TCP-IP Protocol Suite Ch06
一篇关于RTP介绍比较全的文章
Description:Protocol suite:TCP/IP.Type: Application layer protocol.Port: 5004 (UDP).SNMP MIBs: .dod.internet.mgmt.mib-2.rtpMIB (1.3.6.1.2.1.10.87)..dod.internet.mgmt.mib-2.rohcRtpMIB (1.3.6.1.2.1.114).Working groups:avt, Audio/Video Transport.Links:RTP parameters./~hgs/rtpRFC 3550:RTP provides end-to-end network transport functions suitable for applications transmitting real-time data, such as audio, video or simulation data, over multicast or unicast network services. RTP does not address resource reservation and does not guaranteequality-of-service for real-time services. The data transport is augmented by a control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large multicast networks, and to provide minimal control and identification functionality. RTP and RTCP are designed to be independent of the underlying transport and network layers. The protocol supports the use of RTP-level translators and mixers.RTP header, version 2:Ver, Version. 2 bits.RTP version number. Always set to 2.P, Padding. 1 bit.If set, this packet contains one or more additional padding bytes at the end which are not part of the payload. The last byte of the padding contains a count of how many padding bytes should be ignored. Padding may be needed by some encryption algorithms with fixed block sizes or for carrying several RTP packets in a lower-layer protocol data unit.X, Extension. 1 bit.If set, the fixed header is followed by exactly one header extension.CC, CSRC count. 4 bits.The number of CSRC identifiers that follow the fixed header.M, Marker. 1 bit.The interpretation of the marker is defined by a profile. It is intended to allow significant events such as frame boundaries to be marked in the packet stream. A profile may define additional marker bits or specify that there is no marker bit by changing the number of bits in the payload type field.PT, Payload Type. 7 bits.Identifies the format of the RTP payload and determines its interpretation by the application.A profile specifies a default static mapping of payload type codes to payload formats. Additional payload type codes may be defined dynamically through non-RTP means. An RTP sender emits a single RTP payload type at any given time; this field is not intended for multiplexing separate media streams.Sequence Number. 16 bits.The sequence number increments by one for each RTP data packet sent, and may be used by the receiver to detect packet loss and to restore packet sequence. The initial value of the sequence number is random (unpredictable) to make known-plaintext attacks on encryptionmore difficult, even if the source itself does not encrypt, because the packets may flow through a translator that does.Timestamp. 32 bits.The timestamp reflects the sampling instant of the first octet in the RTP data packet. The sampling instant must be derived from a clock that increments monotonically and linearly in time to allow synchronization and jitter calculations. The resolution of the clock must be sufficient for the desired synchronization accuracy and for measuring packet arrival jitter (one tick per video frame is typically not sufficient). The clock frequency is dependent on the format of data carried as payload and is specified statically in the profile or payload format specification that defines the format, or may be specified dynamically for payload formats defined through non-RTP means. If RTP packets are generated periodically, the nominal sampling instant as determined from the sampling clock is to be used, not a reading of the system clock. As an example, for fixed-rate audio the timestamp clock would likely increment by one for each sampling period. If an audio application reads blocks covering 160 sampling periods from the input device, the timestamp would be increased by 160 for each such block, regardless of whether the block is transmitted in a packet or dropped as silent.SSRC, Synchronization source. 32 bits.Identifies the synchronization source. The value is chosen randomly, with the intent that no two synchronization sources within the same RTP session will have the same SSRC. Although the probability of multiple sources choosing the same identifier is low, all RTP implementations must be prepared to detect and resolve collisions. If a source changes its source transport address, it must also choose a new SSRC to avoid being interpreted as a looped source.CSRC, Contributing source. 32 bits.An array of 0 to 15 CSRC elements identifying the contributing sources for the payload contained in this packet. The number of identifiers is given by the CC field. If there are more than 15 contributing sources, only 15 may be identified. CSRC identifiers are inserted by mixers, using the SSRC identifiers of contributing sources. For example, for audio packets the SSRC identifiers of all sources that were mixed together to create a packet are listed, allowing correct talker indication at the receiver.Glossary:CSRC, Contributing source.(RFC 1889). A source of a stream of RTP packets that has contributed to the combined stream produced by an RTP mixer. The mixer inserts a list of the SSRC identifiers of the sources that contributed to the generation of a particular packet into the RTP header of that packet. This list is called the CSRC list. An example application is audio conferencing where a mixer indicates all the talkers whose speech was combined to produce the outgoing packet,allowing the receiver to indicate the current talker, even though all the audio packets contain the same SSRC identifier.End system.(RFC 1889). An application that generates the content to be sent in RTP packets and/or consumes the content of received RTP packets. An end system can act as one or more synchronization sources in a particular RTP session, but typically only one.Mixer.(RFC 3550). An intermediate system that receives RTP packets from one or more sources, possibly changes the data format, combines the packets in some manner and then forwards a new RTP packet. Since the timing among multiple input sources will not generally be synchronized, the mixer will make timing adjustments among the streams and generate its own timing for the combined stream. Thus, all data packets originating from a mixer will be identified as having the mixer as their synchronization source.Monitor.(RFC 1889). An application that receives RTCP packets sent by participants in an RTP session, in particular the reception reports, and estimates the current quality of service for distribution monitoring, fault diagnosis and long-term statistics. The monitor function is likely to be built into the application(s) participating in the session, but may also be a separate application that does not otherwise participate and does not send or receive the RTP data packets. These are called third party monitors.RTP packet.(RFC 1889). A data packet consisting of the fixed RTP header, a possibly empty list of contributing sources, and the payload data. Some underlying protocols may require an encapsulation of the RTP packet to be defined. Typically one packet of the underlying protocol contains a single RTP packet, but several RTP packets may be contained if permitted by the encapsulation method.RTP payload.