y 轴于点D ,求B OA △的面积与OAD △的面积之比.26.(10分)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器已知商家售出的2台型、3台型污水处理器的总价为44万元;售出的1台A 型、4台B 型污水处理器的总价为42万元.(1)求每台A 型、B 型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.(10分)如图,以原点O 为圆心、3为半径的圆与x 轴分别交于A B 、两点(B 点在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与O 分别交于C D 、两点(点C 在点D 的上方),直线AC DB 、交于点E .若12AC CE =::. (1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.28.(8分)如图,已知矩形ABCD 中,4AB AD m ==,.动点P 从点D 出发,在边DA 上以每秒1个单位的速度向点A 运动,连接CP ,作点D 关于直线PC 的对称点E .设点P的运动时间为(s)t . (1)若6m =,求当P E B 、、三点在同一直线上时对应的t 的值. (2)已知m 满足:在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3,求所有这样的m 的取值范围.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

2017年江苏省无锡市中考数学试卷

2017年江苏省无锡市中考数学试卷
姓名________________ 考生号________________ ________________ _____________
------------- --------------------------------
绝密★启用前
7.某商店今年 1 月份的销售额是 2 万元,3 月份的销售额是 4.5 万元,从 1 月份到 3 月份,
(2) (a b)(a b) a(a b). (3)根据以上信息,下列说法正确的是 (只要填写正确说法前的序号). ①在活动之前,该网站已有 3 200 人加入; ②在活动期间,每天新加入人数逐天递增; ③在活动期间,该网站新加入的总人数为 2 528 人.
2 x 3>1 ①, 5 3 . 20.(8 分)(1)解不等式组: (2)解方程: 1 2 x 1 x 2 x 2≤ ( x 2) ②; 2
250 000 m2 ,这个数据用科学记数法可表示为
.

--------------------
14.如图是我市某连续 7 天的最高气温与最低气温的变化图,根据图中信息可知,这 7 天
℃. k 15.若反比例函数 y 的图象经过点 (-1, -2) ,则 k 的值 x
中最大的日温差是 为 . 16. 已知圆锥的底面半径为 3 cm , 母线长是 5 cm , 则它的 侧面展开图的面积等于
21.(8 分)如图,平行四边形 ABCD 中, E 是 BC 边的中点,连接 DE 并延长交 AB 的延长 线于点 F ,求证: AB BF .
24.(6 分)如图,已知等边 △ABC ,请用直尺(不带刻度)和圆规,按下列要求作图(不要求 写作法,但要保留作图痕迹): (1)作 △ABC 的外心 O ; (2)设 D 是 AB 边上一点,在图中作出一个正六边形 DEFGHI ,使点 F 、点 H 分别在 边 BC 和 AC 上.

江苏省无锡市2017年中考数学试卷

江苏省无锡市2017年中考数学试卷

2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣5的倒数是()A .B.±5 C.5 D .﹣2.(3分)函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>23.(3分)下列运算正确的是()A.(a2)3=a5 B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a54.(3分)下列图形中,是中心对称图形的是()A .B .C .D .5.(3分)若a﹣b=2,b﹣c=﹣3,则a﹣c等于( )A.1 B.﹣1 C.5 D.﹣56.(3分)如表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是( )708090成绩(分)5107男生(人)女生4134(人)A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.(3分)某商店今年1月份的销售额是2万元,3月份的销售额是4。