(RFC 1889). The data transported by RTP in a packet, for example audio samples or compressed video data.RTP session.(RFC 1889). The association among a set of participants communicating with RTP. For each participant, the session is defined by a particular pair of destination transport addresses (one network address plus a port pair for RTP and RTCP). The destination transport address pair may be common for all participants, as in the case of IP multicast, or may be different for each, as in the case of individual unicast network addresses plus a common port pair. In a multimedia session, each medium is carried in a separate RTP session with its own RTCP packets. The multiple RTP sessions are distinguished by different port number pairs and/or different multicast addresses.SSRC, Synchronization source.(RFC 1889). The source of a stream of RTP packets, identified by a 32-bit numeric SSRC identifier carried in the RTP header so as not to be dependent upon the network address. All packets from a synchronization source form part of the same timing and sequence number space, so a receiver groups packets by synchronization source for playback. Examples of synchronization sources include the sender of a stream of packets derived from a signal source such as a microphone or a camera, or an RTP mixer. A synchronization source may change its data format, e.g., audio encoding, over time. The SSRC identifier is a randomly chosen value meant to be globally unique within a particular RTP session. A participant need not use the same SSRC identifier for all the RTP sessions in a multimedia session; the binding of the SSRC identifiers is provided through RTCP. If a participant generates multiple streams in one RTP session, for example from separate video cameras, each must be identified as a different SSRC.Translator.(RFC 1889). An intermediate system that forwards RTP packets with their synchronization source identifier intact. Examples of translators include devices that convert encodings without mixing, replicators from multicast to unicast, and application- level filters in firewalls.RFCs:[RFC 2029] RTP Payload Format of Sun's CellB Video Encoding.[RFC 2032] RTP Payload Format for H.261 Video Streams.[RFC 2190] RTP Payload Format for H.263 Video Streams.[RFC 2198] RTP Payload for Redundant Audio Data.[RFC 2250] RTP Payload Format for MPEG1/MPEG2 Video.∙Obsoletes: RFC 2038.[RFC 2343] RTP Payload Format for Bundled MPEG.[RFC 2429] RTP Payload Format for the 1998 Version of ITU-T Rec. H.263 Video (H.263+). [RFC 2431] RTP Payload Format for BT.656 Video Encoding.[RFC 2435] RTP Payload Format for JPEG-compressed Video.∙Obsoletes: RFC 2035.[RFC 2508] Compressing IP/UDP/RTP Headers for Low-Speed Serial Links.[RFC 2658] RTP Payload Format for PureVoice(tm) Audio.[RFC 2733] An RTP Payload Format for Generic Forward Error Correction.[RFC 2736] Guidelines for Writers of RTP Payload Format Specifications.[RFC 2762] Sampling of the Group Membership in RTP.[RFC 2793] RTP Payload for Text Conversation.[RFC 2833] RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals.[RFC 2862] RTP Payload Format for Real-Time Pointers.[RFC 2959] Real-Time Transport Protocol Management Information Base.∙Defines SNMP MIB .dod.internet.mgmt.mib-2.rtpMIB (1.3.6.1.2.1.10.87).[RFC 3009] Registration of parityfec MIME types.[RFC 3016] RTP Payload Format for MPEG-4 Audio/Visual Streams.[RFC 3047] RTP Payload Format for ITU-T Recommendation G.722.1.[RFC 3095] RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed.[RFC 3119] A More Loss-Tolerant RTP Payload Format for MP3 Audio.[RFC 3158] RTP Testing Strategies.[RFC 3189] RTP Payload Format for DV (IEC 61834) Video.[RFC 3190] RTP Payload Format for 12-bit DAT Audio and 20- and 24-bit Linear Sampled Audio.[RFC 3267] Real-Time Transport Protocol (RTP) Payload Format and File Storage Format for the Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB) Audio Codecs.[RFC 3389] Real-time Transport Protocol (RTP) Payload for Comfort Noise (CN).∙Defines MIME media subtype audio/CN.∙Defines RTP payload type CN.[RFC 3497] RTP Payload Format for Society of Motion Picture and Television Engineers (SMPTE) 292M Video.∙Defines MIME media subtype video/SMPTE292M.[RFC 3558] RTP Payload Format for Enhanced Variable Rate Codecs (EVRC) and Selectable Mode Vocoders (SMV).∙Defines MIME media subtypes audio/EVRC, audio/EVRC0, audio/SMV and audio/SMV0.[RFC 3545] Enhanced Compressed RTP (CRTP) for Links with High Delay, Packet Loss and Reordering.[RFC 3550] RTP: A Transport Protocol for Real-Time Applications.∙Obsoletes: RFC 1889.[RFC 3551] RTP Profile for Audio and Video Conferences with Minimal Control.∙Obsoletes: RFC 1890.[RFC 3555] MIME Type Registration of RTP Payload Formats.∙Updated by: RFC 3625.[RFC 3557] RTP Payload Format for European Telecommunications Standards Institute (ETSI) European Standard ES 201 108 Distributed Speech Recognition Encoding.∙Defines MIME media subtype audio/dsr-es201108.[RFC 3640] RTP Payload Format for Transport of MPEG-4 Elementary Streams.[RFC 3711] The Secure Real-time Transport Protocol (SRTP).∙Defines RTP profile RTP/SAVP.[RFC 3816] Definitions of Managed Objects for RObust Header Compression (ROHC).∙.dod.internet.mgmt.mib-2.rohcMIB (1.3.6.1.2.1.112)∙.dod.internet.mgmt.mib-2.rohcUncmprMIB (1.3.6.1.2.1.113)∙.dod.internet.mgmt.mib-2.rohcRtpMIB (1.3.6.1.2.1.114)Obsolete RFCs:[RFC 1889] RTP: A Transport Protocol for Real-Time Applications.∙Obsoleted by: RFC 3550.[RFC 1890] RTP Profile for Audio and Video Conferences with Minimal Control.∙Obsoleted by: RFC 3551.[RFC 2035] RTP Payload Format for JPEG-compressed Video.∙Obsoleted by: RFC 2435.[RFC 2038] RTP Payload Format for MPEG1/MPEG2 Video.∙Obsoleted by: RFC 2250.。
TCPIP协议分析_实验3_分析IPv4和IPv6数据包
《TCP/IP协议分析》实验报告实验序号:3 实验项目名称:分析IPv4和IPv6 数据包20网工学号姓名专业、班实验地点指导教师实验时间2022-9-14 一、实验目的及要求,步骤和结果动手项目3-1:使用Wireshark软件查看IPv4数据包首部所需时间: 20 分钟。
项目目标:学习使用Wireshark软件查看IPv4数据包的首部。
过程描述:本项目介绍如何捕获网络上的一个数据包,选择一个特定的数据包,查看该数据包的IPv4首部。
你可以捕获自己的数据进行分析,或启动Wireshark 软件,打开从本书配套网站上下载的文件IPv4Fields.pcap,直接跳到第(8)步。
(1)启动Wireshark软件(单击“开始”,指向“所有程序”,然后单击Wireshark。
也可以单击“开始”,在“运行”对话框中输入"Wireshark", 然后单击“确定”按钮)。
(2)单击Capture菜单,然后单击Interfaces 菜单项,出现Capture Interfaces 窗口。
(3)可能会显示有多个网卡,选定一个在Packets栏显示了实时数据包的网卡,然后单击Start 按钮,出现Capturing窗口。
(4)打开一个命令提示符窗口(单击“开始”按钮,在“运行”对话框中输入cmd,然后单击“确定”按钮)。
(5) ping 本地网络中的计算机IPv4地址。
(6)在命令提示符窗口中输入exit命令并按Enter键,关闭命令提示符窗口。
(7)在Wireshark软件中,单击菜单栏上的Capture,然后单击Stop (或者单击工具栏上的Stop 图标)。
(8)在数据包列表面板(上部面板)中选择一个TCP数据包(9)在数据包详细内容面板(中部面板),展开Internet Protocol Version4, 如图所示。
(10)查看Version和Header lenght字段的值。
(11)展开Differentiated Services Field, 查看Total Length和ldentification字段的值,然后再收起它。
网络知识点整理
⏹计算机网络概述(分组交换、电路交换)分组交换: 定义:通过标有地址的分组进行路由选择传送数据,使信道仅在传送分组期间被占用的一种交换方式。
电路交换: 在发端和收端之间建立电路连接,并保持到通信结束的一种交换方式⏹网络协议与分层体系结构(OSI、TCP/IP、PDU、SDU、IDU)OSI: OSI是Open System Interconnect的缩写,意为开放式系统互联。
国际标准化组织(ISO)制定了OSI 模型。
这个模型把网络通信的工作分为7层,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
TCP/IP: Transmission Control Protocol/Internet Protocol的简写,中译名为传输控制协议/因特网互联协议,又名网络通讯协议,是Internet最基本的协议、Internet国际互联网络的基础,由网络层的IP 协议和传输层的TCP协议组成。
TCP/IP 定义了电子设备如何连入因特网,以及数据如何在它们之间传输的标准。
协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。
通俗而言:TCP负责发现传输的问题,一有问题就发出信号,要求重新传输,直到所有数据安全正确地传输到目的地。
而IP是给因特网的每一台电脑规定一个地址。
PDU:协议数据单元PDU(Protocol Data Unit)是指对等层次之间传递的数据单位。
协议数据单元(Protocol Data Unit )物理层的 PDU是数据位(bit),数据链路层的 PDU是数据帧(frame),网络层的PDU是数据包(packet),传输层的 PDU是数据段(segment),其他更高层次的PDU是数据(data)。
SDU:在osi中有三种数据单元pdu(package data unit) 他也对应一个pci本质上和ici一样idu(interface data unit)sdu(service data unit) n与n+1实体通信的单元一个系统的视角看pdu=【本层n的数据】+本层n的(protocol control information)数据项可有可无=数据+pcipdu在通过asp时会加一些sap控制信息sci(多少字节是否加速传送)sdu idu ici pdu关系pdu 对等层次之间传递的数据单位两个系统的层次的视角看sdu:第n层待传送和处理的数据单元一个系统的层次视角idu 相邻层接口间传送的数据单元,它是由SDU+ICI。
TCP-IP详解卷1:协议
TCP-IP详解卷1:协议下载第1章概述1.1引⾔很多不同的⼚家⽣产各种型号的计算机,它们运⾏完全不同的操作系统,但TCP/IP协议族允许它们互相进⾏通信。
这⼀点很让⼈感到吃惊,因为它的作⽤已远远超出了起初的设想。
TCP/IP起源于60年代末美国政府资助的⼀个分组交换⽹络研究项⽬,到90年代已发展成为计算机之间最常应⽤的组⽹形式。
它是⼀个真正的开放系统,因为协议族的定义及其多种实现可以不⽤花钱或花很少的钱就可以公开地得到。
它成为被称作“全球互联⽹”或“因特⽹(Internet)”的基础,该⼴域⽹(WAN)已包含超过100万台遍布世界各地的计算机。
本章主要对TCP/IP协议族进⾏概述,其⽬的是为本书其余章节提供充分的背景知识。
如果读者要从历史的⾓度了解有关TCP/IP的早期发展情况,请参考⽂献[Lynch1993]。
1.2分层⽹络协议通常分不同层次进⾏开发,每⼀层分别负责不同的通信功能。
⼀个协议族,⽐如TCP/IP,是⼀组不同层次上的多个协议的组合。
TCP/IP通常被认为是⼀个四层协议系统,如图1-1所⽰。
每⼀层负责不同的功能:1)链路层,有时也称作数据链路层或⽹络接⼝层,通常包括操作系统中的设备驱动程序和计算机中对应的⽹络接⼝卡。
它们⼀起处理与电缆(或其他任何传输媒介)的物理接⼝细节。
2)⽹络层,有时也称作互联⽹层,处理分组在⽹络中的活动,例如分组的选路。
在TCP/IP协议族中,⽹络层协议包括IP协议(⽹际协议),ICMP协议(Internet互联⽹控制报⽂协议),以及IGMP协议(Internet组管理协议)。
3)运输层主要为两台主机上的应⽤程序提供端到端的通信。
在TCP/IP协议族中,有两个互不相同的传输协议:TCP(传输控制协议)和UDP(⽤户数据报协议)。
TCP为两台主机提供⾼可靠性的数据通信。
它所做的⼯作包括把应⽤程序交给它的数据分成合适的⼩块交给下⾯的⽹络层,确认接收到的分组,设置发送最后确认分组的超时时钟等。
ouc tcp实验手册
ouc tcp实验手册
OUC TCP实验手册是为学习TCP协议和进行TCP实验而编写的指南。
该手册包含以下主要内容:
1. TCP协议概述:介绍TCP协议的基本概念、特点、工作原理和TCP/IP 协议栈的位置。
2. TCP三次握手:详细解释TCP三次握手的过程,包括SYN、ACK和三次握手的步骤和作用。
3. TCP四次挥手:详细解释TCP四次挥手的过程,包括FIN、ACK、FIN 和ACK的步骤和作用。
4. TCP流量控制:介绍TCP流量控制的基本概念、作用和工作原理,以及滑动窗口机制的实现。
5. TCP拥塞控制:介绍TCP拥塞控制的基本概念、作用和工作原理,以及拥塞避免、重试和快速重试等算法的实现。
6. TCP实验环境搭建:介绍如何搭建TCP实验环境,包括安装网络设备和配置网络参数等。
7. TCP实验案例:提供一些TCP实验案例,包括TCP连接、数据传输和关闭连接等实验,以便读者进行实践和验证。
通过该手册的学习和实践,读者可以深入了解TCP协议的工作原理和应用,提高网络编程和网络通信的能力。
tcpip协议教案
tcpip协议教案协议名称: TCP/IP协议教案一、教案概述本教案旨在介绍TCP/IP协议,包括其基本概念、工作原理、协议栈结构以及应用领域。
通过本教案的学习,学生将能够深入了解TCP/IP协议的核心概念和应用,并掌握其在计算机网络中的重要性和作用。
二、教学目标1. 了解TCP/IP协议的定义、作用和发展历程。
2. 理解TCP/IP协议的基本工作原理和数据传输过程。
3. 掌握TCP/IP协议栈的结构和各层的功能。
4. 熟悉TCP/IP协议在实际应用中的场景和应用领域。
5. 能够分析TCP/IP协议的优缺点,并能够评估其在特定应用场景中的适用性。
三、教学内容和方法1. TCP/IP协议的定义和发展历程- 介绍TCP/IP协议的定义和作用。
- 回顾TCP/IP协议的发展历程,包括ARPANET和互联网的发展。
- 通过案例和实例,展示TCP/IP协议在实际应用中的重要性和普及程度。
2. TCP/IP协议的基本工作原理和数据传输过程- 解释TCP/IP协议的基本工作原理,包括分层和封装的概念。
- 详细说明TCP/IP协议中的数据传输过程,包括三次握手和四次挥手过程。
- 利用图表和示意图,帮助学生理解数据在TCP/IP协议中的传输路径和过程。
3. TCP/IP协议栈的结构和各层的功能- 介绍TCP/IP协议栈的结构,包括物理层、数据链路层、网络层、传输层和应用层。
- 详细说明每一层的功能和作用,以及各层之间的关系和交互方式。
- 通过实例和案例,展示TCP/IP协议在不同层次上的应用和实现方式。
4. TCP/IP协议的应用领域- 分析TCP/IP协议在互联网、局域网和广域网中的应用场景。
- 探讨TCP/IP协议在通信、数据传输和网络安全等方面的应用。
- 通过案例和实例,帮助学生理解TCP/IP协议在实际应用中的重要性和效果。
5. TCP/IP协议的优缺点和适用性评估- 分析TCP/IP协议的优点和不足,包括可靠性、灵活性和可扩展性等方面。
计算计概念和缩写含义
允许你使用其它计算机上的打印机,好像这些打印机直接连到你的计算机上。
远程执行(Remote Execution)
允许你请求运行在不同计算机上的特殊程序。当你在一个很小的计算机上运行一个需要大机系统资源的程序时,这时候远程执行非常有用。
名字服务器in 远程登录(Remote login)
网络终端协议TELNET允许用户登录到网络上任一计算机上。你可启动一个远程进程连接到指定的计算机,直到进程结束,期间你所键入的内容被送到所指定的计算机。值得注意的是,这时你实际上是与你的计算机进行对话。TELENET程序使得你的计算机在整个过程中不见了,所敲的每一个字符直接送到所登录的计算机系统。一般的说,这种远程连接是通过类式拨号连接的,也就是,拨通后,远程系统提示你输入注册名和口令,退出远程系统,TELNET程序也就退出,你又与自己的计算机对话了。微电脑中的TELNET工具一般含有一个终端仿真程序。
应用层向TCP层发送用于网间传输的、用8位字节表示的数据流,然后TCP把数据流分割成适当长度的报文段(通常受该计算机连接的网络的数据链路层的最大传送单元(MTU)的限制)。之后TCP把结果包传给IP层,由它来通过网络将包传送给接收端实体的TCP层。TCP为了保证不发生丢包,就给每个字节一个序号,同时序号也保证了传送到接收端实体的包的按序接收。然后接收端实体对已成功收到的字节发回一个相应的确认(ACK);如果发送端实体在合理的往返时延(RTT)内未收到确认,那么对应的数据(假设丢失了)将会被重传。TCP用一个校验和函数来检验数据是否有错误;在发送和接收时都要计算和校验。
2.中继器(REPEATER)中继器是网络物理层上面的连接设备。适用于完全相同的两类网络的互连,主要功能是通过对数据信号的重新发送或者转发,来扩大网络传输的距离。 中继器是对信号进行再生和还原的网络设备 OSI 模型的物理层设备.
tcpip协议簇
tcpip协议簇TCP/IP协议簇是互联网最重要的网络通信协议,是Internet Protocol Suite(简称为TCP/IP)的简称。
它由两个主要的协议组成:传输控制协议(Transmission Control Protocol,TCP)和互联网协议(Internet Protocol,IP)。
TCP/IP协议簇被广泛应用于互联网以及企业内部的局域网(Local Area Network,LAN)中。
它们提供了一种可靠的数据传输方式,保证了网络数据的可靠性、完整性和及时性。
TCP/IP协议簇是由网络层、传输层、应用层等多个网络协议组成的。
其中,网络层主要使用IP协议来确定数据在网络中的路径,传输层主要使用TCP协议来提供可靠的数据传输,应用层则包括HTTP、FTP、SMTP等多个应用协议,用于不同的网络应用。
TCP协议是面向连接的协议,它在发送数据之前,需要先建立一个连接。
TCP协议通过数据包的序列号和确认信息,保证数据的可靠性。
它还通过拥塞控制和流量控制等机制,调节数据的传输速率,保证网络的稳定性。
IP协议是网络层的协议,它用于寻找数据包的传输路径。
IP 协议通过IP地址将数据包从源主机传输到目标主机。
它还支持其他功能,例如分片和重组数据包,以及识别主机和网络之间的路由关系。
除了TCP和IP协议,TCP/IP协议簇还包括许多其他的协议,用于不同的网络应用。
例如,HTTP协议用于在Web浏览器和Web服务器之间传输超文本文档。
SMTP协议用于发送电子邮件。
FTP协议用于在计算机之间传输文件。
TCP/IP协议簇的设计和发展是为了满足互联网的需求。
它提供了一种通用的、可扩展的网络架构,使得互联网能够连接世界各地的计算机和网络设备。
它的开放性和可扩展性使得任何人都可以开发和添加新的网络应用协议。
总的来说,TCP/IP协议簇是互联网的基础和核心。
它提供了一种可靠的数据传输方式,以及支持各种网络应用的协议。
TCIP协议基础
常见协议(Internet)
内页一级标题
• ICMP: Internet Control Message Protocol (Internet控制报文协议) 二级标题 IP协议不是一个可靠的协议,它不保证数据被送达,那么,保证数 据送达的工作应该由其他的模块来完成,其中一个重要的模块就是 ICMP。 • 单击此处编辑母版文本样式 当传送IP数据包发生错误—比如主机不可达,路由不可达等等, ICMP协议将会把错误信息封包,然后传送回给主机。给主机处理错 误的机会,这也就是位什么说建立在IP层以上的协议是可能做到安 全的原因。
2
Internet
1
Link
TCP/IP协议栈
• 数据传输过程
内页一级标题
二级标题
Application
Application
• 单击此处编辑母版文本样式
+TCP SN Header +IP Header Route Info Frames Transport
Transport
-TCP Header, check, ACK -IP Header, check -Control Info
常见协议(Internet)
内页一级标题
• 典型的arp缓存信息如下,在任意一个系统里面用“arp -a”命令 二级标题 interface:192.168.1.105 --- 0xd Internet Address Physical Address Type 192.168.1.1 5c-63-bf-b6-8d-a8 dynamic • 单击此处编辑母版文本样式 192.168.1.100 40-f0 -2f- 9f-25- ba dynamic 高速缓存是有时限的,一般是20分钟
维基百科----TCPIP
维基百科----TCPIP简介互联⽹协议套件(英语:Internet Protocol Suite,缩写IPS)是⼀个⽹络通信模型,以及⼀整个家族,为的基础通信架构。
它常被通称为TCP/IP协议族(英语:TCP/IP Protocol Suite,或TCP/IP Protocols),简称TCP/IP。
因为该协议家族的两个核⼼协议:TCP()和IP(),为该家族中最早通过的标准。
由于在⽹络通讯协议普遍采⽤分层的结构,当多个层次的协议共同⼯作时,类似计算机科学中的,因此⼜被称为TCP/IP协议栈(英语:TCP/IP Protocol Stack)。
这些协议最早发源于(缩写为DoD)的项⽬,因此也被称作DoD模型(DoD Model)。
这个协议族由负责维护。
TCP/IP提供了点对点链接的机制,将数据应该如何封装、定址、传输、路由以及在⽬的地如何接收,都加以标准化。
它将软件通信过程为四个,采取的⽅式,分别实现出不同通信协议。
协议族下的各种协议,依其功能不同,被分别归属到这四个层次结构之中,常被视为是简化的七层。
历史1983年1⽉1⽇,在的前⾝(ARPA⽹)中通信⽅式换成新的定义,TCP/IP取代旧的(NCP,Network Control Protocol),从⽽成为今天的互联⽹的基⽯。
最早的TCP/IP由和两位开发,慢慢地通过竞争战胜其他⼀些⽹络协议的⽅案,⽐如的。
TCP/IP的蓬勃发展发⽣在1990年代中期。
当时⼀些重要⽽可靠的⼯具的出世,例如页⾯描述语⾔和浏览器,促成了互联⽹应⽤的飞速发展。
随着互联⽹的发展,当前流⾏的协议(⽹际协议版本四)已经接近它的功能上限。
IPv4最致命的两个缺陷在于:地址只有32位,空间有限;不⽀持服务质量(,QoS)的想法,⽆法管理带宽和优先级,故⽽不能很好的⽀持现今越来越多实时的语⾳和视频应⽤。
因此(⽹际协议版本六)浮出⽔⾯,⽤以取代IPv4。
TCP/IP成功的另⼀个因素在于对为数众多的低层协议的⽀持。
互联网协议英文
Host-to-Host Internet Network Access
Transport Network Data Link
Physical
1.1
Comparison of DoD and OSI Model (2)
TCP/IP Model OSI Model
1.2
The TCP/IP Protocol Suite
1.4a Transmission Control Protocol (TCP)
Connection-oriented Session is established before exchanging data Virtual circuit required Reliable Delivery Sequence numbers Acknowledgments (ACKs) Doesn’t trust the lower layers and runs its own CRC Uses Port Numbers as Endpoints to Communicate
1.4
The Host-to-Host Layer Protocols
To shield the upper-layer applications from the complexities of the network TCP (Transmission Control Protocol)
1.3
1.4 1.5
The Process / Application layer Protocols
The Host-to-Host Layer Protocols The Internet Layer Protocols
TCP&IPSuite