5万元,从1月份到3月份,该店销售额平均每月的增长率是( )A.20%B.25% C.50% D.62.5%8.(3分)对于命题“若a2>b2,则a>b",下面四组关于a,b的值中,能说明这个命题是假命题的是( )A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3 9.(3分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于( )A.5 B.6 C.2D.310.(3分)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC 的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于( )A.2 B. C. D.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)计算×的值是.12.(2分)分解因式:3a2﹣6a+3= .13.(2分)贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.(2分)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.(2分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.16.(2分)若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.(2分)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC 为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于.18.(2分)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD 的值等于.三、解答题(本大题共10小题,共84分)19.(8分)计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(8分)(1)解不等式组:(2)解方程:=.21.(8分)已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.22.(8分)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.(8分)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153550653 b725累计总人数(人)33533903a51565881(1)表格中a= ,b= ;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.(6分)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.25.(10分)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M 经过T变换后得到点N(6,﹣),则点M的坐标为.(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.(10分)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:污水处理器型号A型B型处理污水能力(吨/月)240180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.(10分)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.(8分)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m 的取值范围.2017年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•无锡)﹣5的倒数是()A.B.±5 C.5 D.﹣【分析】根据倒数的定义,即可求出﹣5的倒数.【解答】解:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017•无锡)函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>2【分析】根据分式有意义的条件,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选A.【点评】本题考查了求函数自变量取值范围,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(2017•无锡)下列运算正确的是( )A.(a2)3=a5 B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【分析】利用幂的运算性质直接计算后即可确定正确的选项.【解答】解:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.【点评】本题考查了幂的运算性质,解题的关键是了解这些性质并能正确的计算,难度不大.4.(3分)(2017•无锡)下列图形中,是中心对称图形的是()A. B.C.D.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.【点评】本题考查了对中心对称图形的定义,能熟知中心对称图形的定义是解此题的关键.5.(3分)(2017•无锡)若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【分析】根据题中等式确定出所求即可.【解答】解:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.(3分)(2017•无锡)如表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩708090(分)5107男生(人)女生4134(人)A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【分析】根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.【解答】解:∵男生的平均成绩是:(70×5+80×10+90×7)÷22=1780÷22=80,女生的平均成绩是:(70×4+80×13+90×4)÷21=1680÷21=80,∴男生的平均成绩大于女生的平均成绩.∵男生一共22人,位于中间的两个数都是80,所以中位数是(80+80)÷2=80,女生一共21人,位于最中间的一个数是80,所以中位数是80,∴男生成绩的中位数等于女生成绩的中位数.故选A.【点评】本题为统计题,考查平均数与中位数的意义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.7.(3分)(2017•无锡)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25%C.50%D.62.5%【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣5的倒数是()A .B.±5 C.5 D .﹣2.(3分)函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>23.(3分)下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a54.(3分)下列图形中,是中心对称图形的是()A .B .C .D .5.(3分)若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣56.(3分)如表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()708090成绩(分)5107男生(人)4134女生(人)A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.(3分)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.(3分)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.(3分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.310.(3分)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)计算×的值是.12.(2分)分解因式:3a2﹣6a+3=.13.(2分)贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.(2分)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.(2分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.16.(2分)若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.(2分)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于.18.(2分)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.(8分)计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(8分)(1)解不等式组:(2)解方程:=.21.(8分)已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.22.(8分)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.(8分)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153550653 b725累计总人数(人)33533903a51565881(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.(6分)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.25.(10分)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P 得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(6,﹣),则点M的坐标为.(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.(10分)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:污水处理器型号A型B型处理污水能力(吨/月)240180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.(10分)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.(8分)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.2017年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣5的倒数是()A.B.±5 C.5 D.﹣【分析】根据倒数的定义,即可求出﹣5的倒数.【解答】解:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.2.(3分)函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>2【分析】根据分式有意义的条件,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选A.3.(3分)下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【分析】利用幂的运算性质直接计算后即可确定正确的选项.【解答】解:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.4.(3分)下列图形中,是中心对称图形的是()A .B .C .D .【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.5.(3分)若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【分析】根据题中等式确定出所求即可.【解答】解:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B6.(3分)如表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()708090成绩(分)5107男生(人)4134女生(人)A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【分析】根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.【解答】解:∵男生的平均成绩是:(70×5+80×10+90×7)÷22=1780÷22=80,女生的平均成绩是:(70×4+80×13+90×4)÷21=1680÷21=80,∴男生的平均成绩大于女生的平均成绩.∵男生一共22人,位于中间的两个数都是80,所以中位数是(80+80)÷2=80,女生一共21人,位于最中间的一个数是80,所以中位数是80,∴男生成绩的中位数等于女生成绩的中位数.故选A.7.(3分)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.8.(3分)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B 选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b 的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.9.(3分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.3【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,即可解决问题.【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接OF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2.故选C.10.(3分)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【解答】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故选D.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)计算×的值是6.【分析】根据•=(a≥0,b≥0)进行计算即可得出答案.【解答】解:×===6;故答案为:6.12.(2分)分解因式:3a2﹣6a+3=3(a﹣1)2.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.13.(2分)贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为 2.5×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将250000用科学记数法表示为:2.5×105.故答案为:2.5×105.14.(2分)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是11℃.【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【解答】解:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣7℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.故答案为:11.15.(2分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为2.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.16.(2分)若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为15πcm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.17.(2分)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于3﹣﹣.【分析】连接O1O2,O1E,O2F,过E作EG⊥O1O2,过F⊥O1O2,得到四边形EGHF 是矩形,根据矩形的性质得到GH=EF=2,求得O1G=,得到∠O1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.【解答】解:连接O1O2,O1E,O2F,则四边形O1O2FE是等腰梯形,过E作EG⊥O1O2,过FH⊥O1O2,∴四边形EGHF是矩形,∴GH=EF=2,∴O1G=,∵O1E=1,∴GE=,∴=;∴∠O1EG=30°,∴∠AO1E=30°,同理∠BO2F=30°,∴阴影部分的面积=S﹣2S﹣S=3×1﹣2×﹣(2+3)×=3﹣﹣.故答案为:3﹣﹣.18.(2分)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于3.【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan∠BOD的值,本题得以解决.【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.三、解答题(本大题共10小题,共84分)19.(8分)计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)【分析】(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.【解答】解:(1)原式=6﹣8+1=﹣1(2)原式=a2﹣b2﹣a2+ab=ab﹣b220.(8分)(1)解不等式组:(2)解方程:=.【分析】(1)分别解不等式,进而得出不等式组的解集;(2)直接利用分式方程的解法去分母,进而求出x的值,再检验得出答案.