Chapter 1 Introduction1. In the original ARPANET, _______ were directly connected together.(A) IMPs (B) host computers (C) networks (D) routers2. _______ was formed to connect universities with no defense ties.(A) ARPANET (B) CSNET (C) NSFNET (D) ANSNET3. was the first network.(A) CSNET (B) NSFNET (C) ANSNET (D) ARPANET4. Which organization has authority over interstate and international commerce in the communications field?(A) ITU-T (B) IEEE (C) FCC (D) ISOC5. _______ are special-interest groups that quickly test, evaluate, and standardize new technologies.(A) Forums (B) Regulatory agencies(C) Standards organizations (D) All of the above6. Which agency developed standards for physical connection interfaces and electronic signaling specifications?(A) EIA (B) ITU-T (C) ANSI (D) ISO7. _______ is the protocol suite for the current Internet.(A) TCP/IP (B) NCP (C) UNIX (D) ACM8. A version of the _______ operating system included TCP/IP.(A) DARPA (B) NCP (C)UNIX (D) ACM9. The _______ oversees the IETF and the IRTF.(A)ISOC (B) IAB (C) IANA (D) NIC10. The _______ maintains and supports IAB.(A) ISOC (B) IETF (C) IANA (D) ICANN11. _______ is the precursor to ICANN.(A) ISOC (B) IETF (C)IANA (D) NIC12. _____ refers to the structure or format of the data, meaning the order in which they are presented.(A) Semantics (B) Syntax (C) Timing (D) all of the above13. _____ defines how a particular pattern to be interpreted, and what action is to be taken based on that interpretation.(A) Semantics (B) Syntax (C) Timing (D) none of the above14. _______ refers to two characteristics: when data should be sent and how fast it can be sent.(A) Semantics (B) Syntax (C) Timing (D) none of the above15. An RFC, during its lifetime, falls into one of _______ maturity levels.(A) 5 (B) 2 (C) 6 (D) none of the above16. A proposed standard is elevated to _____ standard status after at least two successful tries.(A) informational (B) historic (C) draft (D) none of the above17. An RFC is labeled ______ if it must be implemented by all Internet systems.(A) required (B) elective (C) recommended (D) none of the aboveChapter 2 The OSI Model and the TCPIP Protocol Suite1. Why was the OSI model developed?(A) manufacturers disliked the TCP/IP protocol suite(B) the rate of data transfer was increasing exponentially(C) standards were needed to allow any two systems to communicate(D) none of the above2. The _______ model shows how the network functions of a computer ought to be organized.(A) CCITT (B) OSI (C) ISO (D) ANSI3. The physical layer is concerned with the movement of _______ over the physical medium.(A) programs (B) dialogs (C) protocols (D) bits4. The OSI model consists of _______ layers.(A) three (B) five (C)seven (D) eight5. In the OSI model, as a data packet moves from the lower to the upper layers, headers are _______.(A) added (B)removed (C) rearranged (D) modified6. In the OSI model, when data is transmitted from device A to device B, the header from A’s layer 5 is read by B’s _______ layer.(A) physical (B) transport (C) session (D) presentation7. In the OSI model, which layer functions as a liaison between user support layers and network support layers?(A) network layer (B) physical layer (C) transport layer (D) session layer8. In the OSI model, what is the main function of the transport layer?(A) node-to-node delivery (B) process-to-process message delivery(C) synchronization (D) updating and maintenance of routing tables9. In the OSI model, encryption and decryption are functions of the ________ layer.(A) transport (B) session (C)presentation (D) application10. In the OSI model, which of the following is an application layer service?(A) network virtual terminal (B) file transfer, access, and management(C) mail service (D) all of the above11. When a host on network A sends a message to a host on network B, which address does the router look at?(A) port (B)logical (C) physical (D) none of the above12. To deliver a message to the correct application program running on a host, the _______ address must be consulted.(A) port (B) IP (C) physical (D) none of the above13. IPv6 has _______ -bit addresses.(A) 32 (B) 64 (C)128 (D) variable14. ICMPv6 includes _______.(A) IGMP (B) ARP (C) RARP (D) a and b15. The ______ layer is responsible for moving frames from one hop (node) to the next.(A) physical (B) data link (C) transport (D) none of the above16. The ______ layer adds a header to the packet coming from the upper layer that includes the logical addresses of the sender and receiver.(A) physical (B) data link (C) network (D) none of the above17. The_____ layer is responsible for the delivery of a message from one process to another.(A) physical (B)transport (C) network (D) none of the above18. The Internetworking Protocol (IP) is a ________ protocol.(A) reliable (B) connection-oriented (C) both a and b (D) none of the above19. ______ is a process-to-process protocol that adds only port addresses, checksum error control, and length information to the data from the upper layer.(A) TCP (B) UDP (C) IP (D) none of the above20. _______ provides full transport layer services to applications.(A)TCP (B) UDP (C) ARP (D) none of the above21. The ________ address, also known as the link address, is the address of a node as defined by its LAN or WAN.(A) port (B)physical (C) logical (D) none of the above22. Ethernet uses a ______ physical address that is imprinted on the network interface card (NIC).(A) 32-bit (B) 64-bit (C) 6-byte (D) none of the above23. Which of the following can be an Ethernet physical address?(A) 01:02:01:2C:4B (B) 07:01:02:01:2C:4B:2C(C) 07:01:02:01:2C:4B (D) none of the above24. A port address in TCP/IP is ______ bits long.(A) 32 (B) 48 (C) 16 (D) none of the above25. IP Version 5 was a proposal based on the ______ model. This version never went beyond the proposal stage due to extensive layer changes and the projected expense.(A) TCP (B)OSI (C) IEEE (D) none of the aboveChapter 3 Underlying Technologies1. 10BASE2 uses _____ cable while 10BASE5 uses _______.(A) thick coaxial, thin coaxial (B) twisted-pair, thick coaxial(C) thin coaxial, thick coaxial (D) none of the above2. ____ specifies a physical star topology featuring a central hub andtwisted-pair cable as the medium.(A) 10BASE5 (B) 10BASE2 (C) 10BASE-T (D) none of the above3. Frame Relay operates in the _______.(A) physical layer (B) data link layer(C) physical and data link layers (D) none of the above4. Which ATM layer has a 53-byte cell as an end product?(A) physical (B)ATM (C) application adaptation (D) none of the above5. The IP protocol uses the _______ sublayer.(A) AAL1 (B) AAL2 (C)AAL5 (D) none of the above6. Repeaters function in the _______ layer.(A) physical (B) data link (C) network (D) none of the above7. Bridges function in the _______ layers.(A) physical and data link (B) data link and network(C) network and transport (D) none of the above8. A bridge has access to the _____ address of a station on the same network.(A) logical (B) physical (C) port (D) none of the above9. Routers function in the _______ layers.(A) physical and data link (B) physical, data link, and network(C) data link and network (D) none of the above10. _____ has a higher transmission rate in the downstream direction than in the upstream direction.(A) VDSL (B) ADSL (C) SDSL (D) none of the above11. _____ is suitable for businesses that require comparable upstream and downstream data rates.(A) VDSL (B) ADSL (C)SDSL (D) none of the above12. _____ was designed as an alternative to the T-1 line.(A) VDSL (B) ADSL (C)HDSL (D) none of the above13. A traditional TV network transmits signals _______.(A) upstream (B) downstream(C) upstream and downstream (D) none of the above14. The second generation of cable networks is called a(n) _______ network.(A)HFC (B) GHC (C) FHC (D) none of the above15. An HFC network uses _______ as the medium from the cable TV office to the fiber node.(A)optical fiber (B) coaxial cable (C) UTP (D) none of the above16. In an ESS the _______ station is mobile.(A) AP (B) server (C) BSS (D) none of the above17. In an ESS the _______ stations are part of a wired LAN.(A) AP (B) server (C) BSS (D) none of the above18. SONET is a standard for _______ networks.(A) twisted-pair cable (B) coaxial cable(C)fiber-optic cable (D) none of the above19. SONET is an acronym for _______ Network.(A)Synchronous Optical (B) Standard Optical(C) Symmetrical Open (D) none of the above20. PPP is a _______ layer protocol.(A) physical (B) data link(C) physical and data link (D) none of the aboveChapter 4 IP Addresses: Classful Addressing1. Identify the class of the following IP address: 4.5.6.7(A)class A (B) class B (C) class C (D) none of the above2. Identify the class of the following IP address: 229.1.2.3(A) class A (B) class B (C) class D (D) none of the above3. Identify the class of the following IP address: 191.1.2.3(A) class A (B) class B (C) class C (D) none of the above4. Which of the following is true of the IP address 231.1.23?(A) The netid is 231. (B) The class is D.(C) The hostid is 1.2.3. (D) none of the above5. Which of the following is true of the IP address 192.0.0.10?(A) The netid is 192. (B) The hostid is 0.10.(C) The network address is 192.0.0.0. (D) none of the above6. Using the direct broadcast address, a ____ sends a packet to _____ on the network.(A) host; all other hosts (B) router; all other hosts(C) host; a specific host (D) none of the above7. Using the limited broadcast address, a ____ sends a packet to _____ on the network.(A) host; all other hosts (B) router; all other hosts(C) host; a specific host (D) none of the above8. The loopback address is used to send a packet from the ___ to ___.(A) host; all other hosts (B) router; all other hosts(C) host; a specific host (D) none of the above9. A host can get its IP address from its server by using _____ as the source address and ____ as the destination address.(A) 255.255.255.255; 0.0.0.0 (B) 127.0.0.0; 255.255.255.255(C)0.0.0.0; 255.255.255.255 (D) none of the above10. A host with an IP address of 142.5.0.1 needs to test internal software. What is the destination address in the packet?(A) 131.0.0.0 (B)127.1.1.1 (C) 129.1.127.127 (D) none of the above11. What is the result of ANDing 255 and 15?(A) 255 (B) 15 (C) 0 (D) none of the above12. What is the result of ANDing 0 and 15?(A) 255 (B) 15 (C)0 (D) none of the above13. What is the result of ANDing 254 and 15?(A) 254 (B) 14 (C) 0 (D) none of the above14. What is the result of ANDing 192 and 65?(A) 192 (B) 65 (C) 64 (D) none of the above15. A subnet mask in class A has 14 1s. How many subnets does it define?(A) 32 (B) 8 (C) 64 (D) none of the above16. A subnet mask in class B has 19 1s. How many subnets does it define?(A) 8 (B) 32 (C) 64 (D) none of the above17. A subnet mask in class C has 25 1s. How many subnets does it define?(A)2 (B) 8 (C) 16 (D) none of the above18. Which one is not a contiguous mask?(A) 255.255.255.254 (B) 255.255.224.0 (C)255.148.0.0 (D) all are19. Given the IP address 201.14.78.65 and the subnet mask 255.255.255.224, what is the subnet address?(A) 201.14.78.32 (B) 201.14.78.65 (C) 201.14.78.64 (D) none of the above20. Given the IP address 180.25.21.172 and the subnet mask 255.255.192.0, what is the subnet address?(A) 180.25.21.0 (B)180.25.0.0 (C) 180.25.8.0 (D) none of the above21. Given the IP address 18.250.31.14 and the subnet mask 255.240.0.0, what is the subnet address?(A) 18.0.0.14 (B) 18.31.0.14 (C)18.240.0.0 (D) none of the above22. The subnet mask for a class C network is 255.255.255.192. How many subnetworks are available?(A) 2 (B)4 (C) 8 (D) none of the above23. The subnet mask for a class B network is 255.255.224.0. How many subnetworks are available?(A) 2 (B) 4 (C) 8 (D) none of the above24. The subnet mask for a class C network is 255.255.255.248. How many subnetworks are available?(A) 4 (B) 8 (C) 16 (D) none of the above25. The number of addresses in a class C block is _______.(A) 65,534 (B) 16,777,216 (C) 256 (D) none of the above26. The number of addresses in a class B block is _______.(A) 65,534 (B) 16,777,216 (C) 256 (D) none of the above27. The number of addresses in a class A block is _______.(A) 65,534 (B) 16,777,216 (C) 256 (D) none of the above28. An organization has been granted a class A address. If the organization has 256 subnets, how many addresses are available in each subnet (including special addresses)?(A) 65,534 (B) 16,777,216 (C) 256 (D) none of the above29. An organization has been granted a class B address. If the organization has 64 subnets, how many addresses are available in each subnet (including special addresses)?(A) 65,534 (B)1024 (C) 256 (D) none of the above30. An organization has been granted a class C address. If the organization has 4 subnets, how many addresses are available in each subnet (including special addresses)?(A) 4 (B) 1024 (C) 256 (D) none of the aboveChapter 5 IP Addresses: Classless Addressing1. In classless addressing, _____ is assigned to a organization.(A)a variable-length block (B) a fixed-length(C) a fixed number of blocks (D) none of the above2. The number of addresses assigned to an organization in classless addressing _____.(A) can be any number (B) must be a multiple of 256(C) must be a power of 2 (D) none of the above3. The first address assigned to an organization in classless addressing _______.(A) must be a power of 4(B) must be evenly divisible by the number of addresses(C) must belong to one of the A, B, or C classes(D) none of the above4. Which address could be the beginning address of a block of 32 classless addresses?(A) 2.4.6.5 (B) 2.4.6.16 (C)2.4.6.64 (D) none of the above5. Which address could be the beginning address of a block of 16 classless addresses?(A) 2.4.6.5 (B) 2.4.6.15 (C) 2.4.6.62 (D) none of the above6. Which address could be the beginning address of a block of 256 classless addresses?(A) 2.4.6.5 (B) 2.4.6.15 (C)2.4.6.0 (D) none of the above7. What is the first address of a block of classless addresses if one of the addresses is 12.2.2.76/27?(A) 12.2.2.0 (B) 12.2.2.32 (C) 12.2.2.64 (D) none of the above8. What is the first address of a block of classless addresses if one of the addresses is 12.2.2.76/10?(A)12.0.0.0 (B) 12.2.0.0 (C) 12.2.2.2 (D) none of the above9. What is the first address of a block of classless addresses if one of the addresses is 12.2.2.127/28?(A) 12.2.2.0 (B) 12.2.2.96 (C) 12.2.2.112 (D) none of the above10. Find the number of addresses in a block of classless addresses if one of the addresses is 12.2.2.7/24.(A) 32. (B) 64 (C)256 (D) none of the above11. Find the number of addresses in a block of classless addresses if one of the addresses is 12.2.2.7/30.