【解答】解:(1)解①得:x>﹣1,解②得:x≤6,故不等式组的解集为:﹣1<x≤6;(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.21.(8分)已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.【分析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.【解答】证明:∵E是BC的中点,∴CE=BE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠DCB=∠FBE,在△CED和△BEF中,,∴△CED≌△BEF(ASA),∴CD=BF,∴AB=BF.22.(8分)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【分析】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.【解答】解:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率==.23.(8分)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153550653 b725累计总人数(人)33533903a51565881(1)表格中a=4556,b=600;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是①(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【分析】(1)观察表格中的数据即可解决问题;(2)根据第4天的人数600,画出条形图即可;(3)根据题意一一判断即可;【解答】解:(1)由题意a=3903+653=4556,b=5156﹣4556=600.故答案为4556,600.(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.故答案为①24.(6分)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【分析】(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)取BF=CH=AD构成等边三角形,作新等边三角形边的垂直平分,确定外心,再作圆确定另外三点,六边形DEFGHI即为所求正六边形.【解答】解:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.25.(10分)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P 得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为(a+b,b);若点M经过T变换后得到点N(6,﹣),则点M的坐标为(9,﹣2).(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【分析】(1)连接CQ可知△PCQ为等边三角形,过Q作QD⊥PC,利用等边三角形的性质可求得CD和QD的长,则可求得Q点坐标;设出M点的坐标,利用P、Q坐标之间的关系可得到点M的方程,可求得M点的坐标;(2)①可设A(t,t),利用T变换可求得B点坐标,利用待定系数示可求得直线OB的函数表达式;②方法1、由待定系数示可求得直线AB的解析式,可求得D点坐标,则可求得AB、AD的长,可求得△OAB的面积与△OAD的面积之比.方法2、先确定出△BOD比△OAD(B与A横坐标绝对值的比更简单)得出面积关系,即可得出结论.【解答】解:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=PC=b,DQ=PQ=b,∴Q(a+b,b);设M(x,y),则N点坐标为(x+y,y),∵N(6,﹣),∴,解得,∴M(9,﹣2);故答案为:(a+b,b);(9,﹣2);(2)①∵A是函数y=x图象上异于原点O的任意一点,∴可设A(t,t),∴t+×t=t,×t=t,∴B(t,t),设直线OB的函数表达式为y=kx,则tk=t,解得k=,∴直线OB的函数表达式为y=x;②方法1、设直线AB解析式为y=k′x+b,把A、B坐标代入可得,解得,∴直线AB解析式为y=﹣x+t,∴D(0,t),且A(t,t),B(t,t),∴AB==|t|,AD==|t|,∴===.方法2、由(1)知,A(t,t),B(t,t),∴==,∵△AOB、△AOD和△BOD的边AB、AD和BD上的高相同,∴=.26.(10分)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:污水处理器型号A型B型处理污水能力(吨/月)240180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【分析】(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.【解答】解:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有,解得.答:每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买9台A型污水处理器,费用为10×9=90(万元);购买8台A型污水处理器、1台B型污水处理器,费用为10×8+8=80+8=88(万元);购买7台A型污水处理器、2台B型污水处理器,费用为10×7+8×2=70+16=86(万元);购买6台A型污水处理器、3台B型污水处理器,费用为10×6+8×3=60+24=84(万元);购买5台A型污水处理器、5台B型污水处理器,费用为10×5+8×5=50+40=90(万元);购买4台A型污水处理器、6台B型污水处理器,费用为10×4+8×6=40+48=88(万元);购买3台A型污水处理器、7台B型污水处理器,费用为10×3+8×7=30+56=86(万元);购买2台A型污水处理器、9台B型污水处理器,费用为10×2+8×9=20+72=92(万元);购买1台A型污水处理器、10台B型污水处理器,费用为10×1+8×10=10+90=90(万元);.购买11台B型污水处理器,费用为8×11=88(万元).故购买6台A型污水处理器、3台B型污水处理器,费用最少.答:他们至少要支付84万元钱.27.(10分)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.【分析】(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设C(m,n),则P(m,0),PA=m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出===,推出CH=2n,EH=2m+6,再证明△DPB∽△DHE,推出===,可得=,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题;【解答】解:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设C(m,n),则P(m,0),PA=m+3,PB=3﹣m.∵EH∥AP,∴△ACP∽△ECH,∴===,∴CH=2n,EH=2m+6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴===,∴=,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OC,在Rt△OCP中,PC==2,∴CH=2PC=4,PH=6,∴E(9,6),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6)代入得到a=,∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣.28.(8分)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【分析】(1)如图1中,设PD=t.则PA=6﹣t.首先证明BP=BC=6,在Rt△ABP 中利用勾股定理即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3;【解答】解:(1)如图1中,设PD=t.则PA=6﹣t.∵P、B、E共线,∴∠BPC=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∴∠BPC=∠PCB,∴BP=BC=6,在Rt△ABP中,∵AB2+AP2=PB2,∴42+(6﹣t)2=62,∴t=6﹣2或6+2(舍弃),∴PD=6﹣2,∴t=(6﹣2)s时,B、E、P共线.(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4易证四边形EMCQ是矩形,∴CM=EQ=3,∠M=90°,∴EM===,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,=,∴=,∴AD=4,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3.作EQ⊥BC于Q,延长QE交AD于M.则EQ=3,CE=DC=4在Rt△ECQ中,QC=DM==,由△DME∽△CDA,∴=,∴=,∴AD=,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,这样的m的取值范围≤m<4.。

相关文档
最新文档