(A) 2 (B)4 (C) 8 (D) none of the above12. What is the last address of a block of classless addresses if one of the addresses is 12.2.2.127/28?(A) 12.2.2.16 (B) 12.2.2.112 (C) 12.2.2.127 (D) none of the above13. What is the last address of a block of classless addresses if one of the addresses is 12.2.2.6/30?(A) 12.2.2.2 (B) 12.2.2.6 (C)12.2.2.7 (D) none of the above14. In fixed-length subnetting, the number of subnets must _______.(A)be a power of 2 (B) be a multiple of 128(C) be divisible by 128 (D) none of the above15. An organization is granted a block; one address is 2.2.2.64/20. The organization needs 10 subnets. What is the subnet prefix length?(A) /20 (B) /24 (C) /25 (D) none of the above16. An organization is granted a block; one address is 2.2.2.64/25. If the subnet prefix length is /28, what is the maximum number of subnets?(A) 2 (B) 4 (C)8 (D) none of the above17. An organization is granted a block of classless addresses with the starting address 199.34.76.64/28. How many addresses are granted?(A) 8 (B)16 (C) 32 (D) none of the above18. An organization is granted a block of classless addresses with the starting address 199.34.76.128/29. How many addresses are granted?(A) 8 (B) 16 (C) 32 (D) none of the above19. An organization is granted a block of classless addresses with the starting address 19.9.34.32.0/27. How many addresses are granted?(A) 8 (B) 16 (C) 32 (D) none of the above20. What is the default mask for class A in CIDR notation?(A) /9 (B)/8 (C) /16 (D) none of the above21. What is the default mask for class B in CIDR notation?(A) /9 (B) /8 (C)/16 (D) none of the above22. What is the default mask for class C in CIDR notation?(A) /24 (B) /8 (C)/16 (D) none of the above23. In ______ addressing, when an address is given, we can find the beginning address and the range of addresses.(A)classless (B) classful (C) both a and b (D) none of the above24. In classless addressing, the ____ is another name for the common part of the address range.(A) suffix (B)prefix (C) netid (D) none of the above25. In classless addressing, the _____ is the varying part (similar to the hostid).(A) suffix (B) prefix (C) hostid (D) none of the above26. In classless addressing, the prefix length defines the _____________.(A) netid (B) hostid (C) mask (D) none of the above27. In a block, the prefix length is /22; what is the mask?(A) 255.255.255.0 (B) 255.255.252.0(C) 255.255.0.0 (D) none of the above28. In a block, the prefix length is /15; what is the mask?(A)255.254.0.0 (B) 255.255.255.0(C) 255.255.255.12.8 (D) none of the above29. In a block, the mask is 255.255.192.0; what is the prefix length?(A) /20 (B) /28 (C) /18 (D) none of the above30. In a block, the mask is 255.255.255.224; what is the prefix length?(A) /20 (B) /19 (C) /20 (D) none of the aboveChapter 6 Delivery, Forwarding, and Routing of IP Packets1. In _____ delivery, both the deliverer of the IP packet and the destination are on the same network.(A) a connectionless (B) a direct (C) an indirect (D) none of the above2. In _____ delivery, the deliverer of the IP packet and the destination are on different networks.(A) a connection-oriented (B) a direct (C) an indirect (D) none of the above3. In ____ delivery, packets of a message are logically connected to one another.(A) a connectionless (B) a connection-oriented(C) a direct (D) none of the above4. In _____ delivery, a packet is not connected to any other packet.(A) a connectionless (B) a connection-oriented(C) a direct (D) none of the above5. In classful addressing, when a direct delivery is made, both the deliverer and receiver have the same _______.(A) IP address (B) hostid (C) netid (D) none of the above6. In classful addressing, when an indirect delivery is made, the deliverer and receiver have _______.(A) the same IP address (B)different netids(C) the same netid (D) none of the above7. In _____ forwarding, the full IP address of a destination is given in the routing table.(A) next-hop (B) network-specific (C)host-specific (D) default8. In _____ forwarding, the mask and destination addresses are both 0.0.0.0 in the routing table.(A) next-hop (B) network-specific (C) host-specific (D) default9. In _____ forwarding, the destination address is a network address in the routing table.(A) next-hop (B) network-specific (C) host-specific (D) default10. In _____ forwarding, the routing table holds the address of just the next hop instead of complete route information.(A) next-hop (B) network-specific (C) host-specific (D) default11. In _____ addressing, a typical forwarding module can be designed using three tables, one for each unicast class (A, B, C).(A) classful (B) classless (C) both a and b (D) none of the above12. In classful addressing, the class of the address can be found by shifting the copy of the address ____ bits to the right.(A) 32 (B) 16 (C)28 (D) none of the above13. In classful addressing we need a routing table with at least ___ columns.(A) 4 (B) 3 (C) 8 (D) none of the above14. In classless addressing, we need a routing table with at least _______ columns.(A)4 (B) 3 (C) 8 (D) none of the above15. The idea of address aggregation was designed to alleviate the increase in routing table entries when using ________.(A) classful addressing (B) classless addressing(C) both a and b (D) none of the above16. The principle of ____ states that the routing table is sorted from the longest mask to the shortest mask.(A) first mask matching (B) shortest mask matching(C) longest mask matching (D) none of the above17. The use of hierarchy in routing tables can _____ the size of the routing tables.(A)reduce (B) increase (C) both a and b (D) none of the above18. _____ deals with the issues of creating and maintaining routing tables.(A) Forwarding (B) Routing (C) Directing (D) none of the above19. A _____ routing table contains information entered manually.(A) static (B) dynamic (C) hierarchical (D) none of the above20. A ____ routing table is updated periodically using one of the dynamic routing protocols.(A) static (B)dynamic (C) hierarchical (D) none of the above21. The input and output ports of a router perform the _____ layer functions of the router.(A) physical and data link (B) network (C) transport (D) none of the above22. The routing processor of a router performs the _____ layer functions of the router.(A) physical and data link (B) network (C) transport (D) none of the above23. The task of moving the packet from the input queue to the output queue in a router is done by _________.(A) input and output ports (B) routing processor(C)switching fabrics (D) none of the aboveChapter 7 ARP and RARP1. A _____ address is an internetwork address with universal jurisdiction.(A) physical (B) logical (C) a and b (D) none of the above2. The logical addresses in the TCP/IP protocol suite are called ____ addresses.(A) port (B) IP (C) Email (D) none of the above3. A ______ is a local address. Its jurisdiction is over a local network.(A)physical (B) logical (C) a and b (D) none of the above4. If the sender is a host and wants to send a packet to another host on the same network, the logical address that must be mapped to a physical address is ______.(A) the destination IP address in the datagram header(B) the IP address of the router found in the routing table(C) either a or b(D) none of the above5. If the sender is a host and wants to send a packet to another host on another network, the logical address that must be mapped to a physical address is __.(A) the destination IP address in the datagram header(B) the IP address of the router found in the routing table(C) either a or b(D) none of the above6. The sender is a router that has received a datagram destined for a host on another network. The logical address that must be mapped to a physical address is ______.(A) the destination IP address in the datagram header(B) the IP address of the router found in the routing table(C) either a or b(D) none of the above7. The sender is a router that has received a datagram destined for a host in thesame network. The logical address that must be mapped to a physical address is ______.(A) the destination IP address in the datagram header(B) the IP address of the router found in the routing table(C) either a or b(D) none of the above8. In _____, a table associating a logical address with a physical address is updated manually.(A) static mapping (B) dynamic mapping(C) physical mapping (D) none of the above9. _____ is a dynamic mapping protocol in which a logical address is found fora given physical address.(A) ARP (B) RARP (C) both a and b (D) none of the above10. _____ is a dynamic mapping protocol in which a physical address is found fora given logical address.(A) ARP (B) RARP (C) both a and b (D) none of the above11. The target hardware address on an Ethernet is _______ in an ARP request.(A)0x000000000000 (B) 0.0.0.0 (C) variable (D) class dependent12. An ARP reply is normally _______.(A) broadcast (B) multicast (C)unicast (D) none of the above13. An ARP request is normally _______.(A)broadcast (B) multicast (C) unicast (D) none of the above14. A technique called ______ is used to create a subnetting effect.(A) ARP (B) RARP (C) proxy ARP (D) none of the above15. A ___ is an ARP that acts on behalf of a set of hosts.(A) ARP (B) RARP (C)proxy ARP (D) none of the above16. A sender usually has more than one IP datagram to send to the same destination. It is inefficient to use the ARP protocol for each datagram destined for the same host or router. The solution is the _________.(A) routing table (B)cache table (C) ARP table (D) none of the above17. The RARP request packets are normally _________.(A)broadcast (B) unicast (C) multicast (D) none of the above18. The RARP reply packets are normally_________ .(A) broadcast (B)unicast (C) multicast (D) none of the above19. The ARP component that sends an ARP reply to the data link layer is the _____.(A) cache controller (B) input module(C) output module (D) none of the above20. The ARP component that sends an IP packet to a queue is the _______.(A) cache controller (B) input module(C) output module (D) none of the aboveChapter 8 Internet Protocol (IP)1. The ___ protocol is the transmission mechanism used by the TCP/IP suite.(A) ARP (B) IP (C) RARP (D) none of the above2. IP is _____ datagram protocol.(A) unreliable (B) connectionless (C) both a and b (D) none of the above3. The term ___ means that IP provides no error checking or tracking. IP assumes the unreliability of the underlying layers and does its best to get a transmission through to its destination, but with no guarantees.(A) reliable delivery (B) connection-oriented delivery(C) best-effort delivery (D) none of the above4. A best-effort delivery service such as IP includes _______.(A) error checking (B) error correction(C) datagram acknowledgment (D) none of the above5. An HLEN value of decimal 10 means _______.(A) there are 10 bytes of options (B) there are 40 bytes of options(C) there are 40 bytes in the header (D) none of the above6. A datagram is fragmented into three smaller datagrams. Which of the following is true?(A) The do not fragment bit is set to 1 for all three datagrams.(B) The more fragment bit is set to 0 for all three datagrams.(C) The identification field is the same for all three datagrams.(D) none of the above7. Which field or bit value unambiguously identifies the datagram as a fragment?(A) Do not fragment bit = 0 (B) More Fragment bit = 0(C) Fragment offset = 1000 (D) none of the above8. If the fragment offset has a value of 100, it means that _______.(A) the datagram has not been fragmented(B) the datagram is 100 bytes in size(C) the first byte of the datagram is byte 800(D) none of the above9. What is needed to determine the number of the last byte of a fragment?(A) offset number (B) total length (C) a and b (D) none of the above10. The IP header size _______.(A) is 20 to 60 bytes long (B) is 20 bytes long(C) is 60 bytes long (D) none of the above11. Packets in the IP layer are called _________ .(A) segments (B)datagrams (C) frames (D) none of the above12. The total length field defines the total length of the datagram _________.(A) including the header (B) excluding the header(C) header and option length (D) none of the above13. When a datagram is encapsulated in a frame, the total size of the datagram must be less than the _______.(A) MUT (B) MAT (C) MTU (D) none of the above14. Which IP option is used if exactly four specific routers are to be visited by the datagram?(A) record route (B) strict source route(C) loose source route (D) none of the above。
计算机网络解析
一、选择题(共30 题,每题1 分)1.局域网(LAN):概念,划分。
(11页,297 页)Ethernet, wireless LAN 此题答案不明确2. 域名解析服务(DN S)三层结构:根(roo t)DN S服务器,顶级域(top-lev el do m ain)服务器,权威(a utho ri tative)DNS 服务器。
DN S记录结构。
离你最近的DNS 服务器上存放着什么?(87 页,90 页)root name server: contacts authoritative name server if name mapping not known, gets mapping, returns mapping to local name server顶级域 (TLD) servers: responsible for com, org, net, edu, etc, and all top-level country domains uk, fr, ca, jp.权威Authoritative DNS servers:主机名映射为IP地址的DNS记录本地Local Name Server: caches mapping3. TCP 连接的建立:三次握手(thre e-wa y handsha king),SY N和ACK 标志位,顺序号和确认号。
(169 页)4. SMT P:推协议(push p r otocol),邮件服务器间投递邮件,不使用中间邮件服务器,25端口,只能用7 位AS CII码表示。
(77 页)SMTP: sending server to receiving server, port 25, messages must be in 7-bit ASCII, SMTP server uses CRLF.CRLF to determine end of message, SMTP: push5. TCP/IP协议族(TCP/I P protocol suite)6. 流水线(pip elin ing):允许发送方发送多个分组而无需等待确认,但必须增加序号范围且缓存分组。
internet通信协议
internet通信协议互联网通信协议(Internet Communication Protocol)互联网通信协议是指在互联网上进行数据传输和通信所遵循的一套规则和标准。
它定义了数据在网络中的传输方式、路由选择、错误处理等方面的各种规范,以确保在不同系统之间能够有效地传输和交换信息。
互联网通信协议的两个重要组成部分是互联网协议套件(Internet Protocol Suite)和传输控制协议/互联网协议(Transmission Control Protocol/Internet Protocol,简称TCP/IP)。
互联网协议套件定义了互联网中数据传输的基本原则,它包括四层协议,分别是网络层、传输层、应用层和物理层。
网络层是互联网通信的核心,它使用IP协议(Internet Protocol)来对数据进行分组和路由选择,确保数据从源主机到目的主机的顺利传输。
IP协议使用IP地址来标识互联网上的不同主机和网络。
传输层负责确保数据在主机之间的可靠传输。
其中最重要的协议是TCP协议(Transmission Control Protocol),它提供了可靠的、面向连接的数据传输服务。
TCP协议通过建立连接、分段传输、流量控制和错误恢复等机制,保证数据的正确传输。
应用层提供了用户与互联网之间的接口,包括HTTP协议(HyperText Transfer Protocol)、FTP协议(File Transfer Protocol)、SMTP协议(Simple Mail Transfer Protocol)等。
这些协议定义了不同应用程序之间的通信规则,使得用户可以通过互联网进行网页浏览、文件传输、电子邮件等操作。
物理层是互联网通信的最底层,负责将数字信号以电磁波的形式传输到物理链路上。
在互联网中,常用的物理层协议有以太网(Ethernet)和无线局域网(WLAN)等。
传输控制协议/互联网协议(TCP/IP)是互联网通信的核心协议,由TCP协议和IP协议组成。
网络基础之网络协议篇
head data ⽹络基础之⽹络协议篇⼀.操作系统基础操作系统:(Operating System,简称OS)是管理和控制计算机硬件与软件资源的计算机程序,是直接运⾏在“裸机”上的最基本的系统软件,任何其他软件都必须在操作系统的⽀持下才能运⾏。
注:计算机(硬件)->os->应⽤软件⼆.⽹络通信原理2.1 互联⽹的本质就是⼀系列的⽹络协议⼀台硬设有了操作系统,然后装上软件你就可以正常使⽤了,然⽽你也只能⾃⼰使⽤像这样,每个⼈都拥有⼀台⾃⼰的机器,然⽽彼此孤⽴如何能⼤家⼀起玩耍然⽽internet为何物?其实两台计算机之间通信与两个⼈打电话之间通信的原理是⼀样的(中国有很多地区,不同的地区有不同的⽅⾔,为了全中国⼈都可以听懂,⼤家统⼀讲普通话)普通话属于中国国内⼈与⼈之间通信的标准,那如果是两个国家的⼈交流呢?问题是,你不可能要求⼀个⼈/计算机掌握全世界的语⾔/标准,于是有了世界统⼀的通信标准:英语结论:英语成为世界上所有⼈通信的统⼀标准,如果把计算机看成分布于世界各地的⼈,那么连接两台计算机之间的internet实际上就是⼀系列统⼀的标准,这些标准称之为互联⽹协议,互联⽹的本质就是⼀系列的协议,总称为‘互联⽹协议’(Internet Protocol Suite).互联⽹协议的功能:定义计算机如何接⼊internet,以及接⼊internet 的计算机通信的标准。
2.2 osi七层协议互联⽹协议按照功能不同分为osi七层或tcp/ip五层或tcp/ip四层每层运⾏常见物理设备OSI七层协议数据传输的封包与解包过程2.3 tcp/ip五层模型讲解我们将应⽤层,表⽰层,会话层并作应⽤层,从tcp/ip五层协议的⾓度来阐述每层的由来与功能,搞清楚了每层的主要协议就理解了整个互联⽹通信的原理。
⾸先,⽤户感知到的只是最上⾯⼀层应⽤层,⾃上⽽下每层都依赖于下⼀层,所以我们从最下⼀层开始切⼊,⽐较好理解每层都运⾏特定的协议,越往上越靠近⽤户,越往下越靠近硬件2.3.1 物理层物理层由来:上⾯提到,孤⽴的计算机之间要想⼀起玩,就必须接⼊internet,⾔外之意就是计算机之间必须完成组⽹物理层功能:主要是基于电器特性发送⾼低电压(电信号),⾼电压对应数字1,低电压对应数字02.3.2 数据链路层数据链路层由来:单纯的电信号0和1没有任何意义,必须规定电信号多少位⼀组,每组什么意思数据链路层的功能:定义了电信号的分组⽅式以太⽹协议:早期的时候各个公司都有⾃⼰的分组⽅式,后来形成了统⼀的标准,即以太⽹协议ethernetethernet规定⼀组电信号构成⼀个数据包,叫做‘帧’每⼀数据帧分成:报头head和数据data两部分head包含:(固定18个字节)发送者/源地址,6个字节接收者/⽬标地址,6个字节数据类型,6个字节data包含:(最短46字节,最长1500字节)数据包的具体内容head长度+data长度=最短64字节,最长1518字节,超过最⼤限制就分⽚发送mac地址:head中包含的源和⽬标地址由来:ethernet规定接⼊internet的设备都必须具备⽹卡,发送端和接收端的地址便是指⽹卡的地址,即mac地址mac地址:每块⽹卡出⼚时都被烧制上⼀个世界唯⼀的mac地址,长度为48位2进制,通常由12位16进制数表⽰(前六位是⼚商编号,后六位是流⽔线号)⼴播:有了mac地址,同⼀⽹络内的两台主机就可以通信了(⼀台主机通过arp协议获取另外⼀台主机的mac地址)ethernet 采⽤最原始的⽅式,⼴播的⽅式进⾏通信,即计算机通信基本靠吼2.3.3 ⽹络层⽹络层由来:有了ethernet、mac地址、⼴播的发送⽅式,世界上的计算机就可以彼此通信了,问题是世界范围的互联⽹是由⼀个个彼此隔离的⼩的局域⽹组成的,那么如果所有的通信都采⽤以太⽹的⼴播⽅式,那么⼀台机器发送的包全世界都会收到,这就不仅仅是效率低的问题了,这会是⼀种灾难上图结论:必须找出⼀种⽅法来区分哪些计算机属于同⼀⼴播域,哪些不是,如果是就采⽤⼴播的⽅式发送,如果不是,就采⽤路由的⽅式(向不同⼴播域/⼦⽹分发数据包),mac地址是⽆法区分的,它只跟⼚商有关⽹络层功能:引⼊⼀套新的地址⽤来区分不同的⼴播域/⼦⽹,这套地址即⽹络地址IP协议:规定⽹络地址的协议叫ip协议,它定义的地址称之为ip地址,⼴泛采⽤的v4版本即ipv4,它规定⽹络地址由32位2进制表⽰范围0.0.0.0-255.255.255.255⼀个ip地址通常写成四段⼗进制数,例:172.16.10.1ip地址分成两部分⽹络部分:标识⼦⽹主机部分:标识主机注意:单纯的ip地址段只是标识了ip地址的种类,从⽹络部分或主机部分都⽆法辨识⼀个ip所处的⼦⽹例:172.16.10.1与172.16.10.2并不能确定⼆者处于同⼀⼦⽹⼦⽹掩码所谓”⼦⽹掩码”,就是表⽰⼦⽹络特征的⼀个参数。
tcp6用法
tcp6用法哎哟,这题目真是有点儿难整啊,又是TCP6的用法,又要用不同地方的方言来整,这可真是考验人嘞。
咱先来聊聊TCP6这个玩意儿吧。
TCP6,说白了就是基于IPv6的TCP协议,它跟咱们平常用的TCP差不多,就是地址换成了IPv6的格式。
IPv6嘛,地址长,好处也多,能容下更多的设备连上网,再也不用担心IP地址不够用的问题了。
在咱们四川这儿,说TCP6,就像说“坛子菜”一样,得讲究个实在。
用TCP6嘛,就得先确保你的网络环境支持IPv6,然后配置一下,就能用上了。
就像咱们四川人做菜,材料得齐全,火候得掌握得当,才能整出好味道。
换到贵州那边,他们可能会说,TCP6这东西,就像他们那里的酸汤鱼一样,得有个好底子,才能整出好味道。
底子就是网络环境,得稳当,才能跑得起TCP6。
然后配置一下,就像加调料一样,得适量,不能多也不能少。
再到陕西那边,他们可能会用更朴实的话来说。
TCP6啊,就像他们那里的羊肉泡馍一样,得有个好馍,才能泡出好味道。
馍就是网络环境,得扎实。
然后配置TCP6,就像加羊肉和调料一样,得讲究个搭配和火候。
最后说说北京那边吧。
他们可能会说,TCP6这东西,得有个专业的态度来对待。
就像他们对待京剧一样,得严谨、得讲究。
配置TCP6,也得按照规矩来,不能乱来。
这样,才能确保TCP6能跑得好,不出问题。
总的来说呢,TCP6的用法嘛,就是得确保网络环境支持IPv6,然后按照规矩来配置一下。
这样,无论是四川的“坛子菜”、贵州的酸汤鱼、陕西的羊肉泡馍还是北京的京剧,都能体现出TCP6的好处来。
当然啦,这只是我个人的理解哈,具体怎么用还得看实际情况和需求来定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
© The McGraw-Hill Companies, Inc., 2006 raw-Hill Companies, Inc., 2006 2007
6-9
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 10
© The McGraw-Hill Companies, Inc., 2006 2007
Chapter 6 IP 封包的傳送、轉送與 路徑選擇
© The McGraw-Hill Companies, Inc., 2006 2007
6-2
目標
本章結束後,您將能夠: 了解各種類型的傳送及連接 了解在分級式定址中的轉送技巧 了解在無級式定址中的轉送技巧 了解路由表的運作方式 了解路由器的架構
© The McGraw-Hill Companies, Inc., 2006 2007
6-4
請注意:
IP 通訊協定屬於非預接式通訊協定。
© The McGraw-Hill Companies, Inc., 2006 2007
6-5
© The McGraw-Hill Companies, Inc., 2006 2007
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 29
範例10
在圖6.13 中,如果有一個目的位址為 18.24.32.78 的封包到 達 R1 路由器。請描述此封包如何被轉送。
解答 將目的位址與所有的遮罩做運算後,發現並沒有符合的網路 位址。到達表格的最後,此模組會將次站位址 180.70.65.200 和介面編號 m2 傳送到 ARP 模組。此封包可能是一個需要透 過預設路由器傳送到 Internet 上某個地方的封包。
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 23
請注意:
在分級式定址中, 我們可以擁有一個包含 3 個欄位的路由表; 在無級式定址中, 我們至少需要 4 個欄位。
© The McGraw-Hill Companies, Inc., 2006 2007
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 18
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 19
範例4
圖6.11 說明了一台路由器連接四個子網。
© The McGraw-Hill Companies, Inc., 2006 2007
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 21
範例5
在圖6.11 中的路由器接收到一個目的位址為 145.14.32.78 的 封包。請描述此封包如何被轉送。
解答 其遮罩為 /18。我們使用遮罩來求出子網位址為145.14.0.0。 傳送到 ARP 模組的次站位址為 145.14.32.78,而輸出介面為 m0。
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 32
範例11 (續)
解答 我們可以知道一部份,但無法知道明確的網路拓撲。 我們知道 R1 路由器有 3 個介面:m0、m1、及m2。 我們知道有 3 個網路直接和此路由器相連接。 我們知道有 2 個網路間接的連接到 R1 路由器。除了 R1 路由器之外,至少還有 3 個路由器 ( 見次站位址那一行 ), 我們可以透過其 IP 位址知道那些路由器連接到哪些網路, 所以我們可以將它們放到適當的地方。 接下一張投影片
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 17
範例3
在圖6.8 中的 R1 路由器接收到一個目的位址為 167.24.160.5 的封包。請描述此封包如何被轉送。 解答 目的位址為 ( 10100111 00011000 10100000 00000101 )2。其 中一份備份被右移28個位元,其結果為 ( 00000000 00000000 00000000 00001010 )2 = ( 10 )10,所以此位址為等級 B。藉由 搭配遮罩將目的位址的最左邊16個位元保留下來摘取網路位 址,其結果為167.24.0.0。等級 B 的表格會被搜尋,但是並 沒有相符合的網路位址,所以此封包必須被轉送到預設路由 器 ( 目的地網路有可能在 Internet 的某處 )。則傳送給 ARP 的次站位址為111.30.31.18,介面編號為 m0。
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 22
範例6
在圖6.11 中,有一台主機在 145.14.0.0 的網路中,想要傳送 一個目的位址為 7.22.67.91 的封包。請描述此封包如何被轉 送。 解答 路由器接收到此封包後,將目的位址與遮罩進行運算,得到 其網路位址為 7.22.64.0。在表格中並沒有找到相符合的網路 位址,所以路由器直接使用預設路由器的位址 ( 並沒有在圖 中 ),並將此封包傳送到預設路由器。
6 - 20
範例4 (續)
要注意以下幾點。 第一,此所在地的位址為 145.14.0.0/16,為一個等級B的 位址。只要目的位址位於 145.14.0.0 到 145.14.255.255 之 間的封包都會傳送到 m4 這個介面,並且透過路由器傳 送到目的子網路。 第二,因為我們不曉得路由器使用 m4 介面連到哪一個 網路,所以我們使用 x. y. z. t. /n 來表示。 第三,針對那些要傳送到此所在地之外的封包,表格中 擁有一個預設條目。 最後此路由器被安排使用子網遮罩 /18 來對任何的目的 位址進行運算。
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 14
範例1 (續)
解答 圖6.9 說明了 R1 路由器所使用的 3 個表格。 注意,有一些次站位址欄位內的項目是空白的,原因是 目的地已經和目前的路由器位於同一個網路,已經連接 在一起,可以使用 直接傳送。 在目前的情況下,為了簡單起見,我們先將ARP 使用的 次站位址 ( 實體位址 ) 用封包的目的位址代替,詳細的轉 換動作我們會在第7章介紹。
6-6
© The McGraw-Hill Companies, Inc., 2006 2007
6-7
6.2 轉送
轉送 ( forwarding ) 意指將其路徑中的封包轉送到其目的地。 轉送要求主機或路由器必須要擁有一個路徑選擇表 ( routing table ),或簡稱為路由表。
本節所討論的主題包括: 轉送的技巧 分級式定址的轉送 無級式定址的轉送 組合
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 33
範例11 (續)
我們知道其中一個路由器為預設路由器,連接到 Internet 的其他地方。 但是有一些資訊我們無法獲得,我們無法知道網路 130.4.8.0 是直接連接到 R2 路由器,或是透過點對點網路 ( WAN ) 及其他的路由器。 我們無法知道網路 140.6.12.64 是直接連接到 R3 路由器, 或是透過點對點網路 ( WAN ) 及其他的路由器。 點對點網路 ( WAN ) 通常不會出現在路由表中,因為不會 有主機連接到點對點網路。圖6.14 說明了我們猜測的網路 拓撲。 接下一張投影片
6 - 24
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 25
範例7
使用圖6.13 中的配置,請製作出 R1 路由器的路由表。
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 26
範例7 (續)
解答 表6.1 說明此對應的表格。
接下一張投影片
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 15
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 16
範例2
在圖6.8 中的 R1 路由器接收到一個目的位址為 192.16.7.14 的封包。請描述此封包如何被轉送。 解答 目的位址為 ( 11000000 00010000 00000111 00001110 )2。其 中一份備份被右移28個位元,其結果為 ( 00000000 00000000 00000000 00001100 )2 = ( 12 )10,所以此位址為等級C。藉由 搭配遮罩將目的位址的最左邊24個位元保留下來摘取網路位 址,其結果為192.16.7.0。等級C的表格會被搜尋,並且於第 一列找到相符合的網路位址。則傳給ARP的次站位址為 111.15.17.32,介面編號為 m0。
© The McGraw-Hill Companies, Inc., 2006 2007
6-3
6.1 傳送
網路層用來管理封包的傳送 ( delivery ),也就是底層實體網 路處理封包的相關事宜。在此有兩個重要的概念,第一是連 線的種類,第二則是直接或間接的傳送。
本節所討論的主題包括: 連線種類 直接傳送與間接傳送
© The McGraw-Hill Companies, Inc., 2006 2007
6 - 28
範例9
在圖6.13 中,如果有一個目的位址為 201.4.22.35 的封包到 達 R1 路由器。請描述此封包如何被轉送。 解答 此路由器會執行下列的步驟: 1. 將目的位址與第一個遮罩 ( /26 ) 做運算。結果為 201.4.22.0,並沒有符合對應的網路位址 ( 第一列 ) 。 2. 將目的位址與第二個遮罩 ( /25 ) 做運算。結果為 201.4.22.0,並沒有符合對應的網路位址 ( 第二列 ) 。 3. 將目的位址與第三個遮罩 ( /24 ) 做運算。結果為 201.4.22.0,符合對應的網路位址。將此封包之目的位址 和介面編號 m3 傳送到 ARP 模